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ABSTRACT

Of multifarious processes studied forced oscillation, parametric osmllatid self-excited
oscillation are specified in the modern classical oscillation theory. Theticorsdbf oscillation oc-
currence/excitation and existence/stability are of interest. A prin@jgain solving that problem is
pertained to parametric oscillations because both forced and self-excilitiossilose their in-
stability and become beyond physical existence under parametric resoxeiteteoa conditions.
Moreover there is a reason to believe that self-excited oscillationssaegned parametric oscilla-
tions. An influence area of parametric oscillations and resonance is undeoéarong. Paramet-
ric oscillations in economic models, a parametric direction in biology (“veatdife” activation),
and a parametric nature of field and vibration influences on living organismgliningewere re-
cently revealed. And wherein is occasionally that elusive magical fora@ahpetric oscillations
and resonance? The matter will concern about that.

This paper is a popular scientific publication. Firstly it will serve for meegjis and designers
whose specialization is far from a theory of oscillations. It will be usefypliiysics-and-
mathematics-oriented young people, and the knowledge of parametric oscillationigsaed fea-
tures given in Part I, which is not difficult, can be useful for untechnical expette cause of in-
tegration of physics, chemistry, biology, medicine and other sciences on the lmaatb@matical
modeling.

Editor and Translator Elen Kutueva
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BACKGROUNDS

The existence of parametric oscillations is coupled with the existence of veesaniand
their history counting billions of years derives from the history of foundation antbgevent of
worlds. In all the instances, watching a monkey flying from one branch to angthrezams of pa-
rametric oscillations, it becomes clear that the use of parametri@beotl is related to a pre-
human period. But the human being’s study of parametric oscillations and paraesemnance
was started quit recently or some hundred add years ago. And it was in spite cf tinat faara-
metric resonancmade a lot of mess over its history.

The beginning of parametric oscillation study is put down to the investigations loieMat
and Hill equations. In 1868 Mathieu researched membrane oscillations and cammeple sec-
ond-order differential equation with a harmonically variable absolute term cmgtaio derivative.
Even the numerical equation solution was surprising: it included an infinite numbemrohttpa-
rametric oscillation excitation areas. Subsequently the oscillatiorespsesented in the form of
Ayns-Strett diagrams to be used up to now. Solving the problem of moon orbit determination Hill
also considered the second-order differential equation in which an absolute teanbivasly var-
ied. He obtained the solution in the form of an infinite determinant called Hilksrdetant later
on. Having been confronted with complexity of the derived solutions researchersdgeiyper
laxed their activity in that direction.

The excellent service in pointing an important role of studying the equatidnpevibdical
coefficients belongs to the distinguished Russian mathematician A.M. Lyapuniine Beginning
of the last century he proved that equilibrium stability of dynamic systegmerned by stability
of linear stationary systems or incremental equations formed to therfgat Rpproximation. Mo-
tion stability of a dynamic system including its oscillation stabitgaverned by equilibrium sta-
bility of a linear nonstationary system with time-varying parametedsalso incremental equations
formed to the first linear approximation. In other words the motion stabilitygmotlas reduced to
the problem of equilibrium stability of a linear nonstationary/paramgystem.

An interest in studying linear nonstationary systems was steeply growime Atst half of
the last century both rigorous and rough research methods of high-order lineaioronstat
ary/parametric systems including those with distributed parametesgsewearged.

In this paper the main attention is concentrated on a physical aspect of parasodta-
tions and resonance. The choice of the frequency analysis method chaichtigpistorial physi-
cal and geometrical interpretations shows the correlation with that aspeatnmon case this sin-
gle frequency harmonic approach method is known as Described Function Method. As to non-
stationary systems it can be named harmonic stationaryzation [1,2].

The main difficulty in writing was making a hard choice between the sirfypti€istating
and the complexity of reasoning. It did not succeed in supposing only one of the two ways. That
why the paper consists of two parts. Part | is simple and clear and Parta®ivelyetomplex. The
subject of Part 2 is mainly based on senior school courses in physics and mashdinatsgmple
differential equation are used for transfer to frequency region only.

Thus, the basic goal of this paper is initially to introduce the reader to pacanseiiiations
and the phenomena of parametric resonance. According to the objective all tragidlus are ac-
companied with elemental examples of single-frequency harmonic oscillatidrsezeral results
of second part are printed in a small type. A careful reader will be able to dimglinteresting
things in the parametric resonance phenomena, which are quite often stricijuegpect of as-
sessments of completeness and carefulness of constructions and enginagiars sol
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PART 1. PHENOMENA OF PARAMETRIC RESONANCE

Several Words about Oscillations

Oscillations and oscillating processes have been in existence regafddasman will in
gravitational, electrical and magnet fields, liquid and gaseous media, and thieaions of fields
and media. For a long time oscillations were only interpreted as periotimns of bodies, fields
and media under the effects of applied/external forces, moments, extranekatinggerocesses
and other just now so-called disturbances including periodic ones.

This point of view is also prevailing among those of our contemporaries whose [@odéssi
activities do not cover physical and mathematical concepts. This does not allawiexph num-
ber of such mysterious phenomena as self-excitation and sudden amplitude jumps tboscilla
the reasons of excitation and stability of oscillations, etc. Just not long-agtiesb parametric os-
cillations were distinguished among multiform oscillatory processesréxiah close attention of
researchers.

Quite a lot books have been written about oscillations. Neither complete nor even popular
statement of the problems existing in the theory and practice of oscillatiomgei®d in this paper.
It is highly desirable for the uninformed reader to see the popular science bibekAiperican
scientist R. Bishop [3]. The paper includes an extremely limited amount of thiide$ needed
hereinafter.

At present free oscillations, forced oscillations, parametric oscillatiod self-excited os-
cillations as a special case of sustained free oscillations are difiéedniThe free oscillations
shown in Figure 1.1. are excited by a shock disturbance such as, for example, the daospéd a
lation following striking on a bell to produce the sound.

Figure 1.1. Free oscillation
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The free oscillation frequency with a period, T, is called the natural osgiliatpect fre-
quencyw, = 277/ T . When the forcing periodic disturbance frequency coincides with the natural

frequency of the object, the sustained forced oscillations of the same frequentyehaaximum
amplitude, A, proportional to the amplitude of the forcing oscillations (see Figaie

In addition to the amplitude, A, the sustained oscillations shown in Figure 1.2. ardeharac
ized by the circular frequeney=2a/T (rad/s) and linear frequency f91(Hz), where T (s) oscilla-
tion period. The running phagewt (rad) is often used along the x-axis instead of
the running time, t. The relative phase or phase of oscillatieas (rad) is an important parameter
of an oscillating process defines the shiftz, of oscillations relative to a certain reference har-
monic wave of the same frequency. The forcing/externallasoit is usually taken as a reference
signal given in Fig. 1.2. in a thin line.

Figure 1.2. Forced oscillations

An oscillatory object is characterized by coordinates and parameters. THmatetime
variations generally form the motion of a dynamic object and particulariyed#éfe periodic mo-
tion of the oscillatory object. The oscillatory object complexity and descrilgjngt®n order are
assessed by an amount of coordinates to describe oscillating process condittms As either
free or forced oscillations are exited dependent coordinates also edal&atifferent degree. The
oscillation degree and interconnections of the coordinates are governed bylka®igsobject pa-
rameters. As a rule the object parameters are constants forming thereqoefficients according
to the operating principles of the object. Thus, for instance, a circulatory sysgelining organ-
ism includes a heart as a blood pressure converter, vessels (arterieandeiapillaries), a liver as
a blood-forming organ and a brain and nerve fibers as a control system. The®ystdimates are
the blood pressures at the different points of the organism, rates of pressatrengsrihe blood
velocities and volume flow rates. The system parameters are blood viscasaylar system
drag/dimensions, a hart volume, nervous system status, etc. The heart operaiedicalgaulse
oscillation modes. That’s why the blood pressure varies in a periodical way toext€heal dis-
turbances with respect to the circulatory system are atmospheric preasations, environment
temperature changes and the variations of physical activities and m@séstre

Following the disturbance oscillations, at first the control subsystem chanvgssel state
(by compressing/releasing) and then it alters the hart beet frggaeadilling to rise or decrease of
the blood pressure. In such a way the circulatory system parameters adecaktyivaried. Of
course, that is only the simplified description of such much more complex dynatein s the
circulatory system. The objective of this paper is popularization of sceekrifiwledge. So, com-
plex dynamic systems are not considered hereinafter.
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If object parameters are constant, the object/system is called statidreey object pa-
rameters are changed in time, such object/system is called nonstatWharythe nonstationary
object parameters are periodically changed, such object/systenedmatiodic nonstationary or
parametric. The both stationary and nonstationary systems may be linear andandnyia kind of
their description.

Thus, the main attention will be hereinafter focused on periodically nonstationdigtasc
objects and systems, both linear and nonlinear. The parametric systems bedaspesad in sci-
entific-technical activities such as mechanics, electrical engmggeadio engineering, automatic
control, instrument engineering, hydrodynamics, aerodynamics, etc. igral] the priority in
studying parametric systems belongs to mechanics. So, we start our@totidt subject.

Parametric Resonance in Mechanics

This section is aimed to introduce the phenomenon of parametric oscillations kg aimdpl
clear examples from mechanics and get the reader ready for sguagnégance with more complex
parametric phenomena. It should be noted, there are notmesaily examples of the oscillatory ob-
jects and systems in which parametric resonance openly appears in itsrtrult inore often “pre-
fers” to hide mysteriously behind complex oscillating processes.

Common pendulumFigure 1.3. shows an ordinary pendulum. Assume that environ-
mental/air resistance and the frictional force at the suspension point/s@apemet, minor, i.e. the
pendulum is near ideal. If firstly the pendulum is deflected from its vepastion to the right at
the angle # or to the left at the anglex-and released then, the free pendulum oscillations will de-
cay (see Figure 1.1.). Under the vertical suspension point vibratioyr a sinQt (see Figure 1.3.)

the complementary accelerati@(t) = aQ?sinQt acts on the pendulum. Its min/max value is

+aQ?’. So, the pendulum weight becomes alternating asm(g —aQ?sinQt . Th¢ damped pen-
dulum oscillations begin to grow on at the vibration frequefX\glose to the doubled natural fre-
quencyw,, as soon as the vibration amplitude exceeds a certain thresholcavakye. Those are

divergent parametric oscillations excited and there comes parametric resaanc

X Ax=asinQt

0

-
% &0

/ Ax Ax
P=mg l’\‘\ *) = XTP =mg
Ax p Ax

Figure 1.3. Pendulum with suspension point vibratio

Figure 1.4. shows the pendulum parametric oscillations and the suspension pointooscillati
versus time.

It is important to note on the basis of the above simple example that the paragsetric r
nance excitation occurs at a certain shjfhetween the suspension/parameter oscillathau(§ (see



9

Figure 1.4. in a thin line ) and the pendulum oscillatiofs(see Figure 1.4. in a heavy line). The
shift is about a half of the pendulum oscillation period, which corresponds to a quarter
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Figure 1.4. Ramp parametric oscillation of pendulum

of the pendulum oscillation period or phase shftot=2xt/T (rad) equal to 90°. It is easy to ex-
plain the necessity in such shift in terms of physical principles. The penduluratostifieriod in-
cludes four quarters. The first quarter | (see Figure 1.3. and Figure 1.19.) loetatedn the verti-
cal line and the maximumatand the third quarter Il located between the vertical line and the
minimum -e are the deceleration quarters because the gravity moment (the product of thempendu
length and the projection of gravity to a moving direction) is oriented againsetioellum moving
direction. The second quarter Il and the fourth quarter 1Y are the acielaratrters because the
gravity moment coincides with the pendulum moving direction. Thus, to swing the pendulum effe
tively there is a need to diminish the gravity moment within the deceleratioreségby decreas-
ing gravity and to increase that within the acceleration segments. Hepoeyitte the needed vi-
bration/parameter behavior the pendulum support, O, has to be moved downward in the deceler:
tion segments where the pendulum weight reduces because a vibration acnelahad is sub-
tracted from a_gravitational acceleration value, and it has to maove upward atéheration seg-
ments where the pendulum weight enlarges as a result of the summation of thecaktarations.
Parametric resonance is excited in that way

There is an essential difference between parametric oscillations aed ésallations. The
forced pendulum oscillations occur when an external periodic moment is appliegpenthéum,
for example, while you swing the latter and the pendulum oscillation frequencydasivaith the
external action variation frequency whereas the parametric ostillatiquency is two times less
than the parameter/oscillation variation frequency. The parametric benildnase is fixed
whereas the forced oscillation phase depends on the oscillatory object behavior aruinteli®
turbance frequency.

