ПРОЕКТИРОВАНИЕ И РАСЧЕТНОЕ ИССЛЕДОВАНИЕ ПОТЕРЬ В ЛОПАТОЧНОМ ОТВОДЕ МНОГОСТУПЕНЧАТОГО НАСОСА

Направляющий аппарат в центробежном насосе служит для преобразования кинетической энергии потока после рабочего колеса (РК) в потенциальную энергию и для подвода жидкости к последующей ступени в многоступенчатом насосе. От гидравлических качеств направляющего аппарата (НА) зависит гидравлический КПД и оптимальный режим ступени насоса. Для расчета и проектирования направляющего аппарата необходимо знать влияние отдельных параметров на потери в нем.

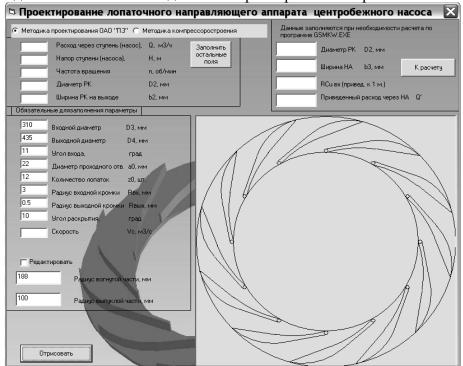


Рис. 1. Оболочка программы автоматизированного проектирования НА

Для возможности многовариантного проектирования лопаточного отвода был разработан алгоритм и программа (рис. 1) автоматизированного расчета геометрии, подготовки данных и проведения расчета течения и потерь в нем на основе гидродинамического комплекса программ ЦКТИ в рамках квазитрехмерной постановки.

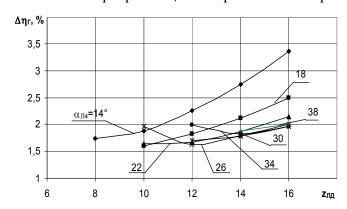


Рис. 2. Зависимость профильных потерь ЛД от числа лопаток $z_{\rm ЛД}$ при различных углах $\alpha_{\rm Л4}$ для относительного диаметра $D_4/D_2 = 1,4$

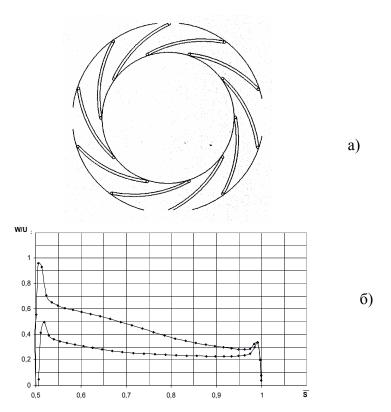


Рис. 3. Решетка НА (а) и скорости вокруг лопаток (б) ($D_4/D_2=1.5$, $\alpha_{\pi 4}=26^{\circ}$, z=10, $\Delta \eta_{\Gamma}=1.78$

%,
$$\overline{(RCu)_{BblX}} = 0,449, V_3/V_4 = 2,9, \zeta = 0,057, \frac{L}{t} = 1,79$$

С использованием разработанной программы было исследовано влияние наружного диаметра D_4 и числа лопаток z_{HA} для направляющего аппарата канального типа, а также наружного диаметра D_4 , числа лопаток $z_{ЛД}$ и угла лопатки на выходе $\alpha_{Л4}$ для НА решеточного типа (ЛД).

Получены зависимости профильных потерь в ЛД и относительной закрутки потока за ЛД в зависимости от числа лопаток $z_{\rm ЛД}$, при различных углах лопатки на выходе $\alpha_{\rm Л4}$, для относительных диаметров на выходе D_4/D_2 =1.3, 1.4 и 1.5. Пример зависимостей для одного из вариантов приведен на рис. 2.

Были сопоставлены геометрия исследованных решеток НА и распределение скоростей и потерь в них (рис. 3).

Анализ полученных результатов показывает, что добиться больших значений раскрутки потока при меньших гидравлических потерях можно путем уменьшения числа лопаток направляющего аппарата и увеличением углов на выходе.