На правах рукописи

Рыбальченко Андрей Юрьевич

Фотодиоды средневолнового ИК диапазона на основе узкозонных полупроводников InAs(Sb), облучаемые со стороны слоя р-типа проводимости

специальность

01.04.10 – Физика полупроводников

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

Санкт-Петербург, 2013

Работа выполнена в Федеральном государственном бюджетном учреждении науки Физико-техническом институте им. А.Ф.Иоффе Российской академии наук (г. Санкт-Петербург) 194021, СПБ, ул.Политехническая 26

Научный руководитель:	Матвеев Борис Анатольевич, доктор физико- математических наук, ведущий научный сотрудник ФТИ им. А.Ф. Иоффе
Официальные оппоненты:	Сидоров Валерий Георгиевич, доктор физико- математических наук, профессор кафедры физики полупроводников и наноэлектроники СпбГПУ
	Карпов Сергей Юрьевич, кандидат физико- математических наук, ведущий специалист ООО «Софт-Импакт»

Ведущая организация: Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Санкт-Петербургский государственный электротехнический университет «ЛЭТИ им.В.И.Ульянова(Ленина)»

Защита состоится 19 декабря 2013 года в 14.00 на заседании диссертационного совета

Д 212.229.01 ФГБОУ ВПО «Санкт-Петербургский государственный политехнический университет» по адресу: 195252, г. Санкт-Петербург, ул. Политехническая, д. 29.

С диссертацией можно ознакомиться в фундаментальной библиотеке ФГБОУ ВПО «Санкт-Петербургский государственный политехнический университет».

Автореферат разослан «____» ноября 2013 г.

Ученый секретарь диссертационного _____ Коротков А.С. совета Д 212.229.01

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. В средневолновом инфракрасном (ИК) диапазоне спектра ($\lambda = 3-5$ мкм) находятся фундаментальные полосы поглощения многих промышленных и природных газов, например, C_nH_m , CO, CO₂, N_xO_y, паров H₂O и С₂Н₅ОН. Этим обусловлено повышенное внимание исследователей к оптическим газовым сенсорам, измеряющим пропускание среды на выделенных длинах волн диапазоне, применяемым для экомониторинга, медицинской В данном диагностики и контроля технологических процессов. В качестве источников и приемников излучения в таких сенсорах начинают активно использоваться свето- и фотодиоды (СД и ФД соответственно). Применение диодов позволяет существенно снизить энергопотребление сенсоров, поскольку ФД могут работать при нулевом смещении (при этом уровень шума минимален), а импульсное питание СД с большой скважностью позволяет реализовать режим малых Среди материалов для изготовления средневолновых ИК средних токов. большее распространение получают диодов всë гетероструктуры InAsSbP/InAs(Sb), выращенные на подложках InAs, характеризующиеся низкой плотностью дефектов в эпитаксиальной части и перекрывающие своими рабочими спектрами весь диапазон длин волн 3-5 мкм.

Конструкция ФД с контактом ограниченной площади к эпитаксиальному слою р-типа проводимости и сплошным контактом к подложке наиболее распространена простоты фотолитографических из-за процессов при изготовлении ФД. Использование для облучаемого слоя материала р-типа обусловлено большей диффузионной длиной неосновных носителей по сравнению с материалом n-типа, что обеспечивает эффективное разделение неравновесных электронов и дырок при типичных толщинах «облучаемого» слоя порядка нескольких мкм. Спектры фотоответа ФД с вводом излучения через слой р-типа, как правило, расширены в область коротких волн. Это обеспечивает перспективность применения данных ФД в многоканальных сенсорах, в которых измеряется интенсивность излучения на нескольких выделенных длинах волн, соответствующих полосам поглощения газов или минимуму поглощения излучения анализируемой средой. При разработке и исследовании таких ФД основное внимание уделялось изучению механизмов токопрохождения в p-n переходе, факторов, влияющих на динамическое сопротивление ФД, а также поиску способов увеличения последнего, например, путем создания высоких потенциальных барьеров на границах активной области. При этом исследования ФД проводились в ограниченном температурном диапазоне ($T \le 300$ K), а особенностям пространственного распределения токопрохождения при прямом и обратном смещении и его влиянию на основные характеристики ФД, включая параметры p-n перехода, определяемые в эксперименте, уделялось недостаточно внимания. Вместе с тем, область повышенных по сравнению с комнатной температур ($T \ge 300$ K) является типичной для работы газовых сенсоров в большинстве систем контроля технологических процессов.

<u>Целью диссертационной работы</u> является исследование токопрохождения при прямом и обратном смещении в ФД на основе

полупроводниковых гетероструктур InAsSbP/InAs(Sb) с металлическим контактом ограниченной площади к слою р-типа проводимости, а также изучение влияния особенностей токопрохождения на основные параметры и характеристики широкополосных ФД, работающих в диапазоне длин волн $\lambda = 2.2$ -4.5 мкм, при $T \ge 300$ K.

Для достижения поставленной цели были решены следующие задачи:

1. Разработка методов анализа характеристик диодов с учетом пространственной неравномерности протекания тока и неравномерности распределения электролюминесценции в ближнем поле.

2. Исследование пространственного распределения интенсивности положительной и отрицательной люминесценции (ПЛ и ОЛ соответственно) в ближнем поле в ФД на основе двойных (p-InAsSbP/n-InAs/n-InAsSbP/n⁺-InAs) и одиночных (p-InAsSbP/n-InAs/n⁺-InAs) гетероструктур (ДГС и ОГС соответственно), а также структур с гомо-р-п переходом в твердом растворе InAsSbP; исследование их электрических свойств и анализ токопрохождения.

3. Исследование свойств потенциальных барьеров на изотипных интерфейсах II-типа n-InAs/n-InAsSbP и их влияния на токопрохождение в ДГС.

4. Исследование ВАХ и эффективности сбора фототока в ФД с длинноволновой границей фоточувствительности $\lambda > 4$ мкм и ограниченными размерами омического контакта в диапазоне температур 20-80 °C.

5. Выработка рекомендаций для создания эффективных ФД с длинноволновой границей фоточувствительности $\lambda > 4$ мкм, работающих при $T \ge 300$ К.

Научная новизна полученных в работе результатов состоит в следующем:

- 1. Экспериментально изучено влияние пространственной неравномерности BAX ΦД токопрохождения на параметры на основе структур InAsSbP/InAs(Sb) контактом ограниченной Учёт С площади. пространственной неравномерности протекания тока позволил с высокой точностью определить истинные (неискаженные) параметры диода (например, ток насыщения I_{sat} и фактор идеальности β прямой ветви ВАХ), даже при отсутствии ярко выраженного насыщения в обратной ветви ВАХ.
- 2. Экспериментально исследованы свойства потенциальных барьеров на изотипных интерфейсах II-типа n-InAs/n-InAsSbP при *T* = 300 K, показано влияние данных барьеров на токопрохождение при прямом смещении и на вольт-фарадные характеристики ДГС.
- 3. Экспериментально и аналитически установлена неравномерность пространственного распределения отрицательной люминесценции в ближнем поле и снижение эффективности сбора фототока в удаленных от контакта областях для ФД на основе узкозонных градиентных структур p(n)-InAsSb(P)/n-InAs и ОГС p-InAsSbP/n-InAsSb/n-InAs с длинноволновой границей чувствительности λ > 4 мкм. Проанализированы и реализованы способы повышения эффективности сбора фотогенерированных носителей в данных ФД.
- 4. Экспериментально исследована зависимость токопрохождения при прямом и обратном смещении от температуры (20-80 °C) в ФД на основе ОГС р-

InAsSbP/n-InAsSb/n-InAs. Проанализированы и реализованы способы повышения эффективности указанных ФД при повышенных температурах (20-80 °C).

5. Предложена простая аналитическая модель, позволяющая прогнозировать основные характеристики ФД на основе узкозонных полупроводников с точечным контактом.

Основные научные положения, выносимые на защиту:

- 1. Локальная плотность фототока в фотодиодах с активным слоем из n-InAs(Sb) и анодом на облучаемой поверхности слоя p-InAsSb(P) при комнатной и повышенных температурах убывает при удалении от анода, что приводит к уменьшению обнаружительной способности.
- 2. В фотодиодах с активным слоем из n-InAs(Sb) и анодом на облучаемой поверхности слоя p-InAsSb(P) при комнатной и повышенных температурах фототок возрастает при увеличении модуля обратного напряжения и/или при увеличении периметра анода.
- 3. Скачок потенциала в зоне проводимости на изотипной гетерогранице n-InAs/n-InAsSbP увеличивает динамическое сопротивление и уменьшает ёмкость фотодиодов на основе двойных гетероструктур p-InAsSbP/n-InAs/n-InAsSbP.

