Пономарев Алексей Геннадьевич

Математические модели и методы управления частотой и активной мощностью электроэнергетических объединений

Специальность 05.13.18 – Математическое моделирование, численные методы и комплексы программ

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата технических наук

Работа выполнена в Государственном образовательном учреждении высшего профессионального образования «Санкт-Петербургский государственный политехнический университет» на кафедре «Системный анализ и управление»

Научный руководитель:

доктор технических наук, профессор Козлов Владимир Николаевич

Официальные оппоненты:

доктор технических наук, профессор Хименко Виталий Иванович доктор технических наук, профессор Изранцев Виталий Васильевич

Ведущая организация: Московский государственный технический университет им. Н.Э. Баумана

Защита состоится 31 мая 2007 г. в 14 час. на заседании диссертационного совета Д 212.229.10 ГОУ ВПО "Санкт-Петербургский государственный политехнический университет" по адресу: 195251, г. Санкт-Петербург, Политехническая ул., д. 29, корпус 9, ауд. 535

С диссертацией можно ознакомиться в фундаментальной библиотеке ГОУ ВПО «СПбГПУ»

Автореферат разослан 28 апреля 2007 г.

Ученый секретарь диссертационного совета

Кудряшов Э.А.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность задач. Создание крупных электроэнергетических объединений (ЭЭО) типа Единой энергосистемы России, требует разработки математических моделей для управления технологическими режимами станций и линий электропередач.

В настоящее время существует ряд исследований, в которых излагаются различные подходы к решению указанной задачи. Создание современных автоматизированных систем управления и системных диспетчеров требуют разработки адекватных моделей и методов для комплексного решения проблем оптимального и противоаварийного управления, включая регулирование частоты, мощности и напряжения на основе современных технологических требований.

При создании моделей и методов необходимо выделить две важные задачи моделирования — разработка моделей объекта и моделей алгоритмов для управления технологическими режимами, которые в традиционной форме заданы в алгоритмической форме. Адекватное моделирование ЭЭО требует учета существенных нелинейностей объекта. Задачи моделирования и управления частотой и активной мощностью при ограничениях, заданных технологическими требованиями к режимам ЭЭО, приводят к необходимости моделирования оптимальных управлений на допустимых множествах на основе аналитических моделей и методов оптимизации. Нелинейности уравнений объекта и оператора управления приводят к необходимости использования для анализа качественных свойств современных методов функционального анализа.

Цели и задачи работы заключаются в следующем:

- 1. Разработка нелинейных моделей электроэнергетических систем в форме «вход-состояние-выход» в физических переменных; обобщение моделей объекта управления на основе кусочно-линейных операторов; формирование асимптотических моделей для сокращения размерности вектора состояния и моделей установившихся процессов.
- 2. Разработка моделей и методов для аналитической оптимизации при математическом описании алгоритмов управления ЭЭО для управления частотой и активной мощностью с учетом технологических требований к режимам.
- 3. Исследование качественных свойств замкнутой нелинейной системы управления ЭЭО на основе методов функционального анализа.

Методы исследования. Для решения поставленных задач использовались методы математического моделирования и вычислительной математики, теории конечномерной оптимизации и теории автоматического управления, методы функционального анализа.

Научная новизна. Научная новизна состоит в следующем.

1. Разработаны нелинейные модели электромеханических процессов ЭЭО в базисе физических переменных на основе кусочно-

линейных преобразований (операторов) координат и управлений в исходных линеаризованных уравнениях, асимптотические линейные, кусочно-линейные модели и модели стационарных режимов.

- 2. Синтезированы методы аналитического решения оптимизационных задач проекционного типа на основе канонической формы ограничений (в виде пересечения линейного многообразия и шара) для математического моделирования систем управления частотой и активной мощностью с учетом технологических требований к ЭЭО.
- 3. Сформулированы математические модели замкнутых систем и достаточные условия устойчивости систем управления на основе принципа сжимающих отображений функционального анализа и метода Ляпунова.

Достоверность полученных результатов определяется корректным использованием математического аппарата, обоснованностью численных методов, математическим анализом устойчивости.

Практическая значимость. Основные результаты работы могут использоваться при моделировании и расчете процессов, а также при разработке систем управления частотой и активной мощностью ЭЭО, включая разработку системного диспетчера для решения других задач.

