dusnka KOHAEHCUPOBAHHOIO COCTOAHUA

DOI: 10.5862/JPM.213.4
UDC 536.421

D.D. Karov', A.E. Puro ?

' St. Petersburg Polytechnic University, Russian Federation

2 Information Science Institute, Estonia

TENSOR TOMOGRAPHY OF STRESSES IN CUBIC SINGLE CRYSTALS

The possibility of optical tomography applying to investigation of a two-dimen-
sional and a three-dimensional stressed states in single cubic crystals has been studied.
Stresses are determined within the framework of the Maxwell piezo-optic law (linear
dependence of the permittivity tensor on stresses) and weak optical anisotropy. It
is shown that a complete reconstruction of stresses in a sample is impossible both
by translucence it in the parallel planes system and by using of the elasticity theory
equations. For overcoming these difficulties, it is offered to use a method of magne-

tophotoelasticity.
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1. Introduction

Vector and tensor field tomography makes
a number of new and interesting nondestruc-
tive methods possible: polarimetric tomography
of magnetic field in the tokamak plasma, mea-
suring of electric field distribution in dielectric
liquids on the basis of optical Kerr effect to-
mography, tomography of fluid flow. Interest in
optical tensor field tomography has been simu-
lated primarily by the possibility of applying
integrated photoelasticity to the stress analysis
of apparent models [1]. Residual stress is one
of the most important characteristics of glass
articles from the point of view of their strength
and resistance [2]. In the case of optical glass,
birefringence due to the residual stresses char-
acterizes the optical quality of the article [3].

Integrated photoelasticity refers to polariza-
tion-optical methods of experimental mechan-
ics that use tomographic measurement tech-
niques. These methods measure the variation
in parameters of polarized beam transmitted
by a model under study [4]. In certain cases
distribution of some stress components can be
determined using this integrated optical infor-
mation. Generally, it is impossible to achieve
a complete reconstruction of stresses by trans-
lucence it in the system of parallel planes and
using the equations of the elasticity theory [5].
The magnetophotoelasticity method (MPE) for
overcoming this difficulty is to use additional
magnetic field [6, 7]. In this new measurement

method, the model under study is subjected to
a homogeneous magnetic field and is irradi-
ated by light propagating along this field. The
polarization plane of the light beam rotates in
the sample due to the Faraday effect. Until to-
day MPE has been used for the measurement
of bending stresses in plates [8] and residual
stresses in glass plates [9]. Tomographic appli-
cation of MPE method is based on the expo-
nential Radon transform of vector and tensor
fields [10, 11]. Algorithms for the reconstruc-
tion of the attenuated vectorial Radon trans-
form [12, 13] give an opportunity for investiga-
tion in nonhomogeneous magnetic field.

Polarization-optical methods are common-
ly used for investigation of physical properties
of crystals [14, 15]. Two-dimensional photo-
elasticity permits easy determination of stresses
(which are constant through the thickness) in
crystal plates [16]. Compared with isotropic
objects, the application of the integrated pho-
toelasticity becomes much more difficult in the
case of single crystals due to the occurrence of
natural anisotropy [17]. The first difficulty is
associated with non-coincidence of the quasi-
principal directions of the stress tensor and the
permittivity tensor [18]. The second difficulty
is connected with the problem in the theory of
elasticity which is described in [19, 24]. In the
case of plane elastic strain residual stresses in a
cubic single crystal can be reconstructed com-
pletely by using the method of the integrated
photoelasticity [20].
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The aim of this paper is to generalize the
results of the parametric tensor tomography to
the case of cubic single crystals.

2. Integrated photoelasticity

In integrated photoelasticity method the
specimen is immersed in immersion bath and
a beam of polarized light is passed through the
specimen. In stress-free situation a cubic single
crystal is optically isotropic and birefringence
due to the residual stresses can be measured by
the tomographic method. In the general case,
the direct problem of light propagation in an
inhomogeneous anisotropic medium is rather
complicated, but in case of weakly birefringent
media it is simplified.

We will introduce an orthogonal system of
coordinates x, y, z and direct the axes of this
system along the [100], [010] and [001] crystal-
lographic directions. Additionally, we will in-
troduce an orthogonal system of coordinates s,
t, z which is rotated with respect to the initial
system by an angle © in the plane x, y. Direc-
tion of translucence coincides with the direc-
tion of the #-axis. Propagation of polarized light
through a weakly birefringent media is governed
by the following equations [4, 6, 7]:

d—f =-iCPE;
where

c=-——,
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Here E , E denote the components of the
electric vector, c is the light speed, o is the
frequency, y is permittivity of the stress free
media, y_, ¥, X, are components of the per-
mittivity tensor induced by the residual stress-
es. The matriciant of Eq. (1) (Jones matrix)
Q(y, a,, a,) can be expressed via its characteris-
tic parameters: y is the characteristic phase dif-
ference, a, is the initial characteristic direction,
a, is the secondary characteristic direction.

