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ABSTRACT 
 

 
Of multifarious processes studied forced oscillation, parametric oscillation and self-excited 

oscillation are specified in the modern classical oscillation theory. The conditions of oscillation oc-
currence/excitation and existence/stability are of interest. A principal role in solving that problem is 
pertained to parametric oscillations because both forced and self-excited oscillations lose their in-
stability and become beyond physical existence under parametric resonance excitation conditions. 
Moreover there is a reason to believe that self-excited oscillations are sustained parametric oscilla-
tions. An influence area of parametric oscillations and resonance is under fast broadening. Paramet-
ric oscillations in economic models, a parametric direction in biology (“water-on-life” activation), 
and a parametric nature of field and vibration influences on living organisms in medicine were re-
cently revealed. And wherein is occasionally that elusive magical force of parametric oscillations 
and resonance? The matter will concern about that.  

This paper is a popular scientific publication. Firstly it will serve for engineers and designers 
whose specialization is far from a theory of oscillations. It will be useful for physics-and-
mathematics-oriented young people, and the knowledge of parametric oscillation properties and fea-
tures given in Part I, which is not difficult, can be useful for untechnical experts in the cause of in-
tegration of physics, chemistry, biology, medicine and other sciences on the basis of mathematical 
modeling.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Editor and Translator  Elen Kutueva 
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BACKGROUNDS 
 
The existence of parametric oscillations is coupled with the existence of the universe, and 

their history counting billions of years derives from the history of foundation and development of 
worlds. In all the instances, watching a monkey flying from one branch to another by means of pa-
rametric oscillations, it becomes clear that the use of parametric oscillations is related to a pre-
human period. But the human being’s study of parametric oscillations and parametric resonance 
was started quit recently or some hundred add years ago. And it was in spite of the fact that para-
metric resonance made a lot of mess over its history. 

The beginning of parametric oscillation study is put down to the investigations of Mathieu 
and Hill equations. In 1868 Mathieu researched membrane oscillations and came to a simple sec-
ond-order differential equation with a harmonically variable absolute term containing no derivative. 
Even the numerical equation solution was surprising: it included an infinite number of alternate pa-
rametric oscillation excitation areas. Subsequently the oscillations were presented in the form of  
Ayns-Strett diagrams to be used up to now. Solving the problem of moon orbit determination Hill 
also considered the second-order differential equation in which an absolute term was arbitrarily var-
ied. He obtained the solution in the form of an infinite determinant called Hill’s determinant later 
on. Having been confronted with complexity of the derived solutions researchers temporarily re-
laxed their activity in that direction.  

The excellent service in pointing an important role of studying the equations with periodical 
coefficients belongs to the distinguished Russian mathematician A.M. Lyapunov. At the beginning 
of the last century he proved that equilibrium stability of dynamic systems is governed by stability 
of linear stationary systems or incremental equations formed to the first linear approximation. Mo-
tion stability of a dynamic system including its oscillation stability is governed by equilibrium sta-
bility of a linear nonstationary system with time-varying parameters and also incremental equations 
formed to the first linear approximation. In other words the motion stability problem was reduced to 
the problem of equilibrium stability of a linear nonstationary/parametric system. 

An interest in studying linear nonstationary systems was steeply grown. At the first half of 
the last century both rigorous and rough research methods of high-order linear nonstation-
ary/parametric systems including those with distributed parameters were emerged.  

In this paper the main attention is concentrated on a physical aspect of parametric oscilla-
tions and resonance. The choice of the frequency analysis method characterized by pictorial physi-
cal and geometrical interpretations shows the correlation with that aspect. In common case this sin-
gle frequency harmonic approach method is known as Described Function Method. As to non-
stationary systems it can be named harmonic stationaryzation [1,2].  

The main difficulty in writing was making a hard choice between the simplicity of stating 
and the complexity of reasoning. It did not succeed in supposing only one of the two ways. That is 
why the paper consists of two parts. Part I is simple and clear and Part 2 is relatively complex. The 
subject of Part 2 is mainly based on senior school courses in physics and mathematics. The simple 
differential equation are used  for transfer to frequency region only. 

Thus, the basic goal of this paper is initially to introduce the reader to parametric oscillations 
and the phenomena of parametric resonance. According to the objective all the illustrations are ac-
companied with elemental examples of single-frequency harmonic oscillations and several results 
of second part are printed in a small type. A careful reader will be able to find many interesting 
things in the parametric resonance phenomena, which are quite often strict judges in respect of as-
sessments of completeness and carefulness of constructions and engineering solutions 

. 
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PART 1. PHENOMENA OF PARAMETRIC RESONANCE  
 

 
Several Words about Oscillations 

 
Oscillations and oscillating processes have been in existence regardless of a human will in 

gravitational, electrical and magnet fields, liquid and gaseous media, and the combinations of fields 
and media. For a long time oscillations were only interpreted as periodic motions of bodies, fields 
and media under the effects of applied/external forces, moments, extraneous oscillating processes 
and other just now so-called disturbances including periodic ones.  

This point of view is also prevailing among those of our contemporaries whose professional 
activities do not cover physical and mathematical concepts. This does not allow explaining a num-
ber of such mysterious phenomena as self-excitation and sudden amplitude jumps of oscillations, 
the reasons of excitation and stability of oscillations, etc. Just not long ago so-called parametric os-
cillations were distinguished among multiform oscillatory processes to attract a close attention of 
researchers. 

Quite a lot books have been written about oscillations. Neither complete nor even popular 
statement of the problems existing in the theory and practice of oscillations is covered in this paper. 
It is highly desirable for the uninformed reader to see the popular science book by the American 
scientist R. Bishop [3]. The paper includes an extremely limited amount of the definitions needed 
hereinafter.  

At present free oscillations, forced oscillations, parametric oscillations and self-excited os-
cillations as a special case of sustained free oscillations are differentiated. The free oscillations 
shown in Figure 1.1. are excited by a shock disturbance such as, for example, the damped air oscil-
lation following striking on a bell to produce the sound. 

 
 

Figure 1.1. Free oscillation 
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The free oscillation frequency with a period, T, is called the natural oscillatory object fre-
quency Т/20 πω = . When the forcing periodic disturbance frequency coincides with the natural 

frequency of the object, the sustained forced oscillations of the same frequency have the maximum 
amplitude, A, proportional to the amplitude of the forcing oscillations (see Figure 1.2.). 

In addition to the amplitude, A, the sustained oscillations shown in Figure 1.2. are character-
ized by the circular frequency ω=2π/Т (rad/s) and linear frequency f=1/Т (Hz), where T (s) oscilla-
tion period. The running phase ψ=ωt (rad) is often used along the x-axis instead of  
the running time, t. The relative phase or phase of oscillations φ=ωτ (rad) is an important parameter 
of an oscillating process. φ defines the shift, τ, of oscillations relative to a certain reference har-
monic wave of the same frequency. The forcing/external oscillation is usually taken as a reference 
signal given in Fig. 1.2. in a thin line.  

 
Figure 1.2. Forced oscillations 

 
An oscillatory object is characterized by coordinates and parameters. The coordinate time 

variations generally form the motion of a dynamic object and particularly define the periodic mo-
tion of the oscillatory object. The oscillatory object complexity and describing equation order are 
assessed by an amount of coordinates to describe oscillating process conditions. As soon as either 
free or forced oscillations are exited dependent coordinates also oscillate to a different degree. The 
oscillation degree and interconnections of the coordinates are governed by the oscillatory object pa-
rameters. As a rule the object parameters are constants forming the equation coefficients according 
to the operating principles of the object. Thus, for instance, a circulatory system of a living organ-
ism includes a heart as a blood pressure converter, vessels (arteries, veins and capillaries), a liver as 
a blood-forming organ and a brain and nerve fibers as a control system. The system coordinates are 
the blood pressures at the different points of the organism, rates of pressure variations, the blood 
velocities and volume flow rates. The system parameters are blood viscosity, vascular system 
drag/dimensions, a hart volume, nervous system status, etc. The heart operates in periodical pulse 
oscillation modes. That’s why the blood pressure varies in a periodical way too. The external dis-
turbances with respect to the circulatory system are atmospheric pressure variations, environment 
temperature changes and the variations of physical activities and moral stresses.  

Following the disturbance oscillations, at first the control subsystem changes a vessel state 
(by compressing/releasing) and then it alters the hart beet frequency and filling to rise or decrease of 
the blood pressure. In such a way the circulatory system parameters are periodically varied. Of 
course, that is only the simplified description of such much more complex dynamic system like the 
circulatory system. The objective of this paper is popularization of scientific knowledge. So, com-
plex dynamic systems are not considered hereinafter. 
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If object parameters are constant, the object/system is called stationary. When object pa-
rameters are changed in time, such object/system is called nonstationary. When the nonstationary 
object parameters are periodically changed, such object/system is called periodic nonstationary or 
parametric. The both stationary and nonstationary systems may be linear and nonlinear by a kind of 
their description. 

Thus, the main attention will be hereinafter focused on periodically nonstationary oscillatory 
objects and systems, both linear and nonlinear. The parametric systems became widespread in sci-
entific-technical activities such as mechanics, electrical engineering, radio engineering, automatic 
control, instrument engineering, hydrodynamics, aerodynamics, etc. In all signs, the priority in 
studying parametric systems belongs to mechanics. So, we start our story from that subject. 

 
Parametric Resonance in Mechanics 

 
This section is aimed to introduce the phenomenon of parametric oscillations by simple and 

clear examples from mechanics and get the reader ready for some acquaintance with more complex 
parametric phenomena. It should be noted, there are not really many examples of the oscillatory ob-
jects and systems in which parametric resonance openly appears in its true form. It more often “pre-
fers” to hide mysteriously behind complex oscillating processes.  

Common pendulum. Figure 1.3. shows an ordinary pendulum. Assume that environ-
mental/air resistance and the frictional force at the suspension point/support, O, are minor, i.e. the 
pendulum is near ideal. If firstly the pendulum is deflected from its vertical position to the right at 
the angle +α or to the left at the angle –α and released then, the free pendulum oscillations will de-
cay (see Figure 1.1.). Under the vertical suspension point vibration ∆х(t)=a sinΩt (see Figure 1.3.) 
the complementary acceleration tat ΩΩ= sin)( 2ε  acts on the pendulum. Its min/max value is 

2Ω± a . So, the pendulum weight becomes alternating as )sin( 2 tagmP ΩΩ−= . The damped pen-
dulum oscillations begin to grow on at the vibration frequency, Ω, close to the doubled natural fre-
quency, 0ω , as soon as the vibration amplitude exceeds a certain threshold value thaa f . Those are 
divergent parametric oscillations excited and there comes parametric resonance.  

 

 
 

Figure 1.3. Pendulum with suspension point vibration 
 
Figure 1.4. shows the pendulum parametric oscillations and the suspension point oscillations 

versus time.  
It is important to note on the basis of the above simple example that the parametric reso-

nance excitation occurs at a certain shift, τ, between the suspension/parameter oscillations ∆х(t) (see 
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Figure 1.4. in a thin line ) and the pendulum oscillations α(t) (see Figure 1.4. in a heavy line). The 
shift is about a half of the pendulum oscillation period, which corresponds to a quarter  

 
 

Figure 1.4. Ramp parametric oscillation of pendulum 

 
of the pendulum oscillation period or phase shift ψ=ωτ=2πτ/Т (rad) equal to 90°. It is easy to ex-
plain the necessity in such shift in terms of physical principles. The pendulum oscillation period in-
cludes four quarters. The first quarter I (see Figure 1.3. and Figure 1.19.) located between the verti-
cal line and the maximum +α and the third quarter III located between the vertical line and the 
minimum –α are the deceleration quarters because the gravity moment (the product of the pendulum 
length and the projection of gravity to a moving direction) is oriented against the pendulum moving 
direction. The second quarter II and the fourth quarter IY are the acceleration quarters because the 
gravity moment coincides with the pendulum moving direction. Thus, to swing the pendulum effec-
tively there is a need to diminish the gravity moment within the deceleration segments by decreas-
ing gravity and to increase that within the acceleration segments. Hence, to provide the needed vi-
bration/parameter behavior the pendulum support, O, has to be moved downward in the decelera-
tion segments where the pendulum weight reduces because a vibration acceleration value is sub-
tracted from a gravitational acceleration value, and it has to move upward in the acceleration seg-
ments where the pendulum weight enlarges as a result of the summation of the above accelerations. 
Parametric resonance is excited in that way. 

There is an essential difference between parametric oscillations and forced oscillations. The 
forced pendulum oscillations occur when an external periodic moment is applied to the pendulum, 
for example, while you swing the latter and the pendulum oscillation frequency coincides with the 
external action variation frequency whereas the parametric oscillation frequency is two times less 
than the parameter/oscillation variation frequency. The parametric oscillation phase is fixed 
whereas the forced oscillation phase depends on the oscillatory object behavior and the forcing dis-
turbance frequency. 

 
Spring pendulum. We analyze the following example. It is a spring pendulum inside a 

gravitational field (see Figure 1.5.). The pendulum has a stable equilibrium state at the point 0l=х , 

where the weight, P, is balanced by the opposite force of expanded spring. If the load is slightly 
pulled downward or raised and then released, the damped free oscillations of the load ∆х(t) are ob-
served along the vertical х-axis in the condition when the resistance forces are minor.  
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Figure 1.5. Spring pendulum 
 

At a certain peak-to-peak increment of the periodic vertical oscillations the new pendulum 
oscillations α(t) about a center of rotation arises in the plane of Figure 1.5. These are parametric os-
cillations. That phenomenon is not difficult to explain. During the vertical oscillations the pendulum 

length l(t) = )(0 tll ∆+  changes periodically together with the periodic spring divergence and 

compression. In turn, the periodic increment in pendulum length results in the periodic decrease in 
gravity moment within the deceleration quarters, and it increases within the acceleration quarters. 
Therefore the parametric oscillations α(t) similar to those presented in the previous example, occur 
(see Figure 1.6.), and the oscillation time diagram is also similar to that in Figure 1.4. where the os-
cillations with a length of )(tl∆ take place instead of the vibrations ∆х(t). 