Практическая ценность результатов работы. Результаты работы внедрены в ООО «ИоффеЛЕД», СПб.

Апробация работы. Материалы диссертационной работы докладывались и обсуждались на Молодежной конференции по физике и астрономии для молодых ученых Санкт-Петербурга и Северо-Запада «ФизикА.СПб» (2009, 2010), национальной конференции по росту кристаллов НКРК-2011 (г. Москва, 2011 г.), XXI Международной научно-технической конференции по фотоэлектронике и приборам ночного видения (Москва, 2010), SPIE Photonics West Conference (San-Francisco, USA, 2010), Российской конференции и школе по актуальным проблемам полупроводниковой нанофотоэлектроники «Фотоника 2011» (Новосибирск, 2011).

Публикации. По результатам диссертационной работы опубликовано 11 печатных трудов. Основные результаты получены автором совместно с исследовательской группой диодных оптопар под руководством Б.А. Матвеева, входящей в состав лаборатории инфракрасной оптоэлектроники ФТИ им. А.Ф. Иоффе РАН, при поддержке со стороны научной школы «Технология и физические свойства полупроводниковых наногетероструктур».

<u>Структура и объем диссертации</u>. Диссертация состоит из введения, четырех глав, заключения и списка цитируемой литературы. Содержание диссертации изложено на 125 страницах и включает 38 иллюстраций, 6 таблиц и 79 наименований отечественной и зарубежной литературы.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность проводимых исследований, сформулирована цель, научная новизна и практическая значимость работы,

перечислены основные научные положения, выносимые на защиту, а также кратко изложено содержание диссертации.

Глава 1 посвящена обзору литературы по основным материалам, конструкциям и особенностям ФД для диапазона длин волн 3-5 мкм. В ней отмечено, что основной характеристикой ФД является спектр фотоответа, длинноволновая граница которого определяется фундаментальным краем поглощения ($\lambda = hc/E_{\rm g}$), а коротковолновая граница в значительной мере обусловлена особенностями конструкции ФД. Наиболее употребительным критерием качества ИК фотоприемников считается обнаружительная способность *D**, т. е. отношение сигнал-шум при единичной мощности излучения, падающего фотоприемник единичной на плошали И модулированного единичной полосе частот. Основными факторами, В ограничивающими величину *D** для ФД, являются тепловой шум и шум излучения [1]. При комнатной температуре обнаружительная фонового способность ограничена тепловым шумом. Обычно для снижения уровня теплового шума используют изопериодные гетероструктуры, содержащие узкозонную слаболегированную активную область с относительно небольшой толщиной, обрамленную широкозонными барьерными слоями [2]. Другими распространенными способами повышения D^* являются применение иммерсионных линз, внутренних и внешних концентраторов излучения, тыльных отражателей, а также охлаждение ФД, например, с помощью термоэлектрических модулей либо криостатов [3,4,5]. При низких температурах (T < 200 K) тепловой шум несущественен, и ФД работают в режиме ограничения обнаружительной способности фоновым излучением (англ. назв. — background limited infrared photodetection — BLIP). Интенсивность и спектр фонового излучения зависят только от температуры анализируемой среды, поэтому данное ограничение является фундаментальным. Для ФД значения D^*_{BLIP} составляют ~ 10^{12} смГц^{1/2}Вт⁻¹ для $\lambda \sim 3$ мкм и $D^*_{BLIP} \sim 10^{11}$ смГц^{1/2}Вт⁻¹ для $\lambda \sim 5$ мкм (300 K) [2].

В качестве исходных материалов для создания средневолновых ИК ФД до недавнего времени наиболее широко применялись эпитаксиальные структуры с твердым раствором HgCdTe, период решетки которого крайне слабо зависит от состава, что важно для получения низкодефектных структур; это позволяет получать высококачественные ФД, работающие в диапазоне длин волн от 3 до 30 мкм [6]. Недостатком структур с HgCdTe является нестабильность металлургических границ раздела, связанная со слабой связью Hg-Te, кроме этого приборы на основе данных структур требуют, как правило, криогенного или термоэлектрического охлаждения.

В отличие от HgCdTe, материалы типа А^ШВ^V характеризуются высокой стабильностью, металлургической обеспечивающей длительную работоспособность приборов при температурах намного выше комнатной. Диапазон длин волн 3-5 мкм частично перекрывается рабочими спектрами эпитаксиальных оптоэлектронных приборов на основе изопериодных InAlAsSb/InAs, гетероструктур InGaAsSb/GaSb И InAsSbP/InAs c длинноволновыми границами 3.3, 4 и 3.5 мкм соответственно [7]. В [8] описаны барьерные фотодетекторы на основе структур типа ХВп, в которых за счет

6

отсутствия обедненной области в узкозонном фоточувствительном слое существенное снижение плотности темнового обеспечивается тока по сравнению с ФД на основе p-n и p-i-n гетероструктур при $T \le 150-200$ K. Помимо «классических» гетероструктур, интерес для создания средневолновых ИК ФД представляют также сверхрешетки с гетеропереходами II типа в системах InAs/GaSb и InAsSb/InAs, эффективная ширина запрещенной зоны которых зависит от толщин слоев; это позволяет путем варьирования параметров технологического процесса получать структуры для оптоэлектронных приборов с рабочими спектрами в диапазоне $\lambda = 2-25$ мкм [9]. Однако, из-за сложности и дороговизны технологии выращивания данные структуры не получили в настоящее время широкого практического применения. В [10] предложен подход к выращиванию градиентных (InAsSb(P)) и неизопериодных узкозонных (InAsSb) эпитаксиальных слоев на подложках InAs из жидкой фазы при температурах 680-720 °С, основанный на преимущественном образовании дефектов в подложке за счет ее пластической деформации и упругой деформации растущего слоя твердого раствора. Данный подход позволяет получать высококачественные ФД с длинноволновой границей рабочих спектров до 5.8 мкм [11]. Широкий диапазон рабочих спектров приборов и развитая технология эпитаксии и постростовой обработки структур InAsSbP/InAs(Sb) обусловливают возрастающий интерес исследователей к данным структурам.

В последние годы были достигнуты большие успехи в разработке средневолновых ИК ФД, связанные с применением конструкции флип-чип (flipchip или backside illuminated — BSI), в которой активная область представляет собой мезу, ограниченную канавкой травления с глубиной более глубины залегания p-n перехода, оба омических контакта расположены на эпитаксиальной стороне, а излучение вводится через подложку [12]. Важными особенностями флип-чип ФД являются возможность увеличения эффективной площади сбора излучения в несколько раз с помощью встроенных оптических концентраторов [13] или иммерсионных линз [14], а также возможность создания на мезе широкого контакта с высокой отражательной способностью, направляющего дошедшее до него излучение обратно в р-п переход. Данные особенности высокоэффективные позволили создать ΦД основе структур на InAsSbP/InAs(Sb), работающие при температурах до 90 °C. Расширение спектра фотоответа в область коротких волн до 2.7 мкм было осуществлено в [13] путем сильнолегированных использования подложек n⁺-InAs вырождением с электронов в зоне проводимости и сдвигом края поглощения за счет эффекта Мосса-Бурштейна. Дальнейшее расширение спектра в область коротких волн за счет легирования подложки неоправданно из-за усиления поглощения на свободных носителях. Узкий спектр чувствительности флип-чип ФД, связанный с фильтрацией излучения подложкой, не удовлетворяет требованиям ряда применений, например, применений в многоканальных сенсорах.

Конструкция ФД с контактом ограниченной площади на эпитаксиальной стороне и сплошным тыльным контактом на подложке (англ. назв. — front side illuminated — FSI) остается наиболее распространенной из-за простоты фотолитографических процессов, применяемых при изготовлении диодов.

