
 77

XXXIII Неделя науки СПбГПУ. Материалы межвузовской научно-технической конференции. Ч.IX: С.77-78,
2005.
© Санкт-Петербургский государственный политехнический университет, 2005.

УДК 681.3.07

He Xiao, Wu Bin (graduate students, Intelligent Systems Program),
M.V.Khloudova, PhD, associate prof.

POSIX THREADS AND SCHEDULING INTERFACE

Technically, a thread is defined as an independent stream of instructions that can be scheduled

to run as such by the operating system. In the UNIX environment a thread:
1. Exists within a process and uses the process resources;
2. Has its own independent flow of control as long as its parent process exists and the OS supports

it;
3. May share the process resources with other threads that act equally independently (and

dependently);
4. Dies if the parent process dies – or something similar.

Historically, hardware vendors have implemented their own proprietary versions of threads.
These implementations differed substantially from each other making it difficult for programmers to
develop portable threaded applications.

In order to take full advantage of the capabilities provided by threads, a standardized
programming interface was required. For UNIX systems, this interface has been specified by the
IEEE POSIX 1003.1c standard (1995). Implementations which adhere to this standard are referred
to as POSIX threads, or Pthreads. Most hardware vendors now offer Pthreads in addition to their
proprietary API's.

Pthreads are defined as a set of C language programming types and procedure calls,
implemented with a pthread.h header/include file and a thread library – though the this library may
be part of another library, such as libc.

There are several drafts of the POSIX threads standard. It is important to be aware of the draft
number of a given implementation, because there are differences between drafts that can cause
problems.

The POSIX 1003.1b scheduling routines, provided by schedPxLib, are shown in Table1.
These routines let you use a portable interface to get and set task priority, get the scheduling policy,
get the maximum and minimum priority for tasks, and if round-robin scheduling is in effect, get the
length of a time slice. To understand how to use the routines in this alternative interface, be aware
of the minor differences between the POSIX and Wind methods of scheduling.

Table 1: POSIX Scheduling Calls.
Call Description
sched_setparam() Set a task's priority.

sched_getparam() Get the scheduling parameters for a specified
task.

sched_setscheduler() Set scheduling policy and parameters for a
task.

sched_yield() Relinquish the CPU.
sched_getscheduler() Get the current scheduling policy.
sched_get_priority_max() Get the maximum priority.
sched_get_priority_min() Get the minimum priority.

sched_rr_get_interval() If round-robin scheduling, get the time slice
length.

 78

POSIX and Wind scheduling routines differ in the following ways:
(a) POSIX scheduling is based on processes, while Wind scheduling is based on tasks. Tasks

and processes differ in several ways. Most notably, tasks can address memory directly while
processes cannot; and processes inherit only some specific attributes from their parent process,
while tasks operate in exactly the same environment as the parent task. Tasks and processes are
alike in that they can be scheduled independently.

(b) VxWorks documentation uses the term preemptive priority scheduling, while the POSIX
standard uses the term FIFO. This difference is purely one of nomenclature: both describe the same
priority-based policy.

(c) The POSIX scheduling algorithms are applied on a process-by-process basis. The Wind
methodology, on the other hand, applies scheduling algorithms on a system-wide basis--either all
tasks use a round-robin scheme, or all use a preemptive priority scheme.

(d) The POSIX priority numbering scheme is the inverse of the Wind scheme. In POSIX, the
higher the number, the higher the priority; in the Wind scheme, the lower the number, the higher the
priority, where 0 is the highest priority. Accordingly, the priority numbers used with the POSIX
scheduling library (schedPxLib) do not match those used and reported by all other components of
VxWorks. You can override this default by setting the global variable posixPriorityNumbering to
FALSE. If you do this, the Wind numbering scheme (smaller number = higher priority) is used by
schedPxLib, and its priority numbers match those used by the other components of VxWorks.

