МОНИТОРИНГ ПРОЦЕССА ОТВЕРЖДЕНИЯ ТЕРМОРЕАКТИВНЫХ МАТЕРИАЛЛОВ В ПРОЦЕССЕ ХРАНЕНИЯ

При использовании термореактивных материалов (TPM) для изоляции электрических машин очень важным является сохранение неотвержденного состояния связующего в процессе хранения, так как даже при частичном отверждении происходит изменение технологических свойств: адгезии, цементации между слоями, эластичности лент, необходимой при намотке.

Отверждение — процесс создания химических связей между линейными цепями. Сопровождается конверсией функциональных групп, вступающих в реакцию, что отражается, в первую очередь, на изменении поляризационного процесса и проводимости (при наложении электрического поля). Поэтому химический процесс отверждения может быть проанализирован с помощью диэлектрометрии: диэлектрической проницаемости, проводимости, тангенса угла диэлектрических потерь.

Использование коэффициента полной проводимости $\left(\hat{E}_{II} = \frac{Y_{100\tilde{A}\tilde{o}}}{Y_{100\tilde{e}\tilde{A}\tilde{o}}}\right)$ имеет ряд

преимуществ. Для обоснования правомерности применения этого метода при исследовании материалов, пропитанных эпоксиноволачным связующим, проведены

измерения Кпп в зависимости от частоты $f = 50 \div 10^5 \ \tilde{A}\ddot{o}$ (рис. 1).

показывают, Данные что степень отверждения онжом определить, сравнивая показания Кпп при 100 Гц и 10^5 Гц. По этой характеристике работе В оценивалось изменение кинетики отверждения при хранении (технологическом старении).

За конкретные параметры процесса отверждения приняты:

- $\hat{O}_{f,\hat{f},}$ температура начала интенсивного отверждения;
- τ постоянная времени;
- *W* энергия активации реакции отверждения.

Кинетика реакции исследуется путем анализа зависимости $C_{\delta,\bar{n}}(t)$,

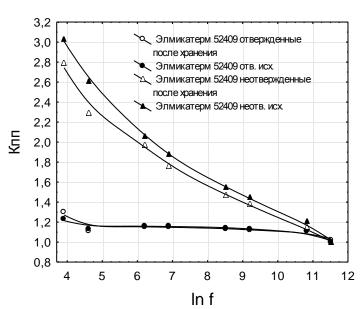


Рис. 1. Зависимость Кпп от In f для Элмикатерм 52409

где $C_{\delta.\tilde{n}}$ - концентрация реакционноспособных групп или величина ей пропорциональная - $K_{\Pi\Pi}$.

Используя закономерности протекания реакции $\tilde{N} = A \cdot \exp(\frac{-t}{\tau})$, где τ - постоянная времени, зависящая от температуры по закону Аррениуса $\tau = B \cdot \exp\frac{W}{RT}$ для исследуемых материалов определены кинетические параметры в исходном состоянии и после хранения (технологического старения) (табл. 1).

Таблица 1. Зависимость постоянной скорости реакции и энергии активации от температуры для материала Элмикатерм 52409.

	$\hat{E}_{\ddot{I}\ddot{I}}$	au, i è í				$W, \acute{v}\^{A}$	
	при <i>Ò_{í .î .}</i>	$140^{\hat{i}} ilde{N}$		$160^{\hat{\imath}} ilde{N}$		w, yA	
		τ_1 , $i \ e i$	$ au_2$, $i \ e i$	τ_1 , $i \ e i$	$ au_2$, $i \ \dot{e} i$	$W_{\!\scriptscriptstyle 1}, \circ \hat{A}$	$W_2, \circ \hat{A}$
в исходном состоянии	4,3	15	40	7,5	11,76	0,54	1,05
состояние после хранения	3,4	290		8,3	40	2,77	1,54

Полученные результаты показывают, что снизилась реакционная способность — произошло частичное отверждение. Соответственно, изменились параметры отверждения. Ухудшились технологические характеристики — цементирующая и адгезионная способность. Увеличение τ указывает на необходимость корректировки продолжительности цикла термопрессования изоляции.