Положения диссертационной работы, выносимые на защиту:

- 1. Математические модели в виде нелинейных дифференциальных и разностных уравнений ЭЭО в форме «вход-состояние-выход» в физических переменных на основе кусочно-линейных операторов, включая асимптотические модели, а также модели установившихся режимов.
- 2. Математические модели системы управления для управления частотой и активной мощностью с учетом технологических требований к режимам ЭЭО с описанием алгоритмов управления на основе аналитических методов конечномерной оптимизации.
- 3. Достаточные условия устойчивости замкнутых нелинейных систем управления на основе методов функционального анализа.

Апробация работы: Основные результаты диссертационной работы были представлены: на международных научно-методических конференциях «Высокие интеллектуальные технологии и генерация знаний в образования и науки»; на XIII международной научно-методической конференции «Высокие интеллектуальные технологии и генерация знаний в образования и науки»; на научно-методической конференции «Фундаментальные исследования и инновации в технических университетах», на научном семинаре «Кибернетика и информатика», на научных семинарах кафедры «Системный анализ и управление» (2002-2006 гг.);

Публикации. По теме диссертации опубликовано 5 печатных работ, в том числе одна работа в изданиях, рекомендованных ВАК.

Объем и структура работы: Диссертационная работа состоит из введения, четырех глав, заключения, библиографического списка (123 наименования). Основной текст работы содержит 120 страниц машинописного текста, включая 8 рисунков и 5 таблиц.

КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ

Введение содержит обоснование актуальности и практической значимости работы, обзор и анализ работ по изучаемой тематике, сформулированы цели и основные задачи исследований, изложены научные результаты работы и положения, выносимые на защиту.

В первой главе выполнен обзор и анализ современных математических моделей ЭЭО. Анализ позволил установить, что синтез систем управления возможен на основе моделей в базисе физических переменных, описываемых линейными или кусочно-линейными уравнениями в пространстве состояний. Отмечена целесообразность построения асимптотических моделей объекта для описания различных движений ЭЭО как объекта.

Анализ объекта управления и подходов к математическому моделированию систем управления частотой и активной мощностью ЭЭО позволил сделать вывод о необходимости моделирования систем управления в классе нелинейных локально-оптимальных систем. Для вычисления оптимальных управлений обосновано использование методов аналитической оптимизации, для описания алгоритмически заданных управлений замкнутой системы. Нелинейность операторов управления, моделей ЭЭО и уравнений замкнутой системы приводит к необходимости исследования качественных свойств и устойчивости методами функционального анализа и теории устойчивости.

Во второй главе разработаны обобщенные математические модели электромеханических процессов ЭЭО, на основе которых возможно моделирование систем управления частотой и активной мощностью. Исходные линейные модели типа «вход-состояние-выход» в базисе физических координат энергетического объединения представляются в форме:

$$\dot{\varphi}_{i} = \omega_{i}, \quad \dot{\omega}_{i} = -\frac{1}{T_{\alpha i}^{2}} \sum_{\substack{j=1\\j \neq i}}^{n} \rho_{ij} \left(\varphi_{i} - \varphi_{j} \right) - \frac{T_{yi}}{T_{\alpha i}^{2}} \omega_{i} + \frac{1}{T_{\alpha i}^{2}} p_{i} - \frac{1}{T_{\alpha i}^{2}} \mu_{i},
\dot{p}_{i} = -\frac{1}{T_{\Pi i}} p_{i} + \frac{1}{T_{\Pi i}} q_{i}, \quad \dot{q}_{i} = -\frac{k_{\omega i}}{T_{c i}} \omega_{i} - \frac{1}{T_{c i}} q_{i} + \frac{1}{T_{c i}} \sigma_{i},
\dot{\sigma}_{i} = -\frac{1}{T_{\Pi i}} \sigma_{i} + \frac{1}{T_{\Pi i}} u_{i},$$
(1)

где φ_i , ω_i — отклонения абсолютного угла и частоты ротора i-ого генератора (эквивалентного агрегата); T_{ai}^2 , T_{yi} — приведенная постоянная механической инерции и постоянная ускорения ротора эквивалентного агрегата; p_i — суммарное приращение мощности i-ой станции; μ_i — внеплановое изменение нагрузки i-ой станции, q_i , σ_i — величины,