 
 

Figure 1.6. Spring pendulum oscillation 
 
Of course, as the vertical length oscillations decay, parametric oscillations are eliminated 

too. But if the vertical load oscillations are supported by a periodic forcing disturbance, thereby sus-
tained parametric oscillations are sustained. The interesting fact is that while the forced oscillations 
of pendulum deviation angle are kept sustained, the vertical load oscillations with a double angle 
oscillation frequency also begin. Those oscillations are also forced because they are not excited by a 
variable parameter (e.g. a variable spring rate) but related to the spring extensions at α=0 at the ex-
pense of the maximum vertical gravity projections and the centrifugal pendulum rotation force. 
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The parametric oscillations considered here were discovered long ago at the down of train 
operations in the course of the study of swing carriage couplers. At that time the coupler springs had 
low stiffness. The transverse parametric oscillations threatening with accidents appeared under the 
oscillations of springs and integral trains in the horizontal plane along a railroad way. 

 
Elastic shaft rotation. Figure 1.7. shows an elastic rectangular shaft. It has both horizontal, 

хс , and vertical, ус , flexural stiffnesses differing from each other, and the constant torsional stiff-

ness, zс . One of the shaft ends is supported as a cantilever in a spindle and the other one is free. 
While the spindle rotates about the z-axis, the free end of the shaft sags along the y-axis under the 
action of gravity. A sag value is scaled inversely with the alternate stiffness values хс  and ус . The 

flexural homogeneous shaft has uniformly distributed mass, and its stiffness depends on the dis-
tance to gravity point. In other words, the elastic shaft is characterized by length-distributed mass 
and stiffness as distinct from the lumped pendulum parameters. 
 

 
Figure 1.7. Elastic shaft rotation 

 
It is known that distributed parameter objects definable in mathematical physics by partial differential equa-

tions can have an infinite set of natural frequencies and complex combination oscillations. During approximate calcula-
tions realized in many kinds of engineering software, including FEA, the descriptions of distributed parameter systems 
are substituted for their discrete analogs  of ordinary differential equations, i.e. difference equations or finite-difference 
equations. The systems described by approximate difference equations also have periodic frequency characteristics and 
an infinite series of natural frequencies  

0ωω nn = , 

where n=1,2,3 and 0ω  is the first/fundamental frequency. 

 
For illustration we substitute the distributed mass for the lumped mass located in the middle 

of the shaft and suspended from an instantaneous plate. The plate possesses three kinds of stiffness 
as it is shown in Figure 1.7. For simplicity, we assume stiffness along the y-axis is mach less than 
that along the x-axis. In such approximation the rotating shaft model is given in Figure 1.8. The 
lumped load with weight P=mg periodically sags two times in a rotation period at the distance 

ycmgy /=∆ , i.e. doubled-period continuous forced flexural oscillations of the plate occur. The 

simple model of such oscillations in the form of the spring pendulum can be seen in Figure 1.8.b) 
equivalent to Figure 1.5. 
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a) b) 

Figure 1.8. Simplified model of elastic shaft oscillation 
 
As it was previously shown the parametric oscillations α(t) about the z-axis arise at the shaft 

rotation frequency under parameter/pendulum length oscillations (see Figure 1.6.). Thus, the flex-
ural oscillations ∆y(t) activate the torsional parametric oscillations α(t). 

This kind of commonly destructive parametric resonance is called flexure-torsion flutter. For 
instance, this takes place when a shaft bar is under HS turn processing having even not large eccen-
tricity.  

As it was mentioned above, the parameter-distributed objects are attributed by a lot of natu-
ral oscillation frequencies. As a rotation frequency increases, primarily the first most dangerous 
resonance more often appears at the frequency0ω . Just that very case is shown in Figure 1.8. Its 

danger lays in a low oscillation frequency and, as a rule, a high oscillation amplitude at a low oscil-
lation damping rate. To avoid breaking the spindle revolutions are needed to be diminished or 
enlarged. As soon as the revolutions are increased to the next natural frequency0ωn  the parametric 

resonance of lower amplitude and in a more complex form/mode is exited again, and in that case 
one or several quarters of the oscillatory wave are fitted over the shaft length.  

In the investigated example the shaft revolution leads to forced periodic oscillations, and as 
a result parametric oscillations are excited. To launch flexure-torsion flutter rotating is not neces-
sary. The flutter arises when a liquid/gas (air stream) flows around oscillatory objects. This often 
causes the accidents of structures, bridges, aircraft, etc. The descriptions of some of them are pre-
sented hereinafter in the sections on hydrodynamics and aerodynamics.  

At the end of the section we consider one of the examples in which parametric resonance 
plays not a destructive but constructive part. 

 
Inversed pendulum. It was presented in the section Ordinary pendulum (see Figure 1.3.) 

that whiles the suspension point vibrates in a vertical direction the nascent parametric oscillations 
result in the loss of equilibrium stability. The inversed vertical pendulum is shown in Figure 1.9. Its 
vertical position is not stable if there is no any supporting external forcing. Objects like that are 
called structurally unstable because they cannot be brought to a stable state at all the values of con-
stant parameters (e.g. length and weight). 

 

 
Figure 1.9. Inversed pendulum oscillations 
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Just as in the case of an ordinary pendulum, in the presence of the suspension point vertical 

vibration tax Ω=∆ sin  the alternating vibration acceleration ta ΩΩ− sin2 is periodically summa-
rized/subtracted from the gravitational acceleration, g, at the frequency, Ω. As a result of the cycle 
parameter/pendulum weight variations resonance and parametric oscillations originated in an anti-
phased manner stabilize the unstable pendulum position. The following obvious inequality is the 
necessary stabilization condition: 

ga >Ω2 . 
The resonance was detected by P.L. Kapitza for the first time in the middle of the last cen-

tury. He was the first who showed that an inversed pendulum becomes stable at its vertical position 
when 

lga 2>Ω , 

where a  is the vibration amplitude, l  is the pendulum length. The last condition means that the 
maximum linear velocity of the support movement has to exceed the free fall velocity of the pendu-
lum from the height equal to the pendulum length. In literature the stable-under-vibration inversed 
pendulum is called Kapitza’s pendulum. 

Since time immemorial the visual demonstration of Kapitsa’s pendulum has been shown 
during the children’s contests in which a vertical stick is kept on a palm oscillating in a verti-
cal/horizontal plane for making the longest time. 

 

 
 

Figure 1.10. Transient of inversed pendulum stabilization 
 
The transient of inversed pendulum stabilization is obtained by numerical simulations of 

Kapitza’s pendulum with a one meter length (see Part 2, Oscillation process numerical simulation). 
One can see in Figure 1.10. that stability is reached at the 0.6 m vibration amplitude and the 60 m/s2 
acceleration. 
 

Parametric resonance in electrical engineering 
 

Parametric oscillatory circuit. At the end of 1930th Academicians L.I. Mandelshtam and 
N.D. Papalekcy proposed to apply parametric resonance in making oscillators. The RLC-oscillatory 
circuit with periodically changed capacitor capacitance, C, was used to generate the oscillations (see 
Figure 1.11.). The capacitor capacitance was alternated following the cyclic variations of the ca-
pacitor plate gap. However the conductive disk provided with slots and rotated between the plates 
by an electromotor was suitable to a greater degree to modulate the electric field of the capacitor. 
The parameter/capacitor capacity oscillation frequency was varied by changing the electromotor 
speed, and the parametric oscillations of electric current and voltage at the circuit elements were 
excited within the circuit natural frequency. At the same time the parametric oscillation frequency 
close to the circuit natural frequency was two times less than the parameter oscillation frequency.  
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Figure 1.11. Electric oscillatory circuit 
 
Exciting the parametric oscillations is accompanied with the accumulation of oscillation en-

ergy in the circuit. If one slides the capacitor plates apart, thereby diminishing the capacitance, as 
soon as the extreme voltage is reached, then the capacitor voltage, V, is increased because the ca-
pacitor charge q=CU cannot be rapidly changed owing to a capacitance lag. As the voltage grows 
circuit energy grows as square of the voltage. If the capacitor plates are moved closer to each other 
as soon as the zero capacitor voltage is reached, the circuit energy is not decreased. Thus the accu-
mulation of circuit energy occurs provided that energy growth exceeds energy loss at the active re-
sistance, R. It should be noted, that the energy of parametric oscillations in the circuit grows at the 
expense of energy loss for moving the capacitor plates or rotating the disk to modulate the capacitor 
field. The example considered is also related to the infrequent cases in which parametric oscillations 
are mentioned to arise in their pure forms. 

At present the energy of parametrically excited oscillations is not often utilized because of 
an emergence of powerful semiconductor key/thyristor technologies and alternating-voltage genera-
tors/inverters based on those technologies. The development and wide-spread usage of parametri-
cally excited oscillations have not gone towards the energy but generation and oscillation amplifica-
tion of super high frequencies/SHF direction in radiocommunications and radiolocation. To gener-
ate and amplify parametric SHF, highly small-sized, noise-eliminating resonators/circuits are used. 

 
Ferroresonance – hidden parametric resonance. The phenomenon of ferroresonance has 

been known in electrical engineering for a long time. This happens in respect of forced oscillations 
in the RLC-circuit consisting of the inductor, L, with a steel core. This phenomenon appears under 
certain conditions as amplitude jumps of forced oscillations while the forcing oscillation ampli-
tude/frequency is smoothly varied. 

 
 

Figure 1.12. Transformer oscillatory circuit 
 
Figure 1.12. gives the RLC-oscillatory circuit similar to that in Figure 1.11. but equipped 

with the transformer input of alternating voltage u(t)=usinωt. The secondary coil of the transformer 
is based on a steel core and serves as a circuit inductor. As the amplitude and the voltage increase 
the secondary voltage amplitude at the inductor, L, grows to a certain moment, following which in-
creasing the secondary voltage slows down. The further increase in input voltage brings to the cir-
cuit voltage jump, i.e. stepwise resonance or ferroresonance takes place. The specific characteristic 
of those jumps is the binding presence of steel core in the coil, where from the name ‘ferroreso-
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nance’ comes. When the core is missed the jumps are not observed. It turned out that a true cause of 
the jumps was the parametric resonance excitation in the circuit. In Figure 1.12. the inductance, C, 
is a variable. Permeability of the core decreases to the low value equal to air permeability as long as 
the amplitude of the current magnetizing the core increases. In such a case they say about saturation 
of the core magnetic. Thus, there take place maximum inductance at the linear section of magneti-
zation while there comes no saturation. Inductance is zero under saturation. The frequency of induc-
tance oscillations is Ω=2ω and the frequency of new growing parametric oscillations is equal to that 
of forced oscillations because saturation occurs two times in the period Т=2π/ω when the maximum 
amplitude of magnetizing current is realized. The forced oscillations and the first parametric reso-
nance oscillations are composed and the amplitude jump is observed. And it is not possible to dis-
tinguish the parametric oscillations from the forced oscillations, which explains mysterious effects 
of that resonance. 

 
 

Figure 1.13. Inductive parametric resonance 
 
It is not possible to distinguish parametric oscillations so indeed but they can be separated 

out in their true form. For that purpose the conductor coil is made in the form of two opposing iden-
tical coils, either coil inductance is L/2 (see Figure 1.13.). In that case the primary forcing voltage is 
antiphasely transformed to either of the two circuit coils, and the final voltage at the secondary 
transformer terminals is zero. In other words, there are no forced oscillations in the circuit. Never-
theless, in the circuit (see Figure 1.13.) considerable oscillations arise at the jump/ferroresonance 
frequency presented in Figure 1.12. These are the parametric oscillations hidden before and they are 
extracted in their pure form, i.e. we deal with the true reason of ferroresonance. 

The effect of parametric oscillation extraction from forced oscillations can be explained by 
the fact that in spite of missing the forced oscillations in the circuit (see Figure 1.13.) magnetizing 
the steel core is kept on by the forcing voltage of primary circuit, and the circuit inductance equal to 
the sum of two coil inductance goes on changing from its maximum to about zero. 

Flexure-torsion resonance known from mechanics causes a number of problems in electro-
mechanics, e.g. in production and service of powerful power plant turbogenerators. Unbalancing 
under manufacturing and mounting of large-tonnage rotors can lead, for example, to flexure-torsion 
resonance in use of turbogenerators, which happened after putting into operation Krasnoyarsk hy-
droelectric power station. 
 

Parametric resonance in fluid dynamics 
 
In numerous complex problems of fluid dynamics either a motion of medium (liquid, gas, 

air) in which an object is situated or an object (aircraft, a rocket, a ship) motion inside an environ-
ment and also medium/object interference are considered. As a rule those problems cannot be ana-
lytically solved. They are accomplished using numerical methods or physical modeling of a me-
dium and an object. The analogies between elementary fluid-dynamic problems touched on below 
and the simple tasks from mechanics and electrical engineering previously examined are sighted. 

From time immemorial projecting and servicing water transports (river boats, sea craft, etc) 
developers’ efforts have been focused on the impact of liquid/water flow and wave generation on 
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oscillatory objects. For instance it is connected with navigation safety. Navigation hazard has been 
confirmed by numerous accidents in the history of navigation.  