Особенности технологии формирования омических контактов путем осаждения металла И последующим вжиганием С проникновением металла В приповерхностную область полупроводника обусловливают типичную толщину облучаемого слоя (базы) порядка нескольких мкм (см., например, [15]). При этом носители фотогенерируются на значительном удалении от p-n-перехода и диффундируют к последнему, создавая во внешней цепи фототок. В таких ФД база обычно изготавливается из материала р-типа проводимости, имеющего диффузионную длину неосновных носителей до десятков мкм, и является тонкой. Спектры фотоответа ФД с тонкой базой обычно расширены в область коротких волн за счет диффузии к p-n переходу носителей, фотогенерированных вблизи облучаемой поверхности, или прохождения части фотонов сквозь базу [16]. Исследования таких ФД проводились только при $T \le 300$ K, при этом при их разработке основное внимание уделялось изучению механизмов протекания темнового тока через p-n переход и их влиянию на величину произведения динамического сопротивления диода при нулевом смещении (R₀) на площадь диода (A), т. е. R_0A . При температурах, близких к комнатной, основной вклад в темновой ток вносит диффузионная составляющая, связанная с тепловой генерацией носителей в квазинейтральных областях структуры, при этом $R_0A =$ kT/eJ_d , а плотность тока J_d может быть определена по формуле:

$$J_{d} = en_{i}^{2} \left(\frac{1}{p} \sqrt{\frac{D_{n}}{\tau_{n}}} + \frac{1}{n} \sqrt{\frac{D_{p}}{\tau_{p}}} \right)$$

где n_i — собственная концентрация носителей заряда, n и p, D_n и D_p , τ_n и τ_p — равновесные концентрации, коэффициенты диффузии и времена жизни электронов и дырок соответственно; при этом значения τ_n и τ_p определяются фундаментальными процессами межзонной рекомбинации [15]. Сочетание значений вышеуказанных параметров для узкозонных материалов A^3B^5 приводит к типичным значениям $R_0A \sim 0.1$ -1 Ом·см² для ФД, работающих в диапазоне $\lambda \sim 3$ -3.5 мкм, и $R_0A \sim 0.01$ -0.1 Ом·см² для ФД с рабочими спектрами в области $\lambda \sim 4$ -4.5 мкм при T = 300 К. Эффективным способом подавления диффузионного тока и повышения R_0A является формирование гетероструктур с высокими потенциальными барьерами на границах узкозонной активной области, позволившее создать ФД с $R_0A \sim 100$ Ом·см² (250 K) [17]. Данные барьеры, однако, снижали как темновой ток, так и фототок, поэтому наиболее высокоомные ФД характеризовались крайне низкой фоточувствительностью.

Характерной особенностью диодов с контактами ограниченной площади является локализация протекания тока под контактом и в непосредственной близости от него, известная в англоязычной литературе как «current crowding». Данная локализация имеет место вследствие преобладания латерального сопротивления примыкающего контакту слоя полупроводника К над вертикальным сопротивлением p-n перехода при прямом смещении, когда высота потенциального барьера на р-п переходе невелика [18]. При исследованиях токопрохождения пространственного распределения В диодах обычно используется методика, основанная на решении уравнения Лапласа с учетом переходного сопротивления контакта, объемного сопротивления контактного

8

слоя и диффузионного механизма токопрохождения в p-n переходе (I = $I_{\text{sat}}[\exp(eV/\beta kT)-1],$ фактор идеальности $\beta = 1$; при этом рассчитанное распределение плотности тока сравнивается с измеренным распределением интенсивности электролюминесценции. Подобная методика применялась в [19] при исследованиях СД на основе ДГС n-InAsSbP/n-InAs(Sb)/p-InAsSbP/p-InAs. В реальных диодах фактор идеальности обычно больше единицы, поэтому результаты расчетов не в полной мере соответствовали эксперименту, к тому же данная методика не предполагает точного определения значения фактора идеальности и установления доминирующего механизма токопрохождения. В [20] для СД видимого диапазона спектра на основе GaN экспериментально установлено повышение фактора идеальности ВАХ из-за сгущения линий тока, ошибочному преобладающем приводящее К выводу механизме 0 токопрохождения. Аналогичное искажение вида ВАХ, вероятнее всего, имеет место для любых диодных структур с контактами ограниченной площади. В [21] для солнечных элементов на основе GaAs предложена методика анализа пространственном распределения токопрохождения с учетом данных о распределении интенсивности люминесценции в ближнем поле. В основе линейной лежит предположение 0 зависимости локальной методики интенсивности люминесценции от локальной плотности тока при отсутствии заметной безизлучательной рекомбинации в прямозонных материалах в широком диапазоне плотностей тока, в котором ватт-амперная характеристика образца имеет линейный вид. Очевидно, что данные о пространственном распределении люминесценции, полученные при разных токах, можно использовать для расчета ВАХ, не искаженной сгущением линий тока, и путем анализа полученной ВАХ определять истинные значения таких параметров p-n перехода, как ток насыщения и фактор идеальности. Подобного анализа для ФД на основе структур InAsSbP/InAs(Sb) на время начала работы не проводилось.

Одним из способов улучшения растекания тока является увеличение толщины примыкающего к контакту слоя для снижения его латерального сопротивления [18]. Данный способ был реализован в [22] для СД на основе ОГС p⁺-InAsSbP/n-InAs/n⁺-InAs и ДГС p⁺-InAsSbP/n-InAs/n-InAsSbP/n⁺-InAs путем использования в качестве слоев растекания тока толстых сильнолегированных подложек n⁺-InAs с низким удельным сопротивлением¹. При этом экспериментальному изучению свойств гетерограниц n-InAs/n-InAsSbP и их влиянию на растекание тока уделялось недостаточно внимания.

При приложении к p-n переходу обратного смещения концентрация носителей уменьшается ниже равновесной вследствие их экстракции. Согласно классической теории Шокли - Ван-Рузбрека, это ведет к уменьшению интенсивности излучательной рекомбинации, делая ее ниже интенсивности теплового фона, т. е. возникает преобладание поглощения над излучением, или отрицательная люминесценция (ОЛ) [23]. Спектры ОЛ в большинстве случаев являются зеркальным отражением спектров «положительной» люминесценции (ПЛ), возникающей при прямом смещении, а пространственное распределение

¹ Конструкция СД с выводом излучения через подложку в [21] была названа флип-чип по ошибке, так как на световыводящей поверхности имелся омический контакт, затеняющий часть излучения.

ОЛ в диодах для диапазона длин волн $\lambda < 4$ мкм равномерно вследствие равномерного растекания тока, обусловленного большим сопротивлением обратносмещенного p-n перехода. Для диодов на основе структур InAsSbP/InAsSb, работающих в диапазоне $\lambda \sim 4.2$ мкм в [24] расчетным путем показано сгущение линий тока вблизи контакта при небольшом обратном смещении. Это дает основание для предположения о несущественном вкладе удаленных от контакта областей ФД в фототок. Действительно, для ФД большой площади на основе InAs с кольцевым контактом в [25] методом сканирующего светового пятна установлено «сгущение линий фототока» вблизи контакта, усиливающееся при повышении температуры от -40 до +25 °C. Однако, особенностей экспериментальному исследованию пространственного распределения ОЛ и обратного тока в широкополосных ПО ФД на основе структур InAsSbP/InAsSb для диапазона $\lambda > 4$ мкм, а также влиянию этих особенностей и геометрии контакта на основные параметры данных $\Phi \Pi$ при T >300 К уделялось недостаточно внимания.

На основании проведенного обзора литературы в конце главы 1 сформулированы цель и основные задачи диссертационной работы.

Глава 2 основывается на результатах работ [1*-6*] и в ней представлены методы исследований и анализ ВАХ с учетом экспериментальных данных о пространственном распределении интенсивности ОЛ и ПЛ в ближнем поле и плотности тока для ФД на основе структур InAsSbP/InAs разных типов (ДГС, ОГС, структуры с гомо-р-п переходом в InAsSbP). Структуры выращивались из жидкой фазы на сильно легированных подложках n⁺-InAs (n⁺ = (1-4)·10¹⁸ см⁻³), зонные диаграммы структур, рассчитанные в соответствии с данными [26], представлены на рис.1; разрывы зон на гетерограницах II-типа в ДГС и ОГС составляли $\Delta E_c = 119$ мэВ и $\Delta E_v = -30$ мэВ, в структурах с гомо-р-п переходом на границе с подложкой $\Delta E_c = 105$ мэВ и $\Delta E_v = -27$ мэВ. Измерения пространственного распределения интенсивности ОЛ и ПЛ проводились при питании диодов постоянным током (режим СW) с помощью тепловизионного микроскопа с матричным фотоприемным устройством (ФПУ) на основе InAs с разрешением 128x128 пикселей, спектр чувствительности ФПУ имел максимум

Рисунок 1. Зонные диаграммы гетероструктур.

