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Preface

Dear Reader,

in this book you will �nd the Proceedings of the Summer School � Conference �Advanced Problems
in Mechanics (APM) 2015�. The conference had been started in 1971. The �rst Summer School
was organized by Prof. Ya.G. Panovko and his colleagues. In the early years the main focus of
the School was on nonlinear oscillations of mechanical systems with a �nite number of degrees of
freedom. Since 1994 the Institute for Problems in Mechanical Engineering of the Russian Academy
of Sciences organizes the Summer School. The traditional name of �Summer School� has been kept,
but the topics covered by the School have been much widened, and the School has been transformed
into an international conference. Now it is held under the patronage of the Russian Academy of
Sciences. The topics of the conference cover now almost all �elds of mechanics, being concentrated
around the following main scienti�c directions:

� aerospace mechanics;
� computational mechanics;
� dynamics of rigid bodies and multibody dynamics;
� �uid and gas;
� mechanical and civil engineering applications;
� mechanics of media with microstructure;
� mechanics of granular media;
� nanomechanics;
� nonlinear dynamics, chaos and vibration;
� molecular and particle dynamics;
� phase transitions;
� solids and structures;
� wave motion.

The Summer School � Conference has two main purposes: to gather specialists from di�erent
branches of mechanics to provide a platform for cross-fertilization of ideas, and to give the young
scientists a possibility to learn from their colleagues and to present their work. Thus the Scienti�c
Committee encouraged the participation of young researchers, and did its best to gather at the
conference leading scientists belonging to various scienti�c schools of the world.

We believe that the signi�cance of Mechanics as of fundamental and applied science should much
increase in the eyes of the world scienti�c community, and we hope that APM conference makes
its contribution into this process.

We are happy to express our sincere gratitude for a partial �nancial support to Russian Founda-
tion for Basic Research, Russian Academy of Sciences, and St. Petersburg Scienti�c Center. This
support has helped substantially to organize the conference and to increase the participation of
young researchers.

We hope that you will �nd the materials of the conference interesting, and we cordially invite
you to participate in the coming APM conferences. You may �nd the information on the future
�Advanced Problems in Mechanics� Schools-Conferences at our website:

http://apm-conf.spb.ru

With kind regards,

Co-Chairmen of APM 2015

Dmitri A. Indeitsev, Anton M. Krivtsov
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Numerical investigation of thin �lms with strain gradient elasticity

Numerical investigation of thin �lms with strain
gradient elasticity

B. Emek Abali, Wolfgang H. M�uller, Victor A. Eremeyev

abali@tu-berlin.de

Abstract

Thin �lms are applied in Micro-Electro-Mechanical Systems (MEMS). The
mechanical response of thin �lms on the micrometer length scale is di�erent
from their response on the macroscale. In order to model this phenomenon we
propose to apply the so-called strain gradient elasticity. There are various ver-
sions of strain gradient theory available in the literature. After a brief review
of our version, we use �nite element and �nite di�erence methods for com-
puting the deformation state of thin �lms by using strain gradient elasticity.
Moreover, we perform a numerical study of Cu �lms of di�erent thicknesses
and observe qualitatively the same phenomena as in experiments.

1 Introduction
The miniaturization of electro-mechanical systems requires producing and the use of ge-
ometries on the microscale. Nowadays, thin �lms applied in Micro-Electro-Mechanical
Systems (MEMS) are even smaller than 1µm. As a material for such thin �lms copper
(Cu) is often used due to its high conductance and speci�c strength. The behavior of Cu on
the macroscale can be modeled accurately by using the theory of elasticity. Interestingly,
the mechanical response of Cu changes on the micrometer length scale. Especially for
Cu thin �lms this phenomenon has been observed experimentally, see for example Gruber
et al. [4] and Wang et al. [11]. Such a change of the mechanical behavior is referred to
as (elastic) size e�ect. The ordinary theory of elasticity fails during its characterization,
consequently, it needs to be extended. In order to calculate the mechanical behavior of
thin �lms we propose to use the so-called strain gradient elasticity instead. There have
been various variants of strain gradient elasticity. For an overview see Gurtin et al. [5,
�90]. We give a brief outline of our version based on rational continuum mechanics and
then perform a numerical study of Cu thin �lms.

First, we start with the balance equations of linear and angular momenta. Their �ux terms
are known to be the stress tensor and the couple stress tensor for a non-polar medium,
such as Cu. Second, we apply a suitable method to obtain the necessary constitutive equa-
tions for the stress and couple stress tensors. By closing the balance equations with suitable
constitutive equations we obtain the �eld equations. Third, we employ a variational formu-
lation for generating a weak form of the �eld equations. This weak form can be evaluated
computationally by using numerical solution techniques. We use the �nite element method
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for space discretization and the �nite di�erence method for time discretization, and then
solve the weak form by using open-source packages developed under the FEniCS project,
see Logg et al. [7]. Thin �lms made of Cu are simulated with our version of strain gradient
elasticity. We perform a numerical study of di�erent thicknesses, and observe qualitatively
the same deformation phenomenon as in real experiments.

2 Governing equations

Throughout the paper we use the standard nomenclature of continuum mechanics includ-
ing the summation convention for repeated indices. We consider a continuum body, B0,
consisting of massive particles at known original positions Xi, expressed in Cartesian co-
ordinates. In a material frame the particles are identi�ed by their original positions Xi.
As a consequence of (mechanical) loading the body deforms to B at the present time t and
the particles move to xi = xi(Xj , t). The objective of continuum mechanics is to calculate
this deformation by determining the displacement of each particle:

ui = ui(Xj , t) = xi −Xi . (1)

In the theory of elasticity this is achieved by satisfying the balance of linear momentum.
In strain gradient elasticity we need to ful�ll also the balance of angular momentum. Both
balances of momenta transformed onto the initial frame, B0, read

ρ0
∂vi
∂t
− ∂Pji
∂Xj

− ρ0fi = 0 ,

ρ0
∂aik
∂t
−
∂Aijk
∂Xj

− ρ0zik = 0 ,

(2)

where the speci�c linear momentum (per mass), vi, and the speci�c angular momentum,
aik, are the unknowns. The �ux terms, Pji and Aijk, will be de�ned by using constitutive
equations. The supply terms, fi and zik, are prescribed and known. For a motivation and
a derivation of these balance equations from the well-known global balance equations in
the current frame we refer to Abali et al. [1]. The speci�c linear momentum, vi, is a tensor
of rank one. Physically speaking, it is the velocity of the material particles, and given as
follows in the initial frame:

vi =
dxi(Xj , t)

dt
=
∂xi(Xj , t)

∂t
=
∂(ui +Xi)

∂t
=
∂ui
∂t

, (3)

since the initial positions of particles are constant. The speci�c angular momentum, aik,
is a tensor of rank two and consists of a spin and a moment of linear momentum. For
non-polar materials, such as copper, the spin vanishes and aij becomes:

aik = X[ivk] =
1

2

(
Xivk −Xkvi

)
. (4)

Hence, in both balances of momenta the displacement �eld, ui, occurs, which is the un-
known �eld. After vector multiplication of the balance of linear momentum by the position
vector and subsequent substraction from the balance of angular momentum we obtain the
balance of spin. It contains a production term. Since the spin vanishes for a non-polar
material, its production term has to vanish, too. This restriction requires the Cauchy
stress tensor, σij = σji, i.e., the �ux of linear momentum in the current frame, to be

12
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symmetric. The �ux of linear momentum in the initial frame is referred to as the �rst
Piola-Kirchhoff stress tensor:

Pji = J(F−1)jkσki , J = det(F ) , Fij =
∂xi
∂Xj

. (5)

Obviously, the �rst Piola-Kirchhoff stress fails to be symmetric even in case of a
symmetric Cauchy stress, σji. Hence the second Piola-Kirchhoff is introduced:

Skj = Pki(F
−1)ji , Skj = Sjk . (6)

The �ux of angular momentum consists of a �ux of spin and a moment of �ux of linear
momentum:

Aijk = µijk +X[iPjk] = µijk +
1

2

(
XiPjk −XkPji

)
. (7)

The �ux of spin, µijk, is also called couple stress in the initial frame. We need to �nd
constitutive equations for the stress, Sij , and the couple stress, µijk, with respect to the
unknowns, i.e., the displacement components, ui. Then the following two equations lead
to the displacement �eld:

ρ0
∂2ui
∂t2
− ∂Pji
∂Xj

− ρ0fi = 0 ,

ρ0X[i

∂2uk]

∂t2
−
∂µijk
∂Xj

− P[ik] −X[i

∂Pjk]

∂Xj
− ρ0zik = 0 .

