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General 
An essential component of current rules for fatigue design of steel structures, e.g., [4, 6, 9], etc. is 

the linear damage summation, Palmgren-Miner, rule. It fits the widely used approaches, when the S-N 
criteria, or «Strain-Life» criteria for fatigue crack initiation are applied, and also when the residual fatigue 
life should be assessed in the crack propagation phase. 

The damage assessment is recommended to carry out in the common form when the S-N criteria 
for fatigue are applied: 

1/ ( ) ( * / ) ( )m m
i i i i i i

i i i

D n N C n S N C p S         , (1)

where i  is the number of equivalent1 cyclic stress components in the stress block, in  is the number of 

equivalent stress cycles in stress block components, *N is the number of stress «cycles» which 

experiences the structure through the service life, / *i ip n N is the fraction of the stress cycles in  in 

the life-long loading history, iN  is the number of cycles to failure at constant stress range iS ,   is the 

«usage factor», total time of exposure to fluctuating loading related to prescribed service life, C and m are 
parameters of a fatigue failure criterion, e.i.: 

( ) / mN S C S . (2)

Bolotin [1] considered characterization of the loading history by continuous function of distribution 
of probabilities and proposed transformation of the damage summation scheme (1) into the integral form 

by defining the number of stress cycles in  in the step-wise block form as the following:  

* ( )in N p S dS  , (3)

where *N is the total number of load (stress) fluctuations over the intended service life (or a specified 

period of time), ( )p S  is the probability of the stress range to occur in a range of dS . Respectively, the 

sum (1) is expressed as 

max

min

/ * ( ( ) / ( ))
S

i i
i S

D n N N p S N S dS   . (4)

This relationship can be readily used to estimate the total fatigue damage, which may be 
accumulated through service life of an industrial or marine structure or, alternatively, the number of stress 
excursions, *N , over the intended service life, fatigue life, instead of the summation format (1).  

By this reason development of a controversial procedure, i.e. transforming of the right-hand part of 
(4) into the common form (1) may seem needless. This may be true, when the S-N criteria are applied for 
fatigue analysis of structures and loading history is given by the stress probability distribution function.  

However, the mentioned transforming may be helpful in assessment of residual fatigue life of 
redundant structures where cracks are allowed within the safe limits, especially when reduction of 
irregular loading history into equivalent cyclic loading should be done as recommended by present codes 
[4, 6, 7]. Also, it may be a necessary component of fatigue analysis based on «Strain-Life» approach 

                                                      
1 The term «equivalent» is applied here since the irregular loading is substituted by cyclic loading successions 
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which includes an appropriate Strain-Life criterion and the Neuber’s formula-based technique of 
evaluation the local strain range [17].  

The procedure is exemplified in case of application of the «Strain-Life» approach in this paper. 
Therefore it may be reasonable first to display the technique of reducing the long-term stress distribution 
into a set of cyclic loading successions (histogram) equivalent by fatigue damaging to the random loading 
«history» through the service life. 

Description of the procedure 
Application of the damage summation procedure (1) presumes, as said in above, expressing the 

long-term stress range probability distribution function in the form of stress histogram, consisting of 

blocks of equivalent cyclic loading successions at stress ranges iS  with number of stress repetitions in . 

It is noted [4] that the number of equivalent stress successions, «steps», should be selected «large 
enough to ensure reasonable numerical accuracy, and should not be less than 20…». However, the 

explicit recommendations on evaluation of representative stress ranges iS  and respective number of 

stress cycles in  in every of the block «steps» are missing. 

To solve this problem, a procedure is proposed, as follows. In the context of recommended 
reducing the long-term distribution to the block-type composition of equivalent cyclic loading successions, 
first the whole range of service stress in the accepted stress distribution should be subdivided into 
several sub-ranges, steps, the number of which may be provisional, not necessarily equal 20. Then the 
partial damage corresponding to every of the i steps in the block-type damage summation (1) should be 
calculated using the general form (4): 

max,

min,

* ( ( ) / ( ))
i

i

S

i

S

d N p S N S dS  . (5)

in which min, max,,i iS S  are the minimum and maximum stress ranges of the « i » step of the block form (1).  