при $\lambda = 3$ мкм и длинноволновую границу $\lambda_{0.5} = 3.05$ мкм. ВАХ и спектры ПЛ измерялись при питании диодов импульсами тока длительностью 5-10 мкс и частотой 500 Гц; спектры фоточувствительности и ПЛ имели максимум на длине волны 3 и 3.3-3.4 мкм для структур с гомо-р-п переходом и многослойных структур (ОГС, ДГС) соответственно. Ватт-амперные характеристики в режиме

CW определялись численным интегрированием распределения интенсивности ПЛ по поверхности диода, а в импульсном режиме (5 мкс, 500 Гц) с помощью фотоприемника на основе InSb.

Для анализа ВАХ была предложена феноменологическая модель, основанная на следующих предположениях: 1) локальная интенсивность излучения L(x,y) в точке с координатами (x,y) на поверхности диода пропорциональна локальной плотности тока i(x, y) в этой точке; 2) интенсивность излучения (плотность тока) под анодом постоянна и равна интенсивности излучения (плотности тока) в непосредственной близости от него; 3) вне области чипа интенсивность излучения и плотность тока равны нулю. При этом протекания определяются соотношением особенности тока В диодах сопротивлений p-n перехода (R_{p-n}) и пассивной части структуры, прежде всего, слоя p-InAsSbP (R_p) и переходной области между ним и анодом (R_a , см. рис.2b). При обратных и малых прямых смещениях основной вклад в сопротивление различных линий тока вносит p-n переход, т. е. $R_{p-n} > R_p + R_a$, поэтому распределение интенсивности излучения и плотности тока по поверхности чипа равномерно. При большом прямом смещении R_{p-n} невелико, т. е. $R_a + R_p > R_{p-n}$, и локальная плотность тока существенно зависит от длины пути протекания тока в слое p-InAsSbP, поэтому величины L(x,y) и j(x,y) в удаленных от анода областях диода существенно меньше, чем в центре образца (см. рис.2а).

Рисунок 2. Типичное ИК изображение ФД с гомо-р-п переходом при *I* = 10 мА и распределения интенсивности ПЛ (вверху) и плотности тока (внизу) вдоль сечения А-А (а); эквивалентная схема ФД (b).

При исследовании ВАХ на первом этапе были изучены ватт-амперные характеристики и оценена роль безизлучательной Оже-рекомбинации. Для этого из распределения интенсивности излучения рассчитывался фактор использования оптической мощности (ФИОМ), учитывающий затенение излучения анодом, по формуле:

$$\Phi = \left(\int_{x} \int_{y} L(x,y) dx dy\right) / \left(S_a L_{max} + \int_{x} \int_{y} L(x,y) dx dy\right),$$

где L_{max} — интенсивность излучения в непосредственной близости от анода, S_a — площадь анода. Полная интенсивность излучения L_{Σ} для идеализированного диода с прозрачным анодом определялась как $L_{\Sigma} = L/\Phi$. Для всех образцов зависимости $L_{\Sigma}(I)$ имели линейные участки без заметной безизлучательной рекомбинации, протяженность которых была существенно выше по сравнению с аналогичными участками характеристик *L-I*, определенных из прямых измерений без учета затенения излучения анодом. Несущественность безизлучательной рекомбинации, т. е. соблюдение условия $L(x,y) \propto j(x,y)$ в широком диапазоне токов, позволила на втором этапе рассчитать ток I_a , протекающий в области р-п перехода под анодом, по формуле: $I_a = I_{tot} (1 - \Phi)$.

Из исходных (I_{tot} -V) и расчетных (I_a -V) ВАХ определялись значения тока насыщения ($I^{r}_{tot_{sat}}$ и $I^{r}_{a_{sat}}$) и фактора идеальности (β и β_{a}) путем аппроксимации экспоненциальных участков прямых ветвей по методу наименьших квадратов; токи насыщения определялись также из обратных ветвей, при этом их значения ($I^{R}_{tot_{sat}}$ и $I^{R}_{a_{sat}}$) принимались равными значениям тока в точках пересечения экстраполированных линейных участков ВАХ с осью токов (см. таблицу 1). Из таблицы 1 видно, что исходные ВАХ I_{tot} -V характеризовались большим несоответствием значений тока насыщения, определенных из прямой и обратной ветви ($I^{F}_{tot_{sat}}/I^{R}_{tot_{sat}} > 3$), и высоким фактором идеальности ($\beta > 1.5$). Расчетные ВАХ I_{a} -V, для которых сгущение линий тока было учтено, имели значительно меньшее различие в значениях токов насыщения, определенных из прямой и обратной ветви ($I^{F}_{a_{sat}}/I^{R}_{a_{sat}} < 1.5$), и близкие к единице значения фактора идеальности. Достоверность полученных значений β_{a} подтверждалась при анализе ватт-вольтовых зависимостей L_{max} -V. Для всех образцов зависимости L_{max} -V хорошо аппроксимировались функциями вида

 $L_{\rm max} \propto [\exp(eV/\beta_{\rm L}kT)-1]$

с фактором идеальности $\beta_L \sim \beta_a$ (см. таблицу 1), что, очевидно, является следствием выполнения условия $L(x,y) \propto j(x,y)$.

номер тип образца структуры	площадь p-n перехода, A, см ² n	площадь	«искаженные» параметры			«неискаженные» параметры			0	$R_{a} \cdot A$,	$(I /A)_{not}$	λ.	
		анода, S_a , см ²	$\frac{I^{\rm F}_{\rm totsat}/A,}{{\rm MA/cm}^2}$	$I^{\rm R}_{\rm tot sat}/A,$ MA/cm ²	β	$I_{a \text{ sat}}^{F}/S_{a}^{F},$ MA/cm ²	$I^{\rm R}_{a {\rm sat}}/S_a,$ MA/cm ²	β_{a}	β_L	о Ом∙см ²	MA/cM^2	МКМ	
571-173	ДГС	1.24E-3	6.36E-5	110	*	1.8	42	*	1.32	1.32	1.24	21	3.37
6059-42	ОГС	1.48E-3	8.49E-5	79	18	1.56	28	18	1.07	1.14	1.04	25	3.38
6061F-2	гомо p-n- переход	1.46E-3	6.36E-5	35	11	1.93	17	11	1.24	1.27	2.54	10	2.97

Таблица 1. Параметры р-п структур.

Примечание. * Для некоторых образцов определить значения $I^{R}_{tot_{sat}}$ и $I^{R}_{a_{sat}}$ было невозможно вследствие отсутствия насыщения тока в обратной ветви ВАХ I_{tot} -V.

В этой же главе изучались особенности растекания тока в ДГС, ОГС и структурах с гомо-р-п переходом. Установлено, что ДГС характеризуются наиболее равномерным растеканием тока, тогда как наибольшее сгущение линий тока имело место в структурах с гомо-р-п переходом в широкозонном InAsSbP (см. рис.3). Полученные данные не согласуются с выводом работы [19] о большем сгущении линий тока в диодах с меньшей шириной запрещенной зоны активной области. Из представленных на рис.3 данных очевидно, что на особенности протекания тока В диодах большое влияние оказывают потенциальные барьеры гетерограницах, на выполняющие функцию высокоомных слоев растекания [18].

Для исследования свойств гетерограниц в ФД были проведены измерения методом сканирующей зондовой микроскопии поверхностного потенциала вдоль

Рисунок 3. Нормированные распределения интенсивности ПЛ вдоль прямой, проходящей через центр чипа, при $I_{tot}/A \sim 3 \text{ A/cm}^2$ для ФД на основе ДГС (1), ОГС (2) и структур с гомор-п переходом (3).

скола перпендикулярно плоскости р-п перехода. Измерения проводились на установке ИНТЕГРА-Аура (НТ-МДТ, Россия) в два этапа: на первом этапе определялся рельеф поверхности образца путем сканирования вибрирующим зондом, на втором этапе измерялось распределение поверхностного потенциала с учетом рельефа поверхности; результаты измерений представлены на рис.4. Как видно из рис.4, в образцах с гомо-р-п переходом имеется единственный скачок потенциала, связанный с барьером на р-п переходе. На гетерогранице с подложкой скачок (барьер) отсутствовал ввиду высокого положения уровня Ферми $E_{\rm F}$ относительно дна зоны проводимости $E_{\rm c}$ в сильнолегированном n⁺-InAs, так что $E_{\rm F}$ - $E_{\rm c} \sim \Delta E_{\rm c}$ (см. рис.1). Для ДГС были получены два скачка, положение которых соответствовало р-п переходу и изотипной гетерогранице п-InAs/n-InAsSbP с активным слоем. При этом высоты скачков были примерно одинаковы, что не соответствовало результатам расчета зонных диаграмм, согласно которым высота барьера на n-N переходе была в ~ 4 раза меньше высоты барьера на р-п переходе и составляла ~ 50 мэВ над уровнем Ферми. Поэтому дополнительно было измерено соотношение высот скачков Δ^{pn}/Δ^{nn} при разных смещениях (см. таблицу 2); предполагалось, что данное соотношение менее чувствительно к погрешностям метода, чем непосредственно значения Δ^{pn} и Δ^{nn} . Как видно из таблицы 2, высота барьера на p-n переходе при прямом смещении была в 1.5 раза больше, а при обратном смещении в 1.2 раза меньше, чем на n-N переходе. Полученные данные АСМ согласуются с ранее полученными результатами анализа параметров ВАХ и растекания тока в ФД разных типов, а также подтверждают предположения о влиянии потенциальных барьеров на изотипных гетерограницах в структурах InAs/InAsSbP на свойства диодов.

