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TENSOR TOMOGRAPHY OF STRESSES IN CUBIC SINGLE CRYSTALS

The possibility of optical tomography applying to investigation of a two-dimen-
sional and a three-dimensional stressed states in single cubic crystals has been studied. 
Stresses are determined within the framework of the Maxwell piezo-optic law (linear 
dependence of the permittivity tensor on stresses) and weak optical anisotropy. It 
is shown that a complete reconstruction of stresses in a sample is impossible both 
by translucence it in the parallel planes system and by using of the elasticity theory 
equations. For overcoming these difficulties, it is offered to use a method of magne-
tophotoelasticity.

INTERNAL STRESSES, POLARIZATION TOMOGRAPHY, INTEGRATED PHOTOELASTI-
CITY, TENSOR OF STRESSES.

1. Introduction

Vector and tensor field tomography makes 
a number of new and interesting nondestruc-
tive methods possible: polarimetric tomography 
of magnetic field in the tokamak plasma, mea-
suring of electric field distribution in dielectric 
liquids on the basis of optical Kerr effect to-
mography, tomography of fluid flow. Interest in 
optical tensor field tomography has been simu-
lated primarily by the possibility of applying  
integrated photoelasticity to the stress analysis 
of apparent models [1]. Residual stress is one 
of the most important characteristics of glass 
articles from the point of view of their strength 
and resistance [2]. In the case of optical glass, 
birefringence due to the residual stresses char-
acterizes the optical quality of the article [3].

Integrated photoelasticity refers to polariza-
tion-optical methods of experimental mechan-
ics that use tomographic measurement tech-
niques. These methods measure the variation 
in parameters of polarized beam transmitted 
by a model under study [4]. In certain cases 
distribution of some stress components can be 
determined using this integrated optical infor-
mation. Generally, it is impossible to achieve 
a complete reconstruction of stresses by trans-
lucence it in the system of parallel planes and 
using the equations of the elasticity theory [5]. 
The magnetophotoelasticity method (MPE) for 
overcoming this difficulty is to use additional 
magnetic field [6, 7]. In this new measurement 

method, the model under study is subjected to 
a homogeneous magnetic field and is irradi-
ated by light propagating along this field. The 
polarization plane of the light beam rotates in 
the sample due to the Faraday effect. Until to-
day MPE has been used for the measurement 
of bending stresses in plates [8] and residual 
stresses in glass plates [9]. Tomographic appli-
cation of MPE method is based on the expo-
nential Radon transform of vector and tensor 
fields [10, 11]. Algorithms for the reconstruc-
tion of the attenuated vectorial Radon trans-
form [12, 13] give an opportunity for investiga-
tion in nonhomogeneous magnetic field. 

Polarization-optical methods are common-
ly used for investigation of physical properties 
of crystals [14, 15]. Two-dimensional photo-
elasticity permits easy determination of stresses 
(which are constant through the thickness) in 
crystal plates [16].  Compared with isotropic 
objects, the application of the integrated pho-
toelasticity becomes much more difficult in the 
case of single crystals due to the occurrence of 
natural anisotropy [17]. The first difficulty is 
associated with non-coincidence of the quasi-
principal directions of the stress tensor and the 
permittivity tensor [18]. The second difficulty 
is connected with the problem in the theory of 
elasticity which is described in [19, 24]. In the 
case of plane elastic strain residual stresses in a 
cubic single crystal can be reconstructed com-
pletely by using the method of the integrated 
photoelasticity [20].     
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The aim of this paper is to generalize the 
results of the parametric tensor tomography to 
the case of cubic single crystals. 

2. Integrated photoelasticity

In integrated photoelasticity method the 
specimen is immersed in immersion bath and 
a beam of polarized light is passed through the 
specimen.  In stress-free situation a cubic single 
crystal is optically isotropic and birefringence 
due to the residual stresses can be measured by 
the tomographic method. In the general case, 
the direct problem of light propagation in an 
inhomogeneous anisotropic medium is rather 
complicated, but in case of weakly birefringent 
media it is simplified. 