(8)

The speci�c supply term for the linear momentum, fi, is given by the gravitational speci�c
force only, since we neglect electromagnetic interaction in the system. The speci�c supply
term for the angular momentum, zik, consists of two terms, a speci�c body force a�ecting
the spin volumetrically, and a moment of the gravitational speci�c force. Since the material
is non-polar the �rst term is neglected, we have:

zik = X[ifk] =
1

2

(
Xifk −Xkfi

)
. (9)

By inserting the latter in Eq. (8)2 we realize that the couple stress has the following sym-
metry property:

µijk = −µkji . (10)

Next, we will de�ne the stress and the couple stress tensors depending on the displacement
�eld. Due to objectivity we need to use the gradient of displacement. In this context we
use the Green-Lagrange strain tensor:

Eij =
1

2

(
Cij − δij

)
, Cij = FkiFkj . (11)

In the theory of elasticity the stress is given by the strain, which is su�cient to determine
the displacements accurately. In strain gradient theory the additional �ux term, i.e., the
couple stress, is described by the strain gradient, ∂Eij/∂Xk. Theoretically stress may
depend on the strain gradient as well as couple stress may depend on the strain. For linear
and isotropic materials this is not the case, see dell'Isola et al. [3, �3]. Hence we can de�ne
the general linear relations for the stress and couple stress as follows

Sij = CijklEkl , µijk = DijklmnElm,n . (12)
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The so-called sti�ness tensor Cijkl is of rank four and the tensor Dijklmn is of rank six.
For isotropic materials the tensorial forms of such material tensors are well-known, see for
example Suiker and Chang [10]. Since the strain is symmetric, Eij = Eji, we obtain the
following sti�ness tensor:

Sij = λEkkδij + 2µEij , (13)

where the Lam�e parameters are given by the engineering constants, viz., Young's mod-
ulus, E, and Poisson's ratio, ν, as follows:

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
. (14)

Analogously, we obtain the material tensor Dijklmn after using the conditions Eij,k = Eji,k
and µijk = −µkji, such that

µijk = α
(
δijEkm,m − δjkEim,m

)
+ β

(
δijEmm,k − δjkEmm,i

)
+ γ
(
Eij,k − Ejk,i

)
. (15)

The couple stress possesses three additional material parameters. After measuring E, µ, α,
β, γ we can calculate the deformation of thin �lms. An adequate numerical implementation
is presented in the following section.

3 Numerical implementation
The �eld equations (8) are di�erential equations in space and time. In order to analyze
them numerically we need to discretize the �elds and operators in space and time. For
discretization in time we use the �nite di�erence method :

∂ui
∂t

=
ui − u0

i

∆t
, ∆t = t(k+1) − t(k) , (16)

This implicit method is stable for real valued problems. For the space discretization we
employ theGalerkin-type �nite element method, where the test functions, δui, are chosen
from the same Sobolev space as the unknowns, ui. We use continuous second order
elements belonging to

V = {ui ∈ [H2(Ω)]3 : ui
∣∣
∂Ω

= given} ,

V̂ = {δui ∈ [H2(Ω)]3 : δui
∣∣
∂Ω

= given}
(17)

for the three dimensional domain Ω ∈ R3 and its boundaries ∂Ω. The weak form is ob-
tained by multiplying the �eld equations with appropriate test functions and then applying
integration by parts:

F =
∑

elements

∫
Ωe

(
ρ0
ui − 2u0

i + u00
i

∆t∆t
δui + Pjiδui,j − ρ0fiδui+

+ρ0X[i

uk] − 2u0
k] + u00

k]

dt dt
δuk,i + µijkδuk,ij − P[ik]δuk,i −X[iPjk],jδuk,i−

−ρ0likδuk,i −X[ifk]δuk,i

)
dV −

∫
∂Ω

(
Pjkδuk + µijkδuk,i

)
Nj dA .

(18)

This weak form is implemented in Python by using open-source packages developed by the
FEniCS project, Logg et al. [7]. Since the weak form is nonlinear, it is linearized by a fully
automatized symbolic derivative at the level of partial di�erential equations, see Alnaes
and Mardal [2]. All 2D-plots were created by using the MatpPlotLib packages, see Hunter
[6], under NumPy, see Oliphant [9].
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Figure 1: Variation of thickness of thin �lm out of Cu-HCP. The ordinate refers to
the normal stress value at 0.2% of tensile strain.

4 Results and conclusion

The deformation behavior of thin �lms has been analyzed. We consider a plate with di-
mensions 10 × 10 × 1 length units on the microscale. By varying the length unit, the
length to thickness ratio is kept constant. The geometry remains the same, whereas the
geometric scale is changing. In order to perform a somewhat realistic simulation we use
the properties of High Conductivity Phosphorus Deoxidized Copper (CU-HCP). The ma-
terial is modeled as isotropic with Young's modulus taken as E = 139.9GPa at room
temperature, see M�uller et al. [8]. We assume Poisson's ratio to be ν = 0.3 and take
the mass density as ρ0 = 8960 g/µm3. The plate is subjected to tensile test conditions:
On one end it is clamped by setting the displacements equal to zero. On the other end
it is stretched by setting the displacement analogously to a position controlled in tensile
testing. For all other boundaries free surface conditions have been implemented, such that
the boundary terms vanish. During one �second� the strain is increased linearly up to
0.2% and the stress is computed at that strain. From experiments, see Gruber et al. [4,
Fig. 8], we expect approximately 300MPa of stress at 0.2% of strain. In Fig. 1, at strain
E11 = 0.002 the true stress, namely the Cauchy stress, σ11, is plotted by varying the �lm
thickness. The so-called size e�ect is obvious. Although the geometric ratios and material
parameters remain the same, the behavior alters by varying the thickness. Interestingly
this change is not monotonous and seems to be counter-intuitive. We know from the exper-
iments that such a behavior occurs in reality, see Gruber et al. [4, Fig. 9c]. From Gruber
et al. [4, Fig. 8] it is known that the material's response up to 0.1% is identical for di�erent
thicknesses. In Gruber et al. [4] this discrepancy has been motivated by a possible change
in plasticity without any change of the elastic response. However, it is then di�cult to
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justify the change in the initial yield stress. In this paper we present a simulation with a
qualitatively similar response of the material, where the change is explained by our version
of strain gradient theory.

We started with a brief outline of the strain gradient theory and its implementation, which
are mainly developed in Abali et al. [1]. Additional to the well-known engineering constants
three more material parameters were necessary to model a system using strain gradient
theory. For simulations of thin �lms we determined these parameters by free choice and
achieved to model the counter-intuitive response of thin �lms. It is rather challenging to
obtain qualitatively accurate results by �nding the correct set of parameters.
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Abstract

The work presents a theoretical study of the colloid nanoparticle agglom-
eration with a focus on the morphology of the resulting assemblages. This is
achieved by using an original analytical multi-particle interaction model.

It has been shown that the electrosteric repulsion between colloid nanopar-
ticles makes it more energetically favourable to form linear structures; this ef-
fect is stronger for particles with higher surface charge. Linear agglomerates,
however, turn out to be unstable and subjected to deagglomeration or com-
paction due to the surface-bound brownian motion of the constituent particles.
Therefore the resulting morphology of a nano-agglomerate can be described as
the product of a balance between the initial preference for a linear structure
formation and further compaction or deagglomeration.

1 Introduction
Nanotechnology is among the fastest growing �elds of applied research in the past few
decades. An important group of nanomaterials that have found a wide industrial, commer-
cial and scienti�c application are those based on nanoparticles as their primary structural
units. These materials include nanocolloids, aerosols, nanoceramics, etc. and demonstrate
a high dependency of bulk material properties on those of the individual nanoparticles [1].
It is important to note that physical and chemical properties of particle-based materials
and, therefore, their fate and transport, biological activity and behaviour in the human
body are also dependent on the morphology and stability of the particle assemblages [2, 3]
in the form of agglomerates and aggregates (terms used in accordance with ISO 14887).
Although the agglomeration of nanoparticles has been a subject of extensive studies, only
a few works to date have focused their attention on the formation of nano-agglomerate
spatial structure [2].
The present work is devoted to the theoretical study of nanoparticle agglomeration in
aqueous colloids and is speci�cally focused on analysing the morphology of forming particle
assemblages. Analytical description and analysis of nanoagglomerate structure is achieved
by employing a modi�ed version of the original multi-particle colloid interaction model �rst
introduced by the authors in [5]. The model is developed in the framework of the DLVO
(Derjaguin, Landau, Verwey, Overbeak) theory that assumes that interparticle interaction
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Figure 1: Schematic representation of a colloid ZnO nanoparticle's charged surface
and ionic atmosphere.

in colloid solutions is governed by two processes: short-range van der Waals attraction and
long-range electroosmotic repulsion due to overlapping electric double-layers (EDL).

2 Methods

2.1 Mathematical model

We consider a spherical nanoparticle suspended in electrolyte solution as a spherically sym-
metric system with radial coordinate r (see �gure 1). The colloid particle obtains surface
charge through the processes of adsorption and desorption, which will be discussed in detail
later. Thus we assume that the particle and the adsorption layer can be represented as a
sphere of the e�ective radius a and uniform surface charge σ. The charged particle is then
subjected to solvation and thus acquires a charge-less hydration shell of roughly two water
molecule diameters thickness δ [7]. The layer of polarized H2O molecules a < r < b = a+δ
(see �gure 1) is known to have signi�cantly smaller e�ective dielectric permittivity in com-
parison with the bulk water [7]. The hydrated nanoparticle is surrounded by a di�use ion
atmosphere r > b that compensates the particle surface charge. To describe the discussed
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EDL structure we therefore have to consider two calculation domains:

I : a < r < b, εI = εh
II : r > b, εII = ε

(1)

where the domains I and II correspond to the charge-less gap with the e�ective dielectric
permittivity εh and the di�use layer with the bulk dielectric permittivity ε respectively.
The electric potential distribution ϕ(r) in these domains is described by the following
Debye-Huckel equation system:{

∆ϕI = 0, a < r < b
∆ϕII = κ2ϕII, r > b

(2)

with boundary conditions:

d
drϕI

∣∣
r=a

= − σ
εhε0

ϕI (b) = ϕII (b) = ϕ0

εh
d
drϕI

∣∣
r=b− = ε d

drϕII

∣∣
r=b+

ϕII|r→∞ = 0

(3)

Here κ is the reciprocal of the Debye length:

κ =

(
2I

εε0kT

) 1
2

(4)

where I =
∑
i

(zi)
2ni - the ionic strength of the solution; i - number of the dissociated

solute; zi - charge number of the ions resulting from the dissociation of the i-th solute; e -
elementary charge; ε0 - dielectric constant; k - Boltzmann constant; T - temperature.
Solving (2) with (3) for the di�use layer we obtain:

