Государственное образовательное учреждение высшего профессионального образования «Санкт-Петербургский государственный политехнический университет» Инженерно-строительный факультет Кафедра «Технология, организация и экономика строительства»

Петроченко Марина Вячеславовна, Улыбин Алексей Владимирович mpetrochenko@mail.ru, www.stroikafedra.spb.ru

Паропроницаемый экран железобетонной башенной градирни

1. Башенные градирни

являются наиболее эффективных Башенные градирни одним ИЗ и ответственных устройств для охлаждения циркуляционной воды в системах теплоэлектроснабжения. В настоящее время градирни с железобетонной оболочкой активно эксплуатируются и строятся. Железобетонные оболочки градирен эксплуатируются в тяжелых агрессивных условиях, что приводит к их преждевременному разрушению и выходу из строя. Одним из эффективных способов защиты оболочек является устройство вентилируемого паронепроницаемого экрана. Для обоснования его применения и создания эффективной конструкции, необходим точный тепло- гидравлический расчет движения воздуха в зазоре между экраном и железобетонной оболочкой градирни. Успешная попытка такого расчета сделана в работе [1] Н.И.Ватина, А.В.Улыбина. Дальнейшее развитие этого направления требует более точного расчета.

Рис.1.1 Конструкция защитного экрана

Рассмотрим процессы, позволяющие описать характер движения воздуха в вентилируемом канале (прослойке) и его параметры. Около нагретых поверхностей, окруженных воздухом, возникают конвективные токи, которые вызывают теплообмен между поверхностями и воздухом. Этот процесс называют свободной конвекцией. Процесс переноса теплоты конвекцией связан с переносом массы подвижной среды. Прослойка в данном случае является гравитационным побудителем для интенсификации конвективного теплосъема.

2. Конвективный теплообмен с поверхности экрана

Процесс переноса теплоты в вентилируемом зазоре между экраном и железобетонной оболочки градирни можно определить как естественную

(свободную) конвекцию. Движение воздуха возникает за счет разности плотностей холодных и нагретых масс. Будем рассматривать зависимость плотности воздуха от температуры линейной. Обозначим разность температуру между поверхностью экрана и воздуха $\Delta \tau$. На частицы нагретого от поверхности экрана воздуха действует подъемная архимедова сила, равная:

$$(\rho_{_{hap.603\partial}} - \rho_{_{6hym..603\partial}})g = \rho_{_{hap.603\partial}}\beta g\Delta\tau , \qquad 2.1$$

где β - коэффициент температурного расширения воздуха, K^{-1} ;

g - ускорение силы тяжести, M/c^2 ;

 $\rho_{\mu a p \, 6030}$ - плотность «холодного» наружного воздуха, $\kappa z / M^3$;

 $\rho_{{}_{\it {\it снут.sosd}}}$ - плотность «теплого» внутреннего воздуха, $\kappa_{\it C}\,/\,{}_{\it M}{}^{3}$;

 $\Delta t = t_r - t_x$

Puc.2.1

Интенсивность естественного конвективного потока для любых форм поверхностей и сред в обобщенном виде определяется критерием Грасгофа (Gr) или произведением критерия Грасгофа на критерий Прандтля (GrPr).

Число Грасгофа - безразмерная величина, представленная отношением подъемной силы к силе вязкости:

$$Gr = \frac{\beta g X^3 \Delta \tau}{v^2}, \qquad 2.2$$

где Х - определяющий размер поверхности в направлении потока воздуха, м;

v - коэффициент кинематической вязкости воздуха, M/c^2 .

Эта величина характеризует действие гидростатической подъемной силы и силы вязкости жидкости при естественной конвекции.

Число Прандтля – безразмерная величина, представленная отношением скорости диффузии к температуропроводности.

$$\Pr = \frac{vc_p \rho}{\lambda}, \qquad 2.3$$

где λ -коэффициент теплопроводности, $Bm/(M \cdot C)$;

 c_p - удельная теплоемкость при постоянном давлении, \mathcal{A} ж /(кг · 0 C);

 ρ - плотность воздуха, $\kappa r / M^3$.