Spring pendulum We analyze the following example. It is a spring pendulum inside a
gravitational field (see Figure 1.5.). The pendulum has a stable equilibriuratstiagepointx =/,
where the weight, P, is balanced by the opposite force of expanded spring. Ifitleediaghtly

pulled downward or raised and then released, the damped free oscillations of thg(fparck ob-
served along the verticataxis in the condition when the resistance forces are minor.



b

| X

Figure 1.5. Spring pendulum

At a certain peak-to-peak increment of the periodic vertical oscillatensdw pendulum
oscillationsa(t) about a center of rotation arises in the plane of Figure 1.5. These aretparasae
cillations. That phenomenon is not difficult to explain. During the vertical oscilgthe pendulum

length f(t) =/, +Al(t) changes periodically together with the periodic spring divergence and
compression. In turn, the periodic increment in pendulum length results in the periodasddor
gravity moment within the deceleration quarters, and it increases within gleration quarters.
Therefore the parametric oscillation@) similar to those presented in the previous example, occur

(see Figure 1.6.), and the oscillation time diagram is also similarttmtRegure 1.4. where the os-
cillations with a length ofA/(t) take place instead of the vibratiofs(t).

Al() 2 Al(Y
> P~ - 1P«
ey -
P=mg

y X
Figure 1.6. Spring pendulum oscillation

Of course, as the vertical length oscillations decay, parametric beodlare eliminated
too. But if the vertical load oscillations are supported by a periodic forcitgligsce, thereby sus-
tained parametric oscillations are sustained. The interesting faet iwhile the forced oscillations
of pendulum deviation angle are kept sustained, the vertical load oscillations withla diogle
oscillation frequency also begin. Those oscillations are also forced belbaysed not excited by a
variable parameter (e.g. a variable spring rate) but related to thg sgténsions ai=0 at the ex-
pense of the maximum vertical gravity projections and the centrifugal pendodatiom force.
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The parametric oscillations considered here were discovered long agadatin of train
operations in the course of the study of swing carriage couplers. At that ticeuhler springs had
low stiffness. The transverse parametric oscillations threatenihgaadidents appeared under the
oscillations of springs and integral trains in the horizontal plane along@achivay.

Elastic shaft rotation.Figure 1.7. shows an elastic rectangular shaft. It has both horizontal,
c., and verticalc , flexural stiffnesses differing from each other, and the constant torstdfial s

ness,c,. One of the shaft ends is supported as a cantilever in a spindle and the other one is free.
While the spindle rotates about the z-axis, the free end of the shaft sags alpagithander the
action of gravity. A sag value is scaled inversely with the alternateestsf valueg:, andc,. The
flexural homogeneous shaft has uniformly distributed mass, and its stiffness dep¢neslis-

tance to gravity point. In other words, the elastic shaft is characteydeddih-distributed mass
and stiffness as distinct from the lumped pendulum parameters.

X

Cx

o

Figure 1.7. Elastic shaft rotation

Z

It is known that distributed parameter objectsmigfie in mathematical physics by partial differan¢iqua-
tions can have an infinite set of natural freques@nd complex combination oscillations. Duringragjmate calcula-
tions realized in many kinds of engineering sofewyancluding FEA, the descriptions of distributeatgameter systems
are substituted for their discrete analogs ofradi differential equations, i.e. difference eqoiasi or finite-difference
equations. The systems described by approximdtrelifce equations also have periodic frequencyachenistics and
an infinite series of natural frequencies

W, =N,

where n=1,2,3 andy, is the first/fundamental frequency.

For illustration we substitute the distributed mass for the lumped mass locdtednidtle
of the shaft and suspended from an instantaneous plate. The plate possesses thrediffimeds of s
as it is shown in Figure 1.7. For simplicity, we assume stiffness along ttie iz-anach less than
that along the x-axis. In such approximation the rotating shaft model is giverune Ei§. The
lumped load with weight P=mg periodically sags two times in a rotation peribd distance
Ay =mg/c,, i.e. doubled-period continuous forced flexural oscillations of the plate occur. The

simple model of such oscillations in the form of the spring pendulum can be seen exJFg&jhy
equivalent to Figure 1.5.
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Figure 1.8. Simplified model of elastic shaft osddtion

As it was previously shown the parametric oscillatieftsabout the z-axis arise at the shaft
rotation frequency under parameter/pendulum length oscillations (see Eigur Thus, the flex-
ural oscillationsAy(t) activate the torsional parametric oscillatiofs.

This kind of commonly destructive parametric resonance is called flexsiertdlutter. For
instance, this takes place when a shaft bar is undéntd$rocessing having even not large eccen-
tricity.

As it was mentioned above, the parameter-distributed objects are attributémt bf/ rzatu-
ral oscillation frequencies. As a rotation frequency increases, printagiliyrst most dangerous
resonance more often appeatshe frequency,. Just that very case is shown in Figure 1.8. Its

danger lays in a low oscillation frequency and, as a rule, a high oscillationwatagita low oscil-
lation damping rate. To avoid breaking the spindle revolutions are needed to be diminished or
enlarged. As soon as the revolutions are increased to the next natural frequetiey parametric

resonance of lower amplitude and in a more complex form/mode is exited again, ahdaseha
one or several quarters of the oscillatory wave are fitted over the stift.len

In the investigated example the shaft revolution leads to forced periodic astsl)atnd as
a result parametric oscillations are excited. To launch flexure-torsittarfrotating is not neces-
sary. The flutter arises when a liquid/gas (air stream) flows arounthtmgilobjects. This often
causes the accidents of structures, bridges, aircraft, etc. The descopsonse of them are pre-
sented hereinafter in the sections on hydrodynamics and aerodynamics.

At the end of the section we consider one of the examples in which parametrieicesona
plays not a destructive but constructive part.

Inversed pendulumlt was presented in the section Ordinary pendulum (see Figure 1.3.)
that whiles the suspension point vibrates in a vertical direction the nascenéfarascillations
result in the loss of equilibrium stability. The inversed vertical pendulum is shokigure 1.9. Its
vertical position is not stable if there is no any supporting external forcingctlike that are
called structurally unstable because they cannot be brought to a stablealtateeatalues of con-
stant parameters (e.g. length and weight).

Ax | Ax
i i
AT
"\ Ax Ax /
\ /

/
./
% 4 a(ﬁ

L 1 dx(Y

Figure 1.9. Inversed pendulum oscillations
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Just as in the case of an ordinary pendulum, in the presence of the suspension point verti
vibration Ax = asinQt the alternating vibration acceleratieraQ? sinQt is periodically summa-
rized/subtracted from the gravitational acceleration, g, at the frequen&g a result of the cycle
parameter/pendulum weight variations resonance and parametric osslatiginated in an anti-
phased manner stabilize the unstable pendulum position. The following obvious inequadity is t
necessary stabilization condition:

aQ®>g.

The resonance was detected by P.L. Kapitza for the first time in the midtkelagt cen-
tury. He was the first who showed that an inversed pendulum becomes stable ataisposition
when

aQ >./2g/ ,

where a is the vibration amplitude, is the pendulum length. The last condition mehasthe
maximum linear velocity of the support movement teasxceed the free fall velocity of the pendu-
lum from the height equal to the pendulum lengthiterature the stable-under-vibration inversed
pendulum is called Kapitza’'s pendulum.

Since time immemorial the visual demonstration apKsa’s pendulum has been shown
during the children’s contests in which a vertsatk is kept on a palm oscillating in a verti-
cal/horizontal plane for making the longest time.

. _\xtl a(t) ”1 1| }mi'm

N (=10 s

Figure 1.10. Transient of inversed pendulum stabiiation

The transient of inversed pendulum stabilizatioobtained by numerical simulations of
Kapitza’'s pendulum with a one meter length (se¢ BaDscillation process numerical simulation).
One can see in Figure 1.10. that stability is redcht the 0.6 m vibration amplitude and the 6G:m/s
acceleration.

Parametric resonance in electrical engineering

Parametric oscillatory circuitAt the end of 1930 Academicians L.I. Mandelshtam and
N.D. Papalekcy proposed to apply parametric restmanmaking oscillators. The RLC-oscillatory
circuit with periodically changed capacitor capactde, C, was used to generate the oscillations (se¢
Figure 1.11.). The capacitor capacitance was atedfollowing the cyclic variations of the ca-
pacitor plate gap. However the conductive disk jgted with slots and rotated between the plates
by an electromotor was suitable to a greater detgre®dulate the electric field of the capacitor.
The parameter/capacitor capacity oscillation freqyevas varied by changing the electromotor
speed, and the parametric oscillations of electricent and voltage at the circuit elements were
excited within the circuit natural frequency. Aeteame time the parametric oscillation frequency
close to the circuit natural frequency was two sress than the parameter oscillation frequency.
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L = )

Figure 1.11. Electric oscillatory circuit

Exciting the parametric oscillations is accompanmigith the accumulation of oscillation en-
ergy in the circuit. If one slides the capacitatpk apart, thereby diminishing the capacitance, as
soon as the extreme voltage is reached, then ffaeitar voltage, V, is increased because the ca-
pacitor charge q=CU cannot be rapidly changed owdrgycapacitance lag. As the voltage grows
circuit energy grows as square of the voltagehdfdapacitor plates are moved closer to each other
as soon as the zero capacitor voltage is readhedjrcuit energy is not decreased. Thus the accu-
mulation of circuit energy occurs provided thatrgyegrowth exceeds energy loss at the active re-
sistance, R. It should be noted, that the energpacdmetric oscillations in the circuit grows at th
expense of energy loss for moving the capacitdeplar rotating the disk to modulate the capacitor
field. The example considered is also related ¢éarfrequent cases in which parametric oscillations
are mentioned to arise in their pure forms.

At present the energy of parametrically excitedllagions is not often utilized because of
an emergence of powerful semiconductor key/thyrigtohnologies and alternating-voltage genera-
tors/inverters based on those technolagiége development and wide-spread usage of parametri-
cally excited oscillations have not gone towarasdhergy but generation and oscillation amplifica-
tion of super high frequencies/SHF direction inlbadmmunications and radiolocation. To gener-
ate and amplify parametric SHF, highly small-sizeaise-eliminating resonators/circuits are used.

Ferroresonance — hidden parametric resonanc& he phenomenon of ferroresonance has
been known in electrical engineering for a longetimhhis happens in respect of forced oscillations
in the RLC-circuit consisting of the inductor, Litiwa steel core. This phenomenon appears under

certain conditions as amplitude jumps of forcedllagions while the forcing oscillation ampli-
tude/frequency is smoothly varied. R

o C

o o Lo

&

Figure 1.12. Transformer oscillatory circuit

Figure 1.12. gives the RLC-oscillatory circuit sianito that in Figure 1.11. but equipped
with the transformer input of alternating voltag®susinot. The secondary coil of the transformer
is based on a steel core and serves as a cirduittior. As the amplitude and the voltage increase
the secondary voltage amplitude at the inductograws to a certain moment, following which in-
creasing the secondary voltage slows down. Thadurhcrease in input voltage brings to the cir-
cuit voltage jump, i.e. stepwise resonance or fesonance takes place. The specific characteristic
of those jumps is the binding presence of steat gothe coil, where from the name ‘ferroreso-
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nance’ comes. When the core is missed the jumpsadrebserved. It turned out that a true cause of
the jumps was the parametric resonance excitatidimei circuit. In Figure 1.12. the inductance, C,

is a variable. Permeability of the core decreasd¢isd low value equal to air permeability as losg a
the amplitude of the current magnetizing the cooegases. In such a case they say about saturatior
of the core magnetic. Thus, there take place maxinmauctance at the linear section of magneti-
zation while there comes no saturation. Inductameero under saturation. The frequency of induc-
tance oscillations iIQ9=2» and the frequency of new growing parametric catdhs is equal to that

of forced oscillations because saturation occucstimes in the period=2n/®» when the maximum
amplitude of magnetizing current is realized. Thweéd oscillations and the first parametric reso-
nance oscillations are composed and the amplitude js observed. And it is not possible to dis-
tinguish the parametric oscillations from the fat@scillations, which explains mysterious effects
of that resonance. R

o C 11—
“L()/2

u(?) *L(t)/Z —C

Figure 1.13. Inductive parametric resonance

It is not possible to distinguish parametric ostitins so indeed but they can be separated
out in their true form. For that purpose the coriducoil is made in the form of two opposing iden-
tical coils, either coil inductance is L/2 (seelig 1.13.). In that case the primary forcing vadtag
antiphasely transformed to either of the two circoils, and the final voltage at the secondary
transformer terminals is zero. In other words, ¢heme no forced oscillations in the circuit. Never-
theless, in the circuit (see Figure 1.13.) congidler oscillations arise at the jump/ferroresonance
frequency presented in Figure 1.12. These arearsnetric oscillations hidden before and they are
extracted in their pure form, i.e. we deal with thee reason of ferroresonance.

The effect of parametric oscillation extractionnfréorced oscillations can be explained by
the fact that in spite of missing the forced oatidins in the circuit (see Figure 1.13.) magnegjzin
the steel core is kept on by the forcing voltagprahary circuit, and the circuit inductance edqaal
the sum of two coil inductance goes on changingfits maximum to about zero.

Flexure-torsion resonance known from mechanicsesaasumber of problems in electro-
mechanics, e.g. in production and service of paw@dwer plant turbogenerators. Unbalancing
under manufacturing and mounting of large-tonnagers can lead, for example, to flexure-torsion
resonance in use of turbogenerators, which happafitedputting into operation Krasnoyarsk hy-
droelectric power station.