ϕII(r) = ϕ0 ·
b

r
· exp [−κ(r − b)] (5)

where ϕ0 is the zeta-potential:

ϕ0 =
1

4πεε0
· 4πa2 · σ
b(1 + κb)

(6)

The nanoparticle obtains it's surface charge through adsorption and desorption. For am-
photeric particles such as ZnO the dominant charging process is competitive protonation
and deprotonation of surface −OH groups [4, 7], which is demonstrated in �gure 1. The
corresponding reactions are:

−OH + H+→← −OH+
2

−OH + OH−→← −O− + H2O
(7)

We assume that all ions in the system except for the H+ andOH− are indi�erent to the
particle surface. Linearisation of the potential-dependent H+ and OH− concentrations at
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the particle surface in the non-saturated adsorption limit yields a simple expression for the
surface charge density σ of a nanoparticle placed in an external electric �eld:

σ =
σ0 + e

[
β+nH

(
1− eϕΣ

kT

)
− β−nOH

(
1 + eϕΣ

kT

)]
1 + e2[β+nH+β−nOH]

4πεε0·kT

[
1

b(1+κb) + b−a
ab

] (8)

where σ0 - constant portion of the surface charge density due to charged groups that are
not involved in any chemical reactions in the considered system; nH, nOH - bulk H+ and
OH− concentrations in the solution; ϕΣ - local potential of the external electric �eld; β+,
β− - model �tting parameters.
Using (6) and the non-saturated charge regulation model (8) we can obtain the expression
for the zeta-potential dependency on pH and use for the experimental data �tting and
thus obtain the numerical values for the model parameters β+, β− (see �gure 2). The
suggested theoretical approach is suitable for the spherical amphoteric nanoparticles with
low surface potential suspended in the aqueous solutions of low ionic strength. Therefore,
the zinc oxide nanoparticles were chosen for the modelled system of this work due to their
unique semiconductor and chemical properties wide use in customer products.
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Figure 2: Comparison of the ZnO nanoparticle zeta-potential dependency on pH
obtained using the proposed non-saturated charge regulation model (solid line) with
the experimental data from [6] (dots). The dashed vertical lines mark the limits of
applicability of the model.

Using the monopole approximation, we substitute each particle with its equivalent screened
point-charge [8] :

Q = 4πεε0 · ϕ0 · beκb (9)

Then the potential energy of a particle number α interacting with multiple other particles
can be found as:

Uα ({Rα,β}) =
Qα

4πεε0
·
∑
β 6=α

[
Qβ ·

exp (−κRα,β)

Rα,β

]
+
∑
β 6=α

[UvdW (Rα,β)] (10)

where α, β - particle numbers; Rα,β - centre-to-centre separation between particles α and
β; the equivalent charges Qα can be found from the linear algebraic equation system:

Qα +
∑
β 6=α

θα,β ·Qβ = QISO (11)
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here QISO - the equivalent charge of an isolated particle; the matrix coe�cients are:

θα,β =
1

4πεε0
· e

2

kT
· 1

Rα,β(1 + κb)
·

(β+nH + β−nOH) · exp [−κ (Rα,β − b)]

1 + e2[β+nH+β−nOH]
4πεε0·kT

[
1

b(1+κb) + b−a
ab

] (12)

The van der Waals attraction energy in (10) is given by [7]:

UvdW (R) = −A
6

[
2a2

R2 − 4a2
+

2a2

R2
+ ln

(
R2 − 4a2

R2

)]
(13)

where A - the e�ective Hamaker constant for the particle interaction through an intervening
medium.
Thus we have obtained the expression (10) for the multi-particle colloid interaction poten-
tial energy for arbitrary particle positions using the non-saturated charge regulation model
(8).

2.2 Model validation
The derived expression for the inter-particle interaction energy allows us to study the
potential barrier arising when a nanoparticle is approaching a certain agglomerate con�g-
uration. Assuming that the nanoparticle velocity distribution during its Brownian motion
approaches the Maxwellian one for times much longer than the duration of a single molecule
collision [5], we can calculate the probability of nanoparticle possessing enough kinetic en-
ergy overcome the given potential barrier. The corresponding probability function for the
particle having the kinetic energy E greater than the potential barrier energy Eb is depicted
on �gure 3.
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Figure 3: Probability of nanoparticle having the kinetic energy E greater than the
potential barrier energy as a function of its value Eb.

For the case of a nanoparticle approaching an agglomerate the proposed model predicts a
limited growth of the potential barrier with the increase of the agglomerate's size. After a
certain agglomerate size the potential barrier for attachment reaches a plateau and ceases to
grow due to the charge redistribution between the particles. The corresponding attachment
probability dependency on the agglomerate size is illustrated on �gure 4. As shown in the
�gure, the traditional linear superposition approximation [8] that does not account for the
charge regulation predicts the termination of agglomeration for assemblages of more than
13 particles, which signi�cantly contradicts the experiment data (see the inset on �gure
4) [6]. On the contrary, the proposed model predicts a limited decrease of the attachment
probability reaching a constant high value for the agglomerates of more than 13 constituent
particles demonstrating a good qualitative agreement with the experiment.
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3 Results and discussion

The presented multi-particle interaction model was used to study the attachment of a
nanoparticle to a certain set of 2-, 3-, 4- and 5-particle agglomerate con�gurations. To
analyse the possible resulting agglomerate morphologies and identify the most energetically
favourable of them we have studied the dependency of the interaction potential energy on
the location of nanoparticle attachment site on the agglomerate. The resulting potential
energy contour plots for the selected agglomerate orientations are depicted in �gure 5. The
�gure shows that the potential barrier due to electroosmotic repulsion is anisotropic with
respect to the direction of particle's approach: attachment to a site with more particles in
contact results in higher barrier.
The observed electroosmotic orientation e�ects during agglomeration are further illustrated
in �gure 6 which demonstrates the dependency of the attachment probability on the di-
rection of the nanoparticle approach for di�erent solution pH values. According to �gure
2 pH values that are further away from the neutral pH result in higher particle surface
charge and, therefore, the increasing role of electroosmotic repulsion in particle interac-
tions. This explains the corresponding increase of the attachment probability anisotropy
for the approach directions found in �gure 6.
It is thus shown that with the increase of the nanoparticle surface charge it becomes more
and more energetically favourable to initially form linear structures. Figure 6 also shows
that for linear agglomerates the attachment of each next particle in a continuation of the
linear structure becomes more and more plausible.
The fate of the agglomerate after its initial formation is studied in �gure 7. This �gure
depicts the dependency of the potential well depth on the attachment site location on
the agglomerate represented through the angular coordinate. As it should be expected,
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Figure 5: Contour plots of the interaction potential energy between a single mo-
bile nanoparticle and a �xed agglomerate con�guration; brighter areas correspond
to higher values of the potential energy. The nanoparticle is moving in a plane
with a selected orientation relative to the agglomerate. The considered agglomerate
con�gurations are: a) 2-particle agglomerate; b) compact 3-particle agglomerate; c)
linear 3-particle agglomerate; d) compact 4-particle agglomerate; e) linear 4-particle
agglomerate; f) compact 5-particle agglomerate; g) linear 5-particle agglomerate.

the �gure shows that the deepest potential wells correspond to the attachment sites in
the closest contact with as many particles as possible. But the most important result is
the fact that the van der Waals potential well corresponding to the most favourable sites
are highly localised. Away from such positions the potential energy holds constant, which
means that the van der Waals attraction will not cause the force on the attached particle
unless it is in a very close proximity with the favourable site.
Another notable result in �gure 7 is the depths of the potential well corresponding to
di�erent attachment sites. Namely, the most energetically favourable from the long-range
electroosmotic repulsion point of view sites in contact with only one particle are associated
with the potential well of 3kT . According to �gure 3 a particle can escape such a well due
to solvent molecules collisions. Potential wells for the sites in contact with two and more
particles are deep enough to be considered a permanent attachment.
Therefore, attachment sites with a single particle in contact, which were shown as the
most energetically favourable from the electroosmotic repulsion point of view, are unstable
due to the surface-bound brownian motion of the attached nanoparticle. The said chaotic
motion can either cause the detachment of the particle, or position it near one of the more
favourable van der Waals sites and cause the agglomerate compaction.
As a result, according to the proposed model the predominant type of agglomerates in the
system with high nanoparticle surface charge will be determined by the balance between the
initial linear structure formation and their further gradual deagglomeration or compaction
due to the surface-bound brownian motion of the constituent particles and the close-range
van der Waals repulsion. The model also predicts the decrease of linear agglomerate
fraction in the systems with smaller particle surface charges.
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Abstract