Таблица 2. Соотношения высот потенциальных барьеров в ДГС.

Bias conditions	-1V, RB	-0.486V, RB	50mA, FB	100 mA, FB
Δ^{pn}/Δ^{nN}	0.8	0.73	1.57	1.26

В конце главы исследованы вольт-фарадные (*C*²*A*²-*V*) характеристики ФД, измеренные при 300 К с помощью моста Л2-7 и генератора сигналов ГК-3-40 при синусоидальной форме сигнала с амплитудой 15 мВ и частотой 465 кГц, при

Рисунок 4. Распределения поверхностного потенциала вдоль скола перпендикулярно плоскости p-n перехода для ДГС (слева) и структур с гомо-p-n переходом (справа); для справки вверху приведены схемы расположения слоев в структурах.

этом, благодаря малой амплитуде и высокой частоте сигнала, влияние глубоких уровней на емкость диодов было несущественно. Зависимости C²A²-V для ОГС и образцов с гомо-р-п переходом были плавные, а для ДГС имели от 2 до 4 горизонтальных участков (см.рис.5). Их наличие связано, вероятнее всего, с перекрытием областей пространственного заряда (ОПЗ) близко расположенных потенциальных барьеров подобно тому, как показано расчетным путем в [27] для двухбарьерной структуры. При определенной величине обратного смещения наступает перекрытие ОПЗ барьеров, при этом дальнейшее увеличение модуля обратного смещения приводит к истощению области между барьерами при неизменности суммарной ширины ОПЗ и емкости структуры; при полном истощении области между барьерами дальнейшее увеличение модуля обратного смещения вызывает расширение ОПЗ и уменьшение емкости. Превышение количества горизонтальных участков на зависимости С⁻²А²-V над количеством выявленных АСМ барьеров для ДГС связано, вероятнее всего, с низкой чувствительностью метода АСМ, а также, возможно, с диффузией цинка, приводящей к сдвигу р-п перехода от гетерограницы в активную область. Для ДГС емкость на единицу площади при нулевом смещении составляла C/A = 127-185 н Φ /см², что существенно ниже по сравнению с ОГС, для которых *C*/*A* = 292 $H\Phi/cM^{2}$; это важно при разработке $\PhiД$ с высоким быстродействием.

Глава 3 основывается на результатах работ [7*-9*, 11*] и в ней экспериментально установлена неравномерность пространственного распределения ОЛ и неполный сбор фототока в ФД для диапазона длин волн $\lambda >$

Рисунок 5. Вольт-фарадные характеристики ДГС (DH) и ОГС (SH).

4 мкм. Данная неравномерность впервые наблюдалась для ФД с градиентными слоями InAsSb(P) на подложках n-InAs при измерениях распределения интенсивности ОЛ с помощью линейчатого сканирующего фотоприемного устройства (ФПУ) на основе InSb, чувствительного в диапазоне $\lambda = 3-5$ мкм, и матричного ФПУ на основе InAs, чувствительного в диапазоне $\lambda = 3$ мкм.

Из распределения интенсивности ПЛ и ОЛ рассчитывался ФИОМ для выходящего из диода излучения (Φ), а также ФИОМ для падающего на диод излучения (или коэффициент сбора фототока — F), последний определялся по формуле:

$$F = \frac{\int \int L(x, y) dx dy}{L_{max}(A - S_a)}$$

Значения ФИОМ, определенные из измерений в разных спектральных диапазонах, имели некоторые различия, несущественные для данной работы (см.рис.6). ФИОМ для выходящего излучения был близок к единице при токах от -5 до 5 мА, поэтому сгущение линий тока не является препятствием для эффективной работы диодов в качестве источников ОЛ и ПЛ в данном диапазоне токов. ФИОМ для падающего излучения был существенно меньше единицы при малом обратном смещении и повышался при увеличении модуля обратного смещения, отражая увеличение равномерности растекания тока. ВАХ ФД имела перегиб в обратной ветви, связанный, вероятнее всего, с особенностями протекания тока.

Рисунок 6. ВАХ и зависимости ФИОМ для выходящего (Ф) и входящего (F) излучения от тока при комнатной температуре для ФД на основе градиентных структур с мезой диаметром 300 мкм и анодом диаметром 30 мкм.

В этой же главе впервые изучено распределение интенсивности ОЛ и плотности обратного тока в ФД на основе ОГС p-InAsSbP/n-InAsSb/n-InAs, облучаемых со стороны слоя p-типа, для спектральной области 2.2-4.5 мкм при температурах выше комнатной (25-80 °C). Установлено сгущение линий тока при малых обратных смещениях, сменяющееся равномерным распределением интенсивности ОЛ и плотности тока при увеличении модуля обратного смещения при 25 °C. Повышение температуры приводило к усилению сгущения линий обратного тока вследствие экспоненциального снижения R_{p-n} и увеличения объемного сопротивления слоя p-InAsSbP (см.рис.7).

В таблице 3 представлены основные электрические параметры ФД,

Рисунок 7. ИК-изображение ФД на основе ОГС p-InAsSbP/n-InAsSb/n-InAs при 50 °С и *I* = -3.2 мА, распределения интенсивности ОЛ и ПЛ вдоль прямой, проходящей через центр чипа, при разных токах и температурах.

определенные ВАХ I_{tot} -V при значениях ИЗ трех температуры путем измеренных зависимостей Vаппроксимации $V-I_{\rm tot}$ функциями вида = $(\beta kT/e)\ln[(I_{tot}/I_{tot sat})+1]+I_{tot}R_s$. Как видно из таблицы 3, с увеличением температуры ток насыщения возрастает, а фактор идеальности уменьшается. Полученный характер изменения I_{tot sat} согласуется с общепринятыми представлениями о возрастании обратного тока в диодах при повышении температуры [1]. Высокие значения β связаны, как и в случае диодов на основе InAs [2*], вероятнее всего, с искажением ВАХ вследствие сгущения линий тока под анодом.

Из ВАХ I_{tot} -V и распределения интенсивности ОЛ и ПЛ рассчитывались ВАХ I_a -V по методике, изложенной в главе 2. Из ВАХ I_{tot} -V и I_a -V были определены значения R_0A и произведения динамического сопротивления области диода под анодом (R_{0a}) на площадь анода (S_a) (см. таблицу 3 и рис. 8). Значения R_0A были намного выше, чем $R_{0a}S_a$, вследствие уменьшения эффективной площади протекания тока и неопределенности величины A. Зависимость $R_{0a}S_a(1/T) \propto \exp[E_g/kT]$ свидетельствовала о преобладании диффузионного механизма токопрохождения в p-n переходе, а ее характер соответствовал зависимости $R_0A(1/T)$, полученной в [14] для флип-чип образцов на основе аналогичных структур с широкими анодами, в которых влияние сгущения линий тока несущественно.

Таблица 3. Основные электрические параметры диода на основе ОГС р-InAsSbP/n-InAsSb/n-InAs

Температура диода, °С	I _{tot_sat} , MA	β	<i>R</i> _s , Ом	$R_0 A,$ Ом·см ²	$\begin{array}{c} R_{0a}S_{a},\\ OM \cdot CM^{2} \end{array}$	F_{0}	<i>ρ</i> , Ом∙см
25	1.3	3	2	0.069	0.056	0.62	0.064
50	1.56	2.5	1.81	0.048	0.031	0.35	0.071
80	2.11	1.9	2.89	0.032	0.008	0.07	0.072

В этой же главе путем анализа распределения интенсивности ОЛ в ближнем поле исследовано влияние температуры и величины обратного смещения на коэффициент сбора фототока (ФИОМ для падающего излучения —

Рисунок 8. ВАХ I_{tot} -V при различных температурах. На вставке — температурные зависимости произведений динамического сопротивления ФД на площадь p-n перехода (R_0A) и динамического сопротивления области p-n перехода под анодом на площадь анода ($R_{0a}S_a$) при V = 0.