Parametric resonance in fluid dynamics

In numerous complex problems of fluid dynamicseith motion of medium (liquid, gas,
air) in which an object is situated or an objeatcfaft, a rocket, a ship) motion inside an environ
ment and also medium/object interference are censitd As a rule those problems cannot be ana-
lytically solved. They are accomplished using nuoamethods or physical modeling of a me-
dium and an object. The analogies between elemefhtiza-dynamic problems touched on below
and the simple tasks from mechanics and eleceitgineering previously examined are sighted.

From time immemorial projecting and servicing wdtansports (river boats, sea craft, etc)
developers’ efforts have been focused on the impidajuid/water flow and wave generation on
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oscillatory objects. For instance it is connecteith wavigation safety. Navigation hazard has been
confirmed by numerous accidents in the historyadfigation.

To a first approximation water-craft in water istable pendulum thanks to the fact that its
center of gravity is located under the water belmater-craft waterline. The pendulum is capable of
swinging at the angles which can cause flippingewataft provided that the frequency of water
surface fluctuations (rough water) is equal towlager-craft natural frequency or divisible by the
latter. Such a situation is mostly dangerous ifiypéited cargo is transported or bilge tanks are pa
tially loaded. So about 40 years ago the infornmaéippeared in press that the dry cargo ship Kom-
somolets Uzbekistana was a total wreck in the ¢mmdi of not great choppy seaconsequence of
cargo displacement. Fortunately, the ship’s crew kgacued by the US coast guard. Probably, for
the reason stated above, the information whichofta® concealed was published in the press.

In accidents like that cyclic rolling-induced cafgarameter displacements periodically
change the position of water-craft center of gsaaitd amplify capsizing moment. That is why the
transportation with badly fixed cargo and partidtigded liquid tanks is forbidden according to
navigation instructions. By the instructions chamgga water-craft course is also recommended to
mitigate rocking by making an angle with a wavenfrad’hough a wavelength remains as it was be-
fore, rocking both period and amplitude are shiftedh the water-craft natural frequency. Not so
long ago parametric oscillations of water-craft ingvwdown wind and wave were exhibited. At that
moment first the water-craft stern was coming ug @own at a wave crest, and the bow was fol-
lowing of doing the same. Thus the longitudinaliketions of the water-craft were run two times
in a wave period, and the transverse oscillatiamfa to those in respect of a spring pendulum
were occurring.

Not only wave generation can be at the bottom tt bmrced and parametric oscillations.
Another nature of the oscillations is water flowiggund an oscillatory object. Vortex rotations of
the liquid are formed during water flowing arountay (see e.g. the cylindrical solid in Figure
1.14.). While the vortexes detach from the bodyasr periodical forces applied to the body are
generated. Those forces are capable of arisingddransverse oscillations. These oscillations gen-
erated together with both parametric and self-exoitscillations are called stall flutter.

Figure 1.14. Vortex detachment

In whole, it should be noted that oscillation preses in liquids have a complex nature and
most often combine forced parametric oscillationg aonlinear self-excited oscillations.

Let us consider several simple examples.

During the Great Patriotic war special mines weseduto provide security of northern ports
and naval bases. They were located at cable-artbhogys submerged superficially. Some mines
were soon found to detonate whereas no water\wweatthereabout. In the issue of close study of
the mines it was turned out that the false burgtewonnected with a small currents flowing
around the buoys to result in stall flutter. The@®ated oscillations initiate the detonations ef th
mines.
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Another rather comical example is proposed forafigrthe reader from war subjects. Fish-
ery-lovers are well known with stall flutter. It leibits as slow reverse oscillations of the boat bow
anchored at a stream. Such movements are too aasgauring bottom-rod angling. In such situa-
tions a short rod curves gradually brining in achdiorm and an inexperienced fisher catches at a
landing net in looking forward to catch a fish. sll&ig fish takes the bait in another way!

As an example the following occurrence from thénatis experience is given.

“Once in early spring | drove my boat from Lake bgd to the Gulf of Finland. My boat
came to the Neva by the evening. It was getting dad my boat approached to the lvanovsky rap-
ids. The current is always strong in that regiothefriver and it becomes swift at the time of a
spring water flood. At dusk | suddenly saw a steapgenomenon ahead: a certain ‘being’ was go-
ing from under the water. Having gone up to its &enfull height the being started to lower and
disappeared under the water then. A little laterdttange phenomenon happened again. By that
time | had gained considerable experience in gailinowed across Lake Ladoga from Valaam to
Novaya Ladoga at a stormy night, astonished at-weder mirages in fair weathers, and one day |
went down as a result of the collision with a légytunately | could put a tarpaulin patch to the
breach), etc. But at that moment | was ill at edgleat this could be? Boating close with ‘the mon-
ster’ | saw a big submerged river buoy going framder the water.”

The approximate analysis of the buoy oscillatiangiven in the section ‘Buoy’ resonance
(see Part 2). It turned out that forced oscillagiohthe buoy submerged to be initiated, for exanpl
by stall flutter are able to cause parametric rasoa which, in turn, gives a rise to the amplitude
jump of initial forced oscillations. The initiatiasf hidden parametric oscillations is connectedwit
the fact that the moment, M, pushing out the bumylinearly depends on the deviation angle as
follows:

M=M,a+Mua®.
So under the forced oscillations of the angg =Asinwt the parameter/rate of moment
change varies periodically:

dM /dal,, =Mg +3M,;A’sin® at =M + 15M A’ (L+ cOS2at) .

It seems that the first ‘hidden’ parametric resa®awith a forced oscillation frequency,
can arise at the double parameter variation freqguen

Parametric resonance in aerodynamics

In hydrodynamics the effect of a moving medium/igian oscillatory objects is mostly in-
vestigated. In aerodynamics the influence of argtagjenvironment/air upon a moving oscillation
object or a separate part of the object/ airceaffisually considered. In essence the tasks onasscil
tions and stability of buildings/structures undez aiction of wind loadings are also related to-aero
dynamics. First of all among the structures arddas and high-rise towers and buildings. Although
wind loadings are not comparable with the actiothefatmosphere on aircratft it is worth a lot to
ignore them.

The story of Tacoma Narrows Bridge is widely knowhat bridge is one in twelve the
masterpieces of the American bridge engineerind940 swinging in the directional breeze the
bridge crashed down. In the old amateur oscillaitiaages one could watch the growing divergent
torsional and flexural oscillations of the struetufhe flexural oscillations arose on the leeward
side of the bridge during the airflow. They wereda eddy formations and the difference of upper
and lower pressures to initiate the parametrictation of torsional oscillations. The latter inriur
increased the flexural oscillation amplitude - Tnelge crashed down owing to flexure-torsion flat-
ter. It was a lot to happen in last century. Whmtid our days?

Have a look at the lower Figure. One can see thgeataus oscillations of the bridge across
the Volga near Volgograd. In the October of 20084ds put into service in a solemn atmosphere
and just in the May of 2010 the traffic over thedge was stopped up. Shipping was also forbidden
in that zone of the Volga.
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30 m/s-velocity flaws were observed in the May 01@. Peak-to peak oscillations reached
two meters. It seems that great wind loads weak#reetiolts attaching the separate spans to the
abutments. There is a video recording in Interseé the website http://pro-volgograd.ru) in which
one can see the flexural-torsion oscillations efgpans at the wind velocity that is much less than
30 m/s, judging by wave making, (see the upper emagdrigure 1.15.) and the same kind of oscilla-
tions between the separate bridge towers (se@wer image in Figure 1.15). Luckily it cost with-

out wreck.
Bonry waraerca c caita http:/fpr . 1u
; iR

Figure 1.15. Views of new bridge over Volga (fromebsite http://pro-volgograd.ru)

The new 7-kilomiter bridge was built for about l€ays for nearly 25 billion roubles. At
present it is locked. Pressing and sizeable réipaiahead. Just so parametric resonance may penal
ize for errors and “economy”.

Aircraft is to overcome air flows at the speedsahiare several orders higher than a wind
velocity. Hence, air quality is assumed to be mdéss relative to aircraft. The second conclusion
is wind tunnel tests of structural/element modetsabligatory to be performed in connection with
the high flight speeds of aircraft and possiblaltagmon excitation.
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As a rule an aircraft wing has modest flexurafiséigs and is able to make minor oscilla-
tions in the vertical plane. Sometimes the osailiet can be watched through a side aircraft win-
dow. The torsional wing stiffness about the londimal axis is too greater, so torsional oscillasion
can be only recorded by devices.

An aircraft wing can be simplistically conceivedaabeam with overhang end to be fixed in
the aircraft case. The beam stiffness is obtainexbtrespond to the wing-averaged tor-
sional/flexural stiffness.

By virtue of the fact that the vertical cross seas of the top and lower wing surfaces are
provided with the mutually unsymmetrical conve»stiee. different flow conditions are realized at
the surfaces, minor both flexible and torsionallmons can be produced as a result of the differ
ent surface pressures.

Again assuming the similarity with a spring pendanjwne can conclude that flexure-torsion
flutter is feasible: under certain conditions fat¢kexural oscillations can initiate parametric-tor
sional oscillations. The flexure-torsion flutterlisistrated in Figure 1.16. where the verticakfle
ural oscillations are laid on the torsional/rotasgillations, i.e. forced and parametric oscillatio
are interrelated. Thus, it is not so easy to undeds“who” is guilty of the oscillations.
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Figure 1.16. Flexure-torsion oscillations

In 1950s having reached sound velocities, jet afir¢aced the problem of overcoming a
sound barrier. The problem was that as the aireeddicity approached to the 1200 km/h sound ve-
locity threatening vibrations of structural elengeand a case started. So-called sound flatter was
initiated. The point is that while the subsonicogaly increases the frequency of sound waves ef-
fecting on aircraft diminishes. After takeoff theusid wave frequencies are within the acoustic fre-
guency spectrum of operating engine in the ranga fiundreds to thousand hertz. As the velocity
grows the frequency of sound wave influence dinmi@ssin proportion to the difference between the
velocities of sound and aircraft. Following the threhing and affecting the sound waves alter-
nately concur with all the natural frequencieslgiiy spacecratft.

The situation is close to the considered rotatiiothe elastic rectangular shaft when the
shaft rotational velocity changes from zero to maxn. The high frequency vibrations exert no
serious influence on the shaft and the aircrafd gt in advancing low natural frequencies the vi-
bration amplitude is increased to its maximum valoesponding to the first natural frequency.

Because the first natural frequency of aircrafirisund several hertz depending on the air-
craft structure the most dangerous sound flattexrabzed as soon as the difference in velocitfes o
sound and aircraft is reached of about severaksaafrmeters per a second, i.e. while approaching
to a sound barrier. Just here the problem aridgbg i&ircraft velocity is needed to be increased or
decreased. In both cases the dangerous vibratgints At the development outset of jet aircraft
there was no sufficient power for engines to bepleolp and flight velocity was to be decreased
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without any alternative option. As engines werernoved their velocities grew as high as 3,000
km/h and sound flatter was overcome by abruptlygasing the aircraft velocity up to the value
when the safe flatter duration is not over 1 second

With regard to sound flatter, it little differs froflexure-torsion flatter. A 3-D sound wave
periodically changes the aircraft pressure to viamyexample, vertical stiffness of the wings and
initiate the parametric both flexural and furthersional oscillations.

Such kinds of oscillations can be excited in respéaot only the wings but the steering
system and the aircraft sternpost. Moreover othvetskof oscillations are possible depending on
flight conditions and structural philosophy. In vidadlatter is a challenging examination for air-
craft and a test pilot. In conclusion it shouldnoted that there are a lot of oscillation contreitim
ods at designers’ disposal, and the choice of abstructure frequencies beyond a frequency dis-
turbance spectrum takes a priority place among them

Self-excited oscillation or parametric oscillation?

Well, both steady and parametric linear dynamitesys can have convergent free oscilla-
tions under their stable conditions and increassullations when those systems are unstable. The
increasing parametric oscillations are called patamresonance. Steady (nonincreasing and sus-
tained) free oscillations of autonomous nonlingatems are called self-excited oscillations. The
term “self-excited oscillations” was introduced Agademician A.A. Andronov at the beginning of
the last century and became customary in the thefogcillations. At the same time the introduced
term does not allow for understanding the reasénsallation self-excitation and stability.

Subsequently it turned out that self-excitationlzmon conditions in a nonlinear system
are at the spectrum limit of the first parametesanance of a linear system. Several explanations
on the matter can be found hereafter (see Padr2e# oscillations). This can be explained by the
fact that the slope of nonlinear characteristic@dpaater F(x) oscillates following the x-coordinate
oscillations. At that moment the parametric resaeawscillations corresponding to so-called soft
excitation are initiated in a nonlinear system gnat into orbit” the steady/self-excited oscillat®
These are steady oscillations if their “orbit” falde. In turn the self-excited oscillation orbitlvbe
stable if there are no any kinds of parametricmasce but the first. The essential requirement for
self-excited oscillation stability is the shift thfose oscillations from the excitation limit to tree
gion where parametric resonance lacks/presentg widteasing/decreasing the self-excited oscilla-
tion amplitude.
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Figure 1.17. Self-excited oscillations of liquid kel in Tantalus vessel
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Thus, there are quit a lot reasons for self-exagallations to be considered steady para-
metric oscillations of nonlinear systems. It is thigd kind of parametric oscillations taking place
during the spring pendulum oscillations (see Pa@stillation process numerical simulations). The
simplest examples of numerous self-oscillatoryesyst are given hereinafter.