The problem of creep, damage and long-term strength of compressible
elastic-viscous aging media is considered. The modi�ed Maxwell equation
expressed in scale of e�ective time is used. The parameter of continuity is
de�ned by a value of relative changes of density, which is an integral measure
of structure micro defects stored during long-term loading. It is assumed that
the rate of brittle fracture depends on stress and the value of stored damage.
Taking into account the noted positions the analytical relations for parameter
of continuity and long-term strength criteria are derived. The corresponding
theoretical curves are plotted.
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The problem of creep and long-term strength of polymer and composite materials with vis-
cous and brittle mechanical characteristics are discussed. The most polymer (thermosetting
plastics, polystyrene, polyacrylates, polyvinyl chloride and other) and composites, based
on polymer matrix, fractured when the value of residual deformation is small. During
the long-term action of mechanical stresses and temperatures the interrelated processes of
deformation and damage occur. Thus the damage parameter has certain physical meaning
and is associated with destructive processes, which are consisting of thermal and mechani-
cal stages. In the case of brittle composite materials the damage is de�ned by degradation
processes: loosing of continuity in contact zone �ber-matrix, fracture of �bers in defective
volumes, the formation of cracks or voids in the matrix and other. These processes are
accompanied by changes of structure and properties as a result of chemical reactions.
In mechanics of scattered damage and brittle fracture the concept of continuity (Kachanov
[1]) and damage (Rabotnov [2]) is considered. Following Kachanov, let's introduce the
parameter of continuity ψ (1 ≥ ψ ≥ 0), which is de�ned as a relative volume changes
(loosening on the Novozhilov terminology [3]) or density ψ = ρ/ρ0 (where ρ0 is initial, ρ
is current density) [4]. So this parameter is an integral measure of structure micro defects
stored during long-term loading. In the world scienti�c literature there are numerous
experimental investigations of the evolution of parameter ψ during creep of metals and
composite materials [5-11]. In initial condition t = 0, ρ = ρ0, ψ = 1 and in fracture
moment t = tf , ρ = 0, ψ = 0.
Since the real materials have random structure, so continuity parameter is a statistical
characteristic, which can be de�ned by some kinetic equation. Form of kinetic equation
is determined according the experimental results on long-term strength. In the common
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case these equations are based on two hypotheses, which were formulated in [12, 13]. In
according to the �rst hypothesis the rate of brittle fracture depends only on stress σ(t)

dψ

dt
= −f [σ(t)] . (1)

In according to the second hypothesis and the conception of statistical physics the rate of
brittle fracture depends on stress and the value of stored damage

dψ

dt
= −f [σ(t), ψ] . (2)

In the equations (1)-(2) σ(t) is stress, depending on time. In the creep case on condition
σ(t) = σ0 = const, 1 ≥ ψ ≥ 0, 0 ≤ t ≤ tf from the solution of equations (1), (2) we can
obtain the criteria of long-term strength

tf = −1/f(σ0), (3)

tf = −
0∫
t

dψ

f(σ0, ψ)
. (4)

When formulating the long-term strength criterion in form of relations (1), (2) the condition
of a constant stress during creep is accepted. In this regard can be mentioned that the
creep experiments are conducted when the applied value of load P is constant. Dropping
from time to time the load we can achieve the condition of constant stress. However, the
practical realization of this condition is not quite workable. The change of cross section of
specimen because of formation of pores and cracks and, accordingly, a correct estimate of
the value of true stress is not quite possible.
Let's consider the problem of tensile specimen made of elastic viscous aging material under
the action of constant load P . As a rheological equation we will use the modi�ed Maxwell
equation, expressed in the scale of e�ective time [4]

dε
dω = 1

E
dσ
dω + σ

η ,

dω = f1(ω, ε, T, t)dt+ f2(ω, ε, T, t)dε,
(5)

where ε is strain, T is temperature, t is time, E is the modulus of elasticity, η is coe�cient
of viscosity.
Parameter ω is considered as a e�ective time, using which it is possible to describe the
deformation aging processes and aging after temper. According to equation (5) during
instant active loadings this parameter corresponds to a deformation time ε. In a state of
unloading and stabilization the parameter ω describes the kinetics of chemical processes
of aging and reduces to a real time t. In the calculation on formula (5) the parameter of
e�ective time is de�ned by the following relation [14]

dω = aektdt+ bdε, (6)

where a, b, k are constants.
To determine the long-term strength in addition to equations (5)-(6) the relation for a
parameter of continuity is considered in the form of a power law [15]

dψ

dt
= −Aσn = −Aσn0ψ

nenε, (7)

where A, n are constants.
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The equation (7) is expressed in a true stress (taking into account the mass conservation
law ρ0l0F0 = ρlF we have σ = P/F = σ0F0/F = σ0ψe

ε, σ0 = P/F0, ε = ln(l/l0), l0, F0

are initial and l, F are current length and cross-section area of specimen, σ is true, σ0 is
engineering stress).
Analytical solutions of interrelated equations (5), (6), (7) are possible in the case of some
reasonable consumptions. The equation (1) is solved without account of damage processes.
Using the conditions t = 0, ε = 0, σ = σ0 = const, the solution of equation (5), taking
into account (6), is written in the form

ε =
σ

E

[
1 +

a(ekt − 1)

kτ
(
1− σb

Eτ

)] , (8)

where τ = η/E is relaxation time.
Introducing the relation (8) into equation (7) and solving it in initial condition t = 0,
ψ = 1, we will obtain

ψ =

1 +
Aσn+1

0 an(1− n)

E2τ
(

1− σ0b
Eτ

)
enσ0

E − ekte
nσ0
E

1 +
a

Eτk
(

1− σ0b
Eτ

) (ekt − 1
)

1
1−n

.

(9)

Figure 1: Curve of continuity parameter ψ according formula (9).

Curve of continuity parameter ψ according formula (9) is shown on Fig. 1.
Taking the condition of fracture t = tf , ψ = ψ∗ (ψ∗ is a value of continuity at fracture
time) from (9) we can obtain the relation, which is reduced to the following

ktf +A1e
ktf +B = 0, (10)

where A1 = nσ0a

E2τk
(

1−σ0b
Eτ

) , B = nσ0
E −

nσ0a

E2τk
(

1−σ0b
Eτ

) − ln

(
e
nσ0
E −

(ψ1−n
∗ −1)E2τ

(
1−σ0b

Eτ

)
(1−n)Aσn+1

0 an

)
.

The solution of equation (10) is

tf = −W (A1e
−B)−B
k

, (11)

where W is Lambert function, which can be de�ned as

W0(x) =

∞∑
n=1

(−n)n−1

n!
xn.
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Taking into this decomposition only the �rst two terms of series, we obtain the solution of
equation (10) in the form

tf = −A1e
−B − (A1e

−B)2 −B
k

. (12)

In calculations according formulas (9) and (12) the following values of coe�cients were used:
E = 2000 MPa, a = 0, 8 [h]−1, b = 3, τ = 35 h, n = 2, k = 0, 1 [h]−1, A = 0, 1 [MPa]−2,
σ0 = 80MPa, ψ∗ = 0, 1. These coe�cients were chosen to obtain a qualitative description
of damage parameter and long-term strength curves.
On Fig. 2 the theoretical curve of long-term strength using criterion (12) is shown.

Figure 2: The theoretical curve of long-term strength using criterion (12).
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Abstract

The problem of damage and high-temperature creep fracture of metallic
materials is demanded in such areas of modern engineering as the thermal and
nuclear power plants, aircraft, spacecraft and others. In this regard, inten-
sive studies on this problem are carried out. It has been found that under
the prolonged action of relatively small stresses and high temperatures metal-
lic materials embrittled due to development of damage (cracks, pores etc.).
These e�ects have been studied in details by the methods of physics and ma-
terials science. For engineering applications, it became necessary to develop
mechanical models of creep damage and fracture. The �rst such models have
been proposed by G. Ho�, L.M. Kachanov, Yu.N. Rabotnov. In these mod-
els some controversy assumptions are made, for example the incompressibility
condition, which can be overcome, if we formulate the creep fracture crite-
ria using the mass conservation law. Taking into account these propositions
and remaining within the concept of damage mechanics, interrelated kinetic
equations of creep, damage, and creep fracture criterion are formulated. The
proposed approach does not contain the mentioned contradictions and can be
considered as the basis for a more accurate description of the damage and frac-
ture of metallic materials and structural elements under the high temperature
creep condition.

Financial support of the Russian Foundation for Basic Research (Grant N
15-01-03159) is gratefully acknowledged.

Under the long action of high temperatures and relative small stresses many metallic al-
loys and pure metals lose plasticity and collapse as brittle (the phenomenon of thermal
brittleness). Because these e�ects are observed in elements of many important engineering
objects, in particular, in power and nuclear, the problem of brittle fractures became a
subject of numerous theoretical and experimental researches. For the description of brittle
fractures the concept of continuity (Kachanov [1]) and damage (Rabotnov [2, 3]) was de-
veloped. To materialize the damage parameter various de�nitions were o�ered: the relative
size of pores or irreversible change of volume (loosening on Novozhilov's terminology [4])
or density (Arutyunyan [5, 6]). In the paper the parameter of continuity is determined
by the ratio ψ = ρ/ρ0 (ρ0 is initial, ρ is current density) and it is an integral measure of
the accumulation of structural micro defects during long-term of high-temperature loading
[7-16]. In the initial condition t = 0, ρ = ρ0, ψ = 1, at the time of fracture t = tf , ρ = 0,
ψ = 0.
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In the general statement the continuity (damage) parameter ψ and the kinetic equation
for this parameter was considered by Haward [17]. According to Haward brittle fracture
proceeds with a speed depending on stress σ(t)

dψ

dt
= −f [σ(t)] , (1)

or, according to representations of statistical physics, from stress and the damage parameter

dψ

dt
= −f [σ(t), ψ] . (2)

Basic provisions of the concept of Kachanov-Rabotnov brittle fracture are based on the
equations (1), (2) which right part is taken in the form of power relation. In the brittle
model of Kachanov the continuity parameter ψ (1 ≥ ψ ≥ 0) is introduced randomly
without giving of a certain physical meaning to it. It is supposed that creep deformation
doesn't in�uence fracture processes, and the kinetic equation of the continuity parameter
is taken as a power function from e�ective stress [1]

dψ

dt
= −A

(
σmax

ψ

)n
, (3)

where A > 0, n ≥ 0 are empirical constants, not depending on stress, σmax/ψ is e�ective
stress.
The tension problem of specimen stretched under the action of constant load P is solved.
It is considered that brittle fracture happens at small deformations therefore it is possible
to neglect change of specimen cross section, i.e. the conditions F = F0, σmax = σ = P/F =
P/F0 = σ0 = const, (σ is true stress, σ0 is nominal stress, F0, F are the initial and current
area of cross section of a specimen) are accepted. At these assumptions the equation (3)
can be expressed in the form

dψ

dt
= −A

(
σ0

ψ

)n
. (4)

