XXXII Неделя науки СПбГПУ. Материалы межвузовской научно-технической конференции. Ч.V: С.187 © Санкт-Петербургский государственный политехнический университет, 2004

УДК 621.9

Д.В.Ефремов (6 курс, ЦНИИ РТК), В.А.Буняков, рук. отд. систем техн. зрения.

ИДЕНТИФИКАЦИЯ ДИНАМИЧЕСКИХ МАРКЕРНЫХ ОБЪЕКТОВ

Возросшая потребность обработки больших объемов видеоинформации послужила основанием создания интеллектуальных систем технического зрения. Техническое зрение можно определить как процесс выделения, идентификации и преобразования информации, полученной из трёхмерных измерений.

Предлагаемые системы обеспечивают измерение ориентации и положения объекта по его телевизионному изображению. Области применения:

- нашлемные системы целеуказания;
- управление микророботами;
- системы скрытного теленаблюдения с обеспечением «эффекта присутствия» оператора;
- транспортные роботы в экстремальных условиях применения;
- космические роботы, манипуляторы;
- тренажеры для отработки управления с применением элементов виртуальной реальности.

Техническое задание сформулировано следующим образом: разработать алгоритм поиска, обнаружения и вычисления координат центров светящихся маркерных объектов (в рамках поставленной задачи) для оптико-телевизионной системы позиционирования. Реализовать разработанный алгоритм в среде программирования Delphi.

Оптико-телевизионная система позиционирования предназначена для решения навигационных задач высокоточного управления гусеничным роботом с использованием систем внешнего ТВ наблюдения или ТВ систем, расположенных на объекте.

Определение положения робота по входному изображению состоит из поиска и вычисления экранных координат реперов, реализованных на аппаратном уровне, их идентификации и расчета положения робота в системе координат телекамеры. Расчет координат при использовании одной телекамеры основан на решении системы нелинейных уравнений:

$$r_1^2 + r_2^2 - 2r_1r_2\cos(\beta_{12}) = d_{12};$$

 $r_1^2 + r_3^2 - 2r_1r_3\cos(\beta_{13}) = d_{13};$
 $r_2^2 + r_3^2 - 2r_2r_3\cos(\beta_{23}) = d_{23}.$

Таким образом, в работе предпринята попытка рассмотреть возможную модернизацию оптико-телевизионной системы позиционирования, созданной в отделе телевизионных систем ЦНИИ РТК. Данная модернизация приводит к тому, что появляется необходимость доработки алгоритма распознавания динамических маркерных объектов на фоне помех. Созданные на основе сформулированных требований алгоритм и программа, иллюстрирующая его работу, подтверждают актуальность данной модернизации системы позиционирования.