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THE MOTION OF A CHARGED PARTICLE IN THE FIELD
OF AN ELECTROMAGNETIC WAVE AND IN THE CONSTANT
MAGNETIC FIELD

We have done an analysis of the results on the motion of a charged particle in
an external field of plane and arbitrarily polarized electromagnetic waves of high
intensity in the presence of an external uniform static magnetic field. A point of
interest was a solution of the equation of the motion of a charged particle in the field
of the electromagnetic wave and a uniform constant magnetic field. We investigated
the interaction of high intensity laser pulses with solid targets in relation to the
practical development of multi-frequency lasers and the technology development of
laser modulation. The problem in question is topical because of the wide practical
application of high-temperature plasma forming on the surface of the target, and
the search for new modes of laser-plasma interaction. The formulae for the average
kinetic energy of a relativistic particle, depending on the initial data, for the amplitude
of the electromagnetic wave and for the wave intensity and its polarization parameter
were obtained. The dependence of the average kinetic energy on the intensity of the

electromagnetic wave in the uniform constant magnetic field was derived.
PLANE ELECTROMAGNETIC WAVE, AVERAGE KINETIC ENERGY, CHARGED PARTICLE,
ULTRASHORT LASER PULSE, STATIC MAGNETIC FIELD.

I. Introduction

A current problem of practical and
theoretical interest is that of a charged particle
accelerated by ultra-short laser pulses of high-
intensive plasma [1 — 5]. An effective method
for obtaining high-energy particles is targeting
the front surface of a thin foil target with high-
power laser pulses. The interaction of charged
particles with ultra-short femtosecond laser
pulses with intensities of emission up to 102
W/cm? is one of the main areas of laser physics
at the moment [6 — 8].

In this paper we consider the dynamics of a
charged particle in an intensive electromagnetic
field of elliptical polarization. The article
[9] discussed the consistent derivation of the
average kinetic energy of a particle. That was
averaged over a period of motion in the field
of the monochromatic electromagnetic wave
for linear and circular polarized waves. A more
general formula for the average kinetic energy
of an elliptical polarized wave was found in
[10]. The generalization of the results of articles
[9, 10] in the presence of a uniform external

field is of great practical interest; since this case
corresponds to the phenomenon of cyclotron
auto-resonance [11, 12] on the basis of which
such systems operate as a free-electron laser
and an undulator [13].

The problem of the motion of a charged
particle in the field of a plane monochromatic
electromagnetic wave was formulated and
solved for linear and circular polarization of
the wave [14], but the interest in this topic
has appeared presently in connection with the
development of high-power lasers.

The aim of this work is to analyze the motion
of a particle in the external field of arbitrarily
polarized electromagnetic waves of high intensity
and in the uniform constant magnetic field and
to derive the average kinetic energy of a particle
over the oscillation period of the field.

II. Problem Statement

The equation of motion of a particle of mass
m and charge ¢ placed in an external field of a
plane monochromatic wave and in a uniform
constant magnetic field H, has the form (see,
for example [14], paragraph 17)
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dp q
i gE + . [vx H,].
In Eq. (1) H; =H, + H is a superposition of
the constant uniform magnetic field H, and the
magnetic field H of the plane monochromatic
electromagnetic wave.
The particle momentum p and velocity v
are related by equality ([14], paragraph 9)
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It follows from (2) and (3) that the energy
¢, momentum p, and velocity v of the particle
are related by equations

We assume a uniform constant magnetic
field H, = kH, (k — basis vector) and the plane
wave propagates along the axis z. In the case of
Fig. 1, the vector components of electric and
magnetic fields of the plane monochromatic
electromagnetic wave are given by:

E, = H, =b, exp(-i®),
E, =-H, = fb, exp(-i®);
E,=H, =0,

(6)

where
P=wE+y+e;, E=t-2/c¢;

o is the carrier frequency of the wave; y is
a wave polarization parameter; ¢ is an angle
of inclination of the axes of the ellipse Ox
to the axis of the coordinate system; the x
and y axes coincide with the b and b, axes
of the polarization ellipse of the wave and
b . >b,>0; f==1 isa polarization parameter
(the upper and lower signs in the expression for
E, correspond to the right and left polarization
[15]).

II1. Solution of the Equation
of the Charge Motion

The solution of Egs. (1) and (4) with E and

P=" € ) H from (6) has the form:
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Fig. 1. The ellipse of polarization (see the text)
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D, = _qu sin @ +1H0y + %
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The equations in (7) show the differentiation
with respect to & :

. gbc
x =45 s1nd)+(oy+cxx,
oy Y (8)
Jab,c . c
= SN —w.x+—y,,
wy Y
where ©, =qgH,/y is the cyclotron
frequency.

