ХХХІІІ Неделя науки СПбГПУ. Материалы межвузовской научно-технической конференции. Ч.VI: С.3-4, 2005. © Санкт-Петербургский государственный политехнический университет, 2005.

УДК 621.372

С.К.Иванов (5 курс, каф. РФ), Э.Ф.Зайцев, к.т.н., проф.

ПОЛЕ ИЗЛУЧЕНИЯ ИНТЕГРАЛЬНОЙ ФАЗИРОВАННОЙ АНТЕННОЙ РЕШЕТКИ НА МАЛЫХ РАССТОЯНИЯХ

Работа посвящена новому классу электрически сканирующих антенн: интегральным фазированным антенным решеткам (ИФАР) [1,2] с ферритовым управлением. Такие антенны имеют много преимуществ:

• они решают проблему электрического сканирования в диапазоне миллиметровых волн;

• благодаря интегральной конструкции антенны имеют низкую стоимость по сравнению с другими сканирующими антеннами. Это открывает широкие перспективы их использования в аппаратуре гражданского применения:

• ИФАР отличаются чрезвычайно простым управлением лучом.

Отличительной особенностью ИФАР является невзаимность (необратимость), вызванная наличием в конструкции намагниченных ферритовых пластин. Невзаимность выражается, в частности, в том, что в режимах передачи и приема луч имеет разные направления. Поэтому приемо-передающий модуль должен содержать две антенны: одну для передачи, другую для приема. Возникает вопрос, какова будет взаимная связь между двумя близко расположенными антеннами? Решению этого вопроса и посвящена данная работа.

В качестве первого этапа определения связи между антеннами надо найти поле антенны на малом расстоянии от нее.

По принципу действия ИФАР является разновидностью антенн бегущей волны. Основу ИФАР составляет открытый феррито-диэлектрический волновод (ФДВ). ФДВ образован

двумя слоями феррита, между которыми проложена тонкая пластина диэлектрика ИЗ с высокой диэлектрической проницаемостью (рис. 1). Ha наружной поверхности ферритовых слоев расположены: нижней стороны проводящий экран, с верхней решетка из металлических полосок, играющих роль дипольных излучателей. Если ферритовые слои намагничивать. определенным образом изменяя управляющий ток в проводах, то фазовая скорость волны в волноводе будет изменяться, а значит, будет меняться и положение максимума ДН антенны.

Угловое положение луча θ описывается уравнением

$$\sin\theta = q - n\frac{\lambda}{d},$$

где q – коэффициент фазового замедления рабочей моды ФДВ (причем замедление для прямой и обратной волны различно в силу невзаимности волновода), λ – длина волны в свободном пространстве, n – целое число, d – расстояние между диполями. Изменяя намагниченность феррита, мы меняем величину q, а значит, и направление луча θ .

Излучатели приемной и передающей антенн расположены на расстоянии около 20 мм или больше. Это более чем вдвое превышает длину волны $\lambda = 8 - 8,5$ мм. Поэтому можно считать, что точка наблюдения находится в дальней зоне отдельного излучателя (но не всей антенны!). Это обстоятельство значительно упрощает задачу, поскольку можно воспользоваться полученными в работе [2] результатами расчета дальнего поля диполя,

расположенного на структуре ФДВ.

Токи в диполях рассчитывались по формулам элементарной теории ИФАР [3], которая основана на допущении, что в ФДВ преобладает низшая (рабочая) мода. Наличие высших мод учитывается в величине собственного сопротивления диполя [4].

Все расчеты проводились в среде MatLab. Программа позволяет рассчитывать распределение поля антенны вдоль любой координаты на произвольном расстоянии от антенны. Исходные данные следующие: расстояние между диполями в решетке 5 мм, длина диполя 1,7 мм, количество диполей – 20 (т.е. длина антенны 95 мм). Учитывается также ферритовых намагниченность слоев. Рассчитываются все 6 составляющих векторов Е и Н.

Ha рис. 2 показано рассчитанное распределение составляющей поля Е_v вдоль прямой, параллельной оси x на высоте z = 10 мм от антенны (ось х направлена вдоль решетки диполей, ось *у* – параллельно диполям, ось *z* – по нормали к антенне; начало координат совпадает с входом антенны). Видно, что в пределах длины антенны поле убывает от начала к концу антенны. Это объясняется тем, что токи в диполях убывают от начала к концу вследствие расхода мощности возбуждающей волноводной моды на излучение и на поглощение в самом волноводе. Небольшая изрезанность связана с дискретностью решетки. За пределами антенны поле резко уменьшается.

На рис. 3 показано распределение поля на высоте 10 м, что уже соответствует дальней зоне для всей антенны. Характер зависимости такой

же, какой имеет диаграмма направленности антенны в дальней зоне. Ее параметры (ширина луча, его положение, уровень боковых лепестков) совпадают с полученными другими методами, что может свидетельствовать о достоверности результатов данной работы.

ЛИТЕРАТУРА:

1. Зайцев Э.Ф. и др. MM-Wave Integrated Phased Arrays with Ferrite Control.// IEEE Transactions on Antennas and Propagation, v.42, N3, March 1994.

2. Zaitsev E.F., Guskov A.B., Cherepanov A.S. Mathematical Model of Ferrite Integrated Phased Array. //Eighth Biennial Conference on Electromagnetic Field Computation, Tucson, Arizona, June 1–3, 1998.

3. Зайцев Э.Ф., Черепанов А.С., Гуськов А.Б. Элементарная теория интегральных фазированных антенных решеток. // СПб, 1999, Деп. в ВИНИТИ №3849–В99.

4. Гуськов А.Б., Зайцев Э.Ф., Черепанов А.С. Излучение диполя, расположенного на продольно намагниченной феррито-диэлектрической структуре.// СПб, 1999, Деп. в ВИНИТИ №349–В00.