We will introduce an orthogonal system of 
coordinates x, y, z and direct the axes of this 
system along the [100], [010] and [001] crystal-
lographic directions. Additionally, we will in-
troduce an orthogonal system of coordinates s, 
t, z which is rotated with respect to the initial 
system by an angle Θ in the plane x, y. Direc-
tion of translucence coincides with the direc-
tion of the t-axis. Propagation of polarized light 
through a weakly birefringent media is governed 
by the following equations [4, 6, 7]:

;
dE

iCPE
dt

= −

where 

,
2

С
с

ω
=

χ

;z

s

E
E

E

 
=  

 
 

1
( )

2 .
1

( )
2

zz ss zs

zs ss zz

P

 χ − χ χ 
=  

 χ χ − χ  

Here Ez , Es denote the components  of the 
electric vector, c is the light speed, ω is the 
frequency, χ is permittivity of the stress free 
media, χzz, χzs, χss are components of  the per-
mittivity tensor induced by the residual  stress-
es. The matriciant of Eq. (1) (Jones matrix)  
Ω(γ, α0, α*) can be expressed via its characteris-
tic parameters: γ is the characteristic phase dif-
ference, α0 is the initial characteristic direction, 
α* is the secondary characteristic direction. 

In the case of a slow rotation of quasi-
principal directions along the light propagation 

direction these parameters are related to the 
components of the dielectric tensor through 
the relationships

0 * 12 cos( ) ( ) ( , );ss zzC dt T sγ α + α = χ − χ = θ∫
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Equations of photoelasticity of a single 
cubic crystal [14] are the following:
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The essential difference of a problem under 
study from a problem for an isotropic medium 
is the presence of the second addend σtt in  
Eq. (2). This fact considerably complicates the 
solution of the problem.  At first, an algorithm 
of determining the residual stress in long cubic 
crystal (the assumption of plane deformation) 
will be presented. Then, the application of the 
parametric tomography to the reconstruction 
of stresses in the common case will be 
considered.

3. Reconstruction of stresses in case  
of plane strain deformation

A cylindrical crystal without axial stress 
gradient is illuminated in the plane z = const. 
The components σsz and σtz are equal to zero 
and there is no rotation of the quasi-principal 
directions of the permittivity tensor. Thus, the 
problem of the optical tomography is simplified 
and only characteristic phase differences
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are measured on the ray. 
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The optical relation (3) is complemented 
by equations of the elasticity theory: equations 
of state, equilibrium equations, compatibility 
equations. The residual stresses are considered 
to be of thermal character: 

11 12( ) ,xx xx yy zzC C Tσ = ε + ε + ε − α

11 12( ) .yy yy xx zzC C Tσ = ε + ε + ε − α ,

11 12( ) ,zz zz xx yyC C Tσ = ε + ε + ε − α

442 ,ik ikCσ = ε i ≠ k, i, k = x, y, z.

Here Cik are the coefficients of the elasticity, 
α is the coefficient of thermal expansion, 
T is fictitious temperature, and εik are the 
components of the strains tensor. 

In the case of the plane strain deformation 
εiz = 0, and from Eqs. (4) it follows 
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Inserting the components of strain into the 
equation of compatibility 
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and expressing the components of stress through 
the Airy function
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This equation can be written in more 
suitable form [20]:
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This equation is based on the fact that the 
Airy function F and its normal derivative ∂F/∂n 
are equal to zero in the load free conditions on 
the lateral surface.

If the distribution of σzz is described 
only by harmonic functions, the other stress 
components do not develop in a cylinder. The 
same situation takes place in the case of an 
isotropic cylinder [21].

General solution of Eq. (5) can be written 
as the sum of functions F = F1 + F2 which must 
satisfy the equation

1 2 2 1

2 1 1 2

1

 0,
1

zz

zz

k
F G

k

k
F G

k

 ∆ ∆ − − σ + + 
 + ∆ ∆ − − σ = + 

where 0.i iG∆ =  
We can write Eq. (6) as a system of the 

following equations:
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The boundary conditions for Fi give the integ-
ral equation for the determination of the Gi:
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Here G1a, G2a are arbitrary solution of 

corresponding equations 0.i iaG∆ =
At last the line integral (3) can be simplified 

by using the Airy function:
2 2
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Thus, residual stresses can be determined 
from the partial solution of the Eq. (5) and the 
ray integral equation is

2
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The numerical solution of this system of 
equations is not considered as it is connected 
with the peculiarities of the measurements. 