Further, the number of equivalent stress cycles in every of the i steps is found as 

max,

min,

* ( )
i

i

S

i

S

n N p S dS  . (6)

Since the partial damage is defined in the linear summation procedure (1) as 

( ) ( ) / ( )i i i i id S n S N S , in which iS  may be regarded an equivalent cyclic stress range of the « i » step, 

this stress range is obtained using the partial damage definition and fatigue criterion (2) as: 

1/
, ( / ) m

i eq i iS Cd n . (7)

The loads, e.g., on bridge structures are typically classified into permanent loads due to self-weight 
of structural members, fixed equipment, variable loads caused by traffic, wind, diurnal and season 
changes of ambient temperature, and accidental loads caused by feasible vehicle impacts. Depending on 
the technique of recording and representation of service variable loads, the loading history may be given, 
alternatively, in the form of stress histogram or of stress continuous probability distribution function.  

In marine applications, e.g., the wave loads and, respectively, local stress probability distributions 
are typically approximated in the form of the two-parameter Weibull «law» ([4, 17], etc.): 

1 1( ) exp( ( / ) )k
sQ S S S a   . (8)

which is read as the probability to exceed an arbitrary stress range 1S ; ,sa k  are the scale and shape of 

the distribution parameters, respectively. The probability density function, ( )p S , of the Weibull 

distribution (8) is given by: 

1

( ) exp( ( / ) )
k

k
sk

s

dQ kS
p S S a

dS a



    . (9)
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Substituting (9) into (6), one finds the number of equivalent stress cycles in every of the i steps: 
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min,

1*
( ( / ) )
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i sk
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a
  . (10)

And respective partial damage values, when the S-N criterion (2) is applied are defined as: 
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kCN
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a
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Further, the equivalent stress ranges for every of the block scheme steps i  in (1) should be found 
from equation (7). And then the total fatigue damage is calculated substituting (10) and (7) into the 
sum (1): 

,
, ,

*1
/

m
o eqm m

i i i i eq i i eq
i i i

N S
D n N n S p S

C C
     , (12)

where , , 0,/m m m
i eq i eq eqS S S , in which the reference stress range, 0,eqS , is selected from the set of obtained 

values (12), components of the block scheme.  

In the following, the above described procedure is implemented in fatigue assessment of brace and 
chord welded joint detail of the tubular frame bridge structure when the «Strain-Life» approach is applied.  

Application to fatigue assessment  
of a bridge tubular frame welded joint detail 

The steel tubular girder structure of a composite bridge is shown in Fig.1. The previous experience 
of marine community indicated development of high stress concentration in welded joints of chords and 
braces, of stabilizing columns and braces, i.e., in welded joints of tubular components, menacing 
reliability of structures.  

 

Figure 1. Composite bridge with tubular frame and integral abutments ([15]) 

This is due to the large difference of stiffness of the connected components: the chord is typically 
loaded in direction of minimal stiffness whereas the brace is loaded along its longitudinal axis, i.e., in 
direction of maximum stiffness. The procedure of fatigue assessment of marine structures, focused, in 
particular, on design of tubular components is given, e.g., in DNV2 Rules [4], in [6], etc. 

 The procedure consists commonly of the two basic components, design S-N curves of typified 
welded joints («categories of fatigue strength») and linear damage summation rule.  

Characterization of fatigue properties of welded joints in tubular structures by S-N classes may be 
regarded an approximation, a simplified approach, since local conditions (e.g., loading composition) for 
the damage in details attributed to the same S-N class (category) may substantially differ.  

                                                      
2 DNV – Det Norske Veritas, Norwegian Classification Society  
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This difference would result in uncertainty of assessment of bridge structure fatigue life. The rules 
for fatigue analysis of marine structures [4] employ S-N curves for base and weld materials only (with 
differentiation by corrosion protection); the shape of details in connection, specifics of the stress flow 
transfer through the joint is considered by evaluation of the stress concentration factors for the expected 
critical locations. The approach seems offering reduced range of uncertainties pertaining to the stress 
analysis of structure, and respectively, a more convincing evaluation of fatigue life. 