In the Rabotnov's brittle fracture model [3] the damage parameter ω (0 ≤ ω ≤ 1) is
introduced and it is de�ned by the following kinetic equation

dω

dt
= Aσn. (5)

The damage parameter is introduced as ω = FT /F0 (FT is the total area of pores) and it is
characterizes extent of reduction of a specimen area of cross section. Then from condition
F = F0 − FT , we have F = F0(1 − ω), σ = P/F = σ0F0/F = σ0/(1 − ω). Taking into
account these relations the kinetic equation (5) can be written as

dω

dt
= A

(
σ0

1− ω

)n
. (6)

The equations (4) and (6) are identical at ω = 1 − ψ, dψ = −dω. From the solution of
these equations under the initial condition t = 0, ψ = 1, ω = 0, we have

ψ = 1− ω =
[
1− (n+ 1)Aσnt0

] 1
n+1 . (7)

Accepting a fracture condition, t = tbf , ψ = 0, ω = 1, from (7) follows the criterion of
purely brittle fracture
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tbf =
1

(n+ 1) ·Aσn0
. (8)

Such an approach provides a physical interpretation of the Kachanov's parameter. How-
ever, the condition F = F0, used in the Kachanov's concept, corresponds to zero value of
the damage parameter what disagrees with the concept of damage accumulation. Thus,
similar interpretation of Kachanov's continuity parameter isn't represented fully correct.
To de�ne the creep deformation Rabotnov [3] introduced a system of two interconnected
equations for the rate of creep and damage parameter

dε

dt
= bσm(1− ω)−q, (9)

dω

dt
= cσn(1− ω)−r, (10)

where b, c, m, n, q, r are constants, ε = ln(l/l0) is creep deformation, l0, l are the initial
and current length of specimen.
In the case of a purely brittle fracture and small deformations when F = F0, σ = σ0 =
const solving the system of equations (9)-(10) we will obtained the relation of the creep
deformation

ε =
k

m

tbf
tvf

1−

(
1− t

tbf

)1/k
 , (11)

where k = r+1
r+1−q , t

b
f = 1

c(1+r)σn0
, tvf = 1

bmσm0
.

Relation (11) is considered as a major result in the Rabotnov's theory, because by using
this formula it is possible to describe the third phase of the creep curve, which, in the
case of brittle fracture, is completely determined by the damage of material. At the same
time, the output of this formula is based on the condition F = F0 and ω = 0, which,
as it was noted, is contrary to the very concept of damage. Further, in determining the
criteria of ductile-brittle fracture using equations (9)-(10) the condition of incompressibility
is introduced, which is also contrary to the damage concept.
To overcome these contradictions in [18] a system of equations for the rate of creep and
damage, based on the continuity parameter ψ = ρ/ρ0, have proposed. This paper presents
a modi�ed version of these equations, which can describe the main experimental results
on creep and creep rupture of metallic materials. Let's consider the following system of
equations

dε

dt
= Bσm,

ψα
dψ

dt
= −Aσn,

where B, α are constants.
The last equation of this system corresponds to the equation (2). Taking into account
the mass conservation law ρ0l0F0 = ρlF from which follows the relation σ = σ0ψe

ε these
equations can be written in the form

dε

dt
= Bσm0 ψ

memε, (12)
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dψ

dt
= −Aσn0ψn−αenε. (13)

If we consider the case of brittle fracture and small deformations, we can assume emε ≈ 1,
enε ≈ 1, then the solution of equation (13) with the initial condition t = 0, ψ = 1 has the
form

ψ =
[
1− (α− n+ 1)Aσnt0

] 1
α−n+1 . (14)

Fig. 1 presents the curves, corresponding to equation (14) for various values of the con-
stants: α = 6 (curve 1), α = 4 (curve 2), α = 2 (curve 3) and α = 1, 1 (curve 4). The
curves agree with the experimental curves [7-15]. In the calculations the following values
of coe�cients were used: n = 2, A = 10−9 [MPa]−2, σ0 = 100MPa.

Figure 1: The curves for the parameter of continuity ψ according to the formula
(11): α = 6 (curve 1), α = 4 (curve 2), α = 2 (curve 3) and α = 1, 1 (curve 4).

Taking the fracture condition t = tf , ψ = 0, from (14) we obtain the creep fracture criterion

tbf =
1

(α− n+ 1) ·Aσn0
. (15)

When α = 2n the criterion (15) coincides with the Kachanov-Rabotnov criterion (8). On
Fig. 2 in the double logarithmic coordinates are shown the creep fracture curves according
to the formula (15) for di�erent values of the coe�cients: α = 6 (curve 1), α = 4 (curve
2), α = 2 (curve 3) and α = 1, 1 (curve 4). In the calculations the following values of
coe�cients were used: n = 2, A = 10−9 [MPa]−2.
Taking into account (14) and the initial condition t = 0, ε = 0, from equation (12) follows
the relation of the creep deformation

ε =
Bσm−n0

A(α− n+ 1)(m− n+ 1)

{
1−

[
1− (α− n+ 1)Aσnt0

]m−n+1
α−n+1

}
. (16)

On Fig. 3 are shown the theoretical creep deformation curves according to the relation
(16) for di�erent values of the coe�cient α: α = 8 (curve 1), α = 6 (curve 2) and α = 1, 1
(curve 3). As can be seen from this �gure, the system of equations able to describe the
third phase of creep curves, which is determined by the processes of damage accumulation.

35



Proceedings of XLIII International Summer School�Conference APM 2015

Figure 2: Curves of long-term strength under criterion (15): α = 6 (curve 1), α = 4
(curve 2), α = 2 (curve 3) and α = 1, 1 (curve 4).

Figure 3: The theoretical creep deformation curves according to the relation (16) for
di�erent values of the coe�cient α: α = 8 (curve 1), α = 6 (curve 2) and α = 1, 1
(curve 3).

In the calculations the following values of coe�cients were used: n = 2, m = 4, A =
10−9 [MPa]−2, B = 5 · 10−17 [MPa]−4, σ0 = 100MPa.
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Abstract

It was shown earlier that varying the form of a punch one can achieve
a directional radiation of surface waves. A directional radiation is necessary
while solving many applications, for example during calculation of acousto-
electronic piezoelectric devices on surface waves or during the allocation of
hard vibrating equipment, when it's necessary to shade di�erent objects having
directed the radiation to a safe side.

In seismic prospecting and defectoscopy the problem of creating a direc-
tional radiation of volumetric waves is relevant. Directional seismic antennas
are even more widely used during the vibratory examination of the earth's
crust and upper Earth mantel, but the optimal characteristics of antenna ele-
ments (amplitudes and burden phases) are being determined only empirically,
and the use of acoustic antenna theory, formulated to create ideal acoustic cir-
cumstances, in case of elastic strati�cated circumstances causes great errors.
In order to obtain the results, used practically, also the calculation of vertical
inhomogeneity and block structure of circumstances realized in this work is
important.

Keywords: block element, factorization, topology, integral and di�erential
factorization methods, exterior forms, block structures, boundary problems.

1 Introduction
In this study, the di�erential factorization method, which has been applied in [1, 2] to
an individual convex isotropic elastic body, is extended to the case of block structures,
in particular, layered structures. As was noted in [3], this circumstance opens up the
possibility to investigate boundary-value problems for di�erential equations with variable
coe�cients, as well as nonlinear boundary-value problems.
The formulas derived in [1, 2] for an individual convex elastic body represented an approxi-
mate solution describing its stress-strained state. This approximate solution becomes more
accurate as the shape of the body approaches a half-space. The approximate equation thus
constructed can be re�ned also by inverting the systems of integral equations presented in
the cited works. Similar results can be obtained for block structures [4] but, as is shown
below, the large number of blocks and the variety of possible combinations lead to much
more complex relationships.
The di�erential factorization method described in [1, 2] as applied to an individual domain
is extended herein to a collection of neightboring domains, which are referred to as block
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structures. As applied to boundary value problems for such collections of domains, this
method has speci�city features that distinguish it from traditional approaches. For exam-
ple, boundary conditions in the di�erential factorization method cannot be satis�ed in the
traditional form by introducing the limiting values of solutions and their derivatives on the
boundary. The cause id that the derivatives of the solution constructed by the method
on the boundary have mot only classical components but also components in the form of
generalizes functions, namely, δ-delta functions and their derivatives [1, 2]. Their origin
is explained in detail in [1, 2], and they are not an obstruction to solving boundary value
problems. In this paper, we show how to overcome these di�culties when the di�erential
factorization method is applied to block structures.