Этот критерий устанавливает связь теплопередачи с движением воздуха

Уравнение подобия для конвективного теплообмена для свободной конвекции примет вид:

$$Nu = f(Gr \operatorname{Pr}), \qquad 2.4$$

где *Nu* (число Нуссельта) – безразмерная величина, характеризующая интенсивность теплообмена.

$$Nu = \frac{\alpha_{\kappa} X}{\lambda}, \qquad 2.5$$

где α_{κ} -коэффициент конвективного теплообмена, $Bm/(M^2 \cdot C)$;

$$GrPr = \frac{\beta g X^3 \Delta t}{v^2} Pr \approx 10^8 l^3 \Delta \tau , \qquad 2.6$$

Количество теплоты, предаваемое воздуху с поверхности экрана в этом случае определяется законом Ньютона:

$$Q = \alpha_{\kappa} (t_{z} - t_{\theta}) Ft, \qquad 2.7$$

где *а*_к-коэффициент конвективного теплообмена;

 t_{z} - температура экрана, ⁰ C;

 t_s - температура слоя воздуха, 0C ;

F - площадь элемента экрана, *м*²;

t - время, *c*.

Коэффициент α_{k} представляет собой очень сложную функцию потока воздуха, его теплофизических свойств и геометрических параметров системы. Как правило, за исключением незначительного числа простейших случаев, получить точные аналитические решения этого уравнения не представляется возможным и поэтому используются приближенные методы. Для большинства практических задач, коэффициент теплоотдачи оценивают по эмпирическим уравнениям, полученным обработкой экспериментальных результатов методом анализа размерностей.

Конвективный теплообмен q_{κ} в воздушной прослойке от одной поверхности к другой равен:

$$q_{\kappa} = \alpha_{\kappa} (\tau_1 - \tau_2)$$
 2.8

На теплообмен влияют режимы течения воздуха в зазоре: ламинарный и турбулентный. Первый характеризуется спокойным, струйчатым движением, второй - неупорядоченным, вихревым. Коэффициент конвективного теплообмена α_{κ} , входящий в критерий Нуссельта Nu, связь которого с критеретиями Грасгофа Gr и Прандтля Pr устанавливается методом анализа размерностей:

$$Nu = C(Gr \operatorname{Pr})^n, \qquad 2.9$$

При расчете *Gr* значение *v* берется при средней температуре $t_{cp} = \frac{(t_x + t_z)}{2}$, а

температурный коэффициент объемного расширения воздуха определяем как

 $\beta = \frac{1}{\left(t_x + 273\right)}.$

В нашем случае будем рассматривать движение воздуха между оболочкой градирни и экраном как систему с двумя параллельными пластинами с различной температурой (с одинаковым α_{κ}).

• При малых толщинах или при небольших разностях температур имеет место режим параллельно-струйного движения воздуха вдоль поверхности (Re(2·10³). Экспериментально установлено, что ламинарный режим течения сохраняется в пределах значения критериев GrPr(1000. Учитывая зависимость, определим критическую толщину прослойки, для которой сохраняется ламинарный режим течения. Учитывая 2.6, по рекомендациям В.Н.Богословского [7] получаем:

$$(Gr \operatorname{Pr})_{\kappa p} \approx 10^8 \,\delta \Delta \tau \le 1000$$

$$\delta_{\kappa p} \approx 20 \Delta t^{-\frac{1}{3}}$$
 2.11

Учитывая 2.11, получаем, что при максимальном температурном перепаде между железобетонной оболочкой градирни и стеклопластиковым экраном [1] при

температуре наружного воздуха $-28^{\circ}C$ и температуре экрана $+10^{\circ}C$ ламинарный режим течения воздуха сохраняется при ширине зазора $\delta_{_{RP}}$ до 6 мм.

При этом режиме движения в зазоре:

$$\alpha_{\kappa} = \frac{\lambda_{e}}{\delta}, \qquad 2.12$$

где λ_{e} - коэффициент теплопроводности воздуха, $Bm/(M \cdot^{0} C)$;

δ-толщина прослойки, м.

T.o. получаем, что передача тепла через слой воздуха толщиной, меньше критической происходит теплопроводностью.

• В случае турбулентного потока воздуха (Re (2.10³) GrPr)1000:

$$Nu = 0.54 (Gr \,\mathrm{Pr})^{0.25}$$
 2.13

или

$$Nu = 0.018 (\text{Re})^{0.8}$$
 2.14

$$\operatorname{Re} = \frac{V \cdot X}{v}$$
 2.15

где V – скорость воздуха в прослойке.

В рассматриваемом случае минимальная ширина зазора составляет 10 см, получаем, что движение воздуха в прослойке между железобетонной оболочкой и экраном носит турбулентный характер.

