XXXII Неделя науки СПбГПУ. Материалы межвузовской научно-технической конференции. Ч.IV: С.40-41 © Санкт-Петербургский государственный политехнический университет, 2004

УДК 612.822.3

А.А.Зайка (6 курс, каф. ЭФ), Е.В.Лопатина, к.б.н., с.н.с. НИИ кардиологии МЗРФ

РОЛЬ NA⁺, K⁺-АТФАЗЫ В РЕГУЛЯЦИИ РОСТА КАРДИОМИОЦИТОВ

В последние годы отмечен рост числа больных с сердечной недостаточностью. Повышение артериального давления и изменение сократимости миокарда у таких больных связано с гормональной регуляцией, нарушением баланса между симпатической и парасимпатической системами и системой регуляции водно-солевого обмена. Выдвигается предположение о том, что в регуляции роста клеток за счет гормонов этих систем принимает участие Na^+ , K^+ - $AT\Phi$ аза, а именно её изоформа, нечувствительная к уровню Na^+ . В настоящее время считается, что снижение активности Na^+ , K^+ - $AT\Phi$ азы является одним из наиболее общих признаков различных форм патологий, включая сердечно-сосудистые заболевания

В ткани сердца представлены три изоформы Na^+ , K^+ -АТФазы – $\alpha 1$, $\alpha 2$, $\alpha 3$. Нечувствительной по отношению к изменению концентрации Na является $\alpha 3$ изоформа. В высоких концентрациях она обнаружена в нейронах, ЦНС, сердечной мышце. Эта изоформа экспрессируется в сердечной мышце в эмбриональном периоде онтогенеза. Возможно, $\alpha 3$ изоформа является маркером проводящей системы сердца и реэкспрессируется при перегрузке желудочков. Одной из функций Na^+ , K^+ -АТФазы является препятствие излишнему накоплению Na^+ в нервных окончаниях при частых импульсных разрядах нейронов.

Метод органотипической культуры ткани является достаточно чувствительным методом при исследовании влияния различных биологически активных веществ. В опытах с применением этого метода были получены результаты, позволяющие оценить роль Na^+ , K^+ - $AT\Phi$ азы в регуляции роста кардиомиоцитов в эмбриональный период развития.

В качестве экспериментальных животных использовали 10-12-дневные куриные эмбрионы. Культивирование осуществляли в течение трех дней в чашках Петри на коллагеновой подложке. Коллаген получали из сухожилий хвостов крыс по методу Бернстайна. Перед использованием поверхность чашек несколько раз промывали раствором Хенкса. Рост кардиомиоцитов в культуре ткани исследовали прижизненно с помощью светового микроскопа, а также на препаратах, окрашенных метиленовым синим. Для количественной оценки влияния тестируемых веществ и воздействий на рост кардиомиоцитов применяли морфометрический метод. Интенсивность роста эксплантатов оценивали по величине индекса площади (ИП), который рассчитывали как отношение площади всего эксплантата, включая периферическую зону роста, к исходной площади, т.е. площади центральной зоны. За условную единицу площади принимали квадрат оккулярсетки микроскопа. Для тестирования влияния селективного ингибитора Na⁺,K⁺-AТФазы оуабаина на рост кардиомиоцитов в органотипической культуре ткани куриных эмбрионов исследуемое вещество добавляли в культуральную среду в различных концентрациях.

Оуабаин (ОУА) исследовали в диапазоне концентраций от 10^{-8} М до 10^{-13} М. ОУА в концентрации 10^{-8} М полностью блокирует рост кардиомиоцитов. Нами обнаружено, что в концентрации 10^{-9} М ОУА, добавляемый в питательную среду, стимулирует рост кардиомиоцитов на 9%. В концентрации 10^{-10} М ОУА достоверно стимулирует рост клеток сердечной ткани на 46%. При исследовании ОУА в концентрации 10^{-12} М наблюдали угнетение роста клеток, то есть индекс площади снижался до 85% по отношению к

контролю. При использовании оуабаина в концентрации 10^{-13} М данные почти не отличались от контрольных, ИП составил 94%.

Нами был протестирован гормон симпатической нервной системы норадреналин (НА). Мы исследовали диапазон концентраций от 10^{-9} М до 10^{-15} М. В концентрации 10^{-9} М НА угнетал рост кардиомиоцитов, ИП снижался до 70% по отношению к контролю. Введение НА в концентрациях 10^{-13} М и 10^{-15} М приводило к снижению роста клеток. Стимуляция роста клеток сердечной ткани наблюдалась при добавлении в питательную среду НА в концентрации 10^{-12} М происходила стимуляция роста клеток сердечной ткани.

Для того чтобы выяснить, не связано ли трофическое действие HA с активностью Na^+, K^+ -АТФазы, $OVA(10^{-10} \text{ M})$ и $HA(10^{-12} \text{ M})$ совместно вводили в питательную среду. При этом наблюдали частичное устранение ингибирующего эффекта $OVA(10^{-8} \text{ M})$.

Из полученных результатов можно сделать вывод, что действие ОУА более сильно выражено по отношению к клеточному росту, чем у НА. Впервые обнаружена концентрация блокатора Na^+ , K^+ -ATФазы, которая достоверно стимулирует рост клеток сердечной мышцы. На фоне ОУА в концентрации 10^{-10} М индекс площади увеличился на 33-46 % по отношению к контролю. Полученные результаты позволяют также предположить, что трофическое действие $\mathrm{HA}(10^{-12}\ \mathrm{M})$ связано с регуляцией активности Na^+ , K^+ -ATФазы.

ЛИТЕРАТУРА:

- 1. Sweadner K.J. Na, K-ATPase and its isoforms // Neuroglia, 1995, pp. 259-272.
- 2. Xie Z. Ouabain interaction with cardiac Na/K-ATPase reveals that the enzyme can act as a pump and as a signal transducer // Cell Mol. Biol., 2001, v. 47, pp. 383-390.
- 3. Xie Z., Askari A. Na+/K+-ATPase as signal transducer // Eur. J. Biochem., 2002, v. 269, N 10, pp. 2434-2439.