Let us consider the example of the hydraulic setflatory system (see Figure 1.17.) which
is calledTantalus’s vessel. The vessel is filled up withewatt the constant velocity,, .

Once the maximum water level ., is reached the water starts to drain at the utgloc
V. >V, aslong as the minimum water levél, , is reached. Hereupon water draining is

stopped and filling up the vessel up to its maximewe! is started again. The time diagram of wa-
ter level self-excited oscillations is also giverFigure 1.17 on the right.

One can vary the drain speed by either changingridue port diameter or lengthening the
exhaust vertical pipe section. The presented hyidraystem is simultaneously both nonlinear and
parametric because periodically turning on/offdin@n port with a period’, can be considered as

a key nonlinear delay link or periodically step-igaried parameter.

The electronic analog of Tantalus’s vessel is givelRigure 1.18a. The capacitor C, makes
the function of the vessel. Charging the capacst@erformed from the source of voltage U,
through the resistor,. As soon as the threshold voltadg  is reached at the diode/dinistor or con-

trolled thyristor D, the capacitor is dischargewbtigh the resistor, .Becauser, <<T; the capaci-

tor will become discharged and the great back diedistance will be recovered. Low charging the
capacitor is begun again. The voltage-current ctariatic of the diode is given in Figure 1.18c,
whereT, =r,C andT, =r,C are time constants.
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Figure 1.18. Self-excited capacitor voltage oscitians

There are many other mechanical, electrical antirel@c self-oscillatory systems, such as
impact machines, lever clockworks, generators esoapt mechanism and here it is - Stop! Atten-
tion! A rap was heard in the kitchen: the water b@sn boiled in the saucepan and that is its cap
knock - one can watch parametric resonance. Selfegkoscillations set in after one or two min-
utes, those are steady parametric oscillations.

Ordinary swing paradoxes

Would a human been use parametric oscillationgpanaimetric resonance? At present there
may be both “yes” and “no”.

Certainly, visiting gymnastic competitions many pkeowatched performances of master
gymnasts and amazed by their excellent sportingenasf trained bodies. The masters exploit pa-
rametric oscillations in an extremely accurate neguim making exercises at gymnastic apparatus,
such as rings, parallel bars and a horizontal®ayfor example, jumping up to the bar and rallying
the sportsmen throw his body forward, makes ortevorcontrolled forward swings/oscillations and
just turns to handstand by an inversed pendulust.allittle keeping the last position the sportsman
makes several circulations, and breaking away fitwarbar he flies headlong forward, makes
one/double somersault and lands on his legs. Bfelwe!variable parameter/inertia moment and
parametric oscillations were neatly used to reaphastery!

The inertia moment varies following the pendulumgiégn changes to arise parametric oscil-
lations, which lose their stability and proceedewolutions as soon as the oscillation amplitude be
comes higher thanm®4. The revolutions are sustained and developaddsns of the minor peri-
odical variations of inertia moment too.

The most popular and favorite apparatus for chilédned young people is an ordinary swing.
Just what kinds of emotions one can watch at agswinging laugher and crying, fright and joy,
rapture and brave daring! And how! Is there anogit@ce on the Earth where one can also undergo
zero-gravity in gravity conditions? Justly swing\gees are invaluable in training of cosmo-
nauts/astronauts of all generations.
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Figure 1.19. Swing oscillations

The swing parametric oscillations are excited hygakcally moving a swinging man in the
vertical plane (see Figure 1.19), i.e. by perioltjfoghanging the pendulum inertia moment and ef-
fective length. The swing is easiest to be rocketi@parametric oscillation frequency equal/close
to the free oscillation natural frequency of thergywvith a motionless load.

Moreover the frequency of parameter variation otieal load/person movement has to be
two times higher than the oscillation frequencyhaf swing. (Note: if two persons swing, they
squat by turns to provide a two-fold parameter gean the swing oscillation period). The arising
parametric resonance is called the first/main pataoresonance. But the above mentioned para-
metric oscillation excitation conditions are nali sufficient. Another important parametric excita
tion condition is the parameter oscillation phasative to the swing oscillations. Load/person
down movement (by squatting) has to be started@s as the swing reaches its maximum swing
deflection in either direction at the zero anguwialocity of oscillations. In turn the load/persqm u
ward movements or the reductions of pendulum effedength have to be at the zero swing deflec-
tion from vertical position, i.e. at the maximungatar velocity. This requirement of effective
swinging is apparent, for example, from the pendudlescription in the case when the suspension
point vibrations (see Figure 1.3.). The effectieedth just has to be increased in the second quarte
Il and in the fourth quarter 1Y (the acceleratiaragers) of the pendulum oscillation period and it
has to be decreased in the first quarter | andarthird quarter Il (the deceleration quarters)eT
question is absolutely appropriate just now if wy@ai should do to come the swing to a stop ur-
gently in the situation when have swinging you wanump down, and of course it is dangerous
for you to leap down from the swing and you cameath neither hand nor foot of yours to the
ground surface.

In whole it should be noted that such a simple egipa as an ordinary swing is surprising
in respect of an amount of effects and paradoxesrang in the process of parametric oscillations.
First of all, swing oscillations and parametricidations on the whole, have the lower parametric
excitation threshold. So, in the section Ordinaming (see Part 2) the threshold excitation condi-
tion is given as follows:

/12%{::0.55,
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where? =7, + Al € )is the pendulum suspension lenglhs Al/ 7 ,is the relative parameter oscil-

lation amplitude and is a damping coefficient. Because of this thresglaindition it is useful for
young parents to bear in mind the following longrsting event happened to the author, and it re-
minds him that at times parents are unfair to tbleildren without taking notice /

“Once swinging my three-year-old son at a woodemgwnade by my grandfather | made
up my mind that it is high time for the son to sgvimmself. Having explained the methods of wing-
ing | afforded the opportunity for him and impartedinitial deviation to the swings. My boy tried
with all his strength but parametric resonance ma®xcited. After his several unsuccessful at-
tempts | removed him from the swing in an emphaiznner. We got perfectly angry with each
other - And a strong childish crying exploded thense of Shuvalovsky Lake. My wife appeared
immediately to the howl. On occasions like that slas interested in scientific propositions less
than my pedagogic principle, and she was not istecein the latter at all! The son was placed at
the swing, and | was given the exact instructiamghe allowable oscillation amplitude - And | had
to take up the forced oscillations again.” [1].

Surely, I was not right. And just now | give a siifipd principle for practical testing the
threshold excitation condition h#4/N. It means that the swing suspension lengthto be di-

vided by the child’s stature are to be less thdiNlihere N is an amount of the free oscillatiohs o
the swing with a motionless load, and the oscdladiare attained at the minor initial swing devia-
tion. The practic principle is derived under thiédaing assumptions: the h/3 squats (h is the
child’s stature) are allowed, this correspond$oli/6 swing suspension length variation; the swing
frame weight is not taken into account.

The other feature of the swing parametric oscdlaidiffering from those of forced oscilla-
tions is also interesting. There is a maximum pataimexcitation frequency, and parametric reso-
nance is not feasible beyond one. Your author gieeeral of the other interesting parametric oscil-
lation paradoxes. To this purpose let us mentalyecthe swing frame together with a swinging
person by the sphere non-transparent for a winggidetator. The spectator can ask the first para-
doxical question, “Why does the sphere swing aed#tillations do not decay in the conditions
when external forces luck?”

The following paradox involves the frequency/peradgparametric oscillations. The equal-

ity 1- y* = +2A(L+ 2y?)/ it follows the swing parametric oscillation excitaticondition wherg=0
anda is minor (see the section Ordinary swing). Accogdio the above equality the two values of
the relative oscillation frequengy= Q /2w, correspond to each value of the relative variatibn

the effective length =A¢/7,. So y? = 0682and )7 = 152when A = 0.2. The absolute oscilla-
tion frequenciesf = 0682g/ /¢, and «f = 1529/ ¢ ,agree with them. Measuring the pendulum

length, ¢, the wingside spectator can calculate the pendfilequencyaf = g/ ¢ ,by Thomp-

son’s formula taken from the well-known school autum. And the last calculated value coin-
cides with none of both possible and real frequenof swing oscillations. Of course the last para-
dox can be simply explained by the fact that thectdor cannot watch the parameter oscillations
and so he considers the pendulum oscillationseasjfist when the parametric oscillations differ
from those free.

The author gives the next paradox of parametridlasans. In case if swaying the swing,
l.e. its suspension length variation, occurs onag the period, the second parametric resonance is
excited, and the parametric oscillations becomgmngetrical relative to the vertical. The wingside
spectator can note the following paradox: the pemdwsymmetrically swings relative to the verti-
cal-unmatched axes while external forces lack.ddfge the paradox can be explained by the fact
that parametric oscillations are not symmetricatéd ones.

Certainly, the swing merit is great in learninggmaetric oscillations. Why, a notorious
swing is an excellent teaching aid indispensableaming parametric resonance.
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Parametric oscillations and human being

As yet a human being continues only to cognizeetilarged area of parametric oscillation
influence. Thus, in recently studying the specibEsnacroeconomic modeling parametric oscilla-
tions were found in the multicommodity balance mauahal in juncture/market cycles of Gudvin’s
model (See Chechurin L.S. Applied Economic Problenf8).

Just lately scientists came to the conclusion basatlumerous measurements on the para-
metric nature of the impact of different oscillatibelds, such as radiation field, vibration field,
gravitation field, electric field, magnet fieldcebn living organisms [4]. Presumably the impact
can be explained by the “life” water effect [5]. dér the impact of an external oscillatory field the
water dipole becomes ordered in the cells of tiadiorganism. This is resulted in the stable dépol
pair to be formed in the water at the frequencyaétpihalf an external action frequency, and the
dipole group/cluster or region of synchronouslytteting, identical-orientated dipole pairs entails
persistent immunity and therapeutic actions conédyijmto many diseases.

It should be noted that long before the given exgi@ns therapeutic actions were discov-
ered from various devices, such as the VIATON gainay vibrations, the ALMAG, generating
magnetic oscillations, the MAVIT, generating bothrations and oscillations, ultrasonic devices,
etc. It seems that an ordinary and simultaneoustapg swig could fully occupy its fitting place
among health-improving devices like those becauseilag is the unique parametric training device
in which the subsonic oscillations of gravitatiofiald are generated. The training device might be
useful for the elderly to a greater extent thanytheng.

It would be not right to complete this sectiontattpoint and not to mention how paramet-
ric resonance effects on human character andddeconsiderable will-power and resolution are
required from a test-pilot to overcome the aircsaftind flatter. The pilot’s prize is a joy in flgrat
the silence of air space. In other life collisi@i®ng-willed personal qualities are required fram
human been in getting over “life flatter”. All isuoh complex in live and the complexity is often
beyond all mathematical formulations and physicdhmaatical modeling. In order to get out
somewhat and to avoid the flatter in some diffidifdt circumstances the author gives the following
common example.

A cyclist goes by bicycle. A large puddle emergegont of him, and it is not clear for him
whether to stop or go on. He carries out neitheéheftwo - He applies a brake, and his bicycle
drives slowly in the puddle - the puddle gets deepel deeper, and the bicycle speed gets slower
and slower Stop! The cyclist becomes an unstable inversed penduliheaero bicycle speed.

His violent efforts on handling handlebars canredptbecause the oscillations occur in another
plane. And the hard result takes place: the riddrkas bicycle lay in the puddle. Of course, those
are not “a life flatter”, but how look at!
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PART 2. BRIEF GUIDE TO PARAMETRIC OSCILLATION RIDDLES

As appears from the previous description parameggonance can both harm and help. At
the same time in spite of the presence of paramstgitations parametric resonance can both be
excited and not. This part is aimed at understanttia conditions of presence/absence its excita-
tion. In that case a conscious chance of the pefpbstimulation of parametric resonance excita-
tion/absence appears.

Forced oscillations

Ordinary pendulum descriptionThe pendulum oscillations are schematically iHaistd in
Figure 2.1. where the actuating forces are predeagdollows:F, = Psina is the P weight com-
ponent perpendicular to the ar, F, is the environmental resistance force (air/liqiearing
friction forces) proportionate to the angular vépof pendulum turne ; F, is the inertia force

proportionate to the angular acceleration,
I

Figure 2.1. Ordinary pendulum oscillation

The above forces moments as the products of tisegdoy the arm/, relative to the pendu-
lum rotation axis, O, are denoted by, M, , M, . According to the main mechanics law for a
rigid rotation the sum of the moments is zero:
M,+M +M, =0,
Assumesina = a for slight angular deviations. Denote the specifiementsc =M /a,
b=M,/w, a=M_/&, wherea, o, and& are angle, velocity and acceleration, correspaigin

Using the denotations we rewrite the equation enftim
ag(t) +ba(t) +ca(t) =0,
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where &, a,a are the coordinates/variables/time functioady,c are constant parameters. The lin-

ear differential equation for free pendulum ostitias is obtained because an angular acceleration
is the second derivative of the angle with respetime and the angular velocity is the first dariv
tive of the angle with respect to time. The coroggpng operator equation is

(ap® +bp+c)a(t) =0 (1)

where the operator, p, is a first-order derivative p?is that of second-order.