Установим зависимость для определения α_{κ} , используя 2.5, 2.13 и 2.14

$$\alpha_{\kappa} = \frac{0.18 \cdot \left(\frac{\beta g X^{3} \Delta \tau}{v} \frac{c_{p} \rho}{\lambda}\right)^{0.25} \cdot \lambda}{X}$$
 2.16

или, используя 2.14 и 2.15

$$\alpha_{\kappa} = 0.018 \cdot \left(\frac{V \cdot X}{v}\right)^{0.25}$$
 2.17

3. Скорость воздуха в зазоре

Расход воздуха *W* в вентилируемой прослойке нужно определять специальным гидравлическим расчетом. Как сказано выше, движение воздуха в прослойке происходит за счет разности плотностей холодного и теплого воздуха:

$$\Delta \rho g H = \sum \zeta \cdot W^2 , \qquad 3.1$$

где $\sum \zeta$ - сумма гидравлических сопротивлений;

Н-высота градирни

Представим 3.1 в следующем виде:

$$\Delta \rho = \rho_{\mu a p. 6 o 3 \partial} - \rho_{6 \mu y m p. 6 o 3 \partial} = \rho_{\mu a p. 6 o 3 \partial} \left(1 - \frac{\rho_{6 \mu y m p. 6 o 3 \partial}}{\rho_{\mu a p. 6 o 3 \partial}} \right)$$

$$3.2$$

$$\Delta \rho = \rho_{\text{hap.603d.}} H \left(1 - \frac{T_{\text{hap.603d.}}}{T_{\text{enymp.603d.}}} \right)$$
3.3

Скорость воздуха *V* в прослойке определим как расход воздуха *W* через площадь поперечного сечения прослойки:

$$V = \sqrt{\frac{\rho_{\mu a p. 8030} H \left(1 - \frac{T_{\mu a p. 6030.}}{T_{e \mu y m p. 8030.}}\right)}{\sum \zeta}}$$
3.4

$$\sum \zeta = \zeta_{ex} + \zeta_{ebix} + \lambda_{z} \frac{H}{R_{z}}, \qquad 3.5$$

где λ_{2} -линейный коэффициент сопротивления трения;

*R*₂ - гидравлический радиус сечения канала, м.

Гидравлические потери на вход и выход в данном случае незначительны по сравнению с гидравлическими потерями по длине. Ранее было определено, что в канале устанавливается турбулентный режим движения. Таким образом, линейный коэффициент сопротивления трения можно определить по зависимости Альтшуля [9]:

$$\lambda_{\Gamma} = 0.11 \left(\Delta_r + \frac{68}{\text{Re}} \right)^{0.25}$$
3.6

где Δ_r - относительная шероховатость стенок канала.

$$R_{e} = \frac{\delta \cdot L}{2(\delta + L)},$$
3.7

где L- расстояние между направляющими экрана, м

Учитывая зависимости 3.4, 3.5, 3.6, 3.7, окончательное выражение для определения скорости движения воздуха в зазоре можно записать в виде:

$$V = \sqrt{\frac{\rho_{hap.603\partial} \left(1 - \frac{T_{hap.803\partial.}}{T_{enymp.603\partial.}}\right) \left(\frac{\delta \cdot L}{2(\delta + L)}\right)}{0,11 \left(\Delta_r + \frac{68}{\text{Re}}\right)^{0,25}}}$$
3.8

4. Распределение температуры воздуха по высоте зазора

Определим температуру воздуха в произвольном сечении прослойки *x*. Обозначим коэффициент теплопередачи наружной части конструкции (железобетонной оболочки градирни) – K_{μ} , внутренней части конструкции (экрана) – K_{g} . Вентилируемая прослойка отделена экраном от внутренней части конструкции, имеющей температуру t_{gnymp} . Температуру наружного воздуха обозначим $t_{napyxen}$. Выделим по длине прослойки бесконечно малый элемент dx, шириной 1м. Для этого элемента:

• Количество тепла, поступающее в прослойку от внутреннего воздуха,

$$Q_1 = K_{\varepsilon} (t_{shymp} - t_x) dx$$
 4.1

где *t_x*-температура воздуха в данном сечении прослойки;

 Q_3

• Количество тепла, уходящего из прослойки к наружному воздуху,

$$Q_2 = K_{\mu}(t_x - t_{\mu apy \infty \mu})dx$$
 4.2

 Количество тепла, идущего на изменение температуры воздуха в прослойке на *dt* градусов,

$$=Wcdt$$

4.3

где V - скорость воздуха в прослойке;

 δ - толщина воздушной прослойки, м;

γ - объемный вес воздуха в прослойке, кг/м³;

с-удельная теплоемкость воздуха

Из условия теплового баланса

$$Q_3 = Q_1 - Q_2$$
 4.5

откуда

$$Wcdt = K_{g}(t_{gaymp} - t_{x})dx - K_{u}(t_{x} - t_{aapyxcu})dx$$
4.6

Интегрирование этого уравнения дает:

$$t_{x}(K_{s}+K_{u})-A=[t_{0}(K_{s}+K_{u})-A]e^{-\frac{K_{s}+K_{u}}{W_{c}}x}$$
4.7