характеризующие динамику агрегата (паровой объем и перемещение сервопривода), $k_{\omega i}$ — коэффициент усиления первичного регулятора скорости турбины, u_i - управляющий сигнал. На основе уравнений (1) векторы состояния, управлений и внешних воздействий представляются следующим образом:

$$X = [\varphi, \omega, p, q, \sigma]^{T}, \quad U = [u, \mu]^{T}, \quad \varphi = [\varphi_{1}, \varphi_{2}, ..., \varphi_{n}],$$

$$\omega = [\omega_{1}, \omega_{2}, ..., \omega_{n}], \quad p = [p_{1}, p_{2}, ..., p_{n}], \quad q = [q_{1}, q_{2}, ..., q_{n}],$$

$$\sigma = [\sigma_{1}, \sigma_{2}, ..., \sigma_{n}], \quad u = [u_{1}, u_{2}, ..., u_{n}], \quad \mu = [\mu_{1}, \mu_{2}, ..., \mu_{n}].$$
(2)

Компоненты вектора перетоков S по линиям электропередач определяются равенствами

$$S = [S_1, S_2, ..., S_m], \quad S_l = \rho_{ig}(\varphi_i - \varphi_g), \quad l = 1, 2, ..., m.$$
(3)

Если в качестве вектора выходных координат Y принимается вектор перетоков S, то дифференциально-алгебраические уравнения «входсостояние-выход» имеют вид:

$$\dot{X} = AX + BU, \quad X(0) = X^{0},$$

$$Y = CX.$$
(4)

где $A=\|A_{lm}\|,\ B=\|B_{rs}\|,\ C=\|C_{rs}\|$ — блочные матрицы параметров ЭЭО, причем l,m,r=1,2,...,5 , s=1,2 , а клетки A_{lm} , B_{rs} имеют размеры $n\times n$.

Для разработки нелинейных математических моделей ЭЭО применяются кусочно-линейные операторы непрерывного типа, соответствующие типовым нелинейностям. Исходные уравнения ЭЭО типа (1) преобразуются с помощью операторов типовых нелинейностей для учета зоны нечувствительности первичных регуляторов частоты к малым изменениям частоты, а также ограничений на диапазоны изменения величин p_i , q_i , σ_i . В результате нелинейные дифференциальные уравнения ЭЭО можно представить в виде скалярных уравнений в форме «вход-состояние-выход»:

$$\dot{X}_{i} = \sum_{j=1}^{N} A_{ij} \Phi_{ij}(X_{j}) + \sum_{j=1}^{N} B_{ij} U_{j}, \quad i = 1, 2, ..., N,$$
(5)

где X и U - векторы состояния и внешних воздействий в форме (2), N=5n - размер вектора состояния, A_{ij} и B_{ij} - элементы матриц A и B, а $z=\Phi_{ij}(x)$ - кусочно-линейные операторы, представленные в следующей канонической форме:

$$z = \Phi_{ij}(x) = \beta_{ij}^{0} + \alpha_{ij}^{0}x + \sum_{l=1}^{l_{ij}} \alpha_{ij}^{l} | x - x_{ij}^{l} |, \quad i, j = 1, 2, ..., n.$$
 (6)

На основе нелинейных моделей ЭЭО разработаны асимптотические модели и модели режимов, установившихся по определенным группам компонент вектора состояния. Данные варианты построения асимптотических моделей разработаны для случаев линейных уравнений состояния, и предложены аналогичные подходы для определенного класса кусочно-линейных уравнений. Например, для режима, установившегося по мощности агрегатов ($\dot{p}=0$) уравнения электромеханических процессов примут вид:

$$\dot{\varphi}_{i} = \omega_{i}, \quad \dot{\omega}_{i} = -\frac{1}{T_{\alpha i}^{2}} \sum_{\substack{j=1 \ j \neq i}}^{n} \rho_{ij} \left(\varphi_{i} - \varphi_{j} \right) - \frac{T_{yi}}{T_{\alpha i}^{2}} \omega_{i} + \frac{1}{T_{\alpha i}^{2}} q_{i} - \frac{1}{T_{\alpha i}^{2}} \mu_{i},$$

$$\dot{q}_{i} = -\frac{k_{\omega i}}{T_{c i}} \omega_{i} - \frac{1}{T_{c i}} q_{i} + \frac{1}{T_{c i}} \sigma_{i}, \quad \dot{\sigma}_{i} = -\frac{1}{T_{H i}} \sigma_{i} + \frac{1}{T_{H i}} u_{i},$$
(7)

Вводится вектор состояния X^1 , в результате уравнения состояния (2)-(4) для вектора X^1 записываются в форме:

$$\dot{X}^{1} = A^{1}X^{1} + B^{1}U, \quad Y = C^{1}X,
X^{1} = [\varphi, \omega, q, \sigma]^{T}, \quad U = [u, \mu]^{T}, \quad S = [S_{1}, S_{2}, ..., S_{m}],$$
(8)