2 The block element method
By block structures, we mean materials occupying bounded, semibounded, or unbounded
domains, which are called contacting blocks. It is assumed that each block in a block
structure has its own speci�c behavioral in response to physical �elds of a various nature.
It is also assumed that these �elds are described by boundary value problems for systems
of coupled partial di�erential equations with constant coe�cients. Media of this type
are typical of the earth's crust, structural materials under complex physical-mechanical
conditions [4], nonmaterials, crystal structures of various arrangements, and electronics
materials. A similar structure is also possesse by various materials, including those created
by combining only nanoscale components or macro- and nanoscale components.
We consider structures with three-dimensional blocks. The absence of considerable con-
straints on boundary value problems describing the properties of individual blocks suggests
that these block structures can have a wide variety of properties. In the general case, the
concept of a block requires that the boundary of the domain a boundary value problem,
including multiply connected domains, be unchanged and piecewise smooth. Each block
can be bounded or unbounded and can involve coupled processes related to solid and �uid
mechanics and electromagnetic, di�usion, thermal, acoustic, and other processes. Block
structures are more general objects than piecewise homogeneous structures, in which the
physical parameters of the medium are assumed to change in jumps in the transition from
one block to another with the preservation of the medium material. The last property
means that certain coe�cients in the di�erential equations of a boundary value problem
undergo jump variations in the transition from one block to another with the type of the
boundary value problem being preserved.
Block structures have a wider range of properties than piecewise homogenous structures.
This follows from the variety of blocks' properties, their shapes, and the character of in-
terblock interactions and also results from the interaction of physical �elds, some of which
are produced or transformed by blocks. A special case of block structures is layered struc-
tures. Such structures with plane boundaries for linear boundary value problems can be
viewed as fairly thoroughly investigated. Block structures are studied primarily by numer-
ical methods, for which unbounded domains always present di�culties. The di�erential
factorization method, which is a generalization of the integral transform method, gives
answers to questions concerning the properties of physical �elds in each block even at the
stage of solving boundary value problems.
Note that integral transforms in a boundary value problem for partial di�erential equations
in a domain Ω are a convenient research tool when the di�erential equations, Ω, and the
functions describing an integral transform are consistent. By consistency, we mean the
possibility of transforming partial di�erential equations into ordinary ones by applying
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an integral transform and the setting of boundary conditions on the boundary described
by constant geometric parameter values. This property holds if the integral-transform
functions are the eigenfunctions of the di�erential operator in Ω. In terms of topological
algebra, this property holds if the transformation groups generated by an automorphism
of the manifold Ω have representations that are invariant under a di�erentiable mapping of
the vector �eld de�ned on this manifold. For several simple domains, which are referred to
as classical, these are the Fourier transform in domains with plane boundaries, the Bessel
transform in domains with circular boundaries, the Bessel-Legendre transform in domains
with spherical boundaries, which are applied, for example, to the Helmholtz, Schrodinger,
Lame, and Navier�Strokes equations with constant coe�cients.
It was shown that these and other integral transforms are consequences of self-mappings of
manifolds generating transformation groups of space and their motions. Representations
of these groups are obtained by introducing the special functions mentioned above. In the
case of classical domains, boundary value problems are relatively easy to solve. Speci�cally,
after applying an integral transform, they are reduced to simple functional or ordinary
di�erential equations and then integral inversion is used.
For boundary value problems in domains of complex geometry, we use the di�erential
factorization method, which reduce them to functional equations with dimension reduction.
We formulate the following boundary value problem for a block structure. Assume that
the block-structure domain Ω consists of subdomains Ωb, b = 1, 2, . . . , B with boundaries
∂Ωb It may happen that a portion of the block's boundary is shared with another block,
in which case it is a contact boundary. The remaining non-contact portion can be free or
subject to external forces. It is assumed that a boundary value problem for systems of
partial di�erential equations with (their own) constant coe�cients is set in each domain
Ωb.
For each block, the boundary value problem for the system of P partial di�erential equa-
tions in the three-dimensional block domain Ω can be written as

Kb(∂x1, ∂x2, ∂x3)ϕb =
M∑
m=1

N∑
n=1

K∑
k=1

P∑
p=1

Abspmnkϕbp,
(m)
x1

(n)
x2

(k)
x3

= 0

s = 1, 2, . . . , Pb

Absqmnk = const, ϕb = {ϕb1, ϕb2, . . . , ϕbP }, b = 1, 2, . . . , B

ϕ = {ϕs} , ϕ (x) = ϕ (x1, x2, x3) , x = {x1, x2, x3} , x ∈ Ωb

(1)

The following matching conditions are set on the common contact boundary ∂Ωb ∩ ∂Ωd

Rb(∂x1, ∂x2, ∂x3)ϕb + Rd(∂x1, ∂x2, ∂x3)ϕd

=

M1∑
m=1

N1∑
n=1

K1∑
k=1

P∑
p=1

[
Bb
spmnkϕbp,

(m)
x1

(n)
x2

(k)
x3

+Bd
spmnkϕdp,

(m)
x1

(n)
x2

(k)
x3

]
= fbds (2)

s = 1, 2, . . . , sb0 < P, x ∈ ∂Ωb ∩ ∂Ωd, M1 < M, N1 < N, K1 < K

b, d = 1, 2, . . . , B

The boundary value problem is studied in the spaces of tempered distributions described
in [1].
In the general form, the above boundary conditions describe the contact of blocks with the
relevant components of physical �elds coinciding on the common boundaries as dedicated
by the corresponding physical laws. In particular, conditions (2) can be signi�cantly sim-
pler. For example, they can lack boundary external forces and express only the equality
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between the solutions and their derivatives on a common boundary. However, as men-
tioned above, the derivatives of solutions written in integral form cannot be equated, since
their components in the factorization method are generalized functions [2]. On noncontact
boundaries, we set the boundary conditions of the boundary value problem considered
in [1]. The scheme for applying the di�erential factorization method to such domains can
be described as follows.
Following the di�erential factorization method [1], the boundary value problem is reduced
to a system of functional equations with each domain Ωb considered separately. As a result,
we obtain the system of functional equations.

Kb(α)ϕb =

∫∫
∂Ωb

ωb, Kb (α) ≡ −Kb (−iα1,−iα2,−iα3) = ‖kbnm(α)‖

b = 1, 2, . . . , B

(3)

Here, we used the notation adopted in [1] with additional indices b. For example, ωb is the
vector of exterior forms of the boundary value problem in Ωb.
Comparing this case with that considered in [1], we note that boundary conditions (2)
generally contain the values of the solutions and their derivatives on the boundary at
least in two neighboring domains. This is a substantial di�erence of block structures from
objects analyzed in [1].
According to the di�erential factorization method, the next step consists of factorizing
the matrix function Kb(α) given by (3). For this purpose, we choose a matrix function
K∗b(α

ν
3 ,m) of order P − 1 obtained by deleting the row and column indexed by m in

the adjoint matrix function K∗b(α
ν
3) such that the zeros ξνn of its determinant Qb (αν3) =

det Kb (αν3 ,m) do not coincide with the zeros zvs+, z
v
s− [1].

The elements of the inverse matrix function are denoted by [K∗b(α
ν
3 ,m)]−1 =

∥∥Q−1
b Qpsb

∥∥.
Then the elements of K−1 (αν3 ,−) given by

K−1
b

(
αv3,−

)
=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

1 0
1

. . .
Sm1 Sm2 . . . Smm . . . SmN

. . .
0 1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
(4)

can be represented in integral the form

Smp(α
ν
3) =

1

2πi

∮
Γ∓

N∑
s=1

′
Qpsb(u3)Msm(u3)du3

Qb(u3)K(u3)(u3 − αν3)
−
(

1

2
∓ 1

2

)
Rmp(α

ν
3)

K(αν3)
, m 6= p

Rmp(α
ν
3)

Kb(α
ν
3)

=
Zmp(α

ν
3)

Qb(α
ν
3)Kb(α

ν
3)

+
∑
n

Zmp(ξ
ν
n)

Q′b(ξ
ν
n)Kb(ξνn)(ξνn − αν3)

Smm(αν3) = K−1
b (αν3), αν3 ∈ λ∓

Zmp(α
ν
3) =

N∑
s=1

′

Qpsb(α
ν
3)Msm(αν3)

Here, Γ+ is a closed contour such that the domain λ+ contains only the zeros zvs+, z
v
s−

and , while the domain λ− contains only the zeros ξνn. The closed contour Γ− encloses
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a domain containing all the zeros zvs+, z
v
s−, and ξ

ν
n. Representation (4) implies that the

elements of K−1
b (αν3 ,−) are rational functions with their only singularities being zvs+, z

v
s−.

The term K−1
b (αν3) containing them is given explicitly.

In the case of noncontact boundaries, the boundary conditions in the di�erential factor-
ization method are set according to the rules described in [1].
The boundary conditions are ful�lled according to the following scheme. First boundary
conditions on the noncontact boundary of each block are taken to the corresponding vectors
of exterior forms in functional equations (3). For contact blocks, matching conditions (2)
hold on the common boundaries of neightboring blocks. Depending on the properties of
the described �elds, these conditions can include some relations for the solutions and their
derivatives. In the simplest case, this is the equality of the solutions and their derivatives
on the common boundary in the transition from one block to another. These relations
are taken to the corresponding vectors of exterior forms of functional equations (3), which
are preliminary solved for the unknown normal derivatives on the boundary. The last
procedure ensures the ful�llment of contact boundary conditions (2) in the solution to
pseudodi�erential equations, which can be proved following the scheme described in [2].
Assume that the blocks are convex. Omitting the intermediate transformations, which can
be found in [1], we �nd that the solution in each block is represented as

ϕb(x
ν) =

1

8π3

∞∫∫∫
−∞

K−1
rb (αν3) K−1

b (αν3 ,−)

∫∫
∂Ω

ωbe
−i〈αν3xν3〉dαν1dαν2dαν3 , xν ∈ Ωb

To illustrate this solution, we evaluate the integral with respect to αν3 by applying Leray's
residue form theory to obtain