In the case of a slow rotation of quasi-
principal directions along the light propagation
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direction these parameters are related to the
components of the dielectric tensor through
the relationships

2y cos(a, +a.) = Cf (y, = %)t = T (s, 0);

ysin(a, + o) = C[ (x,,)dr = Ty(s,6).

Equations of photoelasticity of a single
cubic crystal [14] are the following:

s — Xz = €04 + 6,0, +60, +60C

st
(2)
st = Tc44Gsz;
they contain the fourth-order elastic-optical
tensor m,;:

sin?(20)
e = (m; —mp) —(m, —m, - 7[44)T§
sin®(20
e, = (m, —m, —my) —2( )§
ey = —(m, —mp);
sin(40)
€ = —(m, —m, —1myy) 7

The essential difference of a problem under
study from a problem for an isotropic medium
is the presence of the second addend o, in
Eq. (2). This fact considerably complicates the
solution of the problem. At first, an algorithm
of determining the residual stress in long cubic
crystal (the assumption of plane deformation)
will be presented. Then, the application of the
parametric tomography to the reconstruction
of stresses in the common case will be
considered.

3. Reconstruction of stresses in case
of plane strain deformation

A cylindrical crystal without axial stress
gradient is illuminated in the plane z = const.
The components ¢ and ¢, are equal to zero
and there is no rotation of the quasi-principal
directions of the permittivity tensor. Thus, the
problem of the optical tomography is simplified
and only characteristic phase differences

2y = J‘EIG” +FEoc, +
+E0,, + Eo,dt =T(s,0),
E, =Ce,
are measured on the ray.

3)



dusnka KOHAEHCUPOBAHHOIO COCTOAHUA

The optical relation (3) is complemented
by equations of the elasticity theory: equations
of state, equilibrium equations, compatibility
equations. The residual stresses are considered
to be of thermal character:

o, =Ce, +Cye, +e,)—aT,

c, = C]lgyy +Ch(e,, + szz) -aT,

4

o,.=Ce, +Cy(e, +e,)-aT,

oy, =2Cue,,i#k i, k=x,Y,z

Here C, are the coefficients of the elasticity,
a is the coefficient of thermal expansion,
T is fictitious temperature, and g, are the
components of the strains tensor.

In the case of the plane strain deformation
e, = 0, and from Egs. (4) it follows

Ow ~Og Oy ~ Oy _ 9%y

x = > € =5 A Sx -~
Cll _C12 . Cn _C12 g C44
Inserting the components of strain into the

equation of compatibility

o o ol

28 T8y = 2

oy ox oxoy
and expressing the components of stress through
the Airy function

€

Sxy,

O'F
ox.ox,

o; = 8ijAF -

one can obtain
& p GGy o
ox C,

’xd’y WF = A%

This equation can be written in more
suitable form [20]:

k
A1A2F = H(Al + A2)Gzz, (5)
where
o ol
AIF = (—z'f'k—sz,
ox oy
2 2
AF = [ka—2+a—2jF,
ox- oy
and k is a solution of the equation
C11 — C12

kQ—C—k+1=0.
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This equation is based on the fact that the
Airy function Fand its normal derivative 0F/on
are equal to zero in the load free conditions on
the lateral surface.

If the distribution of o, is described
only by harmonic functions, the other stress
components do not develop in a cylinder. The
same situation takes place in the case of an
isotropic cylinder [21].

General solution of Eq. (5) can be written
as the sum of functions F= F, + F, which must
satisfy the equation

k
Al (AZF; - G] _mo-zzJ +
(6)

k
+ A2 [AIE —Gz —HGZZJ = O,
where AG, = 0.
We can write Eq. (6) as a system of the

following equations:

ME, =% 6 16 AF - o +a,
1+k ¢ l+k %
k(k-1)( o &

AlAz(Fz_E): 1+ k [&C_Q_W O

The boundary conditions for F give the integ-
ral equation for the determination of the G

[[G(o, +Gyyds =0, [[Gy (o, +G))ds = 0.

Here G,, G, are arbitrary solution of
corresponding equationsA,G., = 0.

1 a

At last the line integral (3) can be simplified
by using the Airy function:

o o
[odi = -t = [o,di =] 5t =0.

Thus, residual stresses can be determined
from the partial solution of the Eq. (5) and the
ray integral equation is

2
E, %th + E, [ o dt = T(s,1).

The numerical solution of this system of
equations is not considered as it is connected
with the peculiarities of the measurements.