Through the constantsy,, y,, and y de-
termined by the initial phase of the wave

D, =—kzy + o+ vy

and the initial velocity of the particle v, = 0;
of (3) and (7) we find

mvo, gb, .
Xx = 02 - 0 _zHoyo’
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By transforming the system of differential
Egs. (8), we obtain

5€+m§x:ﬂcos®+
Y
Jqo.b, .
+=_—sin
Y fach Y (10)
c
J+oly = 9 cosd -
_gob,
vk

The solution of the differential equations
of the second order (10) is determined in the
form of a sum of solutions of the homogeneous
equation and the particular solution of the

inhomogeneous equation with the initial
conditions. We obtain the following solutions
for the x and y coordinates:

©
X = qi)"m —— ky cosd, +
vhk(0® —®.) ok

Y
= +
Y [mtyk

__ Jaho
Th(e” — )

gb.o,
Th(o’ - o)
where k= /c; @, = oLt

Using (7) and (11), we obtain expressions for

the p, and p, components of the momentum
of the particle:

= Asin® + Bcos®, +
+ Csin®, + Dcos ®;

cosd + sin @,

12
p, = Esin® + Fcos®, + (12)
+ Gsin®, + I cos O.
Therefore,
qb ®° Jab,o,
A== i B=y + AR
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o -’ o -
: (13)
E_fqby © .F_ _ qu(’oc .
o -0 ) EESRRPEIpR
G - _ fqbymf 1 _ qumc
o -’ o — o

From the formulae (3) and (4) we find the p,
component of the momentum of the particle:

P, =8 (14)
consequently,
2 b2 b2
g=h- %COS(Z@) +
4y* (o - ;) (15)

+L2(AB+EF)sin(Dcos<Dc +
Y
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From (3) and (4) we find the expression for
the energy of the particle:

e=cy(l+g). (17)
From (5), (12) and (14) we obtain a

parametric representation of the particle
velocity in the parameter & :
ox:dx —(Asm(D+Bcos<D +
dt  (1+g)y

+ Csin®, + D cos D),

dy
Esin® + Fcos®, + (18
Oy = dt (1+g)y( (18)
+ Gsin®, + [ cos D),
oot s
Codt l+g

From (11) and (18) we determine that
the motion of a particle in the external field
of the plane monochromatic electromagnetic
wave in a constant uniform magnetic field is
the imposition of movement with the constant
velocity v and vibrational motion with the
frequency ®=2n/T different from the
frequency of the field o and the cyclotron
frequency .. Then integrating (14), we obtain
the equation of motion along the axis z:

Z(f) = Z+ 0,1 +6(1) + n(1), (19)
where 7 is constant, and
0(r+T)=6(1), n(+T)=n(r) (20

are periodic functions.
In formula (18)
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v = .
o 1+h
It follows from (19) that g(¢) from (15) isa
periodic function defined by the periods 7" and
T.. The period T of oscillation of the particle
in the field of a plane monochromatic wave
and the period 7, of cyclotron oscillations are
determined from the formulae

21)

Ot +T)=d(t)+2n, O (t+T)=d,(t)+2m

from which, taking into account (6), (19) and
(20), it follows that

=2y 122 @)
1-9,/c ® o,
Thus, the motion of a particle is a

superposition of two kinds of periodic motion;
they are T and T

IV. The Motion of a Particle Averaged
over an Oscillation Period

In this section we will perform the averaging
of the momentum p and the energy & of
the particles of the period of its oscillations
(22) with (12), (14) and (17) in the field of
an electromagnetic wave and the constant
magnetic field.

Consider a new variable of the integration
£'=¢&(t"), then

O'=d(t");
dr' - do' 1 _l+g do
o 1-v.()/ c o (23)
o' = (r)dit =9
Since the motion of a ;article is a

superposition of two kinds of periodic motion
with frequencies o and o,, averaging will be
carried out according to the formula

1 @(7) 1o )

j—jf(r)

d)(r) T D, (1)
where f(¢') is an arbitrary function taking into
account (6), (19) and (22).
Averaging the components (18) of the
particle velocity, we obtain:

1+gd® "do’,

f@) = , (24)

v, =0; 5,=0; T, = (25)
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As might be expected, the speed of the
particle v, in (25) corresponds O, with (21).