ϕb (xv) =
1

4π2

∫
−∞

∞∫ ∑
s

e−i(α
v
1x
v
1+αv2x

v
2)
[
K−1
rb

(
i
∂

∂xv3

)
T+b

(
αv1, α

v
2, z

v
s+

)
e−iz

v
s+x

v
3

−K−1
rb

(
i
∂

∂xv3

)
T−b

(
αv1, α

v
2, z

v
s−
)
e−iz

v
s−x

v
3

]
dαν1dα

ν
2

Here, the boundary ∂Ωb for the chosen xν3 < 0, xν ∈ Ω is divided as follows:∫∫
∂Ωb

ωb =

∫∫
∂Ω+b

ωb +

∫∫
∂Ω−b

ωb

∫∫
∂Ω+b

ωb exp(−iαν3xν3)→ 0, Imαν3 →∞

∫∫
∂Ω−b

ωb exp(−iαν3xν3)→ 0, Imαν3 → −∞

If a block degenerates into a half-space or a layered medium, the pseudodi�erential equa-
tions appearing in the course of solving the boundary value problem degenerate into alge-
braic equations. The latter are inversed, and the solution is constructed in a �nite form [1].
If the block under study is not a convex body, the boundary value problem is analyzed by
the generalized factorization method.
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3 The block structure

Let us assume that a domain Ω of a block structure consists of contracting convex domains
Ωb, b = 1, 2, . . . , B with boundaries ∂Ωb. It may happen that a portion f the boundary
∂Ωbd of a certain b block coincides with the boundary of another d block d = 1, 2, . . . , B.
Such a portion is called contracting. The remaining portions of the boundaries of both
domains are noncontracting and will be denoted below by subscripts with one letter: ∂Ωb,
∂Ωd. These boundaries can be free of or subjected to external actions. It is assumed that,
in each domain Ωb one of the boundary-value problems considered in [1, 2] is formulated
in terms of the systems of di�erential equations with partial derivatives, the constant
coe�cients of which are di�erent in each domain.
For each block b = 1, 2, . . . , B characterized by its own mechanical characteristics, the
equations of the isotropic elasticity theory can be written in the following form [1, 2]:

(λb + µb) graddiv ub + µ∆ub − δbub = 0
ub = {ub1, ub2, ub3}

(5)

where the notation is the same as in the papers cited. On the noncontracting portions of
the boundary, traditional boundary conditions of the elasticity theory are set [1, 2]. In the
contracting parts, in particular, on ∂Ωbd, the conditions of equality of the stress vectors
are formulated as follows:

ub = ud, uc = {uc1, uc2, uc3}
tb=td, tc = {tc1, tc2, tc3} , tc1 = σc13, tc2 = σc23, tc3 = σc33

(6)

Using the di�erential factorization method [1, 2], we reduce the boundary-value problem to
the system of functional equations, considering each domain Ωb individually. As a result,
we obtain the following system of functional equations:

Kb(α)ϕb =

∫∫
∂Ωb

ωb, Kb (α) ≡ −Kb (−iα1,−iα2,−iα3) = ‖kbnm(α)‖

b = 1, 2, . . . , B

(7)

where the notation is the same as in [1, 2] with the addition of subscripts b. In particular,
ωb is the vector of external forms of the boundary-value problem in domain Ωb.
Comparing this case with those considered in [1, 2], it should be noted that boundary
conditions (2) generally contain stresses and displacements on the boundary from at least
two neighboring domains. In this respect, the block structures signi�cantly di�er from
the individual bodies studied in [1, 2]. According to the algorithm of the di�erential
factorization method, the boundary conditions for noncontracting boundaries are applied
according to the rules stipulated in [3].
Without repeating the application of algorithms described in [1, 2], we will present here
the �nal form of pseudodi�erential equations for the case of contact between two bodies.
Full�llment of the boundary conditions is ensured as follows. First, the boundary con-
ditions on the noncontracting boundary for each individual block are introduced in the
corresponding vectors of exterior forms of functional equations (7). When blocks are in
contact, matching conditions (6) on the coinciding boundaries of the neightboring blocks
∂Ωbd are valid. These relationships should be introduced in the corresponding vector of
exterior forms only of one of the functional equations, whereas the vector of exterior forms
of the second equation remains unchanged. As was proved in [4], this procedure ensures
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full�llment for the boundary conditions (6) and does not require separation of the general-
ized functions from classical components appearing in a natural way in solutions obtained
using the factorization method.
Having omitted the procedure of applying the di�erential factorization method to the
boundary-value problem under consideration, including its realization in each domain Ωb

and on Ωd as was performed in [1, 2], we present the pseudodi�erential equations for a
block structure consisting of two blocks:

Mν
c (αν1 , α

ν
2 , α

ν
3r−(αν1 , α

ν
2))Uν

c (αν1 , α
ν
2 , α

ν
3r−(αν1 , α

ν
2))

−Dν
c (αν1 , α

ν
2 , α

ν
3r−(αν1 , α

ν
2))Tν

c (αν1 , α
ν
2 , α

ν
3r−(αν1 , α

ν
2))

+

T∑
τ=1

′[
Mτ

c (αν1 , α
ν
2 , α

ν
3r−(αν1 , α

ν
2))Uτ

c (αν1 , α
ν
2 , α

ν
3r−(αν1 , α

ν
2))

−Dτ
c (αν1 , α

ν
2 , α

ν
3r−(αν1 , α

ν
2))Tτ

c (αν1 , α
ν
2 , α

ν
3r−(αν1 , α

ν
2))

]
= 0

(8)

Here, c = b in the case of domain Ωb and c = d in the case of domain Ωd.
Applying the methods described in [2] and retaining the notation used in that study,
these pseudodi�erential equations can be reduced to systems of integral equations. The
system of integral equations for domain Ωb, written with respect to vector t tνb , tνd for the
displacement vectors uνb , uνd set on noncontracting boundaries, has the following form:∫∫

∂Ωbν

kνb (xν1 − ξν1 , xν2 − ξν2 )tνb (ξν1 , ξ
ν
2 )dξν1dξ

ν
2

+
T∑
τ=1

′ ∫∫
∂Ωbτ

kντb (xν1 , ξ
τ
1 , x

ν
2 , ξ

τ
2 )tτb (ξτ1 , ξ

τ
2 )dξτ1dξ

τ
2 = uνb (xν1 , x

ν
2)

+

T∑
τ=1

′ ∫∫
∂Ωbτ

bντb (xν1 , ξ
τ
1 , x

ν
2 , ξ

τ
2 )uτb (ξτ1 , ξ

τ
2 )dξτ1 ξ

τ
2 , xν1 , x

ν
2 ∈ ∂Ωbν , 1 6 ν 6 T

(9)

For the domain Ωd contacting with the domain Ωb along the boundary ∂Ωbd, the system
of integral equations with allowance for boundary conditions (2) takes the following form:∫∫

∂Ωpν

kνd(xν1 − ξν1 , xν2 − ξν2 )tνc (ξν1 , ξ
ν
2 )dξν1dξ

ν
2

+

T1∑
τ=1

′ ∫∫
∂Ωdτ

kντd (xν1 , ξ
τ
1 , x

ν
2 , ξ

τ
2 )tτd(ξτ1 , ξ

τ
2 )dξτ1dξ

τ
2

+

T2∑
τ=1

′ ∫∫
∂Ωbdτ

kντd (xν1 , ξ
τ
1 , x

ν
2 , ξ

τ
2 )tτb (ξτ1 , ξ

τ
2 )dξτ1dξ

τ
2 = uνc (xν1 , x

ν
2)

+

T1∑
τ=1

′ ∫∫
∂Ωdτ

bντd (xν1 , ξ
τ
1 , x

ν
2 , ξ

τ
2 )uτd(ξτ1 , ξ

τ
2 )dξτ1 ξ

τ
2

+

T2∑
τ=1

′ ∫∫
∂Ωbdτ

bντd (xν1 , ξ
τ
1 , x

ν
2 , ξ

τ
2 )uτb (ξτ1 , ξ

τ
2 )dξτ1 ξ

τ
2

(10)

xν1 , x
ν
2 ∈ ∂Ωdν ; 1 6 ν 6 T = T1 + T2
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Here, c = d, p = d, if xν1 , x
ν
2 ∈ ∂Ωbν ; and c = b, p = bd, if xν1 , x

ν
2 ∈ ∂Ωbdν , T1 and T2 are

the numbers of unity partition of the noncontracting portion of the boundary ∂Ωbν and
the contracting portion ∂Ωbdν , respectively; and the primed sum symbols imply that the
terms with ν = τ in these sums are missing if they are present in the same sum symbol.
The kernels of the integral equations are as follows (in the notation from [2]):

Kν
c (αν1 , α

ν
2) = (Mν

c )−1Dν
c , Kντ (αν1 , α

ν
2) = (Mν

c )−1Dτ
c

Bντ
c (αν1 , α

ν
2) = (Mν

c )−1Mτ
c

kνc (xν1 , x
ν
2) = F−1

2 Kν
c (αν1 , α

ν
2);

kντc (xν1 , ξ
τ
1 , x

ν
2 , ξ

τ
2 ) = F−1

2 Kντ
c (αν1 , α

ν
2) exp i〈cνταν , ξτ 〉;

bντc (xν1 , ξ
τ
1 , x

ν
2 , ξ

τ
2 ) = F−1

2 Bντ
c (αν1 , α

ν
2) exp i〈cνταν , ξτ 〉;

tνc (xν1 , x
ν
2) = F−1

2 Tν
c (αν1 , α

ν
2); uνc (xν1 , x

ν
2) = F−1

2 Uν
c (αν1 , α

ν
2).