F). Значение *F* при нулевом смещении составило 0.62 при 25 °C и снижалось до 0.07 при повышении температуры до 80 °C; приложение обратного смещения приводило к увеличению *F* (см.рис.9). Из полученных данных понятно, что формирование на облучаемой поверхности развитых контактов с большим периметром и малой площадью является эффективным и относительно малозатратным способом повышения чувствительности ФД, работающих в диапазоне $\lambda > 4$ мкм в режиме измерения фототока.

Рисунок 9. Зависимости коэффициента сбора фототока от тока для ФД при различных температурах. Штриховые линии — аппроксимирующие линейные функции.

Также в главе 3 изучены зависимости основных параметров ФД от геометрии контакта на облучаемой поверхности (в данном случае — анода, см.рис.10). При увеличении периметра анода величина R_0 монотонно снижалась из-за улучшения растекания тока при малых смещениях. Аналогичные результаты были получены в [21] при исследовании солнечных элементов. При переходе от дискового анода к аноду типа 3 увеличение коэффициента сбора фототока преобладало над увеличением затенения анодом р-п перехода, вследствие чего токовая чувствительность и обнаружительная способность возросли в 2 и 1.5 раза соответственно. При дальнейшем увеличении периметра анода влияние вышеназванных факторов было равнозначно, поэтому величина S_1 практически не изменялась, а величина D^* снижалась в 1.2 раза из-за снижения

 R_0 в 1.4 раза. Значение $S_I = 0.9$ А/Вт для ФД с анодом типа 3 было несколько меньше, чем для флип-чип ФД с иммерсионными линзами [14]. Значение $D^* = 1.6 \cdot 10^9$ смГц^{1/2}Вт⁻¹ при 300 К по порядку величины соответствовало значениям $D^* = (5-7) \cdot 10^9$ смГц^{1/2}Вт⁻¹ при -25 °С для лучших образцов серийно выпускаемых ФД и фоторезисторов с термоэлектрическим охлаждением [3, 25].

Рисунок 10. Зависимости токовой чувствительности *S*₁, динамического сопротивления при нулевом смещении *R*₀ и обнаружительной способности *D** ФД от периметра анода (левая шкала). Для справки представлены также площадь анода (правая шкала) и типы анодов 1-4 (вдоль верхней шкалы).

В этой же главе предложена простая аналитическая модель для прогнозирования ВАХ и сбора фототока в средневолновых ИК ФД с контактом ограниченной площади. При разработке модели учитывалось то, что для данных ФД чаще других используются эпитаксиальные структуры, выращенные на подложках n- или n⁺- InAs и содержащие нелегированную активную область n-InAsSb, а также легированный контактный слой p-InAsSbP на облучаемой стороне. Области n-типа имеют латеральное сопротивление на 2-3 порядка меньше, чем слой p-типа, поэтому влиянием первых на протекание тока в диоде можно пренебречь. Омический контакт на облучаемой стороне (анод) обычно имеет форму диска площадью не более 10 % площади мезы и не влияет на распределение плотности тока, при этом переходное сопротивление анода (R_a , см. рис.11, слева) влияет на величину общего тока через диод.

Расчет пространственного распределения плотности тока проводился для выделенного в цилиндре мезы сектора с углом α в соответствии с эквивалентной схемой на рис. 11, слева. Область сектора вне контакта разбивалась на элементы равной длины Δr (ось *r* направлена по радиусу). Для каждого элемента с площадью фрагмента p-n перехода $S_r(r)$ рассчитывались вертикальная $(R_v(r))$ и латеральная $(R_{\ell}(r))$ компоненты последовательного сопротивления $R_{\rm n}(r)$ создаваемого контактным слоем. При этом латеральное сопротивление определялось по методике, приведенной в [28], с учетом линейного возрастания при увеличении *r* площади перпендикулярного p-n переходу сечения $S_{\perp}(r) = \alpha t r$ (см. рис. 11, в центре). Предполагалось также, что общее латеральное сопротивление контактного слоя в пределах сектора разбивается на «единичные сопротивления», каждое из которых соответствует «своему» фрагменту p-n перехода $S_r(r)$, а их количество составляет $(r_m - r_a)/\Delta r$; схема разбивки сектора на элементы представлена на рис. 11, в центре. Значения $R_v(r)$ и $R_\ell(r)$ рассчитывались по формулам:

$$R_{\nu}(r) = \frac{\rho t}{S_{r}(r)} \quad R_{\ell}(r) = \frac{\rho}{t\alpha} \ln\left(\frac{r}{r_{a}}\right) \frac{r_{m} - r_{a}}{\Delta r}$$

Последовательное сопротивление $R_p(r)$ определялось геометрической суммой компонент в соответствии с эквивалентной электрической схемой элемента, представленной на рис.11, справа:

$$R_p(r) = \sqrt{R_v^2(r) + R_\ell^2(r)}$$

Расчет распределения плотности тока $J_r(r)$ производился путем решения для каждого элемента $S_r(r)$ уравнения вида:

 $J_r(r) \cdot S_r(r) \cdot R_p(r) + U_{pn}(r) = U$, (1)

где U — напряжение смещения, $U_{pn}(r)$ — падение напряжения на p-n переходе (см. рис. 11, слева).

Рисунок 11. Эквивалентная электрическая схема выделенного сектора диода (слева). Штриховые линии ограничивают область пространственного заряда (SCR) на границе контактного слоя (contact layer) и активной области. Схема разбивки сектора на элементы (в центре). Темным фоном различной плотности выделены единичные латеральные сопротивления контактного слоя и соответстующие им фрагменты p-n перехода, штриховкой выделена площадь сечения S⊥(*r*), используемая при расчете латерального сопротивления. Эквивалентная электрическая схема элемента (справа).

Область диода под анодом рассматривалась как отдельный элемент с площадью $S_a = \pi r_a^2$ и последовательным сопротивлением $R_{pa} = \rho t/S_a$. Ток в данной области (I_a) определялся из уравнения вида (1).

Полный ток в диоде (I_{tot}) рассчитывался при суммировании по всем углам:

$$I_{tot} = I_a + \int_0^{2\pi} J_r(r) S_r(r) d\alpha$$
.

Зависимость $U_{pn}(r)$ от $J_r(r)$ выражалась из модифицированной формулы Шокли для ВАХ диода с использованием таких параметров p-n перехода, как плотность тока насыщения J_{sat} и фактор идеальности β .

Коэффициент сбора фототока *F* при обратном смещении определялся по формуле:

$$F = \frac{S_a}{I_a} \frac{(I_{tot} - I_a)}{(A - S_a)} .$$

Следует отметить, что расчет *F* и других характеристик проводился для темнового (равновесного) тока, а результаты расчета использовались для анализа протекания (неравновесного) фототока. Основанием для данного расчета

является то, что при работе ФД в режиме измерения фототока каждый элемент рп-перехода работает в режиме, типичном для нагруженного солнечного элемента [20]. При этом «нагрузкой» для элемента p-n-перехода $S_r(r)$ является последовательное сопротивление $R_p(r)$, а плотность фототока, протекающего через $R_p(r)$ и внешнюю цепь, определяется величинами $R_p(r)$ и $R_{pn}(r)$, как и плотность темнового тока.

С помощью предложенной модели проведен расчет распределения плотности тока с использованием типичных параметров для ФД на основе структур p-InAsSbP/n-InAsSb/n-InAs, описанных в [9*]. При этом принималось $R_{0a}S_a = 0.05$ Ом·см², т. е. $J_{sat} = 0.52$ А/м², $\beta = 1$, а значение удельного сопротивления ρ слоя p-InAsSbP варьировалось от 0.01 до 0.1 Ом·см; расчет проводился при U = -1 мВ. Результаты расчета соответствовали ранее полученным экспериментальным данным, так, например, расчетное значение $F \sim 0.65$ при $\rho = 0.06$ -0.08 Ом·см близко к значению $F_0 = 0.62$, полученному в [9*] из анализа распределения интенсивности ОЛ для ФД с $R_{0a}S_a \sim 0.056$ Ом·см² и $\rho \sim 0.064$ Ом·см при 25 °C (см. таблицу 3). Также показана возможность повышения эффективности сбора фототока за счет снижения сопротивления контактного слоя, например, путем умеренного увеличения концентрации легирующей примеси.