To a first approximation water-craft in water is a stable pendulum thanks to the fact that its 
center of gravity is located under the water below water-craft waterline. The pendulum is capable of 
swinging at the angles which can cause flipping water-craft provided that the frequency of water 
surface fluctuations (rough water) is equal to the water-craft natural frequency or divisible by the 
latter. Such a situation is mostly dangerous if badly-fixed cargo is transported or bilge tanks are par-
tially loaded. So about 40 years ago the information appeared in press that the dry cargo ship Kom-
somolets Uzbekistana was a total wreck in the conditions of not great choppy sea in consequence of 
cargo displacement. Fortunately, the ship’s crew was rescued by the US coast guard. Probably, for 
the reason stated above, the information which was often concealed was published in the press.  

In accidents like that cyclic rolling-induced cargo/parameter displacements periodically 
change the position of water-craft center of gravity and amplify capsizing moment. That is why the 
transportation with badly fixed cargo and partially loaded liquid tanks is forbidden according to 
navigation instructions. By the instructions changing a water-craft course is also recommended to 
mitigate rocking by making an angle with a wave front. Though a wavelength remains as it was be-
fore, rocking both period and amplitude are shifted from the water-craft natural frequency. Not so 
long ago parametric oscillations of water-craft moving down wind and wave were exhibited. At that 
moment first the water-craft stern was coming up and down at a wave crest, and the bow was fol-
lowing of doing the same. Thus the longitudinal oscillations of the water-craft were run two times 
in a wave period, and the transverse oscillations similar to those in respect of a spring pendulum 
were occurring. 

Not only wave generation can be at the bottom of both forced and parametric oscillations. 
Another nature of the oscillations is water flowing around an oscillatory object. Vortex rotations of 
the liquid are formed during water flowing around a body (see e.g. the cylindrical solid in Figure 
1.14.). While the vortexes detach from the body surface periodical forces applied to the body are 
generated. Those forces are capable of arising forced transverse oscillations. These oscillations gen-
erated together with both parametric and self-excited oscillations are called stall flutter.  

 
Figure 1.14. Vortex detachment 

 
In whole, it should be noted that oscillation processes in liquids have a complex nature and 

most often combine forced parametric oscillations and nonlinear self-excited oscillations. 
Let us consider several simple examples. 
During the Great Patriotic war special mines were used to provide security of northern ports 

and naval bases. They were located at cable-anchored buoys submerged superficially. Some mines 
were soon found to detonate whereas no water-craft was thereabout. In the issue of close study of 
the mines it was turned out that the false bursts were connected with a small currents flowing 
around the buoys to result in stall flutter. The generated oscillations initiate the detonations of the 
mines. 
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Another rather comical example is proposed for digress the reader from war subjects. Fish-
ery-lovers are well known with stall flutter. It exhibits as slow reverse oscillations of the boat bow-
anchored at a stream. Such movements are too dangerous during bottom-rod angling. In such situa-
tions a short rod curves gradually brining in an arch form and an inexperienced fisher catches at a 
landing net in looking forward to catch a fish. Alas! Big fish takes the bait in another way! 

As an example the following occurrence from the author’s experience is given.  
“Once in early spring I drove my boat from Lake Ladoga to the Gulf of Finland. My boat 

came to the Neva by the evening. It was getting dark and my boat approached to the Ivanovsky rap-
ids. The current is always strong in that region of the river and it becomes swift at the time of a 
spring water flood. At dusk I suddenly saw a strange phenomenon ahead: a certain ‘being’ was go-
ing from under the water. Having gone up to its 2-meter full height the being started to lower and 
disappeared under the water then. A little later the strange phenomenon happened again. By that 
time I had gained considerable experience in sailing: I rowed across Lake Ladoga from Valaam to 
Novaya Ladoga at a stormy night, astonished at over-water mirages in fair weathers, and one day I 
went down as a result of the collision with a log (fortunately I could put a tarpaulin patch to the 
breach), etc. But at that moment I was ill at ease. What this could be? Boating close with ‘the mon-
ster’ I saw a big submerged river buoy going from under the water.” 

The approximate analysis of the buoy oscillations is given in the section ‘Buoy’ resonance 
(see Part 2). It turned out that forced oscillations of the buoy submerged to be initiated, for example, 
by stall flutter are able to cause parametric resonance which, in turn, gives a rise to the amplitude 
jump of initial forced oscillations. The initiation of hidden parametric oscillations is connected with 
the fact that the moment, M, pushing out the buoy nonlinearly depends on the deviation angle as 
follows:  

3
10 αα MMM += . 

So under the forced oscillations of the angle α(t) =Asinωt the parameter/rate of moment 
change varies periodically: 
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It seems that the first ‘hidden’ parametric resonance with a forced oscillation frequency, ω,  
can arise at the double parameter variation frequency.  

 
Parametric resonance in aerodynamics 

 
In hydrodynamics the effect of a moving medium/liquid on oscillatory objects is mostly in-

vestigated. In aerodynamics the influence of a stagnant environment/air upon a moving oscillation 
object or a separate part of the object/ aircraft is usually considered. In essence the tasks on oscilla-
tions and stability of buildings/structures under the action of wind loadings are also related to aero-
dynamics. First of all among the structures are bridges and high-rise towers and buildings. Although 
wind loadings are not comparable with the action of the atmosphere on aircraft it is worth a lot to 
ignore them.  

The story of Tacoma Narrows Bridge is widely known. That bridge is one in twelve the 
masterpieces of the American bridge engineering. In 1940 swinging in the directional breeze the 
bridge crashed down. In the old amateur oscillation images one could watch the growing divergent 
torsional and flexural oscillations of the structure. The flexural oscillations arose on the leeward 
side of the bridge during the airflow. They were due to eddy formations and the difference of upper 
and lower pressures to initiate the parametric excitation of torsional oscillations. The latter in turn 
increased the flexural oscillation amplitude - The bridge crashed down owing to flexure-torsion flat-
ter. It was a lot to happen in last century. What about our days? 

Have a look at the lower Figure. One can see the dangerous oscillations of the bridge across 
the Volga near Volgograd. In the October of 2009 it was put into service in a solemn atmosphere 
and just in the May of 2010 the traffic over the bridge was stopped up. Shipping was also forbidden 
in that zone of the Volga.  
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30 m/s-velocity flaws were observed in the May of 2010. Peak-to peak oscillations reached 
two meters. It seems that great wind loads weakened the bolts attaching the separate spans to the 
abutments. There is a video recording in Internet (see the website http://pro-volgograd.ru) in which 
one can see the flexural-torsion oscillations of the spans at the wind velocity that is much less than 
30 m/s, judging by wave making, (see the upper image in Figure 1.15.) and the same kind of oscilla-
tions between the separate bridge towers (see the lower image in Figure 1.15). Luckily it cost with-
out wreck. 

 
 

 
Figure 1.15. Views of new bridge over Volga (from vebsite http://pro-volgograd.ru) 

 
The new 7-kilomiter bridge was built for about 10 years for nearly 25 billion roubles. At 

present it is locked. Pressing and sizeable repair lies ahead. Just so parametric resonance may penal-
ize for errors and “economy”. 

Aircraft is to overcome air flows at the speeds which are several orders higher than a wind 
velocity. Hence, air quality is assumed to be motionless relative to aircraft. The second conclusion 
is wind tunnel tests of structural/element models are obligatory to be performed in connection with 
the high flight speeds of aircraft and possible oscillation excitation. 
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As a rule an aircraft wing has modest flexural stiffness and is able to make minor oscilla-
tions in the vertical plane. Sometimes the oscillations can be watched through a side aircraft win-
dow. The torsional wing stiffness about the longitudinal axis is too greater, so torsional oscillations 
can be only recorded by devices.  

An aircraft wing can be simplistically conceived as a beam with overhang end to be fixed in 
the aircraft case. The beam stiffness is obtained to correspond to the wing-averaged tor-
sional/flexural stiffness.  

By virtue of the fact that the vertical cross sections of the top and lower wing surfaces are 
provided with the mutually unsymmetrical convexities, i.e. different flow conditions are realized at 
the surfaces, minor both flexible and torsional oscillations can be produced as a result of the differ-
ent surface pressures. 

Again assuming the similarity with a spring pendulum, one can conclude that flexure-torsion 
flutter is feasible: under certain conditions forced flexural oscillations can initiate parametric tor-
sional oscillations. The flexure-torsion flutter is illustrated in Figure 1.16. where the vertical flex-
ural oscillations are laid on the torsional/rotary oscillations, i.e. forced and parametric oscillations 
are interrelated. Thus, it is not so easy to understand “who” is guilty of the oscillations. 

 
 Speed   V            

 
Figure 1.16. Flexure-torsion oscillations 

 
In 1950s having reached sound velocities, jet aircraft faced the problem of overcoming a 

sound barrier. The problem was that as the aircraft velocity approached to the 1200 km/h sound ve-
locity threatening vibrations of structural elements and a case started. So-called sound flatter was 
initiated. The point is that while the subsonic velocity increases the frequency of sound waves ef-
fecting on aircraft diminishes. After takeoff the sound wave frequencies are within the acoustic fre-
quency spectrum of operating engine in the range from hundreds to thousand hertz. As the velocity 
grows the frequency of sound wave influence diminishes in proportion to the difference between the 
velocities of sound and aircraft. Following the diminishing and affecting the sound waves alter-
nately concur with all the natural frequencies of flying spacecraft. 

The situation is close to the considered rotation of the elastic rectangular shaft when the 
shaft rotational velocity changes from zero to maximum. The high frequency vibrations exert no 
serious influence on the shaft and the aircraft. And yet in advancing low natural frequencies the vi-
bration amplitude is increased to its maximum value corresponding to the first natural frequency.  

Because the first natural frequency of aircraft is around several hertz depending on the air-
craft structure the most dangerous sound flatter is realized as soon as the difference in velocities of 
sound and aircraft is reached of about several scores of meters per a second, i.e. while approaching 
to a sound barrier. Just here the problem arises if the aircraft velocity is needed to be increased or 
decreased. In both cases the dangerous vibration is shut. At the development outset of jet aircraft 
there was no sufficient power for engines to be hopped, and flight velocity was to be decreased 
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without any alternative option. As engines were improved their velocities grew as high as 3,000 
km/h and sound flatter was overcome by abruptly increasing the aircraft velocity up to the value 
when the safe flatter duration is not over 1 second. 

With regard to sound flatter, it little differs from flexure-torsion flatter. A 3-D sound wave 
periodically changes the aircraft pressure to vary, for example, vertical stiffness of the wings and 
initiate the parametric both flexural and further torsional oscillations. 

Such kinds of oscillations can be excited in respect of not only the wings but the steering 
system and the aircraft sternpost. Moreover other kinds of oscillations are possible depending on 
flight conditions and structural philosophy. In whole, flatter is a challenging examination for air-
craft and a test pilot. In conclusion it should be noted that there are a lot of oscillation control meth-
ods at designers’ disposal, and the choice of natural structure frequencies beyond a frequency dis-
turbance spectrum takes a priority place among them.  

 
Self-excited oscillation or parametric oscillation? 

 
Well, both steady and parametric linear dynamic systems can have convergent free oscilla-

tions under their stable conditions and increasing oscillations when those systems are unstable. The 
increasing parametric oscillations are called parametric resonance. Steady (nonincreasing and sus-
tained) free oscillations of autonomous nonlinear systems are called self-excited oscillations. The 
term “self-excited oscillations” was introduced by Academician A.A. Andronov at the beginning of 
the last century and became customary in the theory of oscillations. At the same time the introduced 
term does not allow for understanding the reasons of oscillation self-excitation and stability. 

Subsequently it turned out that self-excitation oscillation conditions in a nonlinear system 
are at the spectrum limit of the first parametric resonance of a linear system. Several explanations 
on the matter can be found hereafter (see Part 2, Forced oscillations). This can be explained by the 
fact that the slope of nonlinear characteristic/parameter F(x) oscillates following the x-coordinate 
oscillations. At that moment the parametric resonance oscillations corresponding to so-called soft 
excitation are initiated in a nonlinear system and “put into orbit” the steady/self-excited oscillations. 
These are steady oscillations if their “orbit” is stable. In turn the self-excited oscillation orbit will be 
stable if there are no any kinds of parametric resonance but the first. The essential requirement for 
self-excited oscillation stability is the shift of those oscillations from the excitation limit to the re-
gion where parametric resonance lacks/presents while increasing/decreasing the self-excited oscilla-
tion amplitude.  

 

 
 

Figure 1.17. Self-excited oscillations of liquid level in Tantalus vessel 
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Thus, there are quit a lot reasons for self-excited oscillations to be considered steady para-

metric oscillations of nonlinear systems. It is the third kind of parametric oscillations taking place  
during the spring pendulum oscillations (see Part 2, Oscillation process numerical simulations). The 
simplest examples of numerous self-oscillatory systems are given hereinafter. 

 
Let us consider the example of the hydraulic self-oscillatory system (see Figure 1.17.) which 

is called Tantalus’s vessel. The vessel is filled up with water at the constant velocity inV . 

Once the maximum water level, maxH , is reached the water starts to drain at the velocity 

inout VV >  as long as the minimum water level, minH , is reached. Hereupon water draining is 

stopped and filling up the vessel up to its maximum level is started again. The time diagram of wa-
ter level self-excited oscillations is also given in Figure 1.17 on the right. 

One can vary the drain speed by either changing the drain port diameter or lengthening the 
exhaust vertical pipe section. The presented hydraulic system is simultaneously both nonlinear and 
parametric because periodically turning on/off the drain port with a period аТ  can be considered as 

a key nonlinear delay link or periodically step-wise varied parameter. 
 