The algebraic equation (1) in which the quadratilypomial in the brackets is called a
characteristic polynomial and the equality

ap® +bp+c=0

is called a characteristic equation. The charatterequation (3) and its roots completely deteemin
the free oscillations at a specified initial demat

We can observe the free oscillations after deftgctihe pendulum to either of the sides and
releasing it (see Figure 1.1.). The oscillationquirT, is found at b=0 by the well-known Thomp-

son’s formula:
a
T = 277\/: )
C

While the parametera,b,c are positive, the pendulum free oscillations hadecayed os-

cillatory manner if the characteristic equationtsoare complex conjugate (see Figure 1.1.), and the
decayed manner is monotone if the characteristiatsan roots are real. The roots are purely
imaginary at b=0 and continuous oscillations oc@te continuous oscillation amplitude is equal

to an initial deflection. Lastly even if one of thlearacteristic equation coefficients/parameters is
negative, the unstable process of free pendulunoma monotonous divergent at the real roots
and it is oscillatory divergent at the complex cmgte roots.

The problem is high-difficult or not feasible at @ define the roots of high (higher than
four) order polynomials concerning complex objectan analytic way. Numerical calculations of
the roots and the transients present no difficailti®ing modern computing technique, but the ob-
tained results are greatly limited to be applidae point is that not so much a transient itselinis
portant for an innovative technology developertagualitative characteristics, such as stabity,
stability factor, nature (oscillatory or monotoniah oscillation damping factor, a maximum ampli-
tude, transient time, etc. Lastly the connectiotheftransient factors with parameters is extraord
nary important for a correct parameters selectford the story is not complete. Very likely, the
main thing is that the definition of mathematicairhulation adequate to a complex object, such as
aircraft, a ship, a bridge, an architectural strestetc, which was constructed on the basis of var
ous physical operating principles of mechanicsstedenechanics, aerodynamic, hydro- and ther-
modynamics demands great professionalism unattaiadlipresent because of considerable differ-
entiation of sciences.

Frequency characteristicdDesigners and engineers try to find a break irderaadlock
through full-scale and physical model testing afistoucted objects in different media and air/liquid
flows and also by exciting and measuring objectllasions using oscillators, vibrators, shakers,
and special instrumentation. In particular avagatither calculated/experimental or experiment-
calculated data (the latter is better) on frequast@racteristics of constructed objects could be
much useful.

Experimental frequency characteristics are recondedforced oscillation mode. A disturb-
ing harmonic action (input action/signal) from angeator/vibrator is applied to one of the chosen
points/input of an electrical circuit/structure.elfixed input oscillation frequency and amplitude
are set. The steady harmonic oscillation amplitut phase are measured at the different object
points/outputs; the their phase is more infrequefte measured. The output-to-set input oscillation
amplitude ratio is the modulus, A, of the frequenbgracteristic. The phase difference between
output oscillations and input ones is the frequest@racteristic phas#,. A the input oscillation
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frequency is changed and the measurements aregmpedagain. The amplitude-phase-frequency
characteristic is obtained in respect of the chaseuat and output as follows:

A(w) :flT () = by ~ .

The more complex the object, the more input anguytoints, the greater is the family of
the obtained frequency characteristics. Usuallyiripat signal phase is assumed to be zero, i.e. the
relative shift between output and input signalsasnted. If that is so, the measured output signal
phase is concurrently the frequency charactenstased(w) = @, (w )

The frequency characteristics can be calculatethégteady forced oscillation equation
which results from the free oscillation operatouaipn (1) by adding the forcing harmonic oscilla-
tions F, ¢) to its left side:

(@ +bp+c)a(t) = F,(t).

The forcing oscillations are assumed tdphét) = A, sinat . Because the equation is linear
the steady forced pendulum oscillations are osdrae form and frequency,, but differ in an
amplitude and a phase, i&(t) = A, Sin(at +¢ . Hence, the steady forced oscillation equation is
as follows:

(ap® +bp +C)A,, sin(@t +¢ ) = A, sinat.

For clearness the symbolic method well-known frbepotetical electrical engineering is ap-
plied here. According to that method the single-ponent harmonic signahsin(«t + @) is repre-
sented in the complex plane by the vector, A, ledat the angle to the positive real line (see

Figure 2.2.).
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Figure 2.2. Complex plane of frequency characterigt

In Figure 2.2. the point A having the initial phage rotates round the origin of coordinates
to change the phadg,at the angular velocitg becaused = «t . And the vector, A, circumscribes
the circle Ae!“*? = 4e'*e!? in the complex plane. After replacing the sinections by the com-
plex exponentials function the equation of steamgdd oscillation takes the form when ¢=j

[ap2 +bp+ c]p:ijbutej“‘“m =A e,
After canceling both sides by exgf) the equation comes to the equality form

A,.e’? = i
o ap® +bp+c

The fractionally rational functioWV(p) = (ap® +bp +c) " is called the transfer pendulum
function. Because the transfer function denominiatarcharacteristic polynomial the function de-

} A @
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fines all the oscillation object/pendulum featureserms of input and output coordinates chosen. It
is important for us that the transfer functiorthié operator p is substituted far, fforms the calcu-
lated amplitude-phase-frequency characteristia\i) the complex plane:
W(j@)=——y

a(jw)” +b(jw) +c

As any complex function, the amplitude-phase-freqyecharacteristic can be written in the
two forms - complex and exponential. The comptaxifincludes real and imaginary parts as fol-
lows:

W(ja) =Re(@) + jIm(a),
where Rep)=ReW(jn) is a real frequency characteristic anddlmW(jo) is called an imagi-
nary one. It was mentioned above the exponential fo view of the description of recording the
experimental frequency characteristics:
oy 60 : Im(a)

W(jw) = Alwe W(jaw)arcty Re@)
whereA(w) ande(w) are both amplitude and phase frequency charatitsti Thus, it is resulted
from the equality (2) that the output oscillatidmage dependence on the frequency is the phase-
frequency object characteristic, and the outpuillaon amplitude is equal to the amplitude-phase
characteristic modulus multiplied by the input daton amplitude.

0= 00 Rel(jo)

Figure 2.3. Amplitude-phase-frequency characteristi of pendulum

The amplitude-phase-frequency characteristic opthreulum is given in Figure 2.3. The
characteristic begins at the poiat' (0=0) of the positive real semiaxis, and it erfds— ) at the
origin after passing through the both fourth anddtquadrants. The characteristic has its maximum
distance to the origin where the modulus is maxinatithe point of resonance frequency,
within the fourth quadrant:

b2
2a®

_c
° a

The phase characteristic changes from zero to ;180the vectorp, rotates clockwisat
the =t rad angle as the frequency varies from zero faitgf

For an ideal pendulum b=0, i.e. there is no odmiledamping, and the amplitude-frequency
characteristic modulus goes to infinity and thegghftequency characteristic jumps from zerosto —

at the resonance frequenay =+/c/a . For the purpose of lumping oscillatory objecta amall b

value it is useful to estimate the resonance frequasw, = +/c/a and the maximum modulus as
A =1/bw, with phase(w,) = -7 /2at the imaginary negative semiaxis poisj,
We, hereinafter, shall not calculate and plot amgk-phase-frequency characteristics, and

go beyond their qualitative characteristic demaii&ins. Their accurately plotting is easy by either
experimental data or a transfer function usingMlaglab computing medium.
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We return to the forced oscillations. Substituiimghe equation (2) p oty we get the fre-
guency equation
1

a(ja)® +b(ja) +c

Any (@) =

A, =W(JW)A,

or
Aout (a)) e]¢(w) :W(JCU) .

in

So the amplitude-phase-frequency characteristicutngds the ratio of the forced oscilla-
tion amplitude to the disturbing force amplitudéeTorced oscillation phase is equal to the fre-
guency characteristic phase because the inputligstoe phase is assumed to be zero. In essence,
the physical meaning of frequency characteriséis in this. If you know the amplitude-phase-
frequency characteristic, you can define the fomsadllation amplitude and phase for each fre-
guency,m, under the rated input oscillation amplitude, atsb find the necessary input oscillation
amplitude on the basis of the required output one.

In conclusion it should be made one important rémmiaealing with forced oscillations in a
linear stationary system we had in view that thetesy is stable, i.e. its zero equilibrium is stable
Otherwise forced oscillations practically lack arahnot be observed. In this section we could do
along without the above remark since the stableylem was considered. Moreover all the sys-
tems described by a characteristic quadratic wotitye coefficients are stable too. The stated
definitions are also true for systems of higherosdIn such case the remark is witty. Of numerous
well-known stability criterions of linear statioryasystems Nyquist's amplitude-phase-frequency
criterion (Nyquist’s criterion) is needed in thether explanations. According to the Nyquist’s cri-
terion a system is stable if its complex frequecitgracteristic W(p) does not cover the (-1,j0)
negative real semiaxis point.

We briefly sum up at the end of the section. Tlegdiency characteristic completely defines
the forced oscillation mode in a linear stationdyyamic system. In a system like that forced oscil-
lations occur at any input oscillation amplitudel érave no an excitation threshold. The forced
symmetrical oscillation frequency coincides witle gymmetrical input one.

Parametric oscillations

Amplitude-phase characteristic of periodic parameteet some variable parameter,n-
cludes the constant componegt,and the variable componenft)>0, and sov(t) = v, +v, t()

Meanwhile, our interest is only the variable compan8o the constant component is not taken into
account and as a whol€) is considered to be positivg()>0). Therefore the constant component

IS positive too ¢, >|v, t( )). Assume a harmonic parameter variation rule a@frquencys, i.e.
v,(t) =v,sinQ(t-1),
wherert is the phase shift indicating a certain paramedeation phase/ = Qr relative to the pe-
riodic input coordinate change, t (at the frequencyy, and the amplitude, A:
X, (t) = Asinat .
Determine a transfer coefficient for the first hamt parameter.
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V1(9=V1sin(Qt-1)

— =
Xin =Asinwt Xout (1

Figure 2.4. Periodically nonstationary parameter

Because the parameter is a proportionality faaptHe input coordinate, the output coordi-
nate is the product of the two as seen in Figute 2.

Xout (t) = Av; Sin(Qt —¢/)sinat .

Express the product of the sines in the form:

Xou (1) = Av, SiN(Qt — ¢ )sinat = Av, sin(Qt —¢) cosedt — 77/ 2) =
=05AV{sin[(Q-w)t-y+ m2]+sin[(Q+wt -y —m 2]} .

From here it follows that there are two harmoninstuents at such modulator/product
output and those are a sum and a difference dfeéqeencies. There is an only case, while the pa-
rameter variation frequency is twice as high ascttmdinate oscillation frequenc{2w), the os-
cillations agree with the input coordinate frequeadse at the modulator output. Our interest is
just the case when the output coordinate incluldesitsto-frequency harmonic input signal con-
stituent, see the first summand, and the thisefr@quency harmonic input signal constituent, see
the second summand.

Applying the symbolic harmonic signal notation agaie determine the complex input co-
ordinate transfer coefficient by the first harmomodulator without taking into account the third
harmonic which is minor as a rule. Write down dkfes:

><in (Jw) = Aei&»t '
X, (j@) = 0.5AY, ¥+ = 05Ay e “e Wel™'?,

Their ratio is the amplitude-phase characterigtithe harmonically-varied parame-
ter/modulator with respect tbe first harmonic. Because exygg)=j in the complex plane we ob-
tain

H — Xout(jw) — H -jy
W(jy) X (jo) 05jv,e'?. 3)

Thus, the transfer coefficient of double frequernayied parameter is equalM@?2 with re-
spect to the modulus, whegis the first harmonic parameter variation amplitutles significant
that the transfer coefficient does not depend enrtput amplitude, A, and the frequenay,but the
parameter oscillation phase and the coordinate fmamental difference between the parameters
is that the time-varied parameter shifts an indilation phase at the output at the arbitraryl@ng
v, depending on the phase shift between the osoilabf parameter and input coordinate. In the
complex plane the amplitude-phase characteristigy)\4t the arbitrary phase shiit, is av,/2 cir-
cle centered at the origin.

Parametric resonancélNe consider the illustration of parametric resa@a@xcitation by
the elementary LRC-oscillatory circuit (see Figlirgl.).

