XXXII Неделя науки СПбГПУ. Материалы межвузовской научно-технической конференции. Ч.IV: С.27-29 © Санкт-Петербургский государственный политехнический университет, 2004

УДК 662.642:621.926.7

А.М.Кондрат (5 курс, каф. МиПУ), Л.М.Яковис, д.т.н., проф.

КОМПЕНСАЦИОННЫЙ МЕТОД НАСТРОЙКИ РЕГУЛЯТОРОВ ДЛЯ ИНЕРЦИОННЫХ ОБЪЕКТОВ С ЗАПАЗДЫВАНИЕМ

Для широкого класса технологических объектов характерны явления инерционности и транспортного запаздывания. Данная работа посвящена проблеме настройки параметров алгоритмов управления для такого рода объектов применительно к наиболее широко используемым так называемым типовым законам регулирования.

В настоящее время существует большое количество методик [1] и программных продуктов [2] для исследования и синтеза управляемых динамических систем. Освоение этих универсальных методик и программ требует, однако, значительного времени и достаточно высокой квалификации. В силу сказанного актуальна задача создания простых расчетных схем и соответствующих программ, ориентированных на определенный класс управляемых процессов, которые позволили бы инженеру, задав параметры упрощенной модели объекта и указав один из общепринятых критериев оценки качества управления, быстро получить рекомендации по настройке выбранного им типа регулятора.

Применительно к классу инерционных объектов с запаздыванием данная задача может быть решена на основе применения предлагаемого в данной работе компенсационного метода настройки параметров типовых регуляторов. Он опирается на широко используемую в автоматике идею динамической компенсации [3]. Суть метода состоит в расчете таких параметров настройки регулятора, которые обеспечивают идентичность поведения замкнутой системы определенному эталонному образцу, который, в свою очередь, автоматически выбирается в зависимости от структуры модели объекта, заданного типа регулятора и заданного вида критерия оценки качества управления.

В системе управления с отрицательной обратной связью выходная переменная x(t) связана с задающим воздействием $x^*(t)$ и приведенным к выходу возмущающим воздействием n(t) известным соотношением [3]:

$$y = H_{3AMK}(p)n + (1 - H_{3AMK}(p))x^*,$$

где передаточная функция замкнутой системы $H_{\scriptscriptstyle 3 a M K}(p)$ выражается через передаточные функции объекта управления $H_{o \delta}(p)$ и регулятора $H_{p e \varepsilon}(p)$ в виде:

$$H_{\scriptscriptstyle 3AMK}(p) = \frac{1}{1 + H_{o\delta}(p) H_{per}(p)}.$$

Отсюда можно заключить, что вид переходных процессов отработки возмущающих и задающих воздействий в замкнутой системе управления полностью определяется произведением передаточных функций объекта и регулятора. Следовательно, чтобы обеспечить заданное поведение некоторого управляемого объекта , идентичное поведению выбранного по тем или иным соображениям эталонного объекта $H_{of}^{sm}(p)$ при подаче на него управляющих воздействий от выбранного по тем или иным соображениям эталонного регулятора $H_{per}^{sm}(p)$, достаточно рассчитать передаточную функцию регулятора по формуле:

$$H_{per}(p) = \frac{H_{oo}^{sm}(p)H_{per}^{sm}(p)}{H_{oo}(p)}.$$

В соответствии с рассмотренной схемой компенсационного метода получены соотношения для расчета параметров типовых регуляторов для трех распространенных структур систем управления, а именно:

- 1) инерционного объекта первого порядка с запаздыванием, управляемого пропорционально-интегральным (ПИ) регулятором;
- 2) инерционного объекта первого порядка с запаздыванием, управляемого пропорционально-интегрально-дифференциальным (ПИД) регулятором;
- 3) астатического инерционного объекта с запаздыванием, полученного последовательным соединением объекта типа 1) с интегрирующим звеном, управляемого пропорциональнодифференциальным (ПД) регулятором.

При этом в качестве эталонной системы фигурирует безынерционный объект с чистым запаздыванием, управляемый интегральным (И) или ПИ-регуляторами. Все полученные соотношения приведены в табл. 1.

Таблица 1

№ струк-	Объект	Тип	Эталонная система		Рекомендуемый регулятор
туры	$H_{o\delta}(p)$	регулятора	$H_{o\delta}^{sm}(p)$	$H_{per}^{sm}(p)$	$H_{per}(p)$
1)	$\frac{ke^{-p\tau}}{Tp+1}$	ПИ	$e^{-p au}$	$\frac{k_u^{\ni m}}{p}$	$\frac{k_u^{\mathfrak{I}m}T}{k} + \frac{k_u^{\mathfrak{I}m}}{kp}$
2)	$\frac{ke^{-p\tau}}{Tp+1}$	пид	$e^{-p\tau}$	$k_n^{\ni m} + \frac{k_u^{\ni m}}{p}$	$\frac{k_u^{\mathfrak{I}m}T + k_n^{\mathfrak{I}m}}{k} + \frac{k_u^{\mathfrak{I}m}}{kp} + \frac{k_n^{\mathfrak{I}m}Tp}{k}$
3)	$\frac{ke^{-p\tau}}{p(Tp+1)}$	пд	$e^{-p\tau}$	$\frac{k_u^{\mathfrak{I}^m}}{p}$	$\frac{k_u^{\ni m}}{k} + \frac{k_u^{\ni m} p}{k}$

В свою очередь, чтобы определить численные значения коэффициентов $k_n^{\, 3m}$ и $k_u^{\, 3m}$, необходимые для расчета по формулам, приведенным в последнем столбце табл. 1, следует воспользоваться соответствующими данными табл. 2, полученными путем поисковой минимизации трех употребительных критериев качества управления при имитации соответствующих эталонных систем в программной среде MATLAB—SIMULINK.

Таблица 2

Тип критерия	№	Коэффициенты эталонного регулятора		
качества управления	структуры	$k_n^{\mathfrak{I}m}$	$k_u^{\mathfrak{I}m}$	
Время переходного	1)	_	$0.507/\tau$	
процесса при	2)	0.281	$0.743/\tau$	
ступенчатых воздействиях	3)	_	$0.507/\tau$	
Интегральный	1)		$0.739/\tau$	
квадратичный	2)	0.453	$0.796/\tau$	
показатель	3)	_	$0.739/\tau$	
11	1)		$0.589/\tau$	
Интегральный модульный	2)	0.328	$0.751/\tau$	
показатель	3)	_	0.589/τ	

Изложенный метод в сочетании с разработанными программами даёт возможности быстрого расчёта параметров типовых регуляторов, причем найденные настройки обеспечивают устойчивую работу систем и приемлемое качество управления.

ЛИТЕРАТУРА:

- 1. Гурецкий Х. Анализ и синтез систем управления с запаздыванием. М.: Машиностроение, 1974.
- 2. Андриевский Б.Р., Фрадков А.Л. Элементы математического моделирования в программных средах MATLAB5 и Scilab. СПб.: Наука, 2001.
- 3. Первозванский А. А. Курс теории автоматического управления. М.:, Наука, 1986.