Meanwhile the S-N criteria-based procedures operate with implication of linear elastic material 
behavior when stresses at critical locations are evaluated, whether the hot-spot or local stress via the 
respective stress concentration factors are used [7, 9, 10]. By this the physical nature of fatigue damage 
process in polycrystalline material structure, which realizes through cyclic microplasticity, is 
underestimated. This may result in excessive conservatism in estimation of fatigue life, in particular, in 
the range of the most frequent (moderate) service load excursions.  

One more issue should be considered when the S-N criteria are applied: this is uncertainty in 
definition of the scale of fatigue damage in structure related to exhaustion of fatigue life. The S-N criteria 
are related almost to separation in two pieces of test specimens; the testing machines are supplied with 
devices which terminate test when stiffness of specimen would substantially drop down. By this moment 
fatigue crack may grow over large part of the specimen crossection (which is typically, according to the 
IIW3 recommendations, 100 by 22 mm). When the S-N criterion is applied to fatigue analysis of welded 
joints with specific geometry and stress field, the respective crack size occurs uncertain. The rules [2, 4, 
9] assume (but did not prove it) that exhaustion of design fatigue life of tubular welded joints may be 
related to a through-thickness crack. Ever since, this subject was not commented in the design codes. 

In the sense of mentioned problems, the «Strain-Life» criteria-based approach may be preferred. It 
allows considering material cyclic plasticity, the leading mechanism of fatigue damage (although with 
problems in high-cycle range), and to almost exclude ambiguity of the damage indication: fatigue crack 
corresponding to properties of criteria is about the stress concentration zone. In welded joints the depth 
of the zone is around the radius of the weld toe, i.e. about 1 mm.       

 

Figure 2. Scheme of the chord and brace welded joint 

For illustration, an example of fatigue assessment of welded joint of tubular details, chord and 
brace, Fig. 2, is outlined. The scheme of loading is simplified: zero-to-tension random loading of the 
brace is assumed, with load (stress) range probability distribution function suggested as the Raleigh 
«law».  

The number of load fluctuations through the service life is taken in accordance with 

recommendations of the code [6]: 65 10dN   . 

Material of structure – higher strength steel of the 09G2 grade ( 300 , 450y uMPa MPa   ). 

Geometry of the detail characterize the following parameters: the chord diameter is 330 ;D mm the 

wall thickness, 18 ;T mm  the brace diameter 250d mm  and wall thickness 18t mm . The brace 

angle is 090  . It is assumed that the brace ending is adjusted to the chord shell shape and the weld is 
full penetration with weld throat 16 mm at the crown points and 8 mm at the saddle points depending on 
geometry of the joint circumference. 

                                                      
3 IIW = International Institute of Welding 
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The «Strain-Life» approach in its simplest form consists of the two obtained empirically principal 
components: the Strain-Life criterion for fatigue of material under the scope of analysis, and generalized 
cyclic diagram giving the generalized description of elastic-plastic cyclic properties of the same material. 
Several versions of the criterion are known [3, 5, 11]; in the present analysis a simplified modified form 
[17] is selected: 

12p e t fCN K E K   
       , (13)

where for the steel of the 09G2 grade 10.340, 0.654; 90,C     MPa, is the fatigue limit stress 

of the heat-affected zone, rolling skin removed [12, 17, 18]; β = 0.55, is the correction for the fatigue 

resistance decreasing under irregular loading [6]; tK  is the theoretical («elastic») stress concentration 

factor (SCF) and fK is the fatigue notch factor.  

The rules recommend formulae to calculate (SCF) addressed to the hot-spot stress approach, 
which is not applicable in the Strain-Life format. Respectively, the stress concentration factor values 
should be obtained for the critical locations in the joint («crown» and «saddle» points) by the finite 
element analysis (FEA).  

Fatigue notch factor, Kf, may be approximated by Peterson’s formula 1 ( 1) /(1 / )f tK K g r     

[16], where r is the notch root (weld toe) radius, assumed here as r = 1 mm, g is the «material structure 
parameter», a volume at the weld toe which depth approximately corresponds to fatigue crack transition 
from the shear into the normal opening mode [13]. For structural steels with the yield stress in the range 

235 – 390 MPa this parameter may be defined by relationship: 1.160.38(350/ )ug   [16, 17], where σu is 

the ultimate strength, MPa.  