It follows from (25) that the average
transverse momentum component of the
particle is zero. From the average value of
the longitudinal component of the particle
momentum, we obtain the expression:
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The average energy € of the particles is
determined by the formula:
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It is obvious that (27) depends on the
intensity of the wave from the polarization of
the initial phase and the initial velocity.

V. The Case of an Arbitrary Polarization
for a Particle Being Initially at Rest

Consider the case when the particle is ini-
tially at rest (v, = 0). Formulae (9) and (12)
expressy,, ¥,,» ¥, and, taking into account

that
®0) = ®; =—kz, +o+y, ©.(0)=D, =0,
we obtain
qb o’ .
=_1x sin ®, —
* o) (oo2 —mﬁj %
b o
fq b ~(1-cos®,);
o’ (oc (28)
fqby o’ .
y :__(o 7 — o sin®, +
+ qb at (1 —cosd).
(D (D

c

For a wave with an arbitrary polarization
[16]

b + B} = p’b?, (29)

where p is the ellipticity parameter (p = +1
corresponds to the linear polarization and
p =+1/+/2 does to the circular one).

In other cases, the value p corresponds
to an elliptical polarization (0 <|p|<1), in
which:

2 272 2
b 0
Xi+Xi:qp2 (

2
sin> @, +
2 0

2
® O - (30)
2b2 2
+( 2)2 (1-cos®,)’;
(b, + fbx,)’ =
2 (31)
2 474 2
qgp'b 0} .
Dy;
o’ (0)2—(»3] S S
2b2
bty = B = 522 (1 - cos ). (32)

c

From (15) we obtain the value of 4 at the
initial time:
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h = l{zqu—zbzsmz @, +
2 2m C ((D —(DC) (33)
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2m’c* (0’ — o))’ |
Let
®, = no, (34)

where n is a frequency ratio between o, and
o, and besides ne [0;1), then

=E{ L sin?o,+ (”3”)} (35)

4| (1-n*) (1-n?)’
and, according to (16),
2 212
— qu2b2 — 2C] [7\,2 (36)
mc’e’  mwm’c’

where [ =cp’bh® /4n is the intensity of the
elliptically polarized electromagnetic wave, and
A =2nc / o is the wavelength.

2 2
x| 28 +2N + H(]Zf +T+57) (37)
40% + uN +puS )’
where
S=(1-n*)sin>®,;T =42 +n* —2n*)sin” d;

N=1+3n* Q0=1-n

As can be seen from (37), the average energy
of a particle depends on the intensity of the
wave polarization parameter y, on the angle
of inclination ¢ of the ellipse to the axis Ox of
the coordinate system, on the initial phase, on
the frequency ratio of the parameter n.

The energy (&) of the charged particle,
being further averaged over the initial phase
®,, in the plane monochromatic arbitrarily
polarized wave is given by

mc’p

<§>—mc :mx

3 4 2
By substituting (28) — (36) in (27), we x[ﬁ'] L hd-my */5(2”2‘” — 2/, 38)
obtain the average energy of a particle at rest in 4pK - 2J2JK (" -DK
the initial wave of arbitrary polarization: 197 —6n =21 2n* — 1)
_ L mcy -1 n J
€ —mc 37
80° 57) where
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Fig. 2. The dependence of the average kinetic energy of the electron on the intensity of the plane

monochromatic electromagnetic waves with elliptical polarization for p

=+/0.9, with different

values for n: 0 (1), 0.2 (2), 0.4 (3)
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J = 3un’ + p+ 4 - 1)

K = Ju(r* +1) + 2 - 1)’.

Fig. 2 shows the dependence of the aver-
age kinetic energy of electrons on the inten-
sity of the monochromatic plane electromag-
netic waves with elliptical polarization [10]
for p=+0.9, n=0, n=02 and n=04. In
the absence of the constant magnetic field,
for the cases of linear and circular polariza-
tion of (38) we obtain the formula for the
average energy of a particle characteristics for
the case of linear [9, 10] and circular [10]
polarizations.

By substituting the values of the param-
eters

n=0; o, =n/2, 3n/2; 9p=n/2,
3n/2 w=n/2 3n/2 p=+1/2

in (38), we obtain the kinetic energy of the
particles for the circular polarization [9].

As can be seen from Fig. 2, the particle
energy increases with increasing the values of

In? =10 x10"W - um?cm™

and ofthe parameter n. For elliptical polarization
withp =+/0.9; and with n=0.2 the energy
increases by 1.5 MeV and with n = 0.4 it does
by 2.2 MeV.

