XXXI Неделя науки СПбГПУ. Материалы межвузовской научной конференции. Ч. І: С. 40-42, 2003. © Санкт-Петербургский государственный политехнический университет, 2003.

УДК 628.161/162

А.Г.Матвеева (6 курс, каф. ЭОП), Л.М.Молодкина, д.ф.-м.н., проф.

МОНИТОРИНГ ПИТЬЕВОЙ ВОДЫ СП6ГПУ В РАМКАХ СОСТАВЛЕНИЯ ЭКОЛОГИЧЕСКОГО ПАСПОРТА

Экологически паспорт природопользователя предусматривает получение и постоянное обновление базы данных об источнике водопользования.

Городской (внешний) трубопровод подсоединен к университетской (внутренней) сети в пяти точках. Кроме контроля воды в этих точках необходимо определять ее качество на местах водопотребления, поскольку внутренний трубопровод может существенно повлиять на ее показатели.

Данная работа выполнена в физико-химической лаборатории межфакультетского учебно-научного центра "Мониторинг и реабилитация природных систем".

В работе были поставлены и решены следующие задачи: 1) сравнение качества воды, поступающей в СПбГПУ через разные сети городского трубопровода; 2) изучение влияния внутреннего трубопровода (на примере ПГК – пристройки к гидрокорпусу) на качество водопроводной воды; 3) изучение влияния срока хранения (без консервации пробы) на качество водопроводной воды.

Отбор проб в месте подвода городского трубопровода осуществляли после сброса нескольких (до 10) литров воды. Отбор воды в помещении лаборатории (206а, ПГК) осуществляли в утренние часы без промыва водопровода (проба A) и после промыва в течение 30 минут (проба B) при большом напоре воды (в соответствии с ГОСТ).

В отобранной воде определяли и рассчитывали интегральные и индивидуальные показатели, которые можно условно разделить на три группы: 1) электрохимические (активная кислотность – (рH), общая кислотность и общая щелочность, электропроводность – (\aleph), жесткость, буферная емкость – (β), константа диссоциации – (pK_a) и концентрация слабой кислоты – (K_a), определяющей эти буферные свойства, электрокинетический потенциал коллоидных примесей – (ζ); 2) показатели, связанные с наличием примесей, поглощающих свет (цветность, концентрация железа, концентрация гуминовых соединений – ($C_{\Gamma C}$), спектры поглощения проб воды и выделенных из нее компонентов в ультрафиолетовой области); 3) показатели, связанные с наличием взвешенных и коллоидных примесей (мутность, концентрация коллоидных частиц – (ν) и их распределение по размерам, средняя концентрация коллоидных и взвешенных частиц и соответствующий средний размер).

Следует отметить, что часть показателей отражены в ГОСТ и в СанПин на питьевую воду, другая часть рекомендуется нами как информативные количественные и полуколичественные показатели, существенно дополняющие информацию о качестве воды.

Для определения перечисленных показателей были использованы методы комплексонометрии, потенциометрического титрования, фотометрии, спектрофотометрии, спектротурбидиметрии, поточной ультрамикроскопии, микроэлектрофореза, ионообменной, эксклюзионной и адсорбционной хроматографии, мембранной фильтрации.

В табл. 1 представлены сводные данные (лето 2002 г.) по сравнению качества воды, поступающей в СПбГПУ через разные сети городского трубопровода. Места отбора проб из подводящих городских трубопроводов: обозначены как ГБ – гидробашня; ГК – гидрокорпус; 4-й корпус, УПМ – механические мастерские, ПГК. Отбор проб в пяти точках проводился практически одновременно (в течение 20...30минут).

Результаты, приведенные в табл.1, показывают, что водопроводная вода, подводимая в СПбГПУ, в основном, положительно отличается низким значением мутности и цветности и низкой концентрацией железа.

Таблица 1. Результаты анализа воды, подводимой в СПБГПУ по разным магистралям

No	Показатель	ГБ	ГК	4-й	УПМ	ПГК	ГОСТ
Π/Π				корпус			
1	рН	6,27	6,68	6,2	6,31	6,2	6,5-8,5
2	8 ⋅10 ⁴	1,04	1,02	1,04	1,00	1,02	
	$Om^{-1} \cdot cm^{-1}$						
3	Жесткость,	0,77	0,77	0,72	- ¹⁾	0,77	1,5*-7
	мг-экв/л						
4	Щелочность,	0,26	0,40	0,22	0,28	0,24	≥0,5*
	мг-экв/л						
5	Кислотность,	0,29	0,11	0,32	0,3	0,36	
	мг-экв/л						
6	ζ, мВ	-14	-13	-13	-12	-12	
7	Цветность, град.	4,1	2,5	2,9	4,9	3,2	≤20
8	Железо общее, мг/л	0,01	0,04	0,003	0,01	0,01	≤0,3
9	$C_{\Gamma C}$, м Γ /л	18	ı	-	-	-	
10	Мутность, мг/л	0,0	0,03	0,02	0,02	0,01	≤1,5
11	v·10 ⁻⁷ (d≈0,1мкм)	6,4	3,0	2,6	4,2	2,2	

Примечания: 1) - показатели не определялись; 2) все сокращения расшифрованы в тексте. 3) в последнем столбце таблицы представлены требования ГОСТ к качеству питьевой воды, а также рекомендации медиков (*).

Концентрацию коллоидных частиц (у) также можно считать невысокой, а их электрокинетический потенциал (ζ) свидетельствует о склонности коллоидов к агрегации. В то же время отмечены заниженные значения активной кислотности, рН, жесткости и щелочности. Как известно низкое значение жесткости отрицательно влияет на деятельность кровеносных сосудов и сердца. Низкая щелочность приводит к нарушению обмена веществ, подрывает иммунную защиту организма человека. Определяемая в работе концентрация гуминовых соединений не предусмотрена ГОСТом, но этот важный показатель свидетельствует хлорированных органических 0 наличии веществ, являющихся потенциальными канцерогенами.

Сравнение показателей проб воды (A) и (B), а также их сопоставление с данными табл. 1 показывает, что влияние трубопровода сказывается в повышении электропроводности, рН и общей щелочности воды (примерно на 10%), мутности (на 70%), цветности (на 50%), концентрации коллоидных частиц (на 40%), концентрации железа (в 1,7 раза). Это свидетельствует о попадании из трубопровода в питьевую воду растворенных, коллоидных и грубодисперсных примесей, особенно, взвешенных примесей, содержащих железо.

Отмечено, что при хранении проб воды в комнатных условиях происходит снижение концентрации примесей, диссоциированных на ионы; при этом возрастает концентрация коллоидов, которые, в свою очередь, агрегируют с образованием грубодисперсных частиц, выпадающих в осадок.

Исследования, проведенные с использованием комбинации физико-химических методов анализа, позволили определить молекулярную массу неассоциированных гуминовых соединений (в щелочных условиях), а также выявить разные формы дисперсного состояния примесей, содержащих железо.