Modified criterion (13) provides somewhat conservative estimations of the damage in the 

«transition» number of load cycles, 510N  ; however, to partly compensate it, the criterion is completed 

with corrections to the «elastic term», e , to account for effects of material microplasticity at the stress 

concentration area, ( / )t fK K , and irregular loading,  , on the damage accumulation.  

The cyclic strains at the weld toe are estimated by applying the Neuber’s formula-based technique 
[17]. Basically, Neuber’s formula presents heuristic relationship between stress and strain concentration 
factors when elastic-plastic material behavior is assumed [14]: 

2
tK K K  ,  or   2( ) /t nK E       , (14)

where n  is the nominal stress range,   and   are the stress and strain ranges, respectively; E  

is the elasticity modulus.  

Applicability of (14) for fatigue analyses was 
proved since 1960s for stress concentrations with 
rather unconstrained cyclic plasticity [5, 12, 17], 
etc. The usefulness of the (14) in engineering 
procedures is due to necessity of performing only 
once elastic analysis of a structure (for a given 
loading mode), in particular, by FEA. Current FEA 
packages allow cyclic elastic-plastic analysis; 
however, it has to be carried out many times to 
cover the whole range of service stresses, which 
turns a laborious issue.  

The stress and strain ranges at a stress 
concentration in (14) are interrelated by the cyclic 
stress-strain diagram, which readily allows 
evaluation of the cyclic strain range at the notch, 
 .  

The technique of evaluation stress range 
  differing from typically recommended ([5, 8], 

etc.) is illustrated in Fig. 3.  

 

Figure 3. Evaluation of the local strain range by 
Neuber’s formula and cyclic curve 
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Stress and corresponding strain ranges of the cyclic curve are multiplied and the products     
are plotted with respect to the strain range   axis, as shown in Fig. 3.  

As follows from (14), 2( ) /t nK E      ; one needs to calculate nominal stress and stress 

concentration factor, and the respective strain range can be obtained from the graph. 

If nominal stress can not be defined, e.g. when the beam theory is not applicable, the local stress 
at a critical location calculated on assumption of elastic behavior of material may be used instead of 

product t nK   in (14). 

Stress analysis aimed at evaluation of the stress concentration factors at the mentioned critical 
locations was carried out using the ANSYS software. The finite-element (FE) model of the detail was 
designed so that the necessary stress resolution was attained at the weld toes4 of the joint 
circumference. The minimum finite element size at the assumed rounded weld toe was taken equal 0.2 of 
the weld toe radius, in coherence with past experience of numerical and experimental studies of stress 
concentrations [17].  

Fig.4 shows fragment of the FE-model of the joint at the crown point (points, indicating the two 
critical locations, high stressed areas). The dark line along the weld toe at the chord indicates the narrow 
highly stressed area, whereas the weld toe at the chord is essentially less stressed. The FE mesh and 
the results of analysis at the saddle point is shown in Fig. 5. 

Figure 4. Crown point: (1) - weld toe at the 
brace shell, (2) – weld toe at the chord shell 

Figure 5. Saddle points of the joint: (1) – weld 
toe at the brace shell, (2) – weld toe at the 

chord shell  

The values of stress concentration factor (SCF) are obtained by relating maximum equivalent (von-
Mises) stresses at the mentioned critical locations found by FEA to the nominal stress in the brace. The 
results are presented in Table 1. For comparison, respective SCF values are calculated using 
approximate formulae [4] given in the below; however, the Rules define so-called «hot-spot» stress 
concentration factors attributed to the general geometry of a detail, and the weld shape is not considered. 
The local stress increase due to the weld shape may be included into the definition of the «hot-spot 
design S-N curve»; otherwise, the hot-spot SCFs may be corrected to account for effect of the weld 

shape multiplying by the «weld shape» stress concentration factor, recommended as 1.6wK   [4, 9]. 

The hot-spot SCF formulae [4] and calculated values are shown in Table 2, where α = 2L/D =18; β 
= d/D = 0.75; γ = D/2T =10; η = t/T = 1.0.  