The electronic analog of Tantalus’s vessel is given in Figure 1.18a. The capacitor C, makes 

the function of the vessel. Charging the capacitor is performed from the source of voltage U, 
through the resistor, 1r . As soon as the threshold voltage thU , is reached at the diode/dinistor or con-

trolled thyristor D, the capacitor is discharged through the resistor 2r .Because 12 rr <<  the capaci-

tor will become discharged and the great back diode resistance will be recovered. Low charging the 
capacitor is begun again. The voltage-current characteristic of the diode is given in Figure 1.18c, 
where CrТ 11 =  and CrT 22 =  are time constants. 

 
 

 

 

D 
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Figure 1.18. Self-excited capacitor voltage oscillations  

 
 
There are many other mechanical, electrical and electronic self-oscillatory systems, such as 

impact machines, lever clockworks, generators escapement mechanism and here it is - Stop! Atten-
tion! A rap was heard in the kitchen: the water has been boiled in the saucepan and that is its cap 
knock - one can watch parametric resonance. Self-excited oscillations set in after one or two min-
utes, those are steady parametric oscillations. 

 
Ordinary swing paradoxes 

 
Would a human been use parametric oscillations and parametric resonance? At present there 

may be both “yes” and “no”. 
Certainly, visiting gymnastic competitions many people watched performances of master 

gymnasts and amazed by their excellent sporting mastery of trained bodies. The masters exploit pa-
rametric oscillations in an extremely accurate manner in making exercises at gymnastic apparatus, 
such as rings, parallel bars and a horizontal bar. So, for example, jumping up to the bar and rallying 
the sportsmen throw his body forward, makes one or two controlled forward swings/oscillations and 
just turns to handstand by an inversed pendulum. Just a little keeping the last position the sportsman 
makes several circulations, and breaking away from the bar he flies headlong forward, makes 
one/double somersault and lands on his legs. Bravo! The variable parameter/inertia moment and 
parametric oscillations were neatly used to reach top mastery!  

The inertia moment varies following the pendulum length changes to arise parametric oscil-
lations, which lose their stability and proceed to revolutions as soon as the oscillation amplitude be-
comes higher than 3π/4. The revolutions are sustained and developed by means of the minor peri-
odical variations of inertia moment too. 

The most popular and favorite apparatus for children and young people is an ordinary swing. 
Just what kinds of emotions one can watch at a swing: ringing laugher and crying, fright and joy, 
rapture and brave daring! And how! Is there another place on the Earth where one can also undergo 
zero-gravity in gravity conditions? Justly swing services are invaluable in training of cosmo-
nauts/astronauts of all generations. 
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Figure 1.19. Swing oscillations 
 
The swing parametric oscillations are excited by periodically moving a swinging man in the 

vertical plane (see Figure 1.19), i.e. by periodically changing the pendulum inertia moment and ef-
fective length. The swing is easiest to be rocked at the parametric oscillation frequency equal/close 
to the free oscillation natural frequency of the swing with a motionless load. 

Moreover the frequency of parameter variation or vertical load/person movement has to be 
two times higher than the oscillation frequency of the swing. (Note: if two persons swing, they 
squat by turns to provide a two-fold parameter change in the swing oscillation period). The arising 
parametric resonance is called the first/main parametric resonance. But the above mentioned para-
metric oscillation excitation conditions are not still sufficient. Another important parametric excita-
tion condition is the parameter oscillation phase relative to the swing oscillations. Load/person 
down movement (by squatting) has to be started as soon as the swing reaches its maximum swing 
deflection in either direction at the zero angular velocity of oscillations. In turn the load/person up-
ward movements or the reductions of pendulum effective length have to be at the zero swing deflec-
tion from vertical position, i.e. at the maximum angular velocity. This requirement of effective 
swinging is apparent, for example, from the pendulum description in the case when the suspension 
point vibrations (see Figure 1.3.). The effective length just has to be increased in the second quarter 
II and in the fourth quarter IY (the acceleration quarters) of the pendulum oscillation period and it 
has to be decreased in the first quarter I and in the third quarter III (the deceleration quarters). The 
question is absolutely appropriate just now if what you should do to come the swing to a stop ur-
gently in the situation when have swinging you want to jump down, and of course it is dangerous 
for you to leap down from the swing and you cannot reach neither hand nor foot of yours to the 
ground surface.  

In whole it should be noted that such a simple apparatus as an ordinary swing is surprising 
in respect of an amount of effects and paradoxes occurring in the process of parametric oscillations. 
First of all, swing oscillations and parametric oscillations on the whole, have the lower parametric 
excitation threshold. So, in the section Ordinary swing (see Part 2) the threshold excitation condi-
tion is given as follows: 

ξξπλ 5.0
6

≈≥ , 

 



 24 

where )(0 tlll ∆+=  is the pendulum suspension length, 0/ ll∆=λ is the relative parameter oscil-

lation amplitude and ξ is a damping coefficient. Because of this threshold condition it is useful for 
young parents to bear in mind the following long-standing event happened to the author, and it re-
minds him that at times parents are unfair to their children without taking notice /  

“Once swinging my three-year-old son at a wooden swing made by my grandfather I made 
up my mind that it is high time for the son to swing himself. Having explained the methods of wing-
ing I afforded the opportunity for him and imparted an initial deviation to the swings. My boy tried 
with all his strength but parametric resonance was not excited. After his several unsuccessful at-
tempts I removed him from the swing in an emphatic manner. We got perfectly angry with each 
other - And a strong childish crying exploded the silence of Shuvalovsky Lake. My wife appeared 
immediately to the howl. On occasions like that she was interested in scientific propositions less 
than my pedagogic principle, and she was not interested in the latter at all! The son was placed at 
the swing, and I was given the exact instructions on the allowable oscillation amplitude - And I had 
to take up the forced oscillations again.” [1]. 

Surely, I was not right. And just now I give a simplified principle for practical testing the 
threshold excitation condition h>40l /N. It means that the swing suspension length,0l , to be di-

vided by the child’s stature are to be less than 1/4N, where N is an amount of the free oscillations of 
the swing with a motionless load, and the oscillations are attained at the minor initial swing devia-
tion. The practic principle is derived under the following assumptions: the h/3 squats (h is the 
child’s stature) are allowed, this corresponds to the h/6 swing suspension length variation; the swing 
frame weight is not taken into account. 

The other feature of the swing parametric oscillations differing from those of forced oscilla-
tions is also interesting. There is a maximum parametric excitation frequency, and parametric reso-
nance is not feasible beyond one. Your author gives several of the other interesting parametric oscil-
lation paradoxes. To this purpose let us mentally cover the swing frame together with a swinging 
person by the sphere non-transparent for a wingside spectator. The spectator can ask the first para-
doxical question, “Why does the sphere swing and the oscillations do not decay in the conditions 
when external forces luck?” 

The following paradox involves the frequency/period of parametric oscillations. The equal-
ity πγλγ /)21(21 22 +±=−  follows the swing parametric oscillation excitation condition when ξ=0 
and α is minor (see the section Ordinary swing). According to the above equality the two values of 
the relative oscillation frequency 02/ ωγ Ω=  correspond to each value of the relative variation of 

the effective length 0/ ll∆=λ . So 682.02
1 =γ  and 52.12

2 =γ  when 2.0=λ . The absolute oscilla-

tion frequencies 0
2
1 /682.0 lg=ω  and 0

2
2 /52.1 lg=ω agree with them. Measuring the pendulum 

length, 0l , the wingside spectator can calculate the pendulum frequency 0
2
0 / lg=ω by Thomp-

son’s formula taken from the well-known school curriculum. And the last calculated value coin-
cides with none of both possible and real frequencies of swing oscillations. Of course the last para-
dox can be simply explained by the fact that the spectator cannot watch the parameter oscillations 
and so he considers the pendulum oscillations as free just when the parametric oscillations differ 
from those free. 

The author gives the next paradox of parametric oscillations. In case if swaying the swing, 
i.e. its suspension length variation, occurs once over the period, the second parametric resonance is 
excited, and the parametric oscillations become unsymmetrical relative to the vertical. The wingside 
spectator can note the following paradox: the pendulum symmetrically swings relative to the verti-
cal-unmatched axes while external forces lack. Of course the paradox can be explained by the fact 
that parametric oscillations are not symmetrical forced ones. 

Certainly, the swing merit is great in learning parametric oscillations. Why, a notorious 
swing is an excellent teaching aid indispensable in learning parametric resonance.  
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Parametric oscillations and human being 
 
As yet a human being continues only to cognize the enlarged area of parametric oscillation 

influence. Thus, in recently studying the specifics of macroeconomic modeling parametric oscilla-
tions were found in the multicommodity balance model and in juncture/market cycles of Gudvin’s 
model (See Chechurin L.S. Applied Economic Problems in[2]).  

Just lately scientists came to the conclusion based on numerous measurements on the para-
metric nature of the impact of different oscillation fields, such as radiation field, vibration field, 
gravitation field, electric field, magnet field, etc, on living organisms [4]. Presumably the impact 
can be explained by the “life” water effect [5]. Under the impact of an external oscillatory field the 
water dipole becomes ordered in the cells of the living organism. This is resulted in the stable dipole 
pair to be formed in the water at the frequency equal to half an external action frequency, and the 
dipole group/cluster or region of synchronously-oscillating, identical-orientated dipole pairs entails 
persistent immunity and therapeutic actions conformably to many diseases. 

It should be noted that long before the given explanations therapeutic actions were discov-
ered from various devices, such as the VIATON generating vibrations, the ALMAG, generating 
magnetic oscillations, the MAVIT, generating both vibrations and oscillations, ultrasonic devices, 
etc. It seems that an ordinary and simultaneously cheap swing could fully occupy its fitting place 
among health-improving devices like those because a swing is the unique parametric training device 
in which the subsonic oscillations of gravitational field are generated. The training device might be 
useful for the elderly to a greater extent than the young. 

It would be not right to complete this section at that point and not to mention how paramet-
ric resonance effects on human character and life. So, considerable will-power and resolution are 
required from a test-pilot to overcome the aircraft sound flatter. The pilot’s prize is a joy in flying at 
the silence of air space. In other life collisions strong-willed personal qualities are required from a 
human been in getting over “life flatter”. All is much complex in live and the complexity is often 
beyond all mathematical formulations and physico-mathematical modeling. In order to get out 
somewhat and to avoid the flatter in some difficult life circumstances the author gives the following 
common example. 

A cyclist goes by bicycle. A large puddle emerges in front of him, and it is not clear for him 
whether to stop or go on. He carries out neither of the two - He applies a brake, and his bicycle 
drives slowly in the puddle - the puddle gets deeper and deeper, and the bicycle speed gets slower 
and slower - Stop! The cyclist becomes an unstable inversed pendulum at the zero bicycle speed. 
His violent efforts on handling handlebars cannot help because the oscillations occur in another 
plane. And the hard result takes place: the rider and his bicycle lay in the puddle. Of course, those 
are not “a life flatter”, but how look at!  
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PART 2. BRIEF GUIDE TO PARAMETRIC OSCILLATION RIDDLES  
 
As appears from the previous description parametric resonance can both harm and help. At 

the same time in spite of the presence of parameter oscillations parametric resonance can both be 
excited and not. This part is aimed at understanding the conditions of presence/absence its excita-
tion. In that case a conscious chance of the purposeful stimulation of parametric resonance excita-
tion/absence appears. 

 
Forced oscillations 

 
Ordinary pendulum description. The pendulum oscillations are schematically illustrated in 

Figure 2.1. where the actuating forces are presented as follows: αsinРFp =  is  the P weight com-

ponent  perpendicular to the arm, l ; rF  is the environmental resistance force (air/liquid, bearing 

friction forces) proportionate to the angular velocity of pendulum turn, ω ; aF  is the inertia force 

proportionate to the angular acceleration, ε . 

 
 

Figure 2.1. Ordinary pendulum oscillation 
 
The above forces moments as the products of the forces by the arm, l , relative to the pendu-

lum rotation axis, O, are denoted by pM , rM , aM . According to the main mechanics law for a 

rigid rotation the sum of the moments is zero: 
0а =++ рr МММ .                                      

Assume αα ≈sin  for slight angular deviations. Denote the specific moments α/pMс = , 

ω/rMb = , ε/aMa = , where α, ω , and ε  are angle, velocity and acceleration, correspondingly. 

Using the denotations we rewrite the equation in the form 
0)()()( =++ tсtbta αωε , 
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where αωε ,,  are the coordinates/variables/time functions; c,,ba are constant parameters. The lin-
ear differential equation for free pendulum oscillations is obtained because an angular acceleration 
is the second derivative of the angle with respect to time and the angular velocity is the first deriva-
tive of the angle with respect to time. The corresponding operator equation is 

0)()( 2 =++ tcbpaр α                                  (1) 

where the operator, p, is a first-order derivative and 2р is that of second-order. 
The algebraic equation (1) in which the quadratic polynomial in the brackets is called a 

characteristic polynomial and the equality  
02 =++ cbpaр  

is called a characteristic equation. The characteristic equation (3) and its roots completely determine 
the free oscillations at a specified initial deviation.  

We can observe the free oscillations after deflecting the pendulum to either of the sides and 
releasing it (see Figure 1.1.). The oscillation period, T, is found at b=0 by the well-known Thomp-
son’s formula: 

с

а
Т π2= . 