In a free-flowing mode without external sourcegpoiver and oscillations the identical elec-
tric current flows through all the three circuiemients, and the total three-element voltage is zero
The L-inductor voltage is proportional to the cutreate of change. The C-capacitor voltage is ac-
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cumulated as the current flows in time in proportio the total current. The R-resistor voltage is
proportionate to the current. The zero three-elémeltage condition can be expressed in the form
Lﬂ+c-1jidt+ Ri =0.
dt
In an operator form dividing by the operator, piresponds to integrating. So
Lpi+— +Ri =0
Cp

or
Lp?i + Rpi +C7'i =0.
The equation matches with the pendulum equatipbytype and it can be expressed in the
same general view:
(ap® +bp+o)x(t) = O, (4)
where x(t) =a(t) for a pendulum and x(t) = i(t) for a RLC-cirtuit is important to note in terms of
the two models presented in the above examplesht@anitial parameters, m, R, L, C can be
parts of the combined parameters a, b, c in tlaipus combinations. Therefore either one or sev-
eral the combined parameters can be temporaryblesia
For the purpose of significant beginning we asstimethe parameter, c, is harmonically
variable as
c(t) =c, +¢;sinQt,
wherec, > c; as it was mentioned above. According to (3) thapmlex parameter transfer coeffi-
cientc(t) takes the form
W(jg)=c, +05jce™.
Removing the time coordinate x(t) and replacingghemmeter by the coefficient Wij we
convert (16) to the complex frequency plane bystiestitutionp=jm:

a(jw)? +bjw+c,=-05jce™’?.
Inverting the left and right sides we get the emumatin its final form:

: 1 2
W(jw) = ————— =-—el¥,
a(jo)” thjw+c, g
This is the parametric resonance excitation camaliéit the parameter oscillation frequency
Q=20. It is not difficult to define the excitation caitidn in its analytic form if one equates the

moduluses in the left and right sides with eacleoth
12

(o —ac?)? + (ba)?] ** = 2/c,.
Nevertheless a graphic illustration of the exaattondition in the complex plane of the
object amplitude-phase-frequency characteristimgrtant, namely, parametric resonance is ex-
cited in the case when the amplitude-phase-frequemaracteristic W) leaves the 2/ central

circle at the frequencies=Q/2.

The last condition illustration is given in Fig2es. concerning the frequency characteristic
W(jw) of the oscillatory both pendulum and electricuit. Here the contracted notations are used
to denote the real part R=ReW]jand the imaginary part I=ImW{) of the axes.

As a rule the frequency characteristic leaves #rarpetric resonance circle at the resonance
frequencies corresponding to the maximum charati@modulus. The critical circle radius and the
allowable parameter oscillation amplitude are taéirmined by those resonance frequencies.




Figure 2.5. Parametric resonance excitation condibin

If the parametric resonance excitation conditiomét, a linear dynamic system becomes
unstable and its oscillations grow up unlimitedifre parametric resonance excitation condition
obtained specifies the frequency doméin,w, where the stability factor with respect to the

modulus is zero/negative

And what about the stability factor with respecttphase? Where does it disappear? It is
not difficult to answer the last question. Sinceréhis no oscillation synchronization of the parame
ter itself and its input coordinate in a periodigaonstationary dynamic system, any phaseye-
tween the parameter and the parameter input caisdgan be settled within the range from 0 to
360 degrees. In this case as it follows from theldaode-frequency characteristic of variable pa-
rameter the same phasg,is settled between the input and output paranostaiations. It is inter-
esting that in the periodically nonstationary dymagsystem self-synchronization occurs and the
phasey, equal or exceeding the object stability factorllphase is settled. In other words, if
modul margin of stability is negative, periodicarameter insets negative phase shift equal to sta-
bility phase margin. So parametric resonance igexkc

The special case is when the frequency charaadtenisgjinates outside the circle. In that
case the parameter variation amplitude at low #eqies is higher than the constant parameter
component, and instead of parametric resonandesbef free oscillation stability occurs in the
system in the segments whe(§<0.

Parametric oscillation typedJp to here we considered periodically nonstatipisgstems
consisting a single-frequency parameter. The latger harmonically changed at the frequelsty,
Simultaneously the parametric resonance excitaioomlition at the frequenay=/2 was deduced.
The sustained coordinate parametric oscillatiortb widoubled variation parameter frequency are
called the main/first parametric resonance present&igure 1.4. By the way, sometimes this kind
of resonance is called a fist subharmonic resonaea rule the first parametric resonance oscilla-
tions have an excitation threshold, which is goedrhy an inverse circle radius of the first para-

metric resonance. Becaude™ (jy) = ie‘””the excitation threshold follows the equality

W(ja)| =2/c,.



Figure 2.6. Second parametric resonance oscillation

The undamped coordinate oscillations can be obdeat/the frequency equal to the parame-
ter variation frequency=Q. These are the second parametric resonance tisoland their fre-
guency coincides with a forced oscillation frequenkhe second parametric resonance oscillations
have an excitation threshold, which most often eslsghat of the first resonance, and they are un-
symmetrical because they include the constant itoest (see Figure 2.6.). The inverse circle ra-
dius of the second parametric resonance is moretkizd of the first resonance. Which of the two

parametric resonances is excited in the systemaméhnatural frequencyy,, depends on the prox-
imity of parameter oscillation frequency to ondlw# following approximationsQ = 2a, and
Q=w,.

In case of the multifrequency parameter variatibremthere are several harmonics, either
first or second parametric resonance can be exattdte frequency one of the harmonics depend-
ing on the object resonance frequency. These aomaaces of higher orders, n, (third, fourth, etc.)
at the frequencyp=nQ/2 (n is a number of a higher harmonic). Essentthkese are either first or
second parametric resonances at a nth harmonigdiney.

In complex systems characterized by several natiegliencies and particularly in distrib-
uted ones the parametric oscillations can be ekeitseveral frequencies. Those are so-called

combination parametric oscillations. The subseqag&tement does not go beyond the first para-
metric resonance.

Examples

Let us consider, first, two oppositely dual probsewith respect of parametric resonance: 1)
parametric equilibrium instability of an ideal petham and 2) parametric stabilization of unstable
pendulum equilibrium.

Example 1.The aim is to swing the ordinary pendulum (seaifd@.1.) using its suspen-
sion point oscillations. While the suspension postillates at the amplituda,, and the frequency,
Q, in the vertical plane a periodically-changed #&ed¢ion and the corresponding force

maQ? sinQt acting along the mg-gravity line are periodicattyparted (added/subtracted) to the
pendulum. In the ideal case, when environmentataexe is missed and the inertia moment

J =ml?, the pendulum oscillation operator equation takesform
ml?p2a(t) + (mg - maQ?sinQt)la(t) =0
or
g-aQ?sinQt
I

pa(t) + a(t) =0.
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Eliminate time, t, from the equation by substitgtthe harmonically-changed parameter for
its complex amplitude-phase circle equation and tarthe frequency plane by replacing @4 as
applied to the first parametric resonance:

. Q, g_.aQ* ,
( 2) T

The obtained equality (21) is just suitable forlgniag in the plane of reverse frequency
characteristic. Nevertheless turn to the planedihary object frequency characteristic by revers-
ing the left and the right sides of this equalsyfallows:

1 -4 e )
(jQ/2)*+g/l jaQ

The left side of (5) is the amplitude-phase-frequyecharacteristic of the ideal pendulum.

This real characteristic originate®<0) at the point (d) ™of the positive real semiaxis. It moves to

infinity ( + o) along the positive line at the resonance frequedé2 = ), =,/g/l asQ s in-

creased. There is a characteristic discontinugsnfr-co to — oo at that resonance frequency, and
then it reverts to the origin along the negativad semiaxis. This implies that there are two irgers
tions (Q, /2,Q, /2) of the frequency characteristic with the circlee@verse amplitude-phase pa-
rameter characteristic (see Figure 2.7).

As opposed to complex objects, in this simple eXartige analytical solution is simpler
than the graphic one. The first parametric resoa@&xcitation/parametric equilibrium pendulum
instability condition can be deduced by equatiregritoduluss in the sides of the direct (5)/ reverse
equality with each other:

az|(2g/Q*)-1/2.
This implies the following condition

a2—1—4£°2
2 "0

and the boundary (upper/low) resonance excitatiequiencies

Q
2” =w,A+2a/l)"%,a<l/2.
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Figure 2.7. Parametric oscillation excitation condion of ideal pendulum

Example 2.Consider the inverse problem of unstable equilioratabilizing of an ideal in-
versed pendulum in respect of Kapitza's penduluth tie help of its rotation axis vibrations.
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The inversed pendulum equations for the case obtily its rotation axis differ from those
of an ordinary sustained pendulum just in a g-aredéibn sign. Therefore we write the frequency
parametric resonance excitation condition(5) dev:

1 2l i,
= e'r.
(jQ12%2-g/l  jaQ?
From here implies the first parametric resonan@@&ton condition in the form

aQ<|£+2—.
2 Q

It is the first stabilization condition of the iexsed pendulum.

The second condition also results from the sameadpreequation for a reversed pendulum

, g-aQ?sinQt
P |
For the case of the second parametric resonancgQ@tjo frequency equation follows:
(iIQ)° -9/l =W,(j¢),

whereW, (] ¢) is the circle-shaped amplitude-phase charactenstihe same variable parameter

=0

(aQ? /1)sinQt with respect to the second parametric resonandkatisns. The rough assessment of the circle ra-
dius is
W, (j@)| = 2(aQ? /1)*.

Substituting rough assessment into the frequenagtan from modulus equality we define the reduced
second stabilization condition

aQ >./2gl .

Combining the both conditions we obtain the welbkm stability conditions in respect of
the unstable inversed pendulum equilibrium:

V2dl caQ<,29
2 Q

The two examples given illustrate the wonderfulipbof parametric resonance to add di-
rectly opposite properties to an oscillation ohject

The strict reader has the right to ask, “What hese trite-known results for? In reply one
can give the two reasons unrelated with each oFest, both examples show that it is easy to get
the results. Secondly, why would not you designefample, a new wall electromechanical clock
instead of various electronic quartz clocks in ®whboth new parametric and forgotten old pendu-
lum principles? A pendulum provides a uniform rate clock and parametric resonance excites
oscillations. Such clock is able of ornamenting baysing and, above all, the considerable virtual
therapeutic result: rhythmic oscillations of a hegaendulum inspire its holders with both regular
and tranquil life.

In the following examples the qualitative analysigarametric resonance excitation ability
is given in a general form and without a connectidh a physical object action with regard to a
second order oscillatory member. The skills in pcat amplitude-phase-frequency characteristic
location assessment are significant in this malteall the cases the free oscillation equationg4)
original. The case when the coefficient, c, is aalde parameter, i.et) = c(t) =c, +c, t ( Wwas

investigated in the section Parametric oscillations

Example 3.Assume that the*held parameter is a periodically variable paramegr
v(t) = a(t) =a, +a,(t) =a, +a,sinQt .
As hereinbefore replacing the time-dependent pathé amplitude-phase characteristic
W(y) = 05ja,e” ¥ according to (3) and transposing that to the rijti of (4) we derive

a,p? +bp+c=-05p?jae?.
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The following first parametric resonance excitatommdition is derived as a result of the in-

version of both sides of the equality and the sul®n p=jo=jQ/2:
(jw)? _ 2 e iv
8 (ja)* +b(jo) +c  ja

The right side is the inverse parametric resoaamncle 1/ W(y) and its left side is the am-
plitude-phase-frequency characteristic 8 (jRefer to Figure 2.5 to assess the frequencyachar
istic location in the complex plane. The charastarishown in Figure 2.5. differs from that in Fig-
ure 2.8. in the numerator only. Multiplication bktfrequency characteristic by gorresponds to
its +n/2 rad counterclockwise turn and replacement obtigein ®=0 to the coordinate origin. The
frequency characteristic is multiplied hy fjwo times as compared with the curve in Figure 05
its rotation angle isarad. Thus originating from the coordinate oridie tlerived frequency char-
acteristic curve passes throughout the both leftragiht upper quadrants and ends { «) at the
point 1/ a, of the real positive axis (see Figure 2.8.).

I
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Figure 2.8. Example of parametric resonance excitan condition

This means that there are two points of intersedietween the frequency characteristic and
the inverse resonance circle: 1) at the sufficjegteata, < a, and 2) at the maximum frequency

characteristic maxWg)>1/a,, of the oscillatory object. The two intersectiavirgs, ), w,, define

the frequency rang®, = 2w;,Q, = 2w, in which the first parametric resonance is excited

It could be seemed that parametric resonance @eutdalized in the oscillation object con-
taining any sufficiently great periodic parametguch is not the case. The following example is an
illustration of the last statement.

Example 4. Assume that the b coefficient of the coordinateaten rate in the oscillation
object equation (4) is a periodic variable param@tkis results in the resonance excitation condi-
tion different from that of the previous case:

ij = —i w4 .
a(jw)® +by(ja)+c  jb
In this case the frequency characteristic corredipgnto the equation (3) turns counter-

clockwise at ther/2 rad angle. Originating from the coordinate oritlie frequency characteristic
passes through both first and fourth quadrantdtaetts at the coordinate origin again (see Figure

2.9.). Moreover the maximum frequency characterisiodulus is as mash &sb,, and this value

is reached at the positive real semiaxis pointegri¢h the natural frequency @f, =+vc/a. As a
purely mathematical matter parametric resonancere@b, > 2b, and the variable parameter b(t)
periodically takes negative values. In real obj@tisontrast to coordinates, negative physical pa-
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rameters, such as length, mass, inductance, capassistance, etc, are found too uncommon. So
assuming the physical restriction b(t)>0 we coneltltht parametric resonance cannot be excited
during the parameter oscillations b(t).

vy | N
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=

Figure 2.9. Frequency characteristic of Example 4

In mechanics and electronics the lack of paramestillation excitation under the resis-
tance variations of pendulum environment and bgarns explained from the point of view of en-
ergy just as in the case of resistance fluctuatio@sRLC-circuit. Namely both environmental and
electrical resistances are not energy carrierdtaygcannot store energy. Evidently that is right a
though there are counter-examples as regards @& coonplex objects. But analyzing the system
equation in this example we in no way connectecethetion with a power oscillation aspect. And
what is the matter? “Who” is guilty? Where and vadoes parametric resonance disappear? There is
a simple explanation as follows: increasing the lgoge, b, , and thereby decreasing the radius of

the inverse amplitude-phase characterific (j¢ , wg simultaneously have to enlarge the con-
stant constituenty, by virtue of b(t)>0, which leads to the diminutiohthe maximum frequency

characteristic modulus. So the intersection of isgemplitude-phase characteristic with frequency
characteristic is not possible. In other wordsadbeditionsb(t) =b, +b, sinQt > Oandb, = 2b,

are not compatible with each other.

