XXXIII Неделя науки СПбГПУ. Материалы межвузовской научно-технической конференции. Ч.XII: С.6-7, 2005.

© Санкт-Петербургский государственный политехнический университет, 2005.

УДК 004.91

Т.К.Ледков (асп., каф. КИТвП), М.А.Курочкин, к.т.н., доц.

РАЗМЕЩЕНИЕ УСЛОВНЫХ ЗНАКОВ НА ТЕМАТИЧЕСКОЙ КАРТЕ КАК РЕШЕНИЕ ЗАДАЧИ ОПТИМИЗАЦИИ

Под тематическая картой понимаются данные предметной области, которые отображаются с помощью системы условных знаков, текстовых комментариев, таблиц и других элементов, понятных специалисту предметной области, нанесенные на географическую основу, которая представлена географической картой.

При автоматизированном синтезе тематической карты для гибкой настройки на предметную область, решаемую задачу и личные предпочтения эксперта предлагается использовать семантический блок или шаблон.

Задачи, решаемые шаблоном:

- 1. Семантика выборки объектов из базы данных (БД) предметной области;
- 2. Семантика параметризации условных знаков (УЗ) на основе значений атрибутов объектов, извлеченных для последующего отображения;
- 3. Семантика обнаружения конфликтов размещения УЗ;
- 4. Семантика снятия конфликтов, возникающих при размещении УЗ:
 - 4.1. Изменение области размещения знака;
 - 4.2. Изменение структуры знака;
 - 4.3. Замена одной группы знаков другой группой;
 - 4.4. Отказ от размещения знака.

Под конфликтом при размещении УЗ понимается показатель, обратный показателю качества размещения. Качество размещения – совокупность ограничений, накладываемых на изображение. Удовлетворение данным ограничениям (снятие конфликтов) позволяет однозначно интерпретировать изображение в рамках решаемой задачи.

Для обеспечения гибкости системы необходимо, чтобы критерий качества размещения не являлся частью системы, а был бы открыт для изменений. Пользователю предлагается использовать функции численной оценки качества размещения вида $f: \mathbb{Z}^2 \to \mathbb{R}$; где \mathbb{Z} – множество УЗ.

Функция такого вида вычисляет численную оценку качества взаимного расположения двух условных знаков. Пользователь может использовать несколько подобных критериев. Тогда при размещении N знаков и использовании K критериев начальным численным показателем качества размещения является матрица размерности $N \times N \times K$.

Реализация оценки качества выносится из системы в ее расширения. Таким образом, не теряется эффективность вычисления, и сохраняется необходимая гибкость решения. При этом правила свертки матрицы, получившейся в результате работы критериев оценки качества, являются частью семантического блока (шаблона).

В общем случае при размещении N знаков с использованием K критериев оценки качества задача оптимизации ставится так: $F(\{f_i(z_j,z_l)\}) \rightarrow \min_j = 1.K, j, l = 1,.N.$

Формализуем пространство поиска решения задачи оптимизации. Очевидно, что УЗ часто обладает сложной и многомерной структурой. Кроме того, надо помнить, что одно из основных требований к системе — возможность ее расширения и перенастройки на другую предметную область и другие решаемые задачи. Это не позволяет жестко зафиксировать допустимые операции со знаком.

Введем понятие модификатора знака, как параметрического оператора: $md(p_1,...p_n)z \to z'$. Здесь р — параметры модификации, z — модифицируемый УЗ, z' — знакрезультат модификации.

Реализации модификаторов аналогичны реализациям функций численной оценки качества и являются расширениями системы.

Очевидно, что порядок применения модификаторов к УЗ, количество применений и параметры модификаторов различны для различных УЗ и зависят от предметной области и решаемой задачи. Правила применения модификаторов записываются в шаблоне в виде грамматики, которая используется для порождения цепочек модификаторов при размещении. Тогда цепочка модификаторов с заданными параметрами, примененная к УЗ – точка в пространстве поиска решений, при размещении одного знака.

Очевидно, что такая задача оптимизации в общей постановке имеет высокую размерность. Предложены пути снижения размерности задачи оптимизации:

- 1. С помощью введения предикатов $P(z_1, z_2)$ и связывания их с функциями оценки качества. Тогда оценка качества $f_i(z_j, z_l)$ вычисляется только при истинном предикате $p(z_j, z_j)$, что позволяет не рассматривать конфликты между некоторыми знаками, группами, классами УЗ;
- 2. С помощью семантической регулировки процесса размещения (оптимизации):
 - 2.1. Последовательное размещение знаков;
 - 2.2. Региональный подход к размещению;
 - 2.3. Приоритетный выбор осей при оптимизации.

Таким образом, в работе получены следующие результаты и выводы:

- 1. Предложено формальное решение задачи размещения условных знаков на тематической карте.
- 2. Задача оптимизации, возникающая при решении задачи размещения, может решаться классическими методами условной оптимизации: методом многогранников в общем случае. В случае фиксации параметров, определенных не на поле R, квазиньютоновскими методами с конечно-разностной аппроксимацией производных.
- 3. За счет вынесения критериев оценки качества размещения и модификаторов УЗ из системы сохраняется гибкость решения и возможность настройки на различные предметные области.