While the parameters c,,ba  are positive, the pendulum free oscillations have a decayed os-
cillatory manner if the characteristic equation roots are complex conjugate (see Figure 1.1.), and the 
decayed manner is monotone if the characteristic equation roots are real. The roots are purely 
imaginary at b=0 and continuous oscillations occur. The continuous oscillation amplitude is equal 
to an initial deflection. Lastly even if one of the characteristic equation coefficients/parameters is 
negative, the unstable process of free pendulum motion is monotonous divergent at the real roots 
and it is oscillatory divergent at the complex conjugate roots.  

The problem is high-difficult or not feasible at all to define the roots of high (higher than 
four) order polynomials concerning complex objects in an analytic way. Numerical calculations of 
the roots and the transients present no difficulties using modern computing technique, but the ob-
tained results are greatly limited to be applied. The point is that not so much a transient itself is im-
portant for an innovative technology developer as its qualitative characteristics, such as stability, a 
stability factor, nature (oscillatory or monotonic), an oscillation damping factor, a maximum ampli-
tude, transient time, etc. Lastly the connection of the transient factors with  parameters is extraordi-
nary important for a correct parameters selection. And the story is not complete. Very likely, the 
main thing is that the definition of mathematical formulation adequate to a complex object, such as 
aircraft, a ship, a bridge, an architectural structure, etc, which was constructed on the basis of vari-
ous physical operating principles of mechanics, electromechanics, aerodynamic, hydro- and ther-
modynamics demands great professionalism unattainable at present because of considerable differ-
entiation of sciences. 

 
Frequency characteristics. Designers and engineers try to find a break in the deadlock 

through full-scale and physical model testing of constructed objects in different media and air/liquid 
flows and also by exciting and measuring object oscillations using oscillators, vibrators, shakers, 
and special instrumentation. In particular available either calculated/experimental or experiment-
calculated data (the latter is better) on frequency characteristics of constructed objects could be 
much useful. 

Experimental frequency characteristics are recorded in a forced oscillation mode. A disturb-
ing harmonic action (input action/signal) from a generator/vibrator is applied to one of the chosen 
points/input of an electrical circuit/structure. The fixed input oscillation frequency and amplitude 
are set. The steady harmonic oscillation amplitude and phase are measured at the different object 
points/outputs; the their phase is more infrequent to be measured. The output-to-set input oscillation 
amplitude ratio is the modulus, A, of the frequency characteristic. The phase difference between 
output oscillations and input ones is the frequency characteristic phase, ϕ . A the input oscillation 
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frequency is changed and the measurements are performed again. The amplitude-phase-frequency 
characteristic is obtained in respect of the chosen input and output as follows: 

in

out

А

А
А =)(ω ,    inout ϕϕωϕ −=)( . 

The more complex the object, the more input and output points, the greater is the family of 
the obtained frequency characteristics. Usually the input signal phase is assumed to be zero, i.e. the 
relative shift between output and input signals is counted. If that is so, the measured output signal 
phase is concurrently the frequency characteristic phase )()( ωϕωϕ out= . 

The frequency characteristics can be calculated by the steady forced oscillation equation 
which results from the free oscillation operator equation (1) by adding the forcing harmonic oscilla-
tions )(in tF  to its left side: 

)()()( 2 tFtсbpaр in=++ α . 

The forcing oscillations are assumed to be tAtF in ωsin)(in = . Because the equation  is linear 

the steady forced pendulum oscillations are of the same form and frequency, ω , but differ in an 
amplitude and a phase, i.e. )sin()(    out ϕωα += tAt . Hence, the steady forced oscillation equation is 

as follows: 
tAtAcbpaр inout ωϕω sin)sin()( 2 =+++ .   

For clearness the symbolic method well-known from theoretical electrical engineering is ap-
plied here. According to that method the single-component harmonic signal )sin( ϕω +tA is repre-
sented in the complex plane by the vector, A, located at the angle ϕ  to the positive real line (see 
Figure 2.2.). 

 
Figure 2.2. Complex plane of frequency characteristic 

 
In Figure 2.2. the point A having the initial phase, ϕ , rotates round the origin of coordinates 

to change the phase, θ, at the angular velocity ω  because tωθ = . And the vector, A, circumscribes 
the circle ϕωϕω jtjtj eАeAe =+ )(  in the complex plane. After replacing the sine functions by the com-
plex exponentials function the equation of steady forced  oscillation takes the form when p=jω 

[ ] tj
in

tj
jp eAeAcbpap ωϕω
ω =++ +

=
)(

out
2 . 

 After canceling both sides by exp(jωt) the equation  comes to the equality form 
 

                                     in2

1
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cbpap
eА

jp

j
out

ω

ϕ

=









++
=                        (2)             

The fractionally rational function 12 )()( −++= cbpарpW  is called the transfer pendulum 
function. Because the transfer function denominator is a characteristic polynomial the function de-
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fines all the oscillation object/pendulum features in terms of input and output coordinates chosen. It 
is important for us that the transfer function, if the operator p is substituted for jω, forms the calcu-
lated amplitude-phase-frequency characteristic W(jω) in the complex plane: 

cjbja
jW

++
=

)()(

1
)(

2 ωω
ω . 

As any complex function, the amplitude-phase-frequency characteristic can be written in the 
two forms - complex  and exponential. The complex form includes real and imaginary parts as fol-
lows: 

)Im()Re()( ωωω jjW += , 
where Re(ω)=ReW(jω) is a real frequency characteristic and Im(ω)=ImW(jω) is called an imagi-
nary one. It was mentioned above the exponential form in view of the description of recording the 
experimental frequency characteristics: 

)Re(

)Im(
)()()( )(

ω
ωωωω ωϕ arctgjWeAjW j ==  ,  

where А(ω) and φ(ω) are both amplitude and phase frequency characteristics. Thus, it is resulted 
from the equality (2) that the output oscillation phase dependence on the frequency is the phase-
frequency object characteristic, and the output oscillation amplitude is equal to the amplitude-phase 
characteristic modulus multiplied by the input oscillation amplitude. 

 
 

Figure 2.3. Amplitude-phase-frequency characteristic of pendulum 
 

The amplitude-phase-frequency characteristic of the pendulum is given in Figure 2.3. The 
characteristic begins at the point 1−a (ω=0) of the positive real semiaxis, and it ends )( ∞→ω  at the 
origin after passing through the both fourth and third quadrants. The characteristic has its maximum 
distance to the origin where the modulus is maximum at the point of resonance frequency, 0ω , 

within the fourth quadrant: 

2

2
2
0 2a

b

a

c −=ω . 

 
The phase characteristic changes from zero to -180°, i.e. the vector, ω, rotates clockwise at 

the –π rad angle as the frequency varies from zero to infinity. 
For an ideal pendulum b=0, i.e. there is no oscillation damping, and the amplitude-frequency 

characteristic modulus goes to infinity and the phase-frequency characteristic jumps from zero to –π 

at the resonance frequency ac /0 =ω . For the purpose of lumping oscillatory objects at a small b 

value it is useful to estimate the resonance frequency as ac /0 ≈ω  and the maximum modulus as 

0max /1 ωbA ≈  with phase 2/)( 0 πωϕ −≈  at the imaginary negative semiaxis point, 0ω . 

We, hereinafter, shall not calculate and plot amplitude-phase-frequency characteristics, and 
go beyond their qualitative characteristic demonstrations. Their accurately plotting is easy by either 
experimental data or a transfer function using the Matlab computing medium.  
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We return to the forced oscillations. Substituting in the equation (2) p of jω we get the fre-

quency equation 

inin2
)( )(

)()(

1
)( AjWA

cjbja
eА

j
out ω

ωω
ω ωϕ =

++
=  

or 

)(
)( )( ωω ωϕ jWe

А

А j

in

out = . 

 
So the amplitude-phase-frequency characteristic modulus is the ratio of the forced oscilla-

tion amplitude to the disturbing force amplitude. The forced oscillation phase is equal to the fre-
quency characteristic phase because the input disturbance phase is assumed to be zero. In essence, 
the physical meaning of frequency characteristic lies in this. If you know the amplitude-phase-
frequency characteristic, you can define the forced oscillation amplitude and phase for each fre-
quency, ω, under the rated input oscillation amplitude, and also find the necessary input oscillation 
amplitude on the basis of the required output one.  

In conclusion it should be made one important remark. Dealing with forced oscillations in a 
linear stationary system we had in view that the system is stable, i.e. its zero equilibrium is stable. 
Otherwise forced oscillations practically lack and cannot be observed. In this section we could do 
along without the above remark since the stable pendulum was considered. Moreover all the sys-
tems described by a characteristic quadratic with positive coefficients are stable too. The stated 
definitions are also true for systems of higher orders. In such case the remark is witty. Of numerous 
well-known stability criterions of linear stationary systems Nyquist’s amplitude-phase-frequency 
criterion (Nyquist’s criterion) is needed in the further explanations. According to the Nyquist’s cri-
terion a system is stable if its complex frequency characteristic W(jω) does not cover the (-1,j0) 
negative real semiaxis point.  

We briefly sum up at the end of the section. The frequency characteristic completely defines 
the forced oscillation mode in a linear stationary dynamic system. In a system like that forced oscil-
lations occur at any input oscillation amplitude and have no an excitation threshold. The forced 
symmetrical oscillation frequency coincides with the symmetrical input one.  

 
 

Parametric oscillations 
 
Amplitude-phase characteristic of periodic parameter. Let some variable parameter, ν, in-

cludes the constant component,0v , and the variable component, ν(t)>0, and so )()( 10 tvvtv += . 

Meanwhile, our interest is only the variable component. So the constant component is not taken into 
account and as a whole ν(t) is considered to be positive (ν(t)>0). Therefore the constant component 
is positive too ( |)(| 10 tvv > ). Assume a harmonic parameter variation rule at the frequency, Ω, i.e. 

)(sin)( 11 τν −Ω= tvt , 
where τ is the phase shift indicating a certain parameter variation phase τψ Ω=  relative to the pe-

riodic input coordinate change )(in tx  at the frequency, ω, and the amplitude, A: 

tAtxin ωsin)( = . 

Determine a transfer coefficient for the first harmonic parameter.  
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Figure 2.4. Periodically nonstationary parameter 
 
Because the parameter is a proportionality factor for the input coordinate, the output coordi-

nate is the product of the two as seen in Figure 2.4: 
ttAvtx ωψ sin)sin()( 1out −Ω= . 

Express the product of the sines in the form: 
=−−Ω=−Ω= )2/cos()sin(sin)sin()( 11out πωψωψ ttAvttAvtx  

]}2/)sin[(  /2]-)t{sin[(,5A0 1 πψωπψων −−+Ω++−Ω= t .  
From here it follows that there are two harmonic constituents at such modulator/product 

output and those are a sum and a difference of the frequencies. There is an only case, while the pa-
rameter variation frequency is twice as high as the coordinate oscillation frequency (Ω=2ω), the os-
cillations agree with the input coordinate frequency arise at the modulator output. Our interest is 
just the case when the output coordinate includes the first ω-frequency harmonic input signal con-
stituent, see the first summand, and the third 3ω-frequency harmonic input signal constituent, see 
the second summand.  

Applying the symbolic harmonic signal notation again we determine the complex input co-
ordinate transfer coefficient by the first harmonic modulator without taking into account the third 
harmonic which is minor as a rule. Write down as follows: 

tjAejX ωω =)(in , 
2/

1
/2)-tj(

1out 5.0e.5A0)( πψωπψωνω jjtj eeeAvjX −+ == . 

Their ratio is the amplitude-phase characteristic of the harmonically-varied parame-
ter/modulator with respect to the first harmonic. Because exp(jπ/2)=j in the complex plane we ob-
tain 

ψ

ω
ωψ jejv

jX

jX
jW −== 1

in

out 5.0
)(

)(
)( .                   (3)             

Thus, the transfer coefficient of double frequency-varied parameter is equal to1v /2 with re-

spect to the modulus, where 1v is the first harmonic parameter variation amplitude. It is significant 
that the transfer coefficient does not depend on the input amplitude, A, and the frequency, ω, but the 
parameter oscillation phase and the coordinate. The fundamental difference between the parameters 
is that the time-varied parameter shifts an input oscillation phase at the output at the arbitrary angle, 
ψ, depending on the phase shift between the oscillations of parameter and input coordinate. In the 
complex plane the amplitude-phase characteristic W(jψ) at the arbitrary phase shift, ψ, is a 1v /2 cir-
cle centered at the origin. 

 
Parametric resonance. We consider the illustration of parametric resonance excitation by 

the elementary LRC-oscillatory circuit (see Figure 1.11.). 
In a free-flowing mode without external sources of power and oscillations the identical elec-

tric current flows through all the three circuit elements, and the total three-element voltage is zero. 
The L-inductor voltage is proportional to the current rate of change. The C-capacitor voltage is ac-
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cumulated as the current flows in time in proportion to the total current. The R-resistor voltage is 
proportionate to the current. The zero three-element voltage condition can be expressed in the form 

∫ =++ − 01 RiidtC
dt

di
L . 

In an operator form dividing by the operator, p, corresponds to integrating. So 

0=++ Ri
Cp

i
Lpi  

or 
012 =++ − iCRpiiLp . 

The equation  matches with the pendulum equation (1) by type and it can be expressed in the 
same general view: 
                                                           0)()( 2 =++ txcbpap ,                                      (4)                
where x(t) = α(t) for a pendulum and x(t) = i(t) for a RLC-circuit. It is important to note in terms of 
the two models presented in the above examples that the initial parametersl , m, R, L, C can be 
parts of the combined parameters a, b, c in their various combinations. Therefore either one or sev-
eral the combined parameters can be temporary variables. 
 For the purpose of significant beginning we assume that the parameter, c, is harmonically 
variable as 

tcctс Ω+= sin)( 10 , 

where 10 сс >  as it was mentioned above. According to (3) the complex parameter transfer coeffi-

cient с(t) takes the form 
ψψ jejccjW −+= 10 5.0)( .    