 

Table 1. Stress concentration factors (SCF) at the critical locations 

Location SCF, FEA Rules [3], Hot-spot SCF HSS SCF, corrected 

Crown Saddle Crown Saddle Crown Saddle 

Brace 7.0 12.9 3.433 6.351 5.49 10.16 

Chord  22.24 5.404 9.513 8.64 15.22 
 

                                                      
4 Weld toes at the chord shell and at the brace shell  
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Table 2. Hot-spot SCF formulae [4]  

Critical «hot-spot» 
location 

Hot-spot SCF 

Chord saddle 
1.1 2

tcsK  = (1.11-3( -0.52) ) = 9.513   

Chord crown 
0.2 2

tccK = (2.65+5( -0.65) ) + (0.25 -3)=5.404      

Brace saddle 
0.52 0.1 1.11.3 (0.187 1.25 ( 0.96)) 6.351tbsK          

Brace crown 
1.2 23 (0.12exp( 4 ) 0.01 0.045) (0.1 1.2) 3.433tbcK              

 

As seen from Table 1, the maximum local stress occurs in the saddle point related to the chord 

shell, the respective weld toe, 22.24tK  . Corrected HSS SCF at the same location is also very high, 

15.22tcsK  , although it is somewhat smaller than obtained by FEA. 

It is assumed in the present study that alternating axial loading history of the brace is described by 
the Raleigh nominal stress range distribution with parameters in (8): 2k   and scale parameter 

2 2s sa  , where s  is the standard deviation of the stress amplitudes. The latter is taken rather 

provisionally, equal to 1.75s   MPa, although considering very high stress concentration at the chord 

saddle point. The once in the stress history maximum nominal stress range is  

max , 8ln 19.44s nomS Q    MPa  provided that probability to exceed this value corresponds to the 

number of load fluctuations through the service life, i.e.,  71/ 2 10dQ N    . 

According the procedure the Raleigh distribution of the nominal stress should be transformed into 
the step-wise equivalent histogram. The whole range of the nominal stress is subdivided into 6 steps, 
sub-ranges: 0-3.24; 3.24 -6.48; 6.48-9.72; 9.72-12.96; 12.96-16.2 and 16.2-19.44 MPa. To estimate the 
equivalent number of cyclic loadings in every of the sub-ranges, the above parameters of the Raleigh 
distribution are substituted into (10): 

max, max,

min, min,

1 2 2 2*
( ( / ) ) ( / 4 ) ( ( /8 ))

i i

i i

S S

k k
i s d s sk

s S S

kN
n S exp S a dS N S exp S dS

a
       

The respective equivalent stress ranges for every of the sub-ranges are calculated using the 
appropriate design S-N curve of the F3 class [4] (load-carrying welded joint) with parameters: 

113.0, 3.51 10m C   : 1/( / )eq m
i i iS d C n , where partial damage values id  are found by using (11). 

The equivalent number of cyclic loadings in every of the sub-ranges and corresponding equivalent 
nominal stress ranges are presented in Table 3. 

Table 3. The equivalent stress histogram parameters, 1.75s MPa   (Raleigh distribution) 

S-N curve of the F3 class with parameters: 113.0, 3.51 10m C    

S, sub-ranges ni, cycles Seq nominal, MPa 

0 – 3.24 61.742 10  2.313 

3.24 – 6.48 62.357 10  4.876 

6.48 – 9.72 57.951 10  7.764 

9.72 – 12.96 51.005 10  10.758 

12.96 – 16.2 35.156 10  13.818 

16.2 – 19.44 110 16.942 
 

To prove the procedure, S-N curve of the B2 class (parent material, [4]) was used to obtain 
equivalent stress ranges for every of sub-ranges of the stress histogram. The results are presented in 
Table 4. It may be seen the difference between equivalent stress values practically is negligible. It means 
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that evaluation of the equivalent stress ranges in composing the service stress histogram may be based 
on selection of any of the design S-N criteria; it should be noted the one-slope approximation is applied. 

