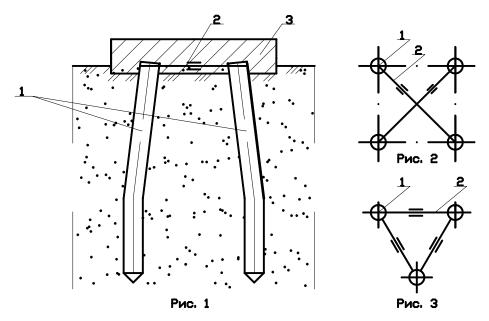
XXXIV Неделя науки СПбГПУ. Материалы межвузовской научно-технической конференции. Ч. I: С. 104, 2006. © Санкт-Петербургский государственный политехнический университет, 2006.


УДК 624.15

А.В.Астапенков (3 курс, каф. ТОЭС), А.А.Лаушкин, В.А.Бускадзе (2 курс, каф. ТОЭС), Г.Я.Булатов, к.т.н., доц.

МЕТОД СТЯЖКИ СВАЙ ФУНДАМЕНТА

Способы увеличения несущей способности свайных оснований за счет создания на различной глубине утолщений и специальных механических раздвигающихся устройств известны [1,2]. Последние обладают тем недостатком, что требуют дополнительных затрат труда на устройство этих приспособлений, дополнительного расхода материалов, а также увеличение затрат энергии на погружение этих свай, например, с утолщениями.

Предлагаемый способ заключается в предварительном напряжении грунта, прилегающего к сваям, и ведется в следующем порядке: забитые в грунт сваи 1 (рис. 1) стягиваются друг к другу специальными натяжными устройствами до достижения расчетного усилия, затем это положение свай фиксируют анкерными затяжками 2, после чего производится бетонирование фундаментной плиты 3 или последняя набирается из сборных элементов, а затяжки заделываются в монолитный бетон. В случае отдельных опор из трех или четырех свай процесс ведется в том же порядке, а расположение стяжек показано на рис. 2 и 3.

Увеличение несущей способности свай в предложенном способе достигается за счет развития по боковым поверхностям свай интенсивного отпора, превышающего в несколько раз активное давление и, как результат, силы трения по боковым поверхностям также возрастают. Предложенный способ позволяет более эффективно использовать несущую способность материала свай, которая в обычных свайных основаниях остается недоиспользованной.

ЛИТЕРАТУРА:

- 1. Голубков В.Н. и др. Полевые исследования развития деформаций в основаниях козловых и пирамидальных свай. //Основания и фундаменты. 1975. вып. 8. «Будивельник». С. 44-48.
- 2. А. С. 601351 СССР, МКИ Е 02 D5/30. Сборная свая. Опубл. 05.04.78. Бюл. № 13.