Add the concluding remark to the examples. In msituations an alternating parameter is
concurrently included in several coefficients af thscillatory object equation. That takes place
with respect to so-called synchronous multiparaimegrstems. An analysis of the latter is similar to
that in the considered examples in which the fraqueharacteristics are altered. Thus, If any al-

ternating parametg(t)= 5, + B, sin Qt, for instance, is simultaneously included in botlordinate
and first coordinate derivative in a linear mantieg, free oscillation operator equation takes the
form:
ap® +bB(t)p+cB(t) =0.
Then the frequency parametric resonance excitabodition is
b(ja)+c 2 oi¥

a(je)? +bBy(jw) +cBy  iB,

wheren=0Q/2 for the first parametric resonance.
The final example relating to a swing is given belo

Ordinary swing

Assume an ordinary swing as an illustrative and-kebwn example of the application of
parametric oscillations. The mathematical formolaf the latter differs a little from that of an
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ordinary pendulum. Both the pendulum with an oatillg suspension point and the swing with an
oscillating effective suspension length are pedallly unstable oscillatory/parametric systems. That
is why the first rough description approximatiogaeding an ideal swing can be derived from the
ideal pendulum equation (see Example 1) after reémgahe suspension oscillationsat 0 and
substituting the constant length for the varialfle ¢(t) ):

mil 2 (t) p2a(t) + mgl (Ha(t) =0.

Assuming, first, a harmonic rule of the length a#ian /(t) = 7, + ¢, SinQt we pass to the

first parametric resonance oscillation excitationdition at the frequenay=Q/2. Then
lop? +g=-p? e,
2]
Hence the frequency resonance excitation condatiprjo takes the form
l9-to0f| =t /2.
And taking into account the natural frequeng§/= g/ ¢, and denoting/ = w/ w,, A =¢,11,:
AN
y?

So in case of an ideal swing the parametric osidiieexcitation at the natural frequency

(y=1) occurs without a threshold (= ).0

Let us consider now the effective pendulum lengthp, which is close to practice, by the
example of more rigorous pendulum model description

The above swing formulation was derived in assurttiag the oscillation amplitude of pen-
dulum length oscillations is small, when<< 7, and so small inertia moment variations follow the
same effective pendulum length variations. Otheswtiss necessary to take into account that the
pendulum moment inertia variatiodgt) = ml* t ¢gsult in proportional variations of the angular

velocity ¢ =w. The relation is visually demonstrated by mastéfggure skating beautifying final
parts of their performances with their ice-rotasiomitially taking off the figure skater shows a

slow rotation under a great inertia moment whilartees apart his hands and legs and sags. Then
he, diminishing inertia moment, abruptly brings leigs and hands (overhead) together, thereby he
effectively augments his rotation velocity. Hisaton is ended with restraddling his hands and
legs.

A>2

So the more rigorous formulation of a swing hasftine:
I pal) { N )} pa(t) + mal ()a(t) =0.

Here the multiplier in the square brackets is #te of inertia moment variation, which gen-
erates corresponding change in the angular velpea(ty.

Substituting J(t) of th® (t) and dividing the equation by the constant paramateand the coordinatet) we
obtain the following operator equation:

12(t) p { 2“}p+gl(t) 0.

Assume a step-wise law of the effective pendulumgtle variation (see Figure 2.10). (Sometimes stuiath &f

L

0 e ~t

Figure 2.10. Step-wise law of effective pendulumngth variation
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excitation is called as a blowing excitation).
As follows from Figure 2.10.

[(t) =1,@+ AsgnsinQt),
12(t) =12 L+ A% + 2AsgnsinQt) .

Single out the first/main harmonic from the lawsparameter variations. The first harmonic ampktusl
higher than the step-wise oscillation amplitudeyy a factor of 4. So

1(t) =1,[1+ (42 / m)sinQt],
12(t) = 12|L+ (441 m)? + (871 )sinQt].
Then

cosQt .

di*w)] _ - 810

dt °
Substituting these variable parameters in the opeeguation convert it to the frequency plate églacingp

by jo andQ by 2w. Substituting the time functions for their amptiesphase equivalensinQt — —e '# /2] and

cosQt — e !? /2 the frequency equality is derived as follows:
(jy @+ F - ey s jo % eiv +w§(1—?—/]e‘”’) =0.
jr T jmr

We displace the exponential terms to the right sidae equality and equate the moduluss of ledt rght
parts. Just now we have the first parametric rasomaxcitation condition in the form:

-2 @+ 1) =%(1+ 2y%),

where A =0, 10, y=wlw,, & =gl/,.
It is worth reminding in conclusion that the dedvyearametric resonance excitation condition isfitisé pa-

rametric resonance excitation condition of an idéhg, i.e. when the free swing oscillations asatmuous. Of
course, environmental/air resistance and suspeffrition exist in respect of a real swing. Thossistance forces are

taken into account through adding tB¢ M term to the square brackets in the operator emuafeproducing the
above operator equation transformations we gepanemetric resonance excitation condition for & s@éng in the
form:

\1—y2<1+A2>+jyﬂ=%<1+2y2), £=3Imika,.

In case of the oscillations close to natural onkeswy C1 we have

A —?/]2 +&%=0.
The following simple rough excitation condition dag written whe<1 andA* > A*:
Az gf ~ 05¢.

The threshold condition is applied to explain plagametric resonance in the swing pre-
sented in Part 1.

Elusive avengers

So far we considered forced oscillations in lingationary systems and parametric oscilla-
tions in linear periodically nonstationary systeihsvas noted that the parametric resonance excita-
tion in the second kind of systems results in @giiim instability of a stable oscillatory objectch
also can stabilize an unstable object.

It should be noted that linear dynamic objects syglems are, as a rule, the results of ideal-
izing. In technical practice dynamic objects staytwith pendulums, swings, inductors, capacitors,
let alone complex aerohydrodymanic processesastqredominantly nonlinear.

In nonlinear stationary dynamic systems parametepgnd on coordinates. Calculations of
such systems even not complicated are extremetyi@ais, and they are generally realizable by
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only numerical methods. Simultaneously paramesillations and parametric resonance are very
important in the main matter of oscillatory stailbf nonlinear systems. The lack of notice to that
matter is strictly penalized by “elusive avengersich as various parametric resonances. The term
“elusive” means that parametric resonances arecict@nt with stable object oscillations and so
they cannot be observed. This problem is concehneeginafter.

Forced oscillations of nonlinear systemAssume the following formulation of a simplest
nonlinear dynamic system in which a free membarnsnlinear function, i.e.

ap?x(t) +bpx(t) +ex(t) + Fx(1)] = x;, (1) -

As usual we shall solve the equation in the fotft) = Asin(at — @) ,where

x,,(t) = A, sinat is a harmonic perturbation. In this case the me@lr functionF[ Asin(at — ¢)] is

periodical and it can be presented as the Fowrgess Replacing the nonlinear function of periodic
argument by the first harmonic & amplitude we write down as follows:

F[x(t)] = F[Asin(at — ¢)] = A sin(at — @) =%A(Sinwt - @) =W, (4)x(t),

whereW, (4) = 4,/ 4 is a harmonic linearization coefficient or nonanelement transfer coeffi-

cient with respect to the first harmonic. This ¢mént can be either calculated or determined
graphically. Moreover it can be determined on tasidof calculation tables containing the coeffi-
cients for many types of nonlinear functions. Gahgithe harmonic linearization coefficient is a
complex value. Its real and imaginary parts careddpmn not only the amplitudgt) but fre-
guency, a constant constituent, and coordinateateres. In a simplest way the harmonic lineariza-
tion coefficient is a real function of the ampligydA, as regards the symmetrical single-valued
function F(x).

Turn from the equation to its frequency form uding harmonic linearization coefficient,
the exponential notation of harmonic coordinates,pecjo as follows:

W™ (ja) =[-W, (A)] =T”e”’, (6)

whereW ™ (jw) = a(jw)® +b(jw) + c. In the plane of the reverse amplitude-phase-rqu char-
acteristicW 7 (jw) = R,(w) + jl ,(w) the frequency equation of forced nonlinear systenillations

has the simple graphical interpretation (see Figuté.). The harmonic linearization coefficient
values are along the negative real semiaxis fdhalpositive values, A. The difference modulus of
the vectors—W, (A )and W(jp) is 4,,/ 4 then. It follows from the modulus balance in bsitles

that

Ay = AR () +W, (A +1 2 () .

Io

W, _B \(01

/_ NI R
\d: 4 4y ,
R

| W {je)
|
/A

Figure 2.11. Forced oscillation frequency conditios
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The conditiondA,, /dA=0 gives the circle equation in the form:
[Ry (@) + Y, (A)]* + 15 () =i (A)
And the circle radius is

AldW, (A)

V(A =— : 7
M =2 (7)
And the circle center shift along the real axiasgollows:
Adw, (A
Vy(A) =W, (A) + —— : 8
o(A) =W, (A) 2 dA (8)

BecausedA,, /dA=0 is realized at the vertical tangent points efamplitude curveA(A,,, )

the forced oscillation jumps occur at those pofa&e Figure 2.12.). For the reason given above
those jumps were initially called step-wise resaaarn reality the derived circle is that of thesfi
parametric resonance, which the reader will gé&ntow a little later. The circle passes through the
point —W, (A) and has its center on the leftd¥V, (A)/dA> abd the center is on the right

if dW,(A)/dA<0. By the way, it follows from this situation thauet self-oscillation excitation con-
dition (6) coincides with the boundary of paranetasonance excitation at, = (6ee Section 1,
Self-excited oscillation or parametric oscillatipn?

[
i1

Figure 2.12. Step-wise resonance illustration

Thus, if the frequency, of forced oscillations at the reversed amplitpti@se-frequency
characteristic falls into the parametric resonasicde, the forced oscillations lose their stakilit

According to the general postulate laid by A.M. pyaov to the basis of stability theory the
motion x(t) of the dynamic system

Q(P)x(1)+G(p)Fx(1)]=S(p)y(t)

(where Q,G,S are polynomials of the operatoF, is a nonlinear coordinate functiot) is an ex-
ternal action/perturbation) is stable if the zegaiBbrium state is stable in respect of the linggs-
tem described by the following small perturbatiguation:

Apax®) +6() X axy =0,

x=x(t)

F(x) . - . . .
Where—d d( ) is the transfer coefficient of incrememt(t). If we substitute the coordinate, x, for
X
the time functiorx(t), this coefficient becomes the time-varying paeger v(t). When the motion is
periodic, i.e. x(t)=Asimt, the parameter/transfer coefficient is periodu. tits oscillation period is
equal to halthe forced motion period, i.elw, for the odd-symmetrical nonlinear functions

F(—x) =-F(x).
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So the incremental equation for periodic forcedlladions is the formulation of linear peri-
odically nonstationary system losing its stabifisysoon as the parametric resonance is excited. The
parameter variation frequenf=2m, and as long as the first parametric resonancditwom is met
the frequency of parametric oscillations indefilyitecreasing in a nonlinear system is congruent
with that of forced oscillations.

Having blended, both forced and parametric osmltat become indistinguishable and thus
parametric oscillations cannot be singled out dmkoved. Only the jumps of forced oscillation
phase and amplitude or step-wise resonance areveldsdherein lays parametric resonance non-
detectability. Well, the “penalty” for taking indidient notice to parametric resonance is not long
coming. The conclusion that step-wise resonantméed oscillation instability initiated by para-
metric oscillation excitation was first provided biyl. Smirnova sixty years ago [6].

The above-derived center (8)(A ajd the radius (A, (A ®f the parametric resonance
circle depend on the forced oscillation amplitulleof a nonlinear system, and the parametric
resonance excitation conditions depend on the dooseillation amplitude, A, and the parametric
excitation phasey, as follows:

W(AY) =V, (A) -V, (Ae™”.
A more rigorous proof can be found in [2,3]. Comsithe following example.

