ОПТИМИЗАЦИЯ ПОРОШКОВОГО ДИФРАКТОМЕТРА

ABSTRACT: It is examined two possible ways to increase intensity powder diffractometer: selection of the optimal diffractometer parameters, evaluation of the neutrons' flow increase on sample by replacing flat crystal-monochromator by vertical-focusing one.

Цель работы: рассмотреть два возможных пути повышения светосилы порошкового дифрактометра: подбор оптимальных значений параметров дифрактометра; оценка увеличения потока нейтронов на образец при замене плоского кристалла-монохроматора вертикально-фокусирующим.

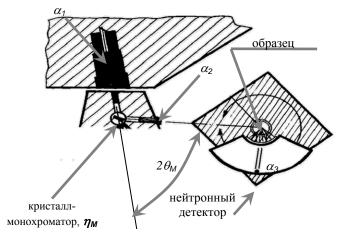


Рис. 1. Схема расположения дифрактометра в зале реактора

Из-за трудностей, связанных с изменением угловой расходимости второго и третьего коллиматоров ($\alpha_2 = 24$ ', $\alpha_3 = 12$ '), проводилась оптимизация при их фиксации. Результаты приведены в табл. 1 под номером 2. Интегральная интенсивности дифрактометра L в этом случае возрастает на 11%.

На рис. 1 приведена схема порошкового дифрактометра, размещенного в ПИЯФ. Значения параметров дифрактометра приведены в табл. 1 под номером 3.

В диапазоне углов дифракции $[10^\circ;66^\circ]$ был проведен поиск оптимальных значений параметров порошкового дифрактометра по методу, предложенному Л.Кассеном (L.Cussen). Оптимальные значения параметров дифрактометра представлены в табл. 1 под номером 1. Эти параметры позволяют увеличить значения интегральной интенсивности L сигнала на 17%.

Таблица 1.							
$N_{\overline{0}}$	α_l '	α_2 '	α_3 '	η_M '	$L rad^3$		
1	36	24	12	15	$7.27 \cdot 10^{-8}$		
2	24.8	24	16.5	17.2	$8.53 \cdot 10^{-8}$		
3	30.8	24	12	19.5	$7.72 \cdot 10^{-8}$		

Наряду с этим была проведена оценка увеличения потока нейтронов на образец при кристалла-монохроматора замене плоского вертикально-фокусирующим. Оценка компьютерного моделирования помощью программы Vitess 2.6. проводилась c Максимальный поток нейтронов на образец наблюдается, если вертикально-фокусирующий монохроматор состоит из пяти кристаллических пластин, изготовленных из Ge, с высотой 1.4 мм, толщиной 3÷4 мм и значением вертикальной мозаичности каждой ламели 5'. В сравнении с плоским кристаллом-монохроматором поток нейтронов на образец в этом случае возрастает в 1.7 раза.