4. Application of the MPE method
to the full determination of stresses

In the case of an arbitrary distribution of
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internal stresses in a sample, the number of
variables increases and the reconstruction
problem becomes significantly more
complicated. In this case it is impossible to
achieve a complete reconstruction of stresses
by using only the equations of the elasticity
theory. We apply the additional homogeneous
magnetic field along the light propagation
direction and measure the angle of rotation of
the polarization plane due to the Faraday effect.
The following two integrals can be determined
using the polarization measurements [6, 7]:

.[(Elcm +Eqc, + Ec +
+ Eécst)eﬁrdt = TI(Sy ea B)a
[ Ejoe"dt = Ty(s,0,B), E, = Cryy.

Here, Bp=VH and V is the Verdet
constant, H is the intensity of the magnetic
field strength.

The components of stress tensor must satisfy
the equilibrium equations. The solution of these
equations can be expressed through the stress
functions [7, 22]. According to the Helmholtz
theorem, the two-dimensional vector field
defined over xy plane can be represented as a
sum of an irrotational (potential) field and of a

solenoidal one:
0 o* o o’
O, =——T+ G, =—-T-—
ox  0yoz oy  0x0z

Similarly, a two-dimensional symmetric
tensor field defined over a plane xy can be
expressed in terms of the three potentials:

2 2
Gxx=—£T+2 0 N+a—2F;
oz Toxay oy
2 2
o,=- 222 Ny T F )
» 0z o0xoy ox

2 2 2
o -2 2y 2 p
ox° oy 0x0y

The stress functions must satisfy the

following equations:

o & o
S T2 |V T 75, %
ox- oy 0z
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2 2 2
6_2+6_2+6_2 N =0.
ox® oy° 0z

Tomographic reconstruction of shear
stresses o, in the xy plane, based on the
values of the path integral 7,, is reduced to
determining a 2D vector field and, according to
the Helmholtz theorem to finding its solenoidal
N and potential t components. The algorithm
of reconstruction of these components in the
case of the magnetophotoelasticity was given
in [6, 7, 10] and, the more general case of the
attenuated vectorial Radon transform was given
in [12, 13]. Once the potentials T and N are
known the other stresses can be reconstructed
if we find F and o_. Using representation (7),
we can transform path integral 7,(s, 6, B) by
integrating in parts:

2
T.(s,0,p) = Ep’ J‘ Fe"di + E, I 0_2 Fol gt +
os
+ E3J' o e’dt + iE6B_[ iFe"ﬁ’a’z‘ + T, (s,0,p).
oS

Here, T (s, 6, B) is the function, containing
known potentials t, and N. Thus, by using the
measurements at § = 0, and p = 0, we have the
system of the ray integrals, which allow one to
fully recover the tensor field.

5. Summary

The majority of investigations in the tensor
stress field tomography are devoted to isotropic
articles. In this paper we demonstrate the
opportunities and difficulties of the integrated
photoelasticity in the case of cubic single
crystals. Reconstruction of the residual stresses
in both cases is connected with the solution
of the system of equations. In the case of the
isotropic model this system can be solved step
by step. In the second case the same equations
cannot be separated, and they should be
solved simultaneously. One of the drawbacks
of the magnetophotoelasticity is the need for
very precise optical measurements since the
Faraday effect is very small. The using of
multiple reflections is one of the possibilities to
overcome this difficulty [23].
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Kapo6 /1.4., Mypo A.3. TEH30PHAS TOMOTPA®USA HANPAXEHUIN B KYBUYECKNX
MOHOKPUCTAJINAX.

N3yyaeTcst BO3MOXHOCTh IPUMEHEHUST ONITUYECKON ToMOTpacuy TSI MCCIeTOBAHMS IBYX- U TPeXMep-
HOTO HAMPSKEHHBIX COCTOSIHMI B KyOWYeCKMX MOHOKpHUCTauiax. HampsokeHusT onpenesisiioTesl B paMKax
JIMHEWHOW 3aBUCMMOCTU TE€H30pa BOCIPUMMYUBOCTA OT HATPSDKEHWH (IMhe30-ONTUYECKUit 3aKoH Mak-
CBeJula) M cjaboii onTudeckoi aHmu3orponuu. [TokazaHa HEBO3MOXHOCTH TMOJHOW PEKOHCTPYKIIMUA Ha-
MPSDKeHU B 00paslie Mpy ero MPOCBEUYMBAHUM B CHUCTEME TMapauIeIbHbBIX TJIOCKOCTENH W MCTOIb30BAHUS
YpaBHEHMI Teopuu ymnpyroctu. IJisi IpeoqosieHusT 9TUX TPYAHOCTEN TMpejiaraetcsl TpUMMEHEeHWe MeTona

MarHUTO(OTOYIIPYTOCTH.

BHYTPEHHUE HAIPAXEHUSA, TOJAPUSALMOHHAA TOMOTIPA®UA, UHTETPAJIbHASL ®OTOYIIPYTOCTD,

TEH30P HAMPSXKEHUMN.
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