“Buoy” parametric resonanceThe case in point is a strange behavior of a ey in a
strong current of the Neva in the region of thentwesky rapids (see Part 1). We apply the ordinary
pendulum equation with damping, for an waterproof cylinder tied to a cable andmearged (as

the result of &pring water flood) in the form:
Ipa +&a +[M,+ M (a)] =0,
where M, is an initial buoyancy moment @&t0, AM(o) is a buoyancy moment increment con-

cerned with an immersion at the deviatianBy unfolding the moments the equation can betevnrit
in the form:

Jp’a + &a +[(F, - P)¢ + AF (a)/]sina =0,
where F, is an initial buoyancy force a =0, AF (a) buoyancy force increment owing to oscilla-
tions of a cylindrical buoy submerged,is a cable length, P — buoy weight. We write thiender
parameters: s (a base ard®),(an initial immersion value), d (specific weigtittbe liquid), and
Ah(a) =/¢(@-cosa) is an immersion value under deviations. Then
Jp’a + &a + ([(sh,d —mg)sina + sd/ (1 - cosa)sina] = 0.
Denotingb=&™, ¢, =¢J*(sh,d -mg), ¢, =J'sd¢* we have the following equation
p’a +bpa +c, sina +c,(sina -0,5sin2a) = 0.

By linearizing the nonlinear equation upddfor ‘a > ‘03‘ we derive the approximate

equation as follows:
3

pza+bpa+coa+c1% =0.
The approximate equation is known as the Duffingagign. The tabular format of the har-
monic linearization coefficient for a nonlinear @iion is as follows:
W, (A) = 3c,A% /8.
Then the radius and the shift of the parametriomasce circles are as follows:
AldW, (A) Adw, (A
2| dA 2 dA
In Figure 2.13. the following reversed amplitudeapéfrequency characteristic of the linear
part is plotted in the plan@R,,l, :)

Vi (A)] = =3¢, A*/8, V,(A) =W, (A)+ =3¢ A% /4.
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W™(j) = (je)? +b(j@) + ¢y =~ + jbw+c,
together with the parametric resonance circle.

\ Io
S @ Tt
6w 3C1A2 ~ - \(D Ro
-1 G
Wia.w) r
e -W. (4)
-~ e

-~

Figure 2.13. Parametric resonance excitation cond@n

It directly follows from Figure 2.13 that the frezncy, «,, and the amplitudeA,, of which

parametric resonance excitation begins result ttrequalities
2ReW *(jw) = ImW *(jaw) = v, (A) .

From here it follows
8 wyb
w, =b+,/b”+c, , 2:§ L
G
Hence the excitation conditions in terms of theybparameters or the conditions of “buoy”
parametric resonance excitation and forced osoitlanstability can be written in the form:

p > 8P% , w>a, Ob+,/b” +c,

3 ¢

From the point of view of formal mathematics thecé oscillation amplitude jumps to in-
finity. As a physical matter the infinite jump carbe realized. The fact is that the assumed
mathematical buoy formulation is completed as smothe buoy lays on the water surface. Sub-
merging during parametric oscillations the bualg tin the water surface before its complete sub-
mersion under the action of a current. Once they botally spends its motion energy it extrudes out
of the water again. In the condition of motionlesger (without a current) buoy parametric reso-
nance is also feasible in any vertical plane pagsirough the suspension axis. And in such situa-
tion forced oscillation jumps as large as infisgnnot be realized too since a “parametric force”
vanishes as soon as the buoy submerges complatélha circle radius becomes zero because
=0.

The careful reader has a right to ask the questforg where are the forces which cause
forced oscillations?” There can be several reagmmsccurring forced oscillations. They are, e.g.,
wind gusts, wind waves, waveformations from mowhgs. Moreover at the current periodic wa-
ter vortexes known can separate in the procedswfthe submerged buoy.

In conclusion assuming the rough buoy paramete$® Rg, F, = 5%g, ¢/ =10m,

J=500kgms?, s=0.3n?, b=0.1§" , ¢, = 00552, ¢, = 00652, we have the results close to reason-
able one:w), = 035rads™ and A, = 05rad .
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Oscillation process numerical simulations

As it was mentioned before in many instances awaly$tudy of nonlinear dynamic sys-
tems is associated with dire difficulties. Thawisy dynamic process numerical simulations are
widely used in an engineering practice. For thigppse the Matlab and Simulink software pack-
ages are applied. They allow for to composite & flitlagram of a model and investigate the prob-
lem numerically on the basis of its mathematicainfialation.

Self-excited oscillation or parametric oscillatioriPhe rough model of most simple self-
exited oscillation system is shown in Figure 2.4dré and in the next figures operator p is de-
nouted by s). This is the Tantalus vessel. The haoles not account for liquid velocity variations
at the drain stage and saw-tooth self-oscillatmetair.

.ﬂn-l,v-;lr Iﬂln-;rah:-r SQQF.Q

Figure 2.14. Rough model of self-excited system

In order to answer the question if the self- oatidin excitation conditions coincide with the
first parametric resonance boundary we consideird-order nonlinear self oscillatory system. The
system model is given in Figure 2.15. The objectllagory link has the transfer function
W(p) = 02(p® + 0.1p* + p)*; the nonlinear link of a saturation type has adinsection with a1
slop. A horizontal section with zero slop is beydhe section.

+
Step —_— 02
>t : N CER B 2 N
Addi g+ 14545
TN Transfer Fen Saturation Seope
Step

Figure2.15

. Third-order dynamic system model
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The initial condition is specified in the form okangle narrow pulse. The pulse is formed
by the two blocks - Step and Stepl. A self-exctedllation period is 6.3 s. Thus, the period of
parameter variation from 0 to 1 is 3.15 s and tmatibn of parameter unit valuedssls. The pa-
rametric system model comprising the same objegivien in Figure 2.16.

E_L-’-h
Step i R 0.2
o S JECENN SN
Add ==, 1953
A”llpr:au:: Transfer Forn Scope
Step -
: b4

Figure 2.16. Parametric resonance excitation bounag

The multiplier Product is a 3s periodic parameugrich is unevenly changed from zero to
1. The multiplier is controlled by the 1 s unit pellGenerator. The time diagram illustrates paramet-
ric resonance beginning/boundary. So the conditodrself-excited oscillation initiation is the pa-
rametric resonance excitation boundary.

Taking into account that flexure-torsion oscillascoften arise in constructions related to
mechanics and flow mechanics we consider a spendgydum model. A spring pendulum underly-
ing those processes is a two freedom nonlinearrdynsystem. The freedoms are vertical forced
motions along the x-axis andangle parametric deviations. We consider steptby-the formation
of the model.

Parametric excitation of variable length pendulurithe block diagram for studying para-
metric pendulum excitation is given in Figure 2.Hére the Transfer Fcnl is the model of the ordi-
nary pendulum of constant length = 1 m. Pendulum weight is 1 kg. We write the cheeastic

equation of constant length pendulum (2) in thenfor
2, b . C_
p +—p+—=0,
a a

or denotinga =ml?,c = mgl

p2+ip+g:0.

z I
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Figure 2.17. Variable length pendulum model

In terms of an oscillatory object with small dangifib=0.1) we shall derive the first ap-
proximation equation of the pendulum of variablegién | =1, + Al ¢ ) under the numerical values
assumed above:

p” +0.1(,7 —2¢°A) p+10(1,* — ¢ 2Al) OO. (44)

The variable length pendulum equation/gt1m takes the form:

(p®> + 01p+10)a(p) = (02p+10)Al(p).

Just now we can write the transfer function coroasiing to that in Figure 2.17:
W(p) = a(p) _ 2O.2p +10 '

Al(p) p°+01p+10

The harmonic signal corresponding to the oscilfegiof the pendulum lengthl (t) is re-
ceived by the modulator Product of oscillatiand@) , and the two blocks Step (positive and nega-
tive) form a unit narrow pulse of initial conditisnThe jscillations are recorded by the block Skope
and they lack as long as the pendulum excitaticestiold|A/(t)| < 021. The parametric resonance

excitation pattern gi\((t)| = 023is presented in Figure 2.17.

The pendulum length/parameter oscillations havéttaal/s frequency (in a thin line) and
0.23 m amplitude (in a heavy line). The excitedpgrarametric oscillationa(t) (in a heavy line)

appear at the 3rad/s frequency and they are stepfirametric resonance oscillations.

Spring pendulum oscillationsThe spring pendulum model is shown in Figure 2.18.

The parametric oscillation circuit on the rightesiof the diagram (see Figure 2.18.) is bor-
rowed from Figure 2.17. The spring circuit of fadaescillations is added on the left side of the
same diagram. The jscillations are excited by the 8/ave generator. The 1 kg spring-suspended
bob at the 40 N/m spring rate is described byrdester function Transfer Fcn

wp=—P -1
Al(p) p°+p+40
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Figure 2.18. Spring pendulum model

where F(p) is an operator notation of the harmdrsturbing force f(t). The Sine Wave signal is
added to the centrifugal force originating from thangle oscillations

f(t)=mv?/l,=masl, = mlo(c(lj—f)z. For the reason the Math Function squared mochridsiu/ dt

are included in the forced oscillation circuit. T¢wntinuous, i.e. sustained and nonincreasing,
spring pendulum oscillations are displayed in Fegirl8 under the block-diagram (in a heavy line)
while the 0.3 length oscillation amplitude (in &thne) exceeds the parametric resonance excita-
tion threshold of the circuit. The spring hinddre parametric resonance excitation and brings the
spring pendulum tsustained parametric oscillationd he reason is that the input Add1 adder sig-
nals are antiphased and they are subtracted baidded.

On applicability of pendulum modeld.he important conclusion results from Figure 2.18:
during the spring pendulum oscillation excitati@ingng the constant constituent the forced oscilla-
tions (see in a thin line) grow unsymmetrical. Byrtthe constant constituent increase leads to the
rise of Product transfer coefficient and paramaetnicuit amplification. And as soon as the Sine
Wave amplitude becomes sufficiently great the smisthparametric oscillations lose their stability.
In practical situations a physical spring pendukian lose its oscillatory stability while it transse
to a rotation mode, which is similar to an ordinphysical pendulum. But the considered models
are not applicable in that case because they ateematical pendulum models and their domain of
applicability is restricted to small angular osaiibns, for examplex|<1 rad as in Figure 2.18.
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CONCLUSION

That is all. The popular story about parametrion@sce is approaching to its completion.
As a start of the end we repeat the following qoesasked in Part 1, “Would a human being use
parametric oscillations at present?” Try just novgpecify that answer as follows, “Yes and no”.
Surely parametric resonance has taught a humag bdot and he applies obtained knowledge in
technical creating. And could anyone assert thatraan being has “tamed” parametric resonance
and placed it at his service? That really seemgdgbThe point is that the short history of rela-
tions between a human being and parametric resemnvaas rather connected with cognizing and
suppressing parametric oscillations and resonaleeagain refer to [1]. The book does not contain
the notions of parametric oscillations and resoaaand oscillation self-excitation of dynamic sys-
tems is discussed in it. Of course, a great authlike the book author has a right to have his own
view on oscillation classifications and definitiomut still, that testifies to a certain extent tee
sent opinion unsettled in the scientific communitiie examples given in this paper in respect of
applications of parametric resonance, such as gengoscillations by mechanically displacing
condenser disks, ferroresonance, etc, are notigalgtused. There is no choice except, possibly,
microwave structures and an ordinary swing. Thasametric resonance still remains an antagonist
regarding a human being and causes more paindalgaihat is why the following answer to the
above question will be legitimate, “Likely no.”

Let us ask the other question, “Why does the phagesponding to the crossing point of
the parametric resonance circle and the frequehasacteristic self-settle but not another one, e.g.
opposite, i.e. at which damping of oscillationg,isatself while exciting parametric oscillations
occur?” Why, in the second or opposite case pararacillations could diminish but not increase
the forced oscillation/jump amplitude and there lddae more joy than pain.

Such answer can be given the above question. fesphysical principle of virtual poten-
tial energy maximum known in mechanics is in farcdynamic systems. According to the princi-
ple the phase corresponding to the maximum dedrescdlation excitation is automatically set
and rest potential energy converts into oscillatongtic energy. Thus, from a number of voluntary
coordinate oscillation phases that are introdugeth®Q-frequency alternating parameter, the
phase is set at which a total phase shift betweesaillatory object and a parameter is 180 de-
grees. Furthermore ti€&/2-frequency of coordinate oscillation is calledical and parametric sys-
tem has its maximum equilibrium stability. Parancetesonance is excited as soon as the paramete
oscillation amplitude exceeds its threshold value.

There is no doubt that a human being will placapeatric resonance at his service. One of
the efforts is, for example, the parametric coroecof oscillatory dynamic system phase [7].

Unlike the coordinate feedback known from classilbabry of automatic control a new kind of
feedback is used. That is parametric one. By cingasisignal lag value in a parametric feedback
circuit either oscillating or damping regulatorsdze installed.

In conclusion it should be applied to the readeas had the patience to get to the end. All
information that was succeeded in the statemenitgiayametric oscillations and resonance is only
a little part of knowledge cumulated by humanitym&re bibliography with rundowns could take
the most of the paper. So, young people takingnemast in parametric resonance will learn a lot of
interesting things in macro and microworlds. Eibairbits are, for example, a source of parametric
oscillations and, quite likely, the mysterious mataf ball lightning has a parametric origin, etc.
And lastly it is not a difficult matter to transfara home computer into a research laboratory on dy-
namic system attributes and solving new problenmggusumerical simulations. It remains to wish
the patient readers for sufficient strengths amdréuadvancements.
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