В конце главы 3 изучены ВАХ и сбор фототока в ФД с длинноволновой границей чувствительности $\lambda_{0.1} = 5.2$ мкм, аналогичных описанным в [11] (см. рис.12). Хорошее согласование экспериментальной и расчетной ВАХ при обратных и малых прямых смещениях было получено при $J_{\text{sat}} = 15 \text{ A/см}^2$ и $\beta = 1$. Возрастание модуля тока на экспериментальной ВАХ при U < -0.2 В связано, вероятнее всего, с развитием туннельного пробоя; данная область ВАХ не рассматривалась в качестве объекта сравнения с расчетом. При прямом смещении основная часть тока протекала в области диода под анодом, и

Рисунок 12.Экспериментальные (Experimental *I-V*) (точки □) и рассчитанные по предлагаемой модели (Simulated *I-V*) ВАХ для ФД с дисковым анодом ограниченной площади (сплошные линии); ВАХ идеальных диодов (ideal), содержащих широкие контакты и имеющих диаметры активной области $D = D_m$ (длинный штрих) и $D = D_a$ (короткий штрих) (левая шкала). Расчетная зависимость коэффициента сбора фототока (*F*) от напряжения (правая шкала).

характеристики приближались к ВАХ идеального диода с диаметром $D = D_a$. Приложение обратного смещения вызывало увеличение сопротивления p-n перехода и возрастание вклада в общий ток удаленных от анода областей диода. При этом ВАХ приближались к характеристике идеального диода с $D = D_m$, а коэффициент сбора фототока F возрастал с $F \sim 0.35$ при U = -1 мВ до F = 1 при $U \leq -0.15$ В. Поэтому можно ожидать повышения токовой чувствительности ФД (S_1) в ~ 2.7 раза при приложении обратного смещения. Данная оценка соответствует результатам работы [11], в которой для аналогичных ФД с $\lambda_{0.1} = 5.8$ мкм получено увеличение S_1 в 3 раза за счет перехода от точечного к решетчатому аноду, эффективно собирающему фототок по всей площади мезы.

Глава 4 основывается на результатах работы [10*] и в ней проведено моделирование основных характеристик оптического сенсора углекислого газа основе типа LED42Su созданных на флип-чип СД И в главе 3 высокочувствительных ΠО ΦД PD42FSI. развитым анодом типа С Моделирование проводилось по методике, изложенной в [29], с учетом аналитических выражений для спектров поглощения газа, излучения СД и чувствительности ФД. Для диапазона температур (+20)-(+60) °С и концентраций СО2 0-10% при быстродействии 1 отсчет в секунду и оптической длине 10 см относительная погрешность измерения концентрации не превышала 10%, а предел обнаружения не превышал 10 ррт. Полученные результаты показывают применения описанных перспективность сенсоров для контроля технологических процессов.

В заключении приведены основные результаты выполненных исследований и выводы по работе:

- сублинейных 1. Анализ зависимостей интенсивности электролюминесценции от тока (L-I) и влияния сгущения линий тока и затенения излучения непрозрачным анодом на вид L-I характеристик в диодах на основе структур InAsSbP/InAs показал отсутствие заметной Оже-рекомбинации широком Это В диапазоне токов. позволило смоделировать не искаженные сгущением линий тока ВАХ, например, ВАХ для области p-n перехода под анодом (I_a -V), и более точно определить значения плотности тока насыщения и фактора идеальности, важных для установления механизмов токопрохождения в ФД. Так, например, плотность тока насыщения $I_{a \text{ sat}}/S_{a}$, была в 2-3 раза меньше плотностей тока насыщения, определенных из первичных, т.е. «искаженных» ВАХ.
- 2. Потенциальный барьер на изотипном переходе II-типа n-InAs/n-InAsSbP в ДГС существенно увеличивает дифференциальное сопротивление диодов при нулевом смещении, снижает емкость диодов, а при прямом смещении выполняет также и функции «высокоомного слоя растекания».
- 3. В фотодиодах для диапазона длин волн λ > 4 мкм на основе градиентных структур p(n)-InAsSb(P)/n-InAs и OГC p-InAsSbP/n-InAsSb/n-InAs имеет место существенная неравномерность пространственного распределения интенсивности ОЛ и плотности обратного тока, приводящая к низкой эффективности сбора фототока. Последнее является одной из основных причин низкой токовой чувствительности ФД с контактом ограниченной

площади к слою р-типа. При повышении температуры от 25 до 80 °C коэффициент сбора неравновесных носителей в ОГС снижается на порядок вследствие усиления сгущения линий обратного тока.

- 4. Формирование на облучаемой поверхности развитых контактов с большим периметром (*P*_a) и малой площадью (*S*_a), т.е. выполнение условия *P_a* / √*S_a*>> 1, является эффективным способом повышения чувствительности узкозонных ФД с тонкой базой, работающих в спектральной области λ > 4 мкм при повышенных температурах в режиме измерения фототока.
- 5. Для прогнозирования пространственного распределения плотности тока и основных характеристик диодов с ограниченной площадью контакта может быть использована простая аналитическая модель, учитывающая радиальное изменение латерального сопротивления слоя полупроводника, примыкающего к контакту.
- Созданы ФД с активным слоем из InAsSb, эффективно работающие в области спектра λ = 2.2-4.5 мкм и имеющие токовую чувствительность 0.9 А/Вт на длине волны λ = 4.2 мкм при 300 К.
- 7. Ожидаемый предел обнаружения углекислого газа для оптических сенсоров на основе иммерсионных флип-чип СД (λ = 4.2 мкм) и созданных в данной работе ФД на основе InAsSb не превышает 10 ppm в диапазоне температур 20-60 °C и концентраций CO₂ 0-10 % об. при быстродействии 1 отсчет в секунду и оптической длине 10 см, что обеспечивает перспективность применения таких сенсоров в медицинских капнографах и для контроля ряда важных технологических процессов, например, на атомных станциях с графито-газовыми реакторами.

Список публикаций по теме диссертации

- 1*. B.A. Matveev, A.V. Ankudinov, N.V. Zotova, S.A. Karandashev, T.V. L'vova, M.A. Remennyy, A.Yu. Rybal'chenko, N.M. Stus', "Properties of mid-IR diodes with n-InAsSbP/n-InAs interface" (Proceedings Paper), Published 25 February 2010 Vol. 7597: Physics and Simulation of Optoelectronic Devices XVIII, Bernd Witzigmann; Fritz Henneberger; Yasuhiko Arakawa; Marek Osinski, Editors, 75970G
- 2*. Чаус М.В., Рыбальченко А.Ю., Матвеев Б.А., Ратушный В.И. Светодиоды на основе p-InAsSbP/n-InAs в условиях сильной инжекции. Тез. докл. на Молодежную конференцию по физике и астрономии для молодых ученых Санкт-Петербурга и Северо-Запада «ФизикА.СПб» (2009)
- 3*. Чаус М.В., Рыбальченко А.Ю., Матвеев Б.А., Ратушный В.И. Неравномерность протекания тока и его учет при определении характеристик поверхностно облучаемых фотодиодов на основе р-InAsSbP/n-InAs. Тез. докл. на Молодежную конференцию по физике и астрономии для молодых ученых Санкт-Петербурга и Северо-Запада «ФизикА.СПб» (2010)
- 4*. Львова Т.В., Зотова Н.В., Карандашев С.А., Константинов О.В., Матвеев Б.А., Ременный М.А., Рыбальченко А.Ю., Стусь Н.М., «ИК ФОТОДИОДЫ

НА ОСНОВЕ МНОГОБАРЬЕРНЫХ СТРУКТУР, СОДЕРЖАЩИХ InAs», Тезисы доклада XXI-ой Международной научно-технической конференции по фотоэлектронике и приборам ночного видения, 25-28 мая 2010, Москва, Россия, стр. 102 (2010)