откуда окончательно получим:

$$t_{x} = \frac{A + [t_{0}(K_{e} + K_{\mu}) - A]e^{-\frac{K_{e} + K_{\mu}}{W_{c}}x}}{K_{e} + K_{\mu}}$$
4.8

где t_x - температура воздуха в прослойке на расстоянии x, м, от входа воздуха в прослойку;

$$4 = K_{g}t_{g} + K_{\mu}t_{\mu}$$

*t*₀ - температура воздуха, входящего в прослойку, град;

е-основание натурального логарифма.

При определении K_{e} и K_{n} учитываются только конвективные составляющие теплообмена на поверхностях прослойки, т.е.

$$K_{g} = \frac{1}{\frac{1}{K_{g}^{1}} + \frac{1}{\alpha_{\kappa}}}; \quad K_{\mu} = \frac{1}{\frac{1}{K_{\mu}^{1}} + \frac{1}{\alpha_{\kappa}}}$$
4.10

где K_s^1 и K_u^1 - коэффициенты теплопередачи внутренней и наружной частей градирни от поверхностей воздушного зазора;

 α_{κ} - коэффициент конвективного теплообмена одной поверхности с воздухом, движущимся в прослойке со скоростью *V*.

5. Исследование модели

5.1. Исходные данные

Используя рекомендации, описанные в [1], примем следующие данные: Расчет произведем для градирни со следующими параметрами:

- высота 83 м
- толщина железобетонной оболочки 0,6 м
- толщина стеклопластикого экрана 1 мм
- ширина зазоров: 0,1 м ; 0,2 м, 0,3 м
- расстояние между направляющими экрана (ширина) 2 м

	температура наружного воздуха, t _{нар}	температура паро-воздушной
	D ⁰	смеси в градирне, t _{внутр,} ⁰ С
1	-28	10
2	-20	13
3	-10	17

4.4

5.2. Основные допущения

Перед расчетом модели вводим следующие допущения:

- Плотность наружного воздуха примем одинаковой для всех расчетных случаев
- При определении числа Рейнольдса коэффициент кинематической вязкости

$$v$$
 принимаем при температуре $t_{cp} = \frac{t_{hap} + t_{enymp}}{2}$

 Рассматривая распределение температуры воздуха по высоте зазора, теплопередачу между железобетонной оболочкой градирни учитываем как сумму конвективной составляющей и теплопроводности, не учитывая излучение.

5.3. Результаты расчета модели

5.3.1. Определение скорости воздуха в зазоре:

Используя зависимость 3.8 определяет скорость воздуха в вентилируемом зазоре:

$$V = \sqrt{\frac{\rho_{\mu a p. 6030} \left(1 - \frac{T_{\mu a p. 6030}}{T_{g \mu y m p. 6030}}\right) \left(\frac{\delta \cdot L}{2(\delta + L)}\right)}{0,11 \left(\Delta_r + \frac{68}{\text{Re}}\right)^{0,25}}}$$

Учитывая, что в канале имеет место турбулентный режим движения воздуха в первом приближении примем $\text{Re} = 3 \cdot 10^3$; $\Delta_r = 0,002 \, \text{м}$ (для бетонной поверхности по [9]); $\rho_{\text{нар.возд}} = 1,29 \, \kappa 2 / \, \text{м}^3$.

Получив скорости воздуха для всех расчетных случаев, итерационно пересчитываем числа Рейнольдса по формуле 2.15, а затем скорости по 3.8.

Таблица 5.2. Значения скоростей (м/с) при различных температурных режимах [t_{нар};t_{вн}] и величинах зазора

Величина зазора,	Темпер	Температурные режимы, [t _{нар} ;t _{вн}] , ⁰ С				
М	[-28;10]	[-20;13]	[-10;17]			
0.1	2.42	2.22	1.97			
0.2	1.72	1.58	1.39			
0.3	1.39	1.27	1.13			

Таблица 5.3. Значения чисел Рейнольдса при различных температурных режимах [t_{нар};t_{вн}] и величинах зазора

Величина зазора,	Температурные режимы, ⁰ С				
М	[-28;10]	[-20;13]	[-10;17]		
0.1	8174	7396	6304		
0.2	10780	9755	8314		
0.3	12352	11176	9526		

Puc.5.3.1

5.3.2. Определение коэффициента конвективного теплообмена

Коэффициент конвективного теплообмена α_{κ} определим, используя формулы 2.16, 2.17.