4. Application of the MPE method  
to the full determination of stresses

In the case of an arbitrary distribution of 

(4)

(6)

(5)
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internal stresses in a sample, the number of 
variables increases and the reconstruction 
problem becomes significantly more 
complicated. In this case it is impossible to 
achieve a complete reconstruction of stresses 
by using only the equations of the elasticity 
theory. We apply the additional homogeneous 
magnetic field along the light propagation 
direction and measure the angle of rotation of 
the polarization plane due to the Faraday effect.  
The following two integrals can be determined 
using the polarization measurements [6, 7]:
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Here, VHβ =  and V is the Verdet 
constant, H is the intensity of the magnetic 
field strength. 

The components of stress tensor must satisfy 
the equilibrium equations. The solution of these 
equations can be expressed through the stress 
functions [7, 22]. According to the Helmholtz 
theorem, the two-dimensional vector field 
defined over xy plane can be represented as a 
sum of an irrotational (potential) field and of a 
solenoidal one:
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Similarly, a two-dimensional symmetric 
tensor field defined over a plane xy can be 
expressed in terms of the three potentials:
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The stress functions must satisfy the 
following equations:
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Tomographic reconstruction of shear 
stresses σzi in the xy plane, based on the 
values of the path integral T2, is reduced to 
determining a 2D vector field and, according to 
the Helmholtz theorem to finding its solenoidal 
N and potential τ components. The algorithm 
of reconstruction of these components in the 
case of the magnetophotoelasticity was given 
in [6, 7, 10] and, the more general case of the 
attenuated vectorial Radon transform was given 
in [12, 13]. Once the potentials τ and N are 
known the other stresses can be reconstructed 
if we find F and σzz. Using representation (7), 
we can transform path integral T1(s, θ, β) by 
integrating in parts:
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Here, T0(s, θ, β) is the function, containing 

known potentials τ, and N. Thus, by using the 
measurements at β = 0, and β ≠ 0, we have the 
system of the ray integrals, which allow one to 
fully recover the tensor field. 

5. Summary

The majority of investigations in the tensor 
stress field tomography are devoted to isotropic 
articles. In this paper we demonstrate the 
opportunities and difficulties of the integrated 
photoelasticity in the case of cubic single 
crystals. Reconstruction of the residual stresses 
in both cases is connected with the solution 
of the system of equations. In the case of the 
isotropic model this system can be solved step 
by step. In the second case the same equations 
cannot be separated, and they should be 
solved simultaneously. One of the drawbacks 
of the magnetophotoelasticity is the need for 
very precise optical measurements since the 
Faraday effect is very small. The using of 
multiple reflections is one of the possibilities to 
overcome this difficulty [23]. 

(7)



Физика конденсированного состояния

47

REFERENCES

[1] A. Puro, H. Aben, Tensor field tomography 
for residual stress measurement in glass articles, 
Proc. of European Conf. on Non-destructive 
Testing. Copenhagen. 3 (1998) 2390–2397.

[2] T. Abe, Y. Misunge, H. Koga, Photoelastic 
computer tomography: a novel measurement method 
of axial residual stress profile in optical fibers, J. 
Opt. Soc. Am. A. 3 (1) (1986) 133–138. 

[3] Y. Park, Un-Chal Pack, D.Y. Kim, Complete 
determination of the stress tensor of a polarization–
maintaining fiber by photoelastic tomography, 
Optics letters. 27 (14) (2002) 15–18.

[4] H. Aben, J. Anton, A. Puro, Modern 
photoelasticity for residual stress measurement in 
glass articles of complicated shape, Fundamentals of 
Glass science and Technology. Gotab, Stockholm, 
1997, pp. 327–334. 

[5] A. Puro, The inverse problem of 
thermoelasticity of optical tomography, J. Appl. 
Maths Mechs. 57 (1) (1993) 141–145.

[6] A. Puro, On the tomographic method in 
magnetophotoelasticity, Opt. Spectrosc. 81 (1) 
(1996) 119–125. 

[7] A. Puro, Magnetophotoelasticity as parametric 
tensor field tomography, Inverse Problems. 14 
(1998) 1315–1330.