- 5*. Н.В. Зотова, С.А. Карандашев, Б.А. Матвеев, М.А. Ременный, А.Ю. Рыбальченко, Н.М. Стусь. Пространственная неравномерность протекания тока и ее учет при определении характеристик поверхностно облучаемых фотодиодов на основе InAsSbP/InAs // ФТП, 45 (4), 554 (2011)
- 6*. Б.А. Матвеев, В.В. Кузнецов, В.И. Ратушный, А.Ю. Рыбальченко. Анализ характеристик поверхностно облучаемых фотодиодов с учетом неравномерности протекания тока. Тез. докл. на Национальной конференции по росту кристаллов НКРК-2011, г. Москва, 2011 г.
- 7*. С.А. Карандашев, Б.А. Матвеев, И.В. Мжельский, В.Г. Половинкин, М.А. Ременный, А.Ю. Рыбальченко, Н.М. Стусь. Неравномерность пространственного распределения отрицательной люминесценции в фотодиодах на основе InAsSb(P) (длинноволновая граница $\lambda_{0.1} = 5.2$ мкм) // ФТП, 46 (2), 259 (2012)
- 8*. С.А. Карандашев, Б.А. Матвеев, И.В. Мжельский, В.Г. Половинкин, М.А. Ременный, А.Ю. Рыбальченко, Н.М. Стусь, «Об эффективности сбора фототока в обратно-смещенных фотодиодах на основе InAsSbP (длинноволновая граница λ_{0.1} = 5.2 мкм)». Тез. докл. на Российской конференции и школе по актуальным проблемам полупроводниковой нанофотоэлектроники, «Фотоника 2011», 22-26 августа 2011г., Новосибирск, стр. 22
- 9*. Н.Д. Ильинская, А.Л. Закгейм, С.А. Карандашев, Б.А. Матвеев, В.И. Ратушный, М.А. Ременный, А.Ю. Рыбальченко, Н.М. Стусь, А.Е. Черняков. Поверхностно облучаемые фотодиоды на основе InAsSb (длинноволновая граница λ_{0.1} = 4.5 мкм), работающие при температурах 25-80 °C. ФТП, 46 (5), 708 (2012)
- 10*. Матвеев Б.А., Ратушный В.И., Рыбальченко А.Ю., Сотникова Г.Ю. Высокотемпературные датчики углекислого газа для систем безопасности в энергетике на основе поверхностно облучаемых фотодиодов на основе InAsSb. Глобальная ядерная безопасность, №1 (1), 110 (2011)
- 11*. С.А.Карандашев, Б.А. Матвеев, В.И. Ратушный, А.Ю. Рыбальченко, М.А.Ременный, Н.М.Стусь. Вольт-амперные характеристики и сбор фототока в радиально симметричных поверхностно облучаемых фотодиодах на основе InAsSb. ЖТФ, 2014 (в печати).

Список цитируемой литературы

1. С. Зи. Физика полупроводниковых приборов: в 2 книгах. Пер. с англ. — 2-е перераб.и доп.изд. — М.: Мир, 1984. — 456с., ил.

2. A. Rogalski, M.Razeghi. Narrow gap semiconductor photodiodes. SPIE Vol. 3287. 0277-786X

3. Каталог фирмы Hamamatsu. <u>http://www.hamamatsu.com/</u>

4. Каталог фирмы ИоффеЛЕД. <u>http://www.ioffeled.com/</u>

5. Каталог фирмы ООО «АИБИ» (IBSG Co., Ltd). <u>http://www.ibsg.ru/</u>

6. Antoni Rogalski. Heterostructure infrared photodiodes // Semiconductor Physics, Quantum Electronics & Optoelectronics, **3** (2), 111 (2000)

7. В.В. Кузнецов, Л.С. Лунин, В.И. Ратушный. Гетероструктуры на основе четверных и пятерных твердых растворов А^ШВ^V. - Ростов н/Д.: Изд-во СКНЦ ВШ, 2003. - 376с.: ил.

8. Philip Klipstein. «XBn» Barrier Photodetectors for High Sensitivity and High Operating Temperature Infrared Sensors. SPIE, 2008

9. M. Razeghi. Overview of antimonide based III-V semiconductor epitaxial layers and their applications at the center for quantum devices // Eur. Phys. J., AP 23, 149-205 (2003)

10. Б.А. Матвеев. Инфракрасная полупроводниковая оптоэлектроника с использованием гетероструктур из арсенида индия и твердых растворов на его основе: Автореф. дис. ... д-ра физ.-мат. наук. СПб, 2010.

11. Н.Д. Ильинская, С.А. Карандашев, Б.А. Матвеев, М.А. Ременный, Н.М. Стусь. Неохлаждаемые фотодиоды на основе InAsSb(P) с длинноволновой границей чувствительности 5.8 µm // Письма ЖТФ, **38** (5), 85 (2012).

12. Т.Н. Данилова, Б.Е. Журтанов, А.Л. Закгейм, Н.Д. Ильинская, А.Н. Именков, О.Н. Сараев, М.А. Сиповская, В.В. Шерстнев, Ю.П. Яковлев. Мощные светодиоды, излучающие в области длин волн 1.9-2.1 мкм // ФТП, **33** (2), 239 (1999)

13. А.Л. Закгейм, Н.В. Зотова, Н.Д. Ильинская, С.А. Карандашев, Б.А. Матвеев, М.А. Ременный, Н.М. Стусь, А.Е. Черняков. Неохлаждаемые широкополосные флип-чип фотодиоды на основе InAsSb ($\lambda_{cut-off} = 4.5$ мкм) // ФТП, **43** (3), 412 (2009)

14. M.A. Remennyy, B.A. Matveev, N.V. Zotova, S.A. Karandashev, N.M. Stus, N.D. Ilinskaya. InAs and InAs(Sb)(P) (3-5 μ m) immersion lens photodiodes for portable optic sensors // Proc. of SPIE Vol. 6585 658504-1 (2007)

15. Volodymyr Tetyorkin, Andriy Sukach and Andriy Tkachuk (2011). InAs Infrared Photodiodes, Advances in Photodiodes, Prof. Gian Franco Dalla Betta (Ed.), ISBN: 978-953-307-163-3, InTech, DOI: 10.5772/14084. Available from: <u>http://www.intechopen.com/books/advances-in-photodiodes/inas-infrared-photodiodes</u>

16. А.М. Филачев, И.И. Таубкин, М.А. Тришенков. Твердотельная фотоэлектроника. Фотодиоды. - М.: Физматкнига, 2011

17. M. Carras, J.L. Reverchon, G. Marre, C. Renard, B. Vinter, X. Marcadet, V. Berger. Interface bandgap engineering in InAsSb photodiodes // Appl. Phys. Lett. **87**, 102103 (2005)

18. Ф. Шуберт. Светодиоды. Пер. с англ. под ред. А.Э. Юновича, 2-е изд. (М., Физматлит, 2008).

19. V.K. Malyutenko, A.V. Zinovchuk and O.Yu. Malyutenko. Bandgap dependence of current crowding effect in 3-5 μ m InAsSb/InAs planar light emitting devices // Semicond. Sci. Technol. **23** (2008) 085004

20. V.K. Malyutenko, S.S. Bolgov. Proc. SPIE, **7617**, 76171K-1 (2010)

21. Андреев В.М., Грилихес В.А., Румянцев В.Д. Фотоэлектрические

преобразователи концентрированного солнечного излучения. — Л.: Наука, 1989. — 310 с.

22. A. Krier, X.L. Huang. Design considerations for uncooled InAs midinfrared light emitting diodes grown by liquid phase epitaxy // J. Phys. D: Appl. Phys. **39** (2006) 255-261

23. В.И. Иванов-Омский, Б.А. Матвеев. Отрицательная люминесценция и приборы на ее основе. Обзор // ФТП, **41** (3), 257 (2007)

24. V.K. Malyutenko, O.Yu. Malyutenko, A.D. Podoltsev, I.N. Kucheryavaya, B.A. Matveev, M.A. Remennyi, N.M. Stus'. Current crowding in InAsSb light emitting diodes // Appl. Phys. Lett. **79** (25), 4228 (2001)

25. J12 Series InAs detectors operating instructions. Teledyne Judson Technologies. Oct. 2000. Каталог фирмы Teledyne Judson Technologies. http://www.judsontechnologies.com/

26. I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan. Band parameters for III-V compound semiconductors and their alloys // J. Appl. Phys., **89** (11), 5815 (2001)

27. O.V. Konstantinov, T.V. L'vova, M.M. Pachanov. Plateau of Mott type in C-V characteristics of Schottky diodes with heterojunction // Semiconductors, 23, 1283 (1989)

28. Геворкян Р.Г. Курс физики: Учеб. пособие. — М.: Высш. школа, 1979. — 656 с., ил.

29. С.Е. Александров, Г.А. Гаврилов, А.А. Капралов, Б.А. Матвеев, Г.Ю. Сотникова, М.А. Ременный. Моделирование характеристик оптических газовых сенсоров на основе диодных оптопар среднего ИК-диапазона спектра // ЖТФ, **79** (6), 112 (2009)