Методика формирования асимптотических моделей ЭЭО приводит к системе:

$$\dot{\varphi}_{i} = \omega_{i}, \quad \dot{\omega}_{i} = -\frac{1}{T_{\alpha i}^{2}} \sum_{\substack{j=1\\j \neq i}}^{n} \rho_{ij} \left(\varphi_{i} - \varphi_{j} \right) - \frac{T_{y i}}{T_{\alpha i}^{2}} \omega_{i} + \frac{1}{T_{\alpha i}^{2}} \Phi_{p}^{-1}(q_{i}) - \frac{1}{T_{\alpha i}^{2}} \mu_{i},$$

$$\dot{q}_{i} = -\frac{k_{\omega i}}{T_{c i}} \Phi_{\omega}(\omega_{i}) - \frac{1}{T_{c i}} \Phi_{q}(q_{i}) + \frac{1}{T_{c i}} \Phi_{\sigma}(\sigma_{i}), \quad \dot{\sigma}_{i} = -\frac{1}{T_{H i}} \Phi_{\sigma}(\sigma_{i}) + \frac{1}{T_{H i}} u_{i},$$
(9)

причем обратный оператор в первом уравнении (9) имеет вид (6).

Уравнения (9) могут быть записаны в форме (5), причем соответствующий данной системе вектор состояния будет задан как $X = \left[\varphi, \omega, q, \sigma \right]^T$. В результате размерность вектора состояний системы кусочно-линейных уравнений (5) уменьшается на величину n, а кусочно-линейные операторы (9) принимают следующий вид:

$$z = \Phi(q_i) = (|q_i + q_i^0| - |q_i - q_i^0|)/2,$$

$$z = \Phi(\omega_i) = \omega_i - (|\omega_i + \omega_i^0| - |\omega_i - \omega_i^0|)/2,$$

$$z = \Phi(\sigma_i) = \sigma_i - (|\sigma_i + \sigma_i^0| - |\sigma_i - \sigma_i^0|)/2.$$
(10)

В диссертации указаны способы перехода к моделям в дискретном времени для линейных и кусочно-линейных непрерывных моделей в пространстве состояний. Разработаны способы определения статических характеристик влияния, следующих из уравнений стационарных (квазистационарных) режимов, получаемых на основе «вход-состояниевыход» с использованием вычисления резольвенты для линейных моделей.

В третьей главе рассматриваются математические модели для синтеза систем управления частотой и активной мощностью ЭЭО на основе математических моделей объекта, разработанных во второй главе. Заданы технологические требования к режимам работы ЭЭО и канонические ограничений для их задания. Регулирование выполняется по величине системной ошибки, учитывающей отклонение частоты и активной мощности:

$$\lambda = (\Delta S^{o\delta M} + \gamma \Delta \omega). \tag{11}$$

Технологические требования к режимам формулируются в виде ограничений на управляющие воздействия, переменные состояния и выходные координаты:

а) регулирования ЭЭО по частоте и обменной мощности:

$$\sum_{i=1}^{n} \Delta u_i = -\lambda, \tag{12}$$

б) ограничения перетоков активной мощности ЭЭО по линиям:

$$S_j - \underline{S}_j \le \Delta S_j = \sum_{i=1}^n \alpha_{ji}(\Delta u_i) \le \overline{S}_j - S_j, \quad i = 1, 2, ..., m,$$
(13)

в) ограничения на мощности станций:

$$p_{i} - \underline{p}_{i} \le \Delta p_{i} = \Delta u_{i} - k_{\omega i} \Delta \omega \le \overline{p}_{i} - p_{i}, \quad i = 1, 2, ..., n,$$

$$(14)$$

$$i$$
-ой станции $S_i^{\hat{i}\,\hat{a}\hat{i}}=\sum_{i=1}^{L_i}S_j$, от заданного значения $S_{i\;\hat{c}\hat{a}\hat{a}}^{\hat{i}\,\hat{a}\hat{i}}$; Δu_i — внеплановое

управление i-ой регулирующей станции, обеспечивающее решение задачи регулирования частоты и активной мощности, а также ограничения перетоков по контролируемым линиям; $\Delta \omega$ —отклонение частоты агрегатов от заданного значения; $\Delta S^{i\, \acute{a}i}$ - отклонение суммарной обменной мощности ЭЭО (суммарного перетока по внешним линиям); \overline{S}_j , \underline{S}_j , S_j — соответственно верхнее, нижнее предельные и текущее значения перетоков активной мощности по j-ой линии; ΔS_j — изменение перетока по j-ой линии

под действием управлений; α_{ji} — коэффициенты влияния i-ой станции (узла) на переток по j-ой линии; n, m — соответственно число регулирующих станций и контролируемых линий в ЭЭО; L_i — число внешних межсистемных линий, связывающих данное ЭЭО с другими; \overline{p}_i , \underline{p}_i соответственно верхнее и нижнее предельные и текущее значения мощности i-ой станции (узла).

