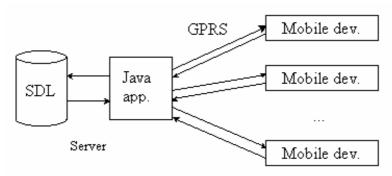
ХХХІІ Неделя науки СПбГПУ. Материалы межвузовской научно-технической конференции. Ч.V: C.15-16 © Санкт-Петербургский государственный политехнический университет, 2004


УДК 658.512.011.56: 681.3.06

Д.А.Лукашёв (4 курс, каф. ИУС), В.П.Котляров, к.т.н., проф.

ГРАФИЧЕСКОЕ ОТОБРАЖЕНИЕ РЕЗУЛЬТАТОВ РАБОТЫ SDL МОДЕЛИ НА МОБИЛЬНЫХ УСТРОЙСТВАХ

Язык спецификации SDL (Specification Description Language) приобретает все большую популярность при разработке поведенческих моделей различных систем и автоматическом тестировании. В связи с этим возникает необходимость контролировать результаты работы построенной системы различными способами. Один из них — возможность отображения графических результатов на мобильном устройстве. До недавнего времени реализация такого способа была сильно затуднена, но с появлением технологии J2ME эта проблема успешно решается.

В настоящее времени активно развиваются различные приложения (в частности, сетевые игровые приложения). Основная часть логики таких приложений реализована на сервере, к которому возможно подключение большого количества клиентов (мобильных телефонов, микрокомпьютеров). При реализации таких приложений на SDL и может применяться разработанная система.

Разработанная система состоит из 3-х компонент: SDL модель; JAVA приложения, которое используется для анализа сведений, полученных от SDL модели; J2ME (MIDP 2.0) приложение.

SDL модель расположена на сервере, где происходит основной этап моделирования процесса. Информация от SDL модели поступает на JAVA приложение. Необходимость в реализации такого промежуточного JAVA приложения, которое является совеобразным мостом между SDL и телефоном, возникла из-за пока еще ограниченных ресурсов мобильных устройств (недостаточный объем памяти и малая вычислительная мощность). JAVA приложение обрабатывает информацию соответствующим образом и выдает ее на мобильное устройство, где J2ME приложение отображает ее на экране.

Обмен данными между приложениями осуществляется с помощью сокетов. В частности, передача данных до конечного пользователя может быть осуществлена с помощью GPRS или беспроводных сетей, которые пришли на смену медленному и дорогостойщему обмену данными через SMS сообщения.

В системе реализована мультипользовательская поддержка, что позволяет большому количеству пользователей одновременно следить за моделированием процесса.

Запланирована возможность реализации обратной связи (от мобильного устройства к SDL модели). Это позволит значительно расширить возможности не только удаленного мониторинга, но управление работой всей системы в целом.

Работа апробирована в Education Motorola Lab, на кафедре ИУС.