[8] H. Aben, S. Idnurm, Stress concentration in 
bent plates by magnetophotoelasticity, Proc. Fifth 
Intern. Conf. on Experimental Stress Analysis, 1974 
4.5–4.10.

[9] G. Clarke, H. McKenzie, P. Stanley, The 
magnetophotoelastic analysis of residual stresses in 
thermally toughened glass, Proc. R. Soc. A. 455 
(1999) 1149–1173. 

[10] A. Puro, Parametric tomography of internal 
stresses, Opt. Spectrosc. 90 (4) (2001) 592–602.

[11] A. Puro, Cormack-type inversion of Radon 
transform, Inverse problems. 17 (2001) 179–188.

[12] A. Buckgheim, S. Kazansev, Inversion 
formula for the fan-beam attenuated Radon 
transform in a unit disk, The Sobolev Institute of 

Mathematics of SB RAS.  99 (2002). 
[13] F. Natterer, Inverting the attenuated 

vectoral Radon transform, Journal of Inverse and 
Ill-Posed Problems. 13 (1) (2005) 93–101. 

[14] T. Narasimhamurty, Photoelastic and 
electro-optic properties of crystals, Plenum Press, 
New York and London, 1981.

[15] A. Zilberstein, J. Bao, G. Shafranovskii, 
New polarized-optical method of an estimation 
of temperature and pressure of origin of 
nonhomogeneous crystals, Opt. Spectrosc. 78 (5) 
(1995) 802–807. 

[16] L. Goodman, J. Sutherland, Elasto-plastic 
stress-optical effect in silver chloride single crystals, 
J. Appl. Phys. 24 (1953) 577–582. 

[17] H. Aben, E. Brossman, Integrated 
photoelasticity of cubic single crystals. VDI – 
Berichte. 313 (1978) 45–51.

[18] S. Idnurm, J. Josepson, Investigation of 
stresses in three-dimensional cubic single crystals 
by photoelasticity, Proceedings of the Academy of 
Sciences of the Estonian SSR. 34 (1985) 191–197. 

[19] S. Idnurm, Determination of stresses in 
cubic single crystals of cylindrical form by the Abel 
inversion, Proceedings of the Academy of Sciences 
of the Estonian SSR. 35 (1986) 172–179. 

[20] A. Puro, Integrated photoelasticity of single 
crystals, Opt. Spectrosc. 72 (5) (1992) 620–622. 

[21] A. Puro, K.-J. Kell, Complete determination 
of stress in fiber performs of arbitrary cross section, 
J. of light wave technology. 10 (8) (1992) 1–5. 

[22] A. Puro Investigation of the stress state of 
elastic models by the method of optical tomography, 
Int. Appl. Mech. 28 (1992) 173–177. 

[23] L. Ainola, H. Aben, Theory of 
magnetophotoelasticity with multiple reflections, 
Journal of Optics A: Pure and Applied Optics. 6 (1) 
(2004) 51–56.

[24] A. Puro, D. Karov, Polarization tomography 
for residual stresses measurement in a hexagonal 
single crystal, Inverse Problems. 30 (2014) 1–24.

the authors

KAROV Dmitry D.
St. Petersburg Polytechnic University
29 Politekhnicheskaya St., St. Petersburg, 195251, Russian Federation
dmkarov@yandex.ru

PURO Alfred E.
Institute of Computer Science
7a Erika, Tallinn, 10416, Estonia
alfredpuro@gmail.com



48

Научно-технические ведомости СПбГПУ. Физико-математические науки № 1(213) 2015

Каров Д.Д., Пуро А.Э. ТЕНЗОРНАЯ ТОМОГРАФИЯ НАПРЯЖЕНИЙ В КУБИЧЕСКИХ 
МОНОКРИСТАЛЛАХ.

Изучается возможность применения оптической томографии для исследования двух- и трехмер-
ного напряженных состояний в кубических монокристаллах. Напряжения определяются в рамках 
линейной зависимости тензора восприимчивости от напряжений (пьезо-оптический закон Мак-
свелла) и слабой оптической анизотропии. Показана невозможность полной реконструкции на-
пряжений в образце при его просвечивании в системе параллельных плоскостей и использования 
уравнений теории упругости. Для преодоления этих трудностей предлагается применение метода 
магнитофотоупругости.
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