Рассмотрены различные варианты формулировки цели управления в зависимости от соответствующих критериев. Задача минимизации отклонений мощности регулирующих станций ставится следующим образом: найти управления Δu_i , удовлетворяющие ограничениям (12)-(14) и минимизирующие функционал качества вида

$$J = \sum_{i=1}^{n} c_i (\Delta p_i)^2 \tag{15}$$

где c_i - весовые коэффициенты. С учетом уравнений электромеханических процессов и моделей установившихся режимов можно сформулировать задачу: найти

$$\Delta u^* = \arg\min\{J = (\Delta u - k_{\omega} \Delta \omega)^T C (\Delta u - k_{\omega} \Delta \omega) \mid I \Delta u = -\lambda, (\underline{S} - S) \le \tilde{A} \Delta u \le (\overline{S} - S), \quad (p - p) \le \Delta u - k_{\omega} \Delta \omega \le (\overline{p} - p)\}.$$
 (16)

Функционал и ограничения в (16) записаны в векторно-матричном виде, с использованием обозначений: $\Delta u = \left[\Delta u_1, \Delta u_2, ..., \Delta u_n\right]^T$ - вектор управляющих воздействий станций, Δu^* - оптимальное значение вектора управления, $C = diag(c_1, c_2, ..., c_n)$ - диагональная матрица весовых коэффициентов, I = [1,1,...,1] - вектор размера $(n \times 1)$ с единичными элементами, $S = \left[S_1, S_2, ..., S_m\right]^T$ - вектор перетоков, \overline{S} и \underline{S} - векторы верхних и нижних предельных значений перетоков, $p = \left[p_1, p_2, ..., p_n\right]^T$ - вектор узловых мощностей, \overline{p} и \underline{p} - векторы верхних и нижних предельных значений мощностей, k_{ω} - векторы верхних и нижних первичных регуляторов станций, $\widetilde{A} = \left\|\alpha_{ji}\right\| \in R^{m \times n}$ - матрица коэффициентов влияния. В результате комплекс задач управления технологическими режимами ЭЭО представляется в виде модели минимизации отклонений от заданных соотношений.

Пусть динамика ЭЭО в дискретном времени описывается следующими уравнениями:

$$x_{k+1} = Hx_k + Fu_k, \quad y_k = Cx_k, \quad x_{k=0} = x_0.$$
 (17)

Предполагается, что управления формируются статическими (безинерционными) регуляторами по закону

$$u_k = \Gamma u_k^*(x_k), \quad \Gamma \in \mathbb{R}^{n \times n}. \tag{18}$$

Модель формирования управлений ЭЭО в дискретном времени формулируется следующим образом: найти вектор управлений u_k^* , минимизирующий функционал

$$J = (y_{k+1})^T Q(y_{k+1}) + (u_k - u_k^0)^T R(u_k - u_k^0)$$
(19)

при ограничениях:

$$Iu_k^* = -\lambda_k, \quad y_k^- \le y_{k+1} \le y_k^+, \quad u_k^- \le u_k \le u_k^+.$$
 (20)

В соответствии с (12)-(14), величины, характеризующие ограничения в k-ый момент времени, зависят от компонент вектора состояния системы, и определяются соотношениями

$$\lambda_{k} = (\Delta S^{o\delta u}_{k} + \gamma \Delta \omega_{k}), \quad y_{k}^{-} = S_{k} - \underline{S}, \quad y_{k}^{+} = S_{k} - \overline{S},$$

$$u_{k}^{-} = p_{k} - p + k_{\omega} \Delta \omega_{k}, \quad u_{k}^{+} = p_{k} - \overline{p} + k_{\omega} \Delta \omega_{k}.$$
(21)

Матрицы Q и R функционала качества (19) — диагональные и положительно определенные матрицы, соответствующие весовым коэффициентам в (15), их значения, а также вектор u_k^0 зависит от цели управления.