Таблица 5.4. Значения коэффициент конвективного теплообмена α_{κ} при различных температурных режимах [$t_{\text{нар}}; t_{\text{вн}}$] и величинах зазора

Величина зазора,	Температурные режимы, ⁰ С				
М	[-28;10]	[-20;13]	[-10;17]		
0.1	12.44	11.48	10.10		
0.2	8.13	7.5	6.60		
0.3	6.31	5.83	5.13		

5.3.3. Определение температуры воздуха по высоте зазора

Используя полученную зависимость 4.8, полученные данные о скорости движения воздуха и компоненте конвективного теплообмена, получаем следующие распределения температуры воздуха по высоте канала:

Таблица 5.5. Параметры воздуха в зазоре при температуре наружного воздуха минус 28 $^{\rm 0}{\rm C}$

Величина зазора, м	Конечная температура воздуха, ⁰ С	Скорость воздуха в зазоре, м/с
0.1	-7,31	2,42
0.2	-8,09	1,72
0.3	-8,38	1,39

Puc.5.3.2

Таблица 5.6. Параметры воздуха в зазоре при температуре наружного воздуха минус 20 $^{\rm 0}{\rm C}$

		Скорость воздуха в		
Величина зазора, м	Конечная температура воздуха, С	зазоре, м/с		
0.1	-2,03	2,22		
0.2	-2,71	1,58		
0.3	-2,96	1,27		

Puc.5.3.3

Таблица 5.7.	Параметры в	воздуха в	зазоре	при т	гемперату	ре нару	/жного	воздуха
минус 10 ⁰ С		-		•				-

Велицина зазора м		Скорость воздуха в		
величина зазора, м	Консчная температура воздуха, ос	зазоре, м/с		
0.1	4,69	1,96		
0.2	4,14	1,39		
0.3	3,93	1,13		

Puc.5.3.4

В результате построении данных графиков было установлено, что при одинаковых величинах ширины зазора независимо от температурного режима [t_н; t_{вн}] изменение температуры воздуха в зазоре по высоте канала происходит на одинаковом участке канала, длиной L_{кр}. По установленным зависимостям построим график изменения L_{кр} в зависимости от величины воздушного зазора.

Puc.5.3.5

6. Выводы

В данной работе был произведен расчет температурных и скоростных параметров воздуха в воздушном зазоре с учетом конвективной составляющей теплопроводности. Учет данного параметра позволяет с большей точностью приблизиться в расчетах к истинному распределению температуры в зазоре по высоте канала и скоростей в зазоре между защитным экраном и железобетонной оболочкой градирни. Скорость, рассчитанная по данной методике, оказывается обратнопропорциональной величине вентилируемого зазора. Конечные температуры воздуха в зазоре в каждом расчетном случае оказываются выше на 3...4 ^оС, чем температуры воздуха, рассчитанные по методике А.В.Улыбина.

Установленная зависимость длины участка изменения температуры по высоте канала L_{кр} от величины зазора (*Puc.*5.3.5) является справедливой для любых температурных параметров наружного и внутреннего воздуха исследуемой модели.

Список использованных источников

- Исследование параметров воздуха в вентилируемом зазоре между железобетонной оболочкой башенной градирни и защитным паронепроницаемым экраном. Ватин Н.И., Улыбин А.В. – СПб.: Изд-во СПбОДЗПП, 2006,- 19 с.
- 2. X. Уонг. Основные формулы и данные для теплообмена для инженеров (справочник). М.:Атомиздат, 1979.-212 с.
- 3. Основы теплопередачи. Изд. 2-е. Стереотип. Михеев М.А., Михеева И.М.- М.: «Энергия», 1977.-344 с.
- 4. Справочник по теплопередаче. Кутателадзе С.С., Боришанский В.М.- М.: Государственное энергетическое издательство, 1958. 404 с.
- 5. Луканин В.Н. Теплотехника. М: «Высшая школа», 2000. 671 с.
- Фокин К.Ф. Строительная теплотехника ограждающих частей зданий. -М.:Стройиздат, 1973. – 287 с.
- 7. Богословский В.Н. Строительная теплофизика. Изд-во «АВОК Северо-Запад», 2006.-400с.
- Тепловлажностный расчет фасадных систем с воздушным зазором А.Н. Машенков и др.- Н. Новгород: Изд-во НГАСУ, 2005.-32с.
- 9. Гиргидов А.Д. Механика жидкости и газа (гидравлика): Учебник для вузов. 2-е изд. СПб.: Изд-во СПбГПУ, 2007.- 168 с.