VI. Conclusions

This article offers the exact solution of
the equations of a charged particle motion
in the external field for elliptically polarized
electromagnetic waves and the uniform constant
magnetic field. It indicates the dependence
of the electron velocity on the intensity of
the monochromatic plane wave in a uniform
constant magnetic field for the cases of elliptical
polarization which are, therefore, the cases
of different initial conditions of the charged
particle motion and wave polarization.

The values of the momentum and energy
of the particle, averaged over the period of
vibration, were calculated. It was shown that
motion of the particle is the superposition of
motion at a constant velocity and vibrational
motion with the frequency of the electromagnetic
field and the cyclotron frequency different
from the field frequency. In the absence of a
constant uniform field, all the formulae go to
the appropriate formulae given in [10]. The
solutions obtained are presented in the explicit
dependence on the initial data, the amplitude
of the electromagnetic wave, the wave intensity
and its polarization parameter that allows
everyone to apply the solutions in practice. The
results of our investigation will be useful for the
interpretation of experiments with plasma placed
in a homogeneous constant magnetic field.
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KonoimoG I.®., MapmueiHo6 A.A., AkuHuo8 H.C. OBUXEHWE 3APSAXKEHHOW
YACTULLbI B NOJIE SNTEKTPOMATHUTHOW BOJTHbI 1 B MOCTOAHHOM MATHUT-
HOM TMOJIE.

Pemmenune ypaBHeHNS IBVZKCHUS 3apssKEHHOM YaCTUIIBI B TTOJIC 9JIEKTPOMATHUTHOM BOJTHBI M ITOCTOSTH -
HOM OJHOPOITHOM MAarHUTHOM IT0JI€ TIPEACTaBIICT MHTEPEC TSI MCCASIOBAHUS B3aUMOICMCTBUS JIa3€PHBIX
VMITYJIBCOB OOJIBIITON MHTEHCUBHOCTH C TBEPABIMUA MUIIICHIMM, B CBSI3M C IIPAKTHYECKOM pa3padOTKOI MHO-
TOYaCTOTHBIX JIa3ePOB U Pa3BUTUEM TEXHUKM MOIYJISIIIMU Ja3epHOT0 U3IIydeHUs. AKTYaJIbHOCTb ITPOOJIEMBI
00yCIOBJIEHA IIMPOKUM MPAKTHIECKUM IIPUMEHEHNEM BEICOKOTEMITepaTypHOIl TIJIa3MEI, 00pa3yIoleiicss Ha
MOBEPXHOCTH MUIIICHHU 1 MIOMCKAMM HOBBIX PEXXMMOB B3aMMOIEUCTBUS Ja3ep — Iuia3Ma. [IpoBeneH aHanm3
3a7a9M O OBIDKEHWM 3apsLKeHHOM YacTUIBI BO BHEIIHEM ITOJIE TIOCKOM, IMMPOM3BOJIBHO TOJISIPU30BAaHHOM
3JIEKTPOMArHUTHOM BOJIHBI OOJIBIION MHTEHCUBHOCTU MPU HAIMYUY BHEIIHETO OAHOPOIHOTO ITOCTOSIHHOTO
MarHUTHOTO TT0J1s1. TTomydeHsl hOpMYJITBI TS CpeIHE KMHETHYEeCKON SHEPTUM PEIITUBUCTCKOM YaCTHUIIEI B
3aBUCUMOCTH OT HauyaJIbHbIX JAHHBIX, aMIUIATYIbI 3JICKTPOMAarHUTHON BOJHBI, MTHTECHCUBHOCTHU BOJIHBI U €€
napamMeTpa Toisipu3anun. VcciriemoBaHbl pa3IMnyHbIe cydal HavyaJbHBIX YCIOBUM IBVDKCHUS 3apsSKeHHOM
YaCTUIIBI U MOJIIpU3AllUM BOJHBL. [lodyyeHa 3aBUCUMOCTD CpelHel KUHETUIECKOM S3HepIruM OT MHTEHCHB-

HOCTHN SJTGKTpOMaFHI/ITHOﬁ BOJIHbI B ITOCTOAHHOM MAarHMTHOM II0JIC.
TIIOCKASI SJIEKTPOMATHUTHAA BOJIHA, CPENHAS KUHETUYECKAS SHEPTUA, YJIbTPAKOPOTKUM JIA3EP-
HbIM UMITYJIBC, SAPAXEHHAA YACTULA, IOCTOAHHOE MATHHUTHOE I1OJIE.
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