Для решения задач оптимизации (19) - (21) предложена нелинейная локально-оптимальная модель системы управления. Вектор расширенных координат вводится в виде

$$z_k = \begin{pmatrix} y_{k+1} \\ u_k \end{pmatrix}. \tag{22}$$

Тогда можно записать следующее ограничение для вектора $z_{\scriptscriptstyle k}$:

$$\overline{A}z_k = b_k, \quad \overline{A} = \begin{pmatrix} -E_{m \times m}, & \widetilde{A} \\ 0_{1 \times m}, & I \end{pmatrix}, \quad b = \begin{pmatrix} 0_{m \times 1} \\ \lambda_k \end{pmatrix}.$$
 (23)

Ограничения (20) приводятся к виду:

$$z_{k}^{-} \le z_{k} \le z_{k}^{+}, \quad z_{k}^{-} = \begin{pmatrix} y_{k}^{-} \\ u_{k}^{-} \end{pmatrix}, \quad z_{k}^{+} = \begin{pmatrix} y_{k}^{+} \\ u_{k}^{+} \end{pmatrix}.$$
 (24)

Оптимизационная задача с каноническими ограничениями принимает вид: найти z_k^* такой, что

$$z_{k}^{*} = \arg\min\{J = (z_{k} - z_{k}^{0})^{T} \overline{Q}(z_{k} - z_{k}^{0}) \mid \overline{A}z_{k} = b_{k}, \quad z_{k}^{-} \leq z_{k} \leq z_{k}^{+}\},$$

$$z_{k}^{0} = \begin{pmatrix} 0_{m \times 1} \\ u_{k}^{0} \end{pmatrix}, \quad \overline{Q} = \begin{pmatrix} Q, & 0_{n \times m} \\ 0_{m \times n}, & R \end{pmatrix}.$$
(25)

Преобразованием базиса задача (25) приводится к следующей форме:

$$\tilde{z}_{k}^{*} = \arg\min\{J = (\tilde{z}_{k} - \tilde{z}_{k}^{0})^{T}(\tilde{z}_{k} - \tilde{z}_{k}^{0}) = \|\tilde{z}_{k} - \tilde{z}_{k}^{0}\|^{2} \mid \tilde{z}_{k} \in D_{\tilde{z}}\}.$$
 (26)

где множество $D_{\tilde{z}}$ - пересечение многообразия и параллелепипеда.

Для решения задачи используется математическая модель, представляющая аналитические решения, задающие минимизирующие элементы операторами конечномерной оптимизации:

$$\tilde{z}_k^* = \tilde{\Phi}(b_k, \tilde{z}_k^-, \tilde{z}_k^+)^T. \tag{27}$$

В работе предложена аппроксимирующая модель решения задачи (26), представленная задачей вычисления

$$x^* = \arg\min \{\varphi(x) = \|x - x_0\|^2 \mid x \in D,$$

$$D = D^0 \cap D^4, \ D^0 = [x : Ax = b], \ D^4 = [x : \|x - c\|^2 \le R^2] \}.$$
(28)

Получено аналитическое представление оператора конечномерной оптимизации, доставляющего точное решение аппроксимирующей задачи, которое является приближенным решением задачи (26):

$$x^* = \begin{cases}
P^{A}(c) + \sqrt{R^2 - (c^T A^T - b^T)(AA^T)^{-1}(Ac - b)} \cdot \frac{(E - A^T (AA^T)^{-1} A)(x_0 - c)}{\sqrt{(x_0^T - c^T)(E - A^T (AA^T)^{-1} A)(x_0 - c)}}, \\
(x_0^T - c^T)(E - A^T (AA^T)^{-1} A)(x_0 - c) \ge R^2 - (c^T A^T - b^T)(AA^T)^{-1}(Ac - b)
\end{cases}$$

$$(29)$$

$$(x_0^T - c^T)(E - A^T (AA^T)^{-1} A)(x_0 - c) < R^2 - (c^T A^T - b^T)(AA^T)^{-1}(Ac - b)},$$

где $P^{A}(c) = (E - A^{T}(AA^{T})^{-1}A)c + A^{T}(AA^{T})^{-1}b$.

Применением к (27) обратного преобразования базиса может быть получено выражение для оптимального значения исходного вектора расширенных координат:

$$z_{k}^{*} = \Phi'(b_{k}, z_{k}^{-}, z_{k}^{+})^{T}. \tag{30}$$

Так как в соответствии с (20), (21), (24) параметры ограничения b_k , z_k^- , z_k^+ выражаются через компоненты вектора состояния x_k , а вектор управлений может быть выражен как $u_k = Tz_k$ (матрица $T = \left(0_{n \times m}, E_{n \times n}\right)$ позволяет выделить вектор управлений из вектора расширенных координат), то можно записать

$$u_k^* = T\Phi'(H_o x_k) = \Phi(H_o x_k),$$
 (31)

где H_o - матрица модели объекта. Тогда уравнения, описывающие динамику замкнутой системы, записываются в виде:

$$x_{k+1} = Hx_k + \gamma F\Phi(H_o x_k), \quad y_k = Cx_k, \quad x_{k=0} = x_0.$$
 (32)

Рассмотренные методы позволяют сформировать для замкнутых систем законы управления в аналитической форме.

