XXIX Неделя науки СПбГТУ. Материалы межвузовской научной конференции. Ч.І: С.60-62, 2001. © Санкт-Петербургский государственный технический университет, 2001.

УДК 621.316.925

К.В.Бакун (6 курс, каф. ЭСиАЭС), М.А.Шахова, к.т.н., доц.

МЕТОД ЗАЩИТЫ ЦЕПЕЙ СТАТОРА ГЕНЕРАТОРА ОТ ОДНОФАЗНЫХ ЗАМЫКАНИЙ НА ЗЕМЛЮ

Рост мощности энергоблоков влечет за собой повышение требований к точности, надежности и количеству функций, реализуемых защитами. Также для таких энергоблоков становится особенно актуальной проблема защиты от однофазных замыканий на землю. Однофазное замыкание на землю является наиболее распространенным видом повреждения в сетях с изолированной нейтралью. Однофазные замыкания на землю не вызывают появления больших токов и не искажают значения междуфазных напряжений, однако, в результате теплового воздействия тока замыкания на землю и электрической дуги в месте повреждения возможно нарушение изоляции междуфазами и переход однофазного замыкания в междуфазные. Кроме того, появляется опасность выгорания стали статора генератора в связи с длительным протеканием тока замыкания на землю.

В настоящее время чаще всего применяются следующие методы защиты: для блока генератор-трансформатор — по напряжению нулевой последовательности и по третьей гармонике ЭДС генератора. Для генератора, работающего на сборные шины — по току обратной последовательности. Эти методы имеют ряд существенных недостатков: наличие зон нечувствительности, невозможность определения конкретного места повреждения, отсутствие постоянного контроля сопротивления изоляции.

Метод защиты от однофазных коротких замыканий, разработанный на кафедре электрических станций и автоматизации энергетических систем СПбГТУ лишен недостатков традиционных методов. Суть метода состоит в том, что в цепи генераторного напряжения с помощью коммутатора ведется постоянный контроль и выбирается фаза с наибольшим по абсолютному значению напряжением относительно земли; выбранная фаза соединяется с землей через сопротивление и измеряется ток утечки на землю, протекающий через это сопротивление. По среднему значению тока утечки и интегральному значению напряжения на зажимах генератора определяется общее активное сопротивление изоляции сети генераторного напряжения относительно земли. Это сопротивление сравнивается с допустимым значением и, если оно оказывается меньше допустимого, считается, что произошло замыкание на землю, и формируется соответствующий сигнал.

Для определения места повреждения, определяются интегральные (средние) значения токов утечки отдельных фаз. На каждом текущем интервале времени, соответствующем периоду промышленной частоты, эти средние значения сравниваются между собой и по их соотношениям определяется место повреждения в защищаемой сети. Находится наименьшее из средних значений токов утечки в фазах и вычисляется отношение этого наименьшего среднего значения тока утечки в фазе к среднему значению тока утечки. Оно равно расстоянию (измеряемому витками обмотки статора) от фазного вывода до места повреждения в обмотке в относительных единицах:

$$\frac{I_c}{I_{ym}} = \frac{I_c}{(I_A + I_B + I_c)} = \alpha.$$

Здесь I_C — среднее значение тока утечки в поврежденной фазе, I_{ym} — среднее значение тока утечки, α - расстояние (число витков) от фазного вывода поврежденной обмотки до места повреждения в обмотке в относительных единицах.

Поврежденной считается фаза, в которой интегральное значение тока утечки имеет наименьшее значение. Постоянный контроль сопротивления изоляции и знание места повреждения в сети позволяет выводить из работы только поврежденные элементы, что облегчает ремонтно-восстановительные работы и сокращает продолжительность вынужденного перерыва в электроснабжении потребителей, за счет чего повышается надежность работы сети в целом.

При использовании данного метода для защиты генератора, работающего на сборные шины, от однофазных замыканий на землю, существует возможность лишь зафиксировать факт возникновения замыкания, но не определить место повреждения. В связи с этим, рекомендуется применять метод для защиты блоков генератортрансформатор.

Рассматриваемый метод осуществляет полный контроль цепей статора генератора (без зоны нечувствительности) и установка дополнительной защиты от однофазных коротких замыканий не требуется, но при необходимости защиту можно использовать совместно с традиционными вариантами защит, например по напряжению нулевой последовательности. Для этого нейтраль трансформатора напряжения необходимо соединить с землей через конденсатор, параметры которого выбираются по условиям допустимости колебательных и феррорезонансных явлений. Установлено, что емкость конденсатора для трансформаторов напряжения типа НТМИ должна быть не менее 24 мкФ.

Возможны различные варианты реализации описываемого метода в зависимости от схемы подключения трансформатора напряжения (звезда, или открытый треугольник) и схемы выпрямительного моста (3 или 6 диодных ключей). При использовании для подключения трансформатора напряжения схемы открытого треугольника исключается возможность совместной работы с защитой по напряжению нулевой последовательности, но улучшаются условия работы самого трансформатора напряжения и устройства защиты, так как в этом случае для дальнейших расчетов используются междуфазные напряжения. Увеличение количества диодный ключей в выпрямителе расширяет сферу применения метода.

Цифровая реализация данного метода дает возможность включения устройств защиты генератора от однофазных замыканий на землю в состав АСУ ТП электрической части станции.

Использование нового метода для защиты блоков генератор-трансформатор дает возможность стопроцентной защиты цепей статора. У такой защиты отсутствует зона нечувствительности, имеются возможности определять места повреждения на землю и производить непрерывный контроль сопротивления изоляции. Использование цифровых устройств, реализующих данный метод защиты в АСУ ТП электрической части станции, позволяет проводить диагностику состояния цепей статора генератора, что продлевает срок службы основного оборудования.