Table 4. The equivalent stress histogram parameters, 1.75s MPa   (Raleigh distribution) 

S-N curve of the B2 class with parameters: 144.0, 7.67 10m C   . 

S, sub-ranges ni, cycles Seq nominal, MPa 

0 – 3.24 61.742 10  2.395 

3.24 – 6.48 62.357 10  4.956 

6.48 – 9.72 57.951 10  7.813 

9.72 – 12.96 51.005 10  10.790 

12.96 – 16.2 35.156 10  13.838 

16.2 – 19.44 110 16.947 
 

Following the procedure, the equivalent nominal stress ranges are multiplied by the maximum 

stress concentration factor ( 22.24tK  , saddle point, weld toe at the chord) to find the product    . 

According (14) 2
, ,( ) /eq i i t n eqS K S E        ; strain ranges in every of the histogram sub-ranges, 

i , are estimated from the lumped (generalized) cyclic curve for the steel [17], fragment of which is 

given in Table 5. 

Table 5. Stabilized lumped cyclic curve of the 09G2 grade steel  

∆σ, MPa 105.0 210.0 303.2 363.2 435.0 482.1 

∆ε 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 

∆ε ∆σ 0.0525 0.2100 0.4548 0.7264 1.0875 1.4463 
 

The strain range values i  are applied to calculate the number of cycles prior to material failure 

at every of the stress histogram sub-ranges using the criterion (13) and respective values of partial 
damage. The results are given in Table 6. 

 

Table 6. Histogram parameters, Neuber’s strain ranges and partial damages 

Sn, sub-ranges, MPa Snom.eq, MPa ∆i ni, cycles Ni , cycles di 

0 – 3.24 2.313 - 64.617 10  - - 

3.24 – 6.48 4.876 - 53.539 10  - - 

6.48 – 9.72 7.764 0.0007927 42.713 10  1.188·105 0.2283 

9.72 – 12.96 10.758 0.001138 32.079 10  2.109·104 0.0986 

12.96 – 16.2 13.818 0.001507 159 9.166·103 0.0173 

16.2 – 19.44 16.942 0.001931 12 5.017·103 0.0024 
 

It follows from the results of analysis that the total damage D ≈ 0.347 which means that expected 
fatigue life of the detail may be almost 3 times longer compared to the designed, certainly, on condition 
the intensity of traffic loading would remain unchanged through the service life and the structure would be 
effectively protected from corrosion. 

The nominal stress in the brace may seem too small; on condition the fatigue resistance would be 
expired by the end of designed life of the detail (D = 1) the maximum nominal stress may be increased 
approximately up to 30 MPa. Still, it remains small depending on the very high stress concentration at the 
joint. The local stress at the saddle point of the chord may be effectively lowered by increasing stiffness 
of the chord shell (thickness of the shell) in the joint area. 
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Conclusions 
1. A procedure of the continuous long-term stress distribution explicit transformation to the step-

vise block-type format is developed. It provides unambiguous technique of composing the histogram of 
service loading and allows reducing the number of equivalent cyclic stress fragments compared to those 
required by the rules for fatigue design scheme and provides accuracy of fatigue analysis of welded 
structures. 

2. The procedure may seem unnecessary when the damage index is calculated by using the 
damage summation in the integral form (4). However, it is necessary when the damage should be 
analyzed by the means of the «Strain-Life» approach and application of the Neuber’s formula based 
approach and may be helpful when the crack propagation has to be assessed.   

3. Efficiency of the developed approach is illustrated in example of fatigue analysis of a detail of 
welded tubular structure. The analysis may be used to select sufficiently reliable versions of the detail. 
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Abstract 
Fatigue assessment of welded joints in tubular structures in industrial applications according to the 

current design codes is based on the block-type presentation of the loading histories.  An approximate 
procedure of the long-term stress distribution transformation to the block-type format is devel-oped. It 
allows reducing the number of equivalent cyclic stress fragments compared to those required by the rules 
for fatigue design and provides ac-curacy of fatigue analysis of tubular frame structures.  

Efficiency of the developed approach is illustrated in example of fatigue assessment of the tubular 
frame bridge structure. Technique of analysis may be used to choose sufficiently reliable versions of the 
detail. 
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