Removing the time coordinate x(t) and replacing the parameter by the coefficient W(jψ) we 
convert (16) to the complex frequency plane by the substitution р=jω: 

ψωω jejccbjja −−=++ 10
2 5.0)( .  

Inverting the left and right sides we get the equation  in its final form: 

ψ

ωω
ω je

jccbjja
jW

10
2

2

)(

1
)( −=

++
= .    

This is the parametric resonance excitation condition at the parameter oscillation frequency 
Ω=2ω. It is not difficult to define the excitation condition in its analytic form if one equates the 
moduluses in the left and right sides with each other: 

[ ] 1

2/1222
0 /2)()( cbac =+−

−ωω . 

Nevertheless a graphic illustration of the excitation condition in the complex plane of the 
object amplitude-phase-frequency characteristic is important, namely, parametric resonance is ex-
cited in the case when the amplitude-phase-frequency characteristic W(jω) leaves the 2/1с central 
circle at the frequencies ω=Ω/2.  

The last condition illustration is given in Figure 2.5. concerning the frequency characteristic 
W(jω) of the oscillatory both pendulum and electric circuit. Here the contracted notations are used 
to denote the real part R=ReW(jω) and the imaginary part I=ImW(jω) of the axes. 

As a rule the frequency characteristic leaves the parametric resonance circle at the resonance 
frequencies corresponding to the maximum characteristic modulus. The critical circle radius and the 
allowable parameter oscillation amplitude are to be determined by those resonance frequencies.  
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Figure 2.5. Parametric resonance excitation condition 

 
If the parametric resonance excitation condition is met, a linear dynamic system becomes 

unstable and its oscillations grow up unlimitedly. The parametric resonance excitation condition 
obtained specifies the frequency domain ),( 21 ωω  where the stability factor with respect to the 
modulus is zero/negative. 

And what about the stability factor with respect to a phase? Where does it disappear? It is 
not difficult to answer the last question. Since there is no oscillation synchronization of the parame-
ter itself and its input coordinate in a periodically nonstationary dynamic system, any phase, ψ, be-
tween the parameter and the parameter input coordinate can be settled within the range from 0 to 
360 degrees. In this case as it follows from the amplitude-frequency characteristic of variable pa-
rameter the same phase, ψ, is settled between the input and output parameter oscillations. It is inter-
esting that in the periodically nonstationary dynamic system self-synchronization occurs and the 
phase, ψ, equal or exceeding the object stability factor by a phase is settled. In other words, if 
modul margin of stability is negative, periodical parameter insets negative phase shift equal to sta-
bility phase margin. So parametric resonance is excited. 

The special case is when the frequency characteristic originates outside the circle. In that 
case the parameter variation amplitude at low frequencies is higher than the constant parameter 
component, and instead of parametric resonance the loss of free oscillation stability occurs in the 
system in the segments where с(t)<0. 
 

Parametric oscillation types. Up to here we considered periodically nonstationary systems 
consisting a single-frequency parameter. The latter was harmonically changed at the frequency, Ω. 
Simultaneously the parametric resonance excitation condition at the frequency ω=Ω/2 was deduced. 
The sustained coordinate parametric oscillations with a doubled variation parameter frequency are 
called the main/first parametric resonance presented in Figure 1.4. By the way, sometimes this kind 
of resonance is called a fist subharmonic resonance. As a rule the first parametric resonance oscilla-
tions have an excitation threshold, which is governed by an inverse circle radius of the first para-

metric resonance. Because ψψ je
jc

jW
1

1 2
)( =− the excitation threshold follows the equality 

1/2)( cjW =ω . 
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Figure 2.6. Second parametric resonance oscillation 
 
The undamped coordinate oscillations can be observed at the frequency equal to the parame-

ter variation frequency ω=Ω. These are the second parametric resonance oscillations and their fre-
quency coincides with a forced oscillation frequency. The second parametric resonance oscillations 
have an excitation threshold, which most often exceeds that of the first resonance, and they are un-
symmetrical because they include the constant constituent (see Figure 2.6.). The inverse circle ra-
dius of the second parametric resonance is more than that of the first resonance. Which of the two 
parametric resonances is excited in the system with one natural frequency,0ω , depends on the prox-

imity of parameter oscillation frequency to one of the following approximations: 02ω≈Ω and 

0ω≈Ω . 

In case of the multifrequency parameter variation when there are several harmonics, either 
first or second parametric resonance can be excited at the frequency one of the harmonics depend-
ing on the object resonance frequency. These are resonances of higher orders, n, (third, fourth, etc.) 
at the frequency ω=nΩ/2 (n is a number of a higher harmonic). Essentially these are either first or 
second parametric resonances at a nth harmonic frequency. 

In complex systems characterized by several natural frequencies and particularly in distrib-
uted ones the parametric oscillations can be excited at several frequencies. Those are so-called 
combination parametric oscillations. The subsequent statement does not go beyond the first para-
metric resonance. 

 
Examples 

 
Let us consider, first, two oppositely dual problems with respect of parametric resonance: 1) 

parametric equilibrium instability of an ideal pendulum and 2) parametric stabilization of unstable 
pendulum equilibrium. 

 
Example 1. The aim is to swing the ordinary pendulum (see Figure 2.1.) using its suspen-

sion point oscillations. While the suspension point oscillates at the amplitude, a , and the frequency, 
Ω, in the vertical plane a periodically-changed acceleration and the corresponding force 

tma ΩΩ sin2 acting along the mg-gravity line are periodically imparted (added/subtracted) to the 
pendulum. In the ideal case, when environmental resistance is missed and the inertia moment 

2mlJ = , the pendulum oscillation operator equation takes the form 
0)()sin()( 222 =ΩΩ−+ tltmamgtpml αα  

or 

0)(
sin

)(
2

2 =ΩΩ−+ t
l

tag
tp αα . 
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Eliminate time, t, from the equation  by substituting the harmonically-changed parameter for 
its complex amplitude-phase circle equation and turn to the frequency plane by replacing p=jΩ/2 as 
applied to the first parametric resonance: 

ψje
l

a
j

l

g
j −Ω=+Ω

2
)

2
(

2
2 .   

The obtained equality (21) is just suitable for analyzing in the plane of reverse frequency 
characteristic. Nevertheless turn to the plane of ordinary object frequency characteristic by revers-
ing the left and the right sides of this equality as follows: 

ψje
ja

l

lgj 22

2

/)2/(

1

Ω
=

+Ω
.   (5) 

The left side of (5) is the amplitude-phase-frequency characteristic of the ideal pendulum. 
This real characteristic originates (Ω=0) at the point (g/ 1)−l of the positive real semiaxis. It moves to 

infinity ( ∞+ ) along the positive line at the resonance frequency lg /2/ 0 ==Ω ω  as Ω is in-

creased. There is a characteristic discontinuity from ∞+  to ∞−  at that resonance frequency, and 
then it reverts to the origin along the negative real semiaxis. This implies that there are two intersec-
tions ( 2/,2/ 21 ΩΩ ) of the frequency characteristic with the circle of reverse amplitude-phase pa-
rameter characteristic (see Figure 2.7).  

As opposed to complex objects, in this simple example the analytical solution is simpler 
than the graphic one. The first parametric resonance excitation/parametric equilibrium pendulum 
instability condition can be deduced by equating the moduluss in the sides of the direct (5)/ reverse 
equality with each other:  

2/)/2( 2 lga −Ω≥ . 

This implies the following condition 

2

2
041

2 Ω
−≥

ωl
a  

and the boundary (upper/low) resonance excitation frequencies  

2/,)/21(
2

5,0
0

2,1 lala <±=
Ω −ω . 

 

 
Figure 2.7. Parametric oscillation excitation condition of ideal pendulum 

 
Example 2. Consider the inverse problem of unstable equilibrium stabilizing of an ideal in-

versed pendulum in respect of Kapitza’s pendulum with the help of its rotation axis vibrations. 
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The inversed pendulum equations for the case of vibrating its rotation axis differ from those 
of an ordinary sustained pendulum just in a g-acceleration sign. Therefore we write the frequency 
parametric resonance excitation condition(5) as follows: 

ψje
ja

l

lgj 22

2

/)2/(

1

Ω
=

−Ω
.  

From here implies the first parametric resonance excitation condition in the form 

Ω
+Ω<Ω gl

a
2

2
.    

It  is the first stabilization condition of the inversed pendulum. 
  
The second condition also results from the same operator equation for a reversed pendulum 

0
sin2

2 =ΩΩ−−
l

tag
р  

For the case of the second parametric resonance at р=jΩ=jω frequency equation follows: 

)(/)( 2
2 ψjWlgj =−Ω , 

where )(2 ψjW  is the circle-shaped amplitude-phase characteristic of the same variable parameter 

tla ΩΩ sin)/( 2 with respect to the second parametric resonance oscillations. The rough assessment of the circle ra-

dius is 
22

2 )/(2)( lajW Ω≈ψ .   

Substituting rough assessment into the frequency equation from modulus equality  we define the reduced-
second  stabilization condition 

gla 2>Ω .     

Combining the both conditions we obtain the well-known stability conditions in respect of 
the unstable inversed pendulum equilibrium: 

Ω
+Ω<Ω< gl

agl
2

2
2 . 

The two examples given illustrate the wonderful ability of parametric resonance to add di-
rectly opposite properties to an oscillation object. 

The strict reader has the right to ask, “What are these trite-known results for? In reply one 
can give the two reasons unrelated with each other. First, both examples show that it is easy to get 
the results. Secondly, why would not you design, for example, a new wall electromechanical clock 
instead of various electronic quartz clocks in terms of both new parametric and forgotten old pendu-
lum principles? A pendulum provides a uniform rate of a clock and parametric resonance excites 
oscillations. Such clock is able of ornamenting any housing and, above all, the considerable virtual 
therapeutic result: rhythmic oscillations of a heavy pendulum inspire its holders with both regular 
and tranquil life. 

In the following examples the qualitative analysis of parametric resonance excitation ability 
is given in a general form and without a connection with a physical object action with regard to a 
second order oscillatory member. The skills in practical amplitude-phase-frequency characteristic 
location assessment are significant in this matter. In all the cases the free oscillation equation (4) is 
original. The case when the coefficient, c, is a variable parameter, i.e. )()()( 10 tcctctv +== , was 

investigated in the section Parametric oscillations. 
 

Example 3. Assume that the 2р held parameter is a periodically variable parameter, i.e. 

taataatatv Ω+=+== sin)()()( 1010 . 

As hereinbefore replacing the time-dependent part by the amplitude-phase characteristic 
ψψ jejaW −= 15.0)( according to (3) and transposing that to the right side of (4) we derive 

ψjejapcbppa −−=++ 1
22

0 5.0 .   



 37 

The following first parametric resonance excitation condition is derived as a result of the in-
version of both sides of the equality  and the substitution р=jω=jΩ/2: 

ψ

ωω
ω je

jacjbja

j −=
++ 1

2
0

2 2

)()(

)(
.    

 The right side  is the inverse parametric resonance circle 1/ W(jψ) and its left side is the am-
plitude-phase-frequency characteristic W(jω). Refer to Figure 2.5 to assess the frequency character-
istic location in the complex plane. The characteristic shown in Figure 2.5. differs from that in Fig-
ure 2.8. in the numerator only. Multiplication of the frequency characteristic by jω corresponds to 
its +π/2 rad counterclockwise turn and replacement of the origin ω=0 to the coordinate origin. The 
frequency characteristic is multiplied by jω two times as compared with the curve in Figure 2.5. so 
its rotation angle is +π rad. Thus originating from the coordinate origin the derived frequency char-
acteristic curve passes throughout the both left and right upper quadrants and ends ( ∞→ω ) at the 
point 0/1 a  of the real positive axis (see Figure 2.8.). 

 
Figure 2.8. Example of parametric resonance excitation condition 

 
This means that there are two points of intersection between the frequency characteristic and 

the inverse resonance circle: 1) at the sufficiently great 01 aa <  and 2) at the maximum frequency 

characteristic maxW(jω)>1/ 0a , of the oscillatory object. The two intersection points, 21,ωω , define 

the frequency range 2211 2,2 ωω =Ω=Ω  in which the first parametric resonance is excited. 
It could be seemed that parametric resonance could be realized in the oscillation object con-

taining any sufficiently great periodic parameter. Such is not the case. The following example is an 
illustration of the last statement.  

 
Example 4. Assume that the b coefficient of the coordinate variation rate in the oscillation 

object equation (4) is a periodic variable parameter. This results in the resonance excitation condi-
tion different from that of the previous case: 

ψ

ωω
ω je

jbcjbja

j −−=
++ 10

2

2

)()(
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In this case the frequency characteristic corresponding to the equation (3) turns counter-
clockwise at the π/2 rad angle. Originating from the coordinate origin the frequency characteristic 
passes through both first and fourth quadrants and it ends at the coordinate origin again (see Figure 
2.9.). Moreover the maximum frequency characteristic modulus is as mash as 0/1 b , and this value 

is reached at the positive real semiaxis point agree with the natural frequency of aс /0 =ω . As a 

purely mathematical matter parametric resonance occurs at 01 2bb ≥  and the variable parameter b(t) 

periodically takes negative values. In real objects in contrast to coordinates, negative physical pa-
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rameters, such as length, mass, inductance, capacity, resistance, etc, are found too uncommon. So 
assuming the physical restriction b(t)>0 we conclude that parametric resonance cannot be excited 
during the parameter oscillations b(t). 

