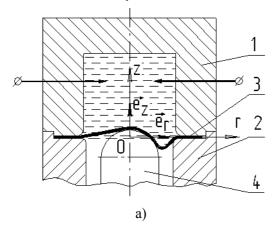
ХХХІІ Неделя науки СПбГПУ. Материалы межвузовской научно-технической конференции. Ч.ІІІ: С.39-41 © Санкт-Петербургский государственный политехнический университет, 2004

УДК 623.983+539.3

О.В.Петрова (6 курс, каф. МиТОМД), К.И.Поздов, асп., В.С.Мамутов, д.т.н., проф.

РАСЧЕТ СТАТИКО-ЭЛЕКТРОГИДРОИМПУЛЬСНОЙ ВЫТЯЖКИ-ФОРМОВКИ ТОНКОЛИСТОВЫХ МЕТАЛЛОВ НА ПУАНСОН


Рассматривается компьютерный расчет технологического процесса статикоэлектрогидроимпульсной вытяжки-формовки тонколистовых металлов пуансон. Результаты расчета совместно с экспериментальными диаграммами предельного деформирования (ДПД) позволяют прогнозировать разрушения заготовки при штамповке.

Расчетная схема вытяжки-формовки на пуансон представлена на рис. 1. На схеме приняты следующие обозначения: r_0 - лагранжева координата; r, z - эйлеровы координаты; \vec{e}_1 , \vec{e}_2 - неподвижный эйлеровый базис; \vec{n} , $\vec{\tau}$ - базис подвижной системы координат, связанной с каждой точкой заготовки. Используется уравнение движения осесимметричной безмоментной оболочки. Давление задавалось следующим соотношением

$$p=p_0N_p(t/\theta)^a \exp(-bt/\theta),$$

где p_0 - амплитудное значение давления, θ - характеристическое время, за которое давление уменьшается в е раз, где величины N_p , а, b определены соотношениями

$$N_p = \exp[a(1-\ln(a/b))], a = c [1 - c (1 - \ln c)], b = a/c, c = t_m/\theta.$$

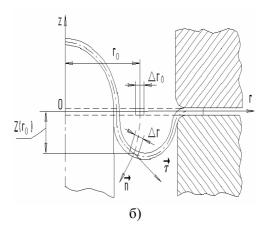


Рис.1. Схема формоизменения осесимметричной оболочки, моделирующей заготовку из особо тонколистового материала при вытяжке-формовке на пуансон [(а) расчетная схема с выбранной системой координат: 1 - разрядная камера с рабочей жидкостью, 2 - прижим, 3 – заготовка, 4 - пуансон; (б) деформируемая заготовка

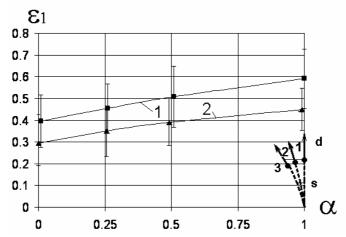


Рис. 2. Пути нагружения точек заготовки: 1 — на оси симметрии, 2 — точка максимального прогиба, 3 — точка вблизи радиуса скругления кромки матрицы; s — стадия статического деформирования, d — стадия высокоскоростного деформирования (1 — динамическая ДПД, 2 — статическая ДПД; доверительная вероятность p = 95 %)

Зависимость компонент тензора напряжений от компонент тензора логарифмических деформаций (ϵ_m , ϵ_θ) на активном этапе деформирования задавалось определяющими соотношениями деформационной теории пластичности

$$\sigma_{\rm m} = 2\sigma_{\rm S}(\epsilon_{\rm i},\epsilon_{\rm i})(2\epsilon_{\rm m}+\epsilon_{\rm \theta})/3\epsilon_{\rm i}$$
, $\sigma_{\rm \theta} = 2\sigma_{\rm S}(\epsilon_{\rm i},\epsilon_{\rm i})(2\epsilon_{\rm \theta}+\epsilon_{\rm m})/3\epsilon_{\rm i}$,

где $\sigma_s(\epsilon_i,\ \epsilon_i)$ - зависимость напряжения текучести от интенсивностей тензоров логарифмических деформаций и скоростей деформаций, которая для случая статического формоизменения будет зависеть только от интенсивности тензора деформаций $\sigma_s(\epsilon_i);\ \epsilon_i$ - интенсивность тензора логарифмических деформаций; ϵ_i - скорость интенсивности деформаций. На участке разгрузки задавались определяющие соотношения обобщенного закона Гука в дифференциальной форме

$$\Delta\sigma_m = [E/(1-\nu^2)](\Delta\epsilon_m + \nu\Delta\epsilon_\theta) \;,\; \Delta\sigma_\theta = [E/(1-\nu^2)](\Delta\epsilon_\theta + \nu\Delta\epsilon_m) \;,$$

где E - модуль Юнга; ν - коэффициент Пуассона; ϵ_0 - средняя деформация. Деформационное упрочнение материала заготовки при квазистатическом формоизменении учитывалось степенным законом

$$\sigma_i = \sigma_s = B \varepsilon_i^m$$
.

При задании граничных условий учитывались симметрия в центре заготовки

$$r_0 = 0$$
; $r = 0$; $z'_{r_0} = 0$,

равенство нулю меридиональных напряжений на торце фланцевой части заготовки

$$r_0 = R_0$$
; $z = z_M(r)$; $\sigma_m = 0$,

а также форма матрицы $z_{M}(r)$.

Начальные условия при высокоскоростном формоизменении задавались нулевыми по скоростям

$$t = 0$$
, $v_z(r_0) = 0$, $v_r(r_0) = 0$,

а начальный прогиб заготовки определялся по результатам расчета статического этапа формоизменения

$$t = 0$$
, $z = z_c(r_0)$, $r = r_c(r_0)$,

где $z_c(r_0)$, $r_c(r_0)$ - зависимости компонент вектора перемещений от лагранжевой координаты, определяющие форму прогиба заготовки в конце статического этапа формоизменения заготовки.

Применялся неявный дифференциально-разностный метод численного решения. В компьютерный расчет задавались значения параметров: p_0 =5 МПа; θ =250 мкс; c=0.1; B=761.4 МПа, m=0.469, μ =0.1 (коэффициент кулоновского трения); R_0 =55 мм (радиус исходной заготовки); радиус закругления кромки матрицы - 3 мм; радиус очка матрицы - 30 мм.

В применяемой для прогнозирования разрушения ДПД параметр относительной деформации $\alpha = \epsilon_2/\epsilon_1$, где ϵ_1 , ϵ_2 — главные деформации, варьировался в диапазоне, характерном для вытяжки-формовки тонколистовых материалов $\alpha \in [0, 1]$.

Как видно из графиков (рис. 2), для статической и динамической стадий нагружения пути нагружения не пересекают графики ДПД. Однако при приближении к нижней границе доверительного интервала с определенной вероятностью возможно разрушение заготовки, что и имеет место в реальном эксперименте.