В четвертой главе рассмотрены математические модели и методы для исследования качественных свойства систем управления, разработанных на основе моделей, предложенных в главе 3. Определены условия устойчивости и ограничения на величину параметра обратной связи для объектов, описываемых линейными и некоторыми типами нелинейных уравнений в пространстве состояний, замкнутых нелинейным управлением. Нелинейные разностные уравнения динамики ЭЭО записываются в виде:

$$x_{k+1} = \Psi(x_k) + \gamma F \Phi(H_o x_k), \quad x_{k=0} = x_0.$$
 (33)

В пятой главе выполнен анализ устойчивости на основе принципа сжимающих отображений и метода Ляпунова. Пусть уравнения объекта имеют ранее определенный вид, причем матрица параметров обратной связи имеет вид: $\Gamma = \gamma E$. Требуется сформулировать ограничения на параметр регулятора γ для устойчивости стационарного состояния замкнутой системы. Уравнения замкнутой системы управления ЭЭО имеют вид:

$$x_{k+1} = Hx_k + \gamma F \Phi(H_o x_k), \quad x_{k=0} = x_0.$$
 (34)

В модели замкнутой системы и в регуляторе использована динамическая модели ЭЭО, которая определена матрицей H_o . Стационарные решения определяются алгебраическим уравнением: $x^* = Hx^* + \gamma F\Phi(H_ox^*)$. Функция Ляпунова задана евклидовой нормой: $V_k = \left\|x^* - x_k\right\|^2$. Построены оценки на основе уравнений замкнутой системы и условий Липшица:

$$V_{k+1} = \|x^* - x_{k+1}\|^2 = \|(Hx^* + \gamma F \Phi(H_o x^*)) - (Hx_k + \gamma F \Phi(H_o x_k))\|^2 =$$

$$= \|H(x^* - x_k) + \gamma F[\Phi(H_o x^*) - \Phi(H_o x_k)]\|^2 =$$

$$= (\Lambda_H + 2 \|\gamma\| L_{\Phi} \|H^T\| \|H_o\| \|F\| + \gamma^2 L_{\Phi}^2 \|H_o\|^2) \|x^* - x_k\|^2.$$
(35)

В соотношении (35) матрица H_o определяет модель объекта, используемую при вычислении управлений, что позволяет анализировать устойчивость при несовпадении данной матрицы с матрицей объекта. Это дает возможность анализировать грубость замкнутой системы управления. Нормы матриц и векторов согласованы, т.е. $\|Ax\| \le \|A\| \cdot \|x\|$, причем норма вектора евклидова: $\|x\| = (x^Tx)^{1/2}$, а наименьшая согласованная норма матрицы $\|A\| = \sqrt{\Lambda}$, где Λ_A - максимальное собственное число матрицы A^TA .

Оператор управления удовлетворяет условиям Липшица с постоянной L_{Φ} по переменным x_k в области $\overline{\Omega}$. Достаточное условие асимптотической устойчивости замкнутой системы принимает следующий вид:

$$\alpha \triangleq (\Lambda_H + 2 | \gamma | L_{\Phi} || H^T || || H_o || || F || + \gamma^2 L_{\Phi}^2 || H_o ||^2) < 1.$$
 (36)

Для уточнения оценок параметра γ применена квадратичная функция Ляпунова: $V_k = (x^* - x_k)^T P(x^* - x_k), \quad P = P^T > 0$. Тогда приращение функции Ляпунова на траекториях системы вычисляется в соответствии с соотношениями:

$$V_{k+1} - V_k = (x^* - x_{k+1})^T P(x^* - x_{k+1}) - (x^* - x_k)^T P(x^* - x_k) =$$

$$= (\Delta x_{k+1})^T P(\Delta x_{k+1}) - (\Delta x_k)^T P(\Delta x_k), \quad \Delta x_k \triangleq x^* - x_k.$$
(37)

Неравенство с учетом уравнения Ляпунова: $H^T P H - P = -Q_1$, преобразуется к виду:

$$R(\gamma) \triangleq [2\gamma L_{\Phi} \| H_o^T \| \cdot \| F^T \| \cdot \| P \| \cdot \| H \| + \gamma^2 L_{\Phi}^2 \| H_o^T \| \cdot \| F^T \| \cdot \| P \| \cdot \| F \| \cdot \| H_o \|] \| \Delta x_k \|^2 \le -\lambda(Q_2) \| \Delta x_k \|,$$

Последнее неравенство задает ограничения на значения параметра γ . Графики зависимости γ от значений α , $\|H\| = \|H_a\|$ и $\|F\|$ даны на рис.1.