 
Figure 2.9. Frequency characteristic of Example 4 

 
In mechanics and electronics the lack of parametric oscillation excitation under the resis-

tance variations of pendulum environment and bearings is explained from the point of view of en-
ergy just as in the case of resistance fluctuations in a RLC-circuit. Namely both environmental and 
electrical resistances are not energy carriers and they cannot store energy. Evidently that is right al-
though there are counter-examples as regards of more complex objects. But analyzing the system 
equation in this example we in no way connected the equation with a power oscillation aspect. And 
what is the matter? “Who” is guilty? Where and why does parametric resonance disappear? There is 
a simple explanation as follows: increasing the amplitude, 1b , and thereby decreasing the radius of 

the inverse amplitude-phase characteristic )(1 ψjW − , we simultaneously have to enlarge the con-

stant constituent, 0b by virtue of b(t)>0, which leads to the diminution of the maximum frequency 

characteristic modulus. So the intersection of inverse amplitude-phase characteristic with frequency 
characteristic is not possible. In other words the conditions 0sin)( 10 >Ω+= tbbtb  and 01 2bb ≥  

are not compatible with each other. 
Add the concluding remark to the examples. In many situations an alternating parameter is 

concurrently included in several coefficients of the oscillatory object equation. That takes place 
with respect to so-called synchronous multiparametric systems. An analysis of the latter is similar to 
that in the considered examples in which the frequency characteristics are altered. Thus, If any al-
ternating parameter β(t)= 10 ββ + sin Ωt, for instance, is simultaneously included in both coordinate 

and first coordinate derivative in a linear manner, the free oscillation operator equation takes the 
form: 

0)()(2 =++ tcptbap ββ . 
Then the frequency parametric resonance excitation condition is  
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ββωβω
ω je
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where ω=Ω/2 for the first parametric resonance. 
The final example relating to a swing is given below. 
 

Ordinary swing 
 
Assume an ordinary swing as an illustrative and well-known example of the application of 

parametric oscillations. The mathematical formulation of the latter differs a little from that of an 
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ordinary pendulum. Both the pendulum with an oscillating suspension point and the swing with an 
oscillating effective suspension length are periodically unstable oscillatory/parametric systems. That 
is why the first rough description approximation regarding an ideal swing can be derived from the 
ideal pendulum equation (see Example 1) after removing the suspension oscillations at 0=a  and 
substituting the constant length for the variable ( )(tll = ): 

0)()()()( 22 =+ ttmgltptml αα . 

Assuming, first, a harmonic rule of the length variation tt Ω+= sin)( 10 lll  we pass to the 

first parametric resonance oscillation excitation condition at the frequency ω=Ω/2. Then 

ψje
j

рgp −−=+
2

122
0

l
l . 

Hence the frequency resonance excitation condition at р=jω takes the form 

2/1
22

0 ll ωω =−g . 

And taking into account the natural frequency 0
2
0 / lg=ω  and denoting 0/ωωγ = , 01 / ll=λ : 

2

21
2

γ
γ

λ
−

> . 

So in case of an ideal swing the parametric oscillation excitation at the natural frequency 
(γ=1) occurs without a threshold ( 01 =l ). 

Let us consider now the effective pendulum length jump, which is close to practice, by the 
example of more rigorous pendulum model description.  

The above swing formulation was derived in assuming that the oscillation amplitude of pen-
dulum length oscillations is small, when 01 ll << , and so small inertia moment variations follow the 

same effective pendulum length variations. Otherwise it is necessary to take into account that the 
pendulum moment inertia variations )()( 2 tmltJ =  result in proportional variations of the angular 
velocity α& =ω. The relation is visually demonstrated by masters of figure skating beautifying final 
parts of their performances with their ice-rotations. Initially taking off the figure skater shows a 
slow rotation under a great inertia moment while he moves apart his hands and legs and sags. Then 
he, diminishing inertia moment, abruptly brings his legs and hands (overhead) together, thereby he 
effectively augments his rotation velocity. His rotation is ended with restraddling his hands and 
legs. 

So the more rigorous formulation of a swing has the form: 

0)()()(
)(

)()( 2 =+




+ ttmgltp
dt

tdJ
tptJ ααα .    

Here the multiplier in the square brackets is the rate of inertia moment variation, which gen-
erates corresponding change in the angular velocity pα(t).  

Substituting J(t) of m )(2 tl  and dividing the equation by the constant parameter, m, and the coordinate α(t) we 

obtain the following operator equation: 

0)(
)(
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+ tglp

dt

tdl
ptl .    

Assume a step-wise law of the effective pendulum length variation (see Figure 2.10). (Sometimes such kind of       
 

 
Figure 2.10. Step-wise law of effective pendulum length variation 
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excitation is called as a blowing excitation). 
As follows from Figure 2.10. 

)sinsgn1()( 0 tltl Ω+= λ ,     

)sinsgn21()( 22
0

2 tltl Ω++= λλ .  

Single out the first/main harmonic from the laws  of parameter variations. The first harmonic amplitude is 
higher than the step-wise oscillation amplitude, λ, by a factor of 4/π. So 

[ ]tltl Ω+= sin)/4(1)( 0 πλ , 

[ ]tltl Ω++= sin)/8()/4(1)( 22
0

2 πλπλ . 

Then 

[ ]
t

dt

tld ΩΩ= cos
8)( 2

0

2

π
λ

l . 

Substituting these variable parameters in the operator equation convert it to the frequency plate by replacing р 

by jω and Ω by 2ω. Substituting the time functions for their amplitude-phase equivalents jet j 2/sin ϕ−−→Ω  and 

2/cos ϕjet −→Ω  the frequency equality is derived as follows: 
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8

)
4

1()( 2
0

22 =−++−+ −−− ψψψ
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λω

π
λωω

π
λλω jjj e

j
eje

j
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We displace the exponential terms to the right side of the equality and equate the moduluss of left and right 
parts. Just now we have the first parametric resonance excitation condition in the form: 

)21(
2

)1(1 222 γ
π
λλν +=+− ,     

where 01 / ll=λ , 0/ωωγ = , 0
2
0 / lg=ω . 

It is worth reminding in conclusion that the derived parametric resonance excitation condition  is the first pa-
rametric resonance excitation condition of an ideal swing, i.e. when the free swing oscillations are continuous. Of 
course, environmental/air resistance and suspension friction exist in respect of a real swing. Those resistance forces are 
taken into account through adding the m/δ  term to the square brackets in the operator equation. Reproducing the 
above operator equation transformations we get the parametric resonance excitation condition for a real swing in the 
form: 

)21(
2

)1(1 222 γ
π
λγξλγ +=++− j ,  0

2
0/ ωδξ lm= .    

 
In case of the oscillations close to natural ones when 1≅γ   we have 

0
36 22

2
4 =+− ξλ

π
λ . 

The following simple rough excitation condition can be written when λ<1 and 42 λλ > : 

ξξπλ 5,0
6

≈≥ .    

The threshold condition  is applied to explain the parametric resonance in the swing pre-
sented in Part 1. 

 
Elusive avengers 

 
So far we considered forced oscillations in linear stationary systems and parametric oscilla-

tions in linear periodically nonstationary systems. It was noted that the parametric resonance excita-
tion in the second kind of systems results in equilibrium instability of a stable oscillatory object and 
also can stabilize an unstable object. 

It should be noted that linear dynamic objects and systems are, as a rule, the results of ideal-
izing. In technical practice dynamic objects starting with pendulums, swings, inductors, capacitors, 
let alone complex aerohydrodymanic processes, etc. are predominantly nonlinear.  

In nonlinear stationary dynamic systems parameters depend on coordinates. Calculations of 
such systems even not complicated are extremely laborious, and they are generally realizable by 
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only numerical methods. Simultaneously parametric oscillations and parametric resonance are very 
important in the main matter of oscillatory stability of nonlinear systems. The lack of notice to that 
matter is strictly penalized by “elusive avengers”, such as various parametric resonances. The term 
“elusive” means that parametric resonances are coincident with stable object oscillations and so 
they cannot be observed. This problem is concerned hereinafter. 

Forced oscillations of nonlinear systems. Assume the following formulation of a simplest 
nonlinear dynamic system in which a free member is a nonlinear function, i.e. 

)()]([)()()( in
2 txtxFtcxtbpxtxap =+++ .     

As usual we shall solve the equation  in the form )sin()( ϕω −= tAtx ,where 

tAtхin ωsin)( in=  is a harmonic perturbation. In this case the nonlinear function )]sin([ ϕω −tAF  is 

periodical and it can be presented as the Fourier series. Replacing the nonlinear function of periodic 
argument by the first harmonic of 1A  amplitude we write down as follows: 

)()()(sin)sin()]sin([)]([ h
1

1 tхАWtA
A

A
tAtAFtxF =−=−≈−= ϕωϕωϕω , 

where АААW /)( 1h =  is a harmonic linearization coefficient or nonlinear element transfer coeffi-
cient with respect to the first harmonic. This coefficient can be either calculated or determined 
graphically. Moreover it can be determined on the basis of calculation tables containing the coeffi-
cients for many types of nonlinear functions. Generally the harmonic linearization coefficient is a 
complex value. Its real and imaginary parts can depend on not only the amplitude х(t) but fre-
quency, a constant constituent, and coordinate derivatives. In a simplest way the harmonic lineariza-
tion coefficient is a real function of the amplitude, A, as regards the symmetrical single-valued 
function F(x).  

Turn from the equation to its frequency form using the harmonic linearization coefficient, 
the exponential notation of harmonic coordinates, and р=jω as follows: 

ϕω je
A

AWjW
A

)]([)( in
г

1 =−−− ,   (6)  

where cjbjajW ++=− )()()( 21 ωωω . In the plane of the reverse amplitude-phase-frequency char-

acteristic )()()( 00
1 ωωω jIRjW +=−  the frequency equation of forced nonlinear system oscillations 

has the simple graphical interpretation (see Figure 2.11.). The harmonic linearization coefficient 
values are along the negative real semiaxis for all the positive values, A. The difference modulus of 
the vectors )(h AW−  and W(jω) is ААin /  then. It follows from the modulus balance in both sides 

that 

)()]()([ 2
0

2
h0 ωω IAWRААin ++= . 

 

 
Figure 2.11. Forced oscillation frequency conditions 
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The condition dAdA /in =0 gives the circle equation in the form: 

)()()]()([ 2
1

2
0

2
00 AvIAvR =++ ωω , 

And the circle radius is 

dA

AdWA
Av

)(

2
)( h

1 = ,                                     (7) 

And the circle center shift along the real axis is as follows: 

dA

AdWA
AWAv

)(

2
)()( h

h0 += .                         (8) 

Because dAdA /in =0 is realized at the vertical tangent points of the amplitude curve )( outAA  

the forced oscillation jumps occur at those points (see Figure 2.12.). For the reason given above 
those jumps were initially called step-wise resonance. In reality the derived circle is that of the first 
parametric resonance, which the reader will get to know a little later. The circle passes through the 
point )(h AW−  and has its center on the left if 0/)(h >dAAdW  and the center is on the right 

if 0/)(h <dAAdW . By the way, it follows from this situation that the self-oscillation excitation con-

dition (6) coincides with the boundary of parametric resonance excitation at 0=inА  (see Section 1, 

Self-excited oscillation or parametric oscillation?). 

 
Figure 2.12. Step-wise resonance illustration 

 
Thus, if the frequency,ω, of forced oscillations at the reversed amplitude-phase-frequency 

characteristic falls into the parametric resonance circle, the forced oscillations lose their stability. 
According to the general postulate laid by A.M. Lyapunov to the basis of stability theory the 

motion x(t) of the dynamic system  
Q(p)x(t)+G(p)F[x(t)]=S(p)y(t) 

(where Q,G,S are polynomials of the operator, р, F is a nonlinear coordinate function, у(t) is an ex-
ternal action/perturbation) is stable if the zero equilibrium state is stable in respect of the linear sys-
tem described by the following small perturbation equation: 

0)(
)(

)()()(
)(

=∆+∆
=

tx
dx

xdF
pGtxpQ

txx

, 

where 
dx

xdF )(
 is the transfer coefficient of increment ∆x(t). If we substitute the coordinate, x, for 

the time function х(t), this coefficient becomes the time-varying parameter v(t). When the motion is 
periodic, i.e. x(t)=Asinωt, the parameter/transfer coefficient is periodic too. Its oscillation period is 
equal to half the forced motion period, i.e. π/ω, for the odd-symmetrical nonlinear functions 

)()( xFxF −=− . 
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So the incremental equation for periodic forced oscillations is the formulation of linear peri-
odically nonstationary system losing its stability as soon as the parametric resonance is excited. The 
parameter variation frequency Ω=2ω, and as long as the first parametric resonance condition is met 
the frequency of parametric oscillations indefinitely increasing in a nonlinear system is congruent 
with that of forced oscillations. 

Having blended, both forced and parametric oscillations become indistinguishable and thus 
parametric oscillations cannot be singled out and observed. Only the jumps of forced oscillation 
phase and amplitude or step-wise resonance are observed. Therein lays parametric resonance non-
detectability. Well, the “penalty” for taking insufficient notice to parametric resonance is not long in 
coming. The conclusion that step-wise resonance is forced oscillation instability initiated by para-
metric oscillation excitation was first provided by I.M. Smirnova sixty years  ago [6]. 

The above-derived center (8) )(0 Av  and the radius (7) )(1 Av  of the parametric resonance 

circle depend on the forced oscillation amplitude, A, of a nonlinear system, and the parametric 
resonance excitation conditions depend on the forced oscillation amplitude, A, and the parametric 
excitation phase, ψ, as follows: 

ψψ jeAvAvAW −−= )()(),( 10 . 

A more rigorous proof can be found in [2,3]. Consider the following example. 
 
“Buoy” parametric resonance. The case in point is a strange behavior of a river buoy in a 

strong current of the Neva in the region of the Ivanovsky rapids (see Part 1). We apply the ordinary 
pendulum equation with damping, ξ , for an waterproof cylinder tied to a cable and submerged (as 
the result of a spring water flood) in the form: 

0)]([ 0
2 =∆+++ ααξα MMpJp ,    

where 0M  is an initial buoyancy moment at α=0, ∆М(α) is a buoyancy moment increment con-

cerned with an immersion at the deviation, α. By unfolding the moments the equation can be written 
in the form: 

0sin])()[( 0
2 =∆+−++ αααξα ll FPFpJp , 

where 0F  is an initial buoyancy force at 0=α , )(αF∆  buoyancy force increment owing to oscilla-

tions of a cylindrical buoy submerged, l  is a cable length, P – buoy weight. We write the cylinder 
parameters: s (a base area), 0h  (an initial immersion value), d (specific weight of the liquid), and 

)(αh∆ = )cos1( α−l  is an immersion value under deviations. Then  

0]sin)cos1(sin)[( 0
2 =−+−++ ααααξα ll sdmgdshpJp . 

Denoting 1−= Jb ξ  ,  )( 0
1

0 mgdshJc −= −
l ,  21

1 lsdJc −=  we have the following equation 

0)2sin0,5(sinsin 10
2 =−+++ ααααα ccbpp .    

By linearizing the nonlinear equation up to 3α for 3αα >  we derive the approximate 

equation as follows: 

0
2

3

10
2 =+++ αααα ccbpp .     

The approximate equation is known as the Duffing equation. The tabular format of the har-
monic linearization coefficient for a nonlinear function is as follows: 

8/3)( 2
1h AcAW = . 

Then the radius and the shift of the parametric resonance circles are as follows: 
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In Figure 2.13. the following reversed amplitude-phase-frequency characteristic of the linear 
part is plotted in the plane ),( 00 IR : 
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21 )()()( cjbcjbjjW ++−=++=− ωωωωω   

together with the parametric resonance circle. 
 

 
 

Figure 2.13. Parametric resonance excitation condition 
 
It directly follows from Figure 2.13 that the frequency, 0ω , and the amplitude, 0A , of which 

parametric resonance excitation begins result from the equalities 
)()(Im)(Re2 1

11 AvjWjW == −− ωω .  
From here it follows  
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8
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Hence the excitation conditions in terms of the buoy parameters or the conditions of “buoy” 
parametric resonance excitation and forced oscillation instability can be written in the form: 

1

02
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8

c

b
A

ω
≥ ,   0

2
0 cbb ++≅> ωω  

From the point of view of formal mathematics the forced oscillation amplitude jumps to in-
finity. As a physical matter the infinite jump cannot be realized. The fact is that the assumed 
mathematical buoy formulation is completed as soon as the buoy lays on the water surface. Sub-
merging during parametric oscillations the buoy tilts on the water surface before its complete sub-
mersion under the action of a current. Once the buoy totally spends its motion energy it extrudes out 
of the water again. In the condition of motionless water (without a current) buoy parametric reso-
nance is also feasible in any vertical plane passing through the suspension axis. And in such situa-
tion forced oscillation jumps as large as infinity cannot be realized too since a “parametric force” 
vanishes as soon as the buoy submerges completely and the circle radius becomes zero because ∆h 
=0. 

The careful reader has a right to ask the question, “And where are the forces which cause 
forced oscillations?” There can be several reasons for occurring forced oscillations. They are, e.g., 
wind gusts, wind waves, waveformations from moving ships. Moreover at the current periodic wa-
ter vortexes known can separate in the process of flow the submerged buoy. 

In conclusion assuming the rough buoy parameters P=50 kg, 550 =F kg, m10=l , 

J=500 2kgms , s=0.3m2 , b=0.1s-1 , 2
0 05.0 −= sс , 2

1 06.0 −= sс , we have the results close to reason-

able one: 1
0 35.0 −≈ radsω  and .5.00 radA ≈  
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Oscillation process numerical simulations 
 
As it was mentioned before in many instances analytical study of nonlinear dynamic sys-

tems is associated with dire difficulties. That is why dynamic process numerical simulations are 
widely used in an engineering practice. For this purpose the Matlab and Simulink software pack-
ages are applied. They allow for to composite a flow diagram of a model and investigate the prob-
lem numerically on the basis of its mathematical formulation. 

 
Self-excited oscillation or parametric oscillation? The rough model of most simple self-

exited oscillation system is shown in Figure 2.14 (here and in the next figures operator p is de-
nouted by s). This is the Tantalus vessel. The model does not account for liquid velocity variations 
at the drain stage and saw-tooth self-oscillations occur.  

 

 
 

Figure 2.14. Rough model of self-excited system 
 
In order to answer the question if the self- oscillation excitation conditions coincide with the 

first parametric resonance boundary we consider a third-order nonlinear self oscillatory system. The 
system model is given in Figure 2.15. The object/oscillatory link has the transfer function 

123 )1.0(2,0)( −++= ppppW ; the nonlinear link of a saturation type has a linear section with a1±  
slop. A horizontal section with zero slop is beyond the section. 

 

 
Figure 2.15. Third-order dynamic system model 
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The initial condition is specified in the form of a single narrow pulse. The pulse is formed 

by the two blocks - Step and Step1. A self-excited oscillation period is 6.3 s. Thus, the period of 
parameter variation from 0 to 1 is 3.15 s and the duration of parameter unit value is τ=1s. The pa-
rametric system model comprising the same object is given in Figure 2.16.  

 

 
 

Figure 2.16. Parametric resonance excitation boundary 
 
The multiplier Product is a 3s periodic parameter, which is unevenly changed from zero to 

1. The multiplier is controlled by the 1 s unit pulse Generator. The time diagram illustrates paramet-
ric resonance beginning/boundary. So the conditions of self-excited oscillation initiation is the pa-
rametric resonance excitation boundary. 

Taking into account that flexure-torsion oscillations often arise in constructions related to 
mechanics and flow mechanics we consider a spring pendulum model. A spring pendulum underly-
ing those processes is a two freedom nonlinear dynamic system. The freedoms are vertical forced 
motions along the x-axis and α-angle parametric deviations. We consider step-by-step the formation 
of the model.  

 
Parametric excitation of variable length pendulum. The block diagram for studying para-

metric pendulum excitation is given in Figure 2.17. Here the Transfer Fcn1 is the model of the ordi-
nary pendulum of constant length 0l  = 1 m. Pendulum weight is 1 kg. We write the characteristic 

equation of constant length pendulum (2) in the form: 
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Figure 2.17. Variable length pendulum model 
 
In terms of an oscillatory object with small damping (b=0.1) we shall derive the first ap-

proximation equation of the pendulum of variable length )(0 tlll ∆+=  under the numerical values 

assumed above: 
0)(10)2(1.0 2

0
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0
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0
2

0
2 ≅∆−+∆−+ −−−− llpllp ll .   (44) 

The variable length pendulum equation  at m10 =l  takes the form: 

)()102.0()()101.0( 2 ppppp l∆+=++ α . 
Just now we can write the transfer function corresponding to that in Figure 2.17: 
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The harmonic signal corresponding to the oscillations of the pendulum length )(tl∆  is re-
ceived by the modulator Product of oscillations )(tα , and the two blocks Step (positive and nega-
tive) form a unit narrow pulse of initial conditions. The jscillations are recorded by the block Skope 
and they lack as long as the pendulum excitation threshold 21.0)( <∆ tl . The parametric resonance 

excitation pattern at 23.0)( =∆ tl is presented in Figure 2.17. 

The pendulum length/parameter oscillations have the 6 rad/s frequency (in a thin line) and 
0.23 m amplitude (in a heavy line). The excited ramp parametric oscillations )(tα  (in a heavy line) 
appear at the 3rad/s frequency and they are the first parametric resonance oscillations. 

 
Spring pendulum oscillations. The spring pendulum model is shown in Figure 2.18. 
The parametric oscillation circuit on the right side of the diagram (see Figure 2.18.) is bor-

rowed from Figure 2.17. The spring circuit of forced oscillations is added on the left side of the 
same diagram. The jscillations are excited by the Sine Wave generator. The 1 kg spring-suspended 
bob at the 40 N/m spring rate is described by the transfer function Transfer Fcn 
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2 ++
=

∆
=

ppp

pF
pW

l
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Figure 2.18. Spring pendulum model 
 

where F(p) is an operator notation of the harmonic disturbing force f(t). The Sine Wave signal is 
added to the centrifugal force originating from the α-angle oscillations 

2
00

2
0

2 )(/)(
dt

d
mllmlmvtf

αω === . For the reason the Math Function squared modulus and dtdu /  

are included in the forced oscillation circuit. The continuous, i.e. sustained and nonincreasing, 
spring pendulum oscillations are displayed in Figure 2.18 under the block-diagram (in a heavy line) 
while the 0.3 length oscillation amplitude (in a thin line) exceeds the parametric resonance excita-
tion threshold of the circuit. The spring hinders the parametric resonance excitation and brings the 
spring pendulum to sustained parametric oscillations. The reason is that the input Add1 adder sig-
nals are antiphased and they are subtracted but not added.  
 
 On applicability of pendulum models. The important conclusion results from Figure 2.18: 
during the spring pendulum oscillation excitation gaining the constant constituent the forced oscilla-
tions (see in a thin line) grow unsymmetrical. By-turn the constant constituent increase leads to the 
rise of Product transfer coefficient and parametric circuit amplification. And as soon as the Sine 
Wave amplitude becomes sufficiently great the sustained parametric oscillations lose their stability. 
In practical situations a physical spring pendulum can lose its oscillatory stability while it transfers 
to a rotation mode, which is similar to an ordinary physical pendulum. But the considered models 
are not applicable in that case because they are mathematical pendulum models and their domain of 
applicability is restricted to small angular oscillations, for example |α|<1 rad as in Figure 2.18. 
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CONCLUSION 
 
That is all. The popular story about parametric resonance is approaching to its completion. 

As a start of the end we repeat the following question asked in Part 1, “Would a human being use 
parametric oscillations at present?” Try just now to specify that answer as follows, “Yes and no”. 
Surely parametric resonance has taught a human being a lot and he applies obtained knowledge in 
technical creating. And could anyone assert that a human being has “tamed” parametric resonance 
and placed it at his service? That really seems dubious. The point is that the short history of rela-
tions between a human being and parametric resonance was rather connected with cognizing and 
suppressing parametric oscillations and resonance. We again refer to [1]. The book does not contain 
the notions of parametric oscillations and resonance, and oscillation self-excitation of dynamic sys-
tems is discussed in it. Of course, a great authority like the book author has a right to have his own 
view on oscillation classifications and definitions. But still, that testifies to a certain extent the re-
sent opinion unsettled in the scientific community. The examples given in this paper in respect of 
applications of parametric resonance, such as generating oscillations by mechanically displacing 
condenser disks, ferroresonance, etc, are not practically used. There is no choice except, possibly, 
microwave structures and an ordinary swing. Thus, parametric resonance still remains an antagonist 
regarding a human being and causes more pain than joy. That is why the following answer to the 
above question will be legitimate, “Likely no.” 

Let us ask the other question, “Why does the phase corresponding to the crossing point of 
the parametric resonance circle and the frequency characteristic self-settle but not another one, e.g. 
opposite, i.e. at which damping of oscillations, set in itself while exciting parametric oscillations 
occur?” Why, in the second or opposite case parametric oscillations could diminish but not increase 
the forced oscillation/jump amplitude and there would be more joy than pain. 

Such answer can be given the above question. First, the physical principle of virtual poten-
tial energy maximum known in mechanics is in force in dynamic systems. According to the princi-
ple the phase corresponding to the maximum degree of oscillation excitation is automatically set 
and rest potential energy converts into oscillatory kinetic energy. Thus, from a number of voluntary 
coordinate oscillation phases that are introduced by the Ω-frequency alternating parameter, the 
phase is set at which a total phase shift between an oscillatory object and a parameter is 180 de-
grees. Furthermore the Ω/2-frequency of coordinate oscillation is called critical and parametric sys-
tem has its maximum equilibrium stability. Parametric resonance is excited as soon as the parameter 
oscillation amplitude exceeds its threshold value.  

There is no doubt that a human being will place parametric resonance at his service. One of 
the efforts is, for example, the parametric correction of oscillatory dynamic system phase [7]. 
Unlike the coordinate feedback known from classical theory of automatic control a new kind of 
feedback is used. That is parametric one. By choosing a signal lag value in a parametric feedback 
circuit either oscillating or damping regulators can be installed. 

In conclusion it should be applied to the readers that had the patience to get to the end. All 
information that was succeeded in the statement about parametric oscillations and resonance is only 
a little part of knowledge cumulated by humanity. A mere bibliography with rundowns could take 
the most of the paper. So, young people taking an interest in parametric resonance will learn a lot of 
interesting things in macro and microworlds. Elliptic orbits are, for example, a source of parametric 
oscillations and, quite likely, the mysterious nature of ball lightning has a parametric origin, etc. 
And lastly it is not a difficult matter to transform a home computer into a research laboratory on dy-
namic system attributes and solving new problems using numerical simulations. It remains to wish 
the patient readers for sufficient strengths and future advancements. 
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