В работе сформулированы достаточные условия асимптотической устойчивости для других вариантов математических моделей объектов и управляющих алгоритмов, включая случаи нелинейных моделей объекта и управляющего алгоритма.

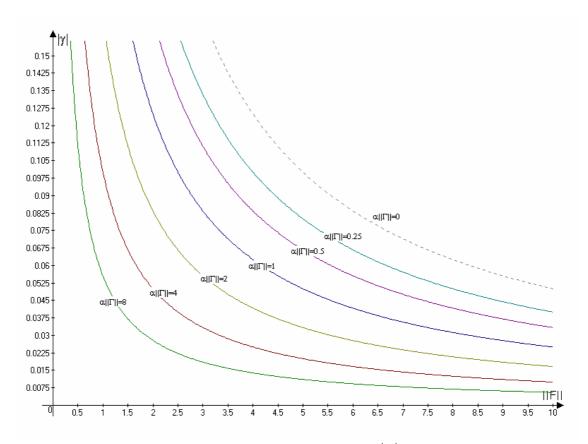


Рис. 1. Зависимость предельных значений величины $|\gamma|$ от параметров модели системы управления (при $\|H\|$ = 0.5)

ЗАКЛЮЧЕНИЕ

Основные результаты работы формулируются следующим образом:

- обобщенные Разработаны математические модели ЭЭО. электромеханических процессов, описывающие динамику Предложены различные варианты модификации исходных математических моделей, переход к кусочно-линейным дифференциальным уравнениям учета нелинейностей, характерных для генерирующих асимптотические модели для снижения размерности вектора состояния ЭЭО, модели в дискретном времени и модели установившихся режимов.
- 2. Предложены модели и методы для синтеза систем управления ЭЭО. Сформулированы ограничения и цели задачи управления с учетом требований к регулированию частоты и активной мощности, ограничению перетоков, минимизации отклонений различных величин – перетоков, генерирующих станций OTзаданных значений. математическая формулировка задач вычисления управления как задач условной квадратичной оптимизации на канонически заданном допустимом множестве пересечении линейного многообразия параллелепипеда.
- 3. Предложены модели и методы для исследования устойчивости замкнутых систем управления, сформулированы достаточные условия устойчивости для системы с нелинейными законами управления,

моделируемыми аналитическими операторами конечномерной оптимизации. Даны достаточные условия устойчивости на основе методов функционального анализа и теории устойчивости Ляпунова.

ПУБЛИКАЦИИ ПО ТЕМЕ РАБОТЫ:

- 1. Пономарев А.Г. Асимптотические модели процессов в электроэнергетических системах // Сб. «Кибернетика и информатика: сборник научных трудов к 50-летию Секции кибернетики Дома ученых им. М.Горького РАН, Санкт-Петербург». СПб.: изд-во Политехнического университета, 2006 г. с. 397-402.
- 2. Пономарев А.Г. Канонические формы операторов конечномерной оптимизации для аналитического описания режимов управления частотой и активной мощностью электроэнергетических объединений // Сб. «Кибернетика и информатика: сборник научных трудов к 50-летию Секции кибернетики Дома ученых им. М.Горького РАН, Санкт-Петербург». СПб.: изд-во Политехнического университета, 2006 г. с. 391-396.
- 3. Козлов В.Н., Пономарев А.Г. Оператор минимизации квадратичного функционала на пересечении линейного многообразия и шара. «Научно-технические ведомости СПбГПУ», 2007, № 2.- с. 56-59.
- 4. Козлов В.Н., Пономарев А.Г. К аналитическому решению задач минимизации евклидовой нормы на пересечении линейного многообразия и шара. Материалы научной конференции «Фундаментальные исследования и инновации в технических университетах». СПб.: СПбГПУ. 2007.- с.107-111.
- 5. Козлов В.Н., Пономарев А.Г. Достаточные условия устойчивости дискретных динамических систем с алгоритмическими законами управления. Материалы научной конференции «Фундаментальные исследования и инновации в технических университетах». СПб.: СПбГПУ. 2007.- с.112-114.