(11)

The formulas take place for c = b and c = d.
If the stress vectors tνb , t

ν
d are given on the boundary, the corresponding system of equations

with respect to the displacement vectors uνb , uνd takes the following form:∫∫
∂Ωbν

nνb (xν1 − ξν1 , xν2 − ξν2 )uνb (ξν1 , ξ
ν
2 )dξν1dξ

ν
2 +

+

T∑
τ=1

′ ∫∫
∂Ωbτ

nντb (xν1 , ξ
τ
1 , x

ν
2 , ξ

τ
2 )uτb (ξτ1 , ξ

τ
2 )dξτ1dξ

τ
2 = tνb (xν1 , x

ν
2)

+
T∑
τ=1

′ ∫∫
∂Ωbτ

rντb (xν1 , ξ
τ
1 , x

ν
2 , ξ

τ
2 )tτb (ξτ1 , ξ

τ
2 )dξτ1 ξ

τ
2

(12)

xν1 , x
ν
2 ∈ ∂Ωbν ; 1 6 ν 6 T∫∫

∂Ωpν

nνd(xν1 − ξν1 , xν2 − ξν2 )uνc (ξν1 , ξ
ν
2 )dξν1dξ

ν
2 +

+
∑
τ=1

/T1

∫∫
∂Ωdτ

nντd (xν1 , ξ
τ
1 , x

ν
2 , ξ

τ
2 )uτd(ξτ1 , ξ

τ
2 )dξτ1dξ

τ
2 +

+

T2∑
τ=1

′ ∫∫
∂Ωbdτ

nντd (xν1 , ξ
τ
1 , x

ν
2 , ξ

τ
2 )uτb (ξτ1 , ξ

τ
2 )dξτ1dξ

τ
2 = tνc (xν1 , x

ν
2)

+

T1∑
τ=1

′ ∫∫
∂Ωdτ

rντd (xν1 , ξ
τ
1 , x

ν
2 , ξ

τ
2 )tτd(ξτ1 , ξ

τ
2 )dξτ1 ξ

τ
2

+

T2∑
τ=1

′ ∫∫
∂Ωbdτ

rντd (xν1 , ξ
τ
1 , x

ν
2 , ξ

τ
2 )tτb (ξτ1 , ξ

τ
2 )dξτ1 ξ

τ
2 ,

xν1 , x
ν
2 ∈ ∂Ωdν ; 1 6 ν 6 T = T1 + T2;

(13)

where c = d, p = d, for xν1 , x
ν
2 ∈ ∂Ωbν ; c = b, p = bd, for xν1 , x

ν
2 ∈ ∂Ωbdν

Nν(αν1 , α
ν
2) = (Dν)−1Mν ,

Nντ (αν1 , α
ν
2) = (Dν)−1Mτ , Rντ (αν1 , α

ν
2) = (Dν)−1Dτ ,

Nν(αν1 , α
ν
2) = (Dν)−1Mν ,Nντ (αν1 , α

ν
2) = (Dν)−1Mτ ,Rντ (αν1 , α

ν
2) = (Dν)−1Dτ
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nνc (xν1 , x
ν
2) = F−1

2 Nν
c (αν1 , α

ν
2);

nντc (xν1 , ξ
τ
1 , x

ν
2 , ξ

τ
2 ) = F−1

2 Nντ
c (αν1 , α

ν
2) exp i〈cνταν , ξτ 〉

rντc (xν1 , ξ
τ
1 , x

ν
2 , ξ

τ
2 ) = F−1

2 Rντ
c (αν1 , α

ν
2) exp i〈cνταν , ξτ 〉

1 6 ν 6 T, c = b, d

An analysis of these formulas shows that the �rst integral operators on the left are inverted
by the integral factorization method presented in [3, 5, 6] and are principal (as in [1, 2]).
Note that, using the above-described derivation of integral equations (9), (10), and (11),
(12) for a structure consisting of two blocks, it is not di�cult to obtain integral equations
for a structure containing an arbitrary number of blocks. Moreover, the system of integral
equations for a block structure where domains occupied by blocks are not necessarily
convex has a similar form. However, in this case, the principal operators do not need to
have kernels dependent on the di�erence of arguments. In the case of a block structure,
as well as in the case of a single body, it is possible to construct an approximate solution
discarding small terms. Then, the integral equations can be written as follows:∫∫

∂Ωbν

kνb (xν1 − ξν1 , xν2 − ξν2 )tνb (ξν1 , ξ
ν
2 )dξν1dξ

ν
2 = uνb (xν1 , x

ν
2)

xν1 , x
ν
2 ∈ ∂Ωbν ; 1 6 ν 6 T∫∫

∂Ωpν

kνd(xν1 − ξν1 , xν2 − ξν2 )tνc (ξν1 , ξ
ν
2 )dξν1dξ

ν
2 = uνc (xν1 , x

ν
2)

xν1 , x
ν
2 ∈ ∂Ωdν ; 1 6 ν 6 T

(14)

∫∫
∂Ωbν

nνb (xν1 − ξν1 , xν2 − ξν2 )uνb (ξν1 , ξ
ν
2 )dξν1dξ

ν
2 = tνb (xν1 , x

ν
2),

xν1 , x
ν
2 ∈ ∂Ωbν ; 1 6 ν 6 T∫∫

∂Ωpν

nνd(xν1 − ξν1 , xν2 − ξν2 )uνc (ξν1 , ξ
ν
2 )dξν1dξ

ν
2 = tνc (xν1 , x

ν
2),

xν1 , x
ν
2 ∈ ∂Ωdν ; 1 6 ν 6 T ;

(15)

where c = d, p = d for xν1 , x
ν
2 ∈ ∂Ωbν ; and xν1 , x

ν
2 ∈ ∂Ωbν ; c = b, p = bd for xν1 , x

ν
2 ∈ ∂Ωbdν .

The modern topological method of solving this problem is presented in [7].

4 Conclusion
Inverting the integral equations and substituting their accurate or approximate solutions
in the integral representations of the solutions to the boundary problems, we have

uνc = F−1
3 (Kc(α

ν
1 , α

ν
2 , α

ν
3 ))−1

∫∫
∂Ωc

ωνc , c = b, d.

Further, one can use the methods described in [1, 2], which make it possible to analyze or
calculate two-dimensional integrals.

Acknowledgements
This work was supported in part by the Russian Foundation for Basic Research grants
projects No: (14-08-00404), (13-01-12003)-Ã¬, (13-01-96502), (13-01-96505), (13-01-
96508), (13-01-96509), (15-01-01379), (15-08-01377, project NSh-1245.2014.1, programs
of the Presidium of the Russian Academy of Sciences No. 3 and No. 43.

47



REFERENCES

References
[1] V.A. Babeshko, O.V. Evdokimova, and O.M. Babeshko, On the di�erential Factoriza-

tion Method in Problems for Continuous Media, Dokl. Phys. 53, 371 (2008) [Dokl.
Akad. Nauk 421, 37 (2008)].

[2] V.A. Babeshko, O.M. Babeshko, and O.V. Evdokimova, On the di�erential Factoriza-
tion Method in Static Problems, Dokl. Phys. 53, 639 (2008) [Dokl. Akad. Nauk 423
(6), 748 (2008)].

[3] O.V. Evdokimova, O.M. Babeshko, and V.A. Babeshko, On the di�erential Factor-
ization Method in Inhomogenious Problems Dokl. Math. 77, 140 (2008) [Dokl. Akad.
Nauk 418, 321 (2008)].

[4] V.A. Babeshko, O.V. Evdokimova, and, O.M. Babeshko, Di�erential Factorization
Method in Block Structures and Nanostructures Dokl. Math. 76, 614 (2007) [Dokl.
Akad. Nauk 415, 596 (2007)].

[5] V.A. Babeshko, B.V. Glushkov, and N.F. Zinchenko, Dynamics of Inhomogenious Lin-
early Elastic Media (Nauka, Moscow, 1979) [in Russian].

[6] I.I. Vorovich, and V.A. Basbeshko, Mixed Dynamic Problems of Elasticity Theory in
Unbounded Domains (Nauka, Moscow, 1979) [in Russian].

[7] Babeshko V.A., Evdokimova O.V., and Babeshko O.M. Topological Method of Solving
Boundary-Value Problem and Block Elements, Dokl. Phys. 58, 4 (2013).

Vladimir A. Babeshko, Olga M. Babeshko, Igor B. Gladskoi, Elena M. Gorshkova, Kuban
State University, Krasnodar, 350040, Stavropolskiya st. 149, Russia
Vladimir A. Babeshko, Olga V. Evdokimova, Southern Scienti�c Center RAS, Rostov-on-
Don, 344006, Chekhov st., 41, Russia

48



Nonlinear Vibration E�ects in Machinery, Fluid and Combined Media:
Development of a Common Research Approach, New Results

Nonlinear Vibration E�ects in Machinery, Fluid
and Combined Media: Development of a Common

Research Approach, New Results

I.I.Blekhman, L.I. Blekhman, L.A. Vaisberg, V.B. Vasilkov, K.S.

Ivanov, K.S.Yakimova

iliya.i.blekhman@gmail.com

Abstract

New vibration machines and technologies are based on the peculiar e�ects
occurring at high speed impacts on non-linear mechanical systems. Vibra-
tional mechanics and one of its branches, vibrational rheology, represent the
general approach to the study of these e�ects. The report provides an overview
of studies covering this type of e�ects and details the recently discovered new
e�ects and results, which include the phenomenon of vibrational di�usion sep-
aration of granular materials, speci�c behavior of oscillating objects near the
interface of two media and increased buoyancy, suspension of particles in near-
wall turbulent �ows. The new theoretical developments include the expansion
of the range of applicability of the vibrational mechanics approach and the
method of direct separation of motions; the application of this method to
studies of vibrational e�ects on any dynamic systems, in particular in the �eld
of physics, chemistry and biophysics; and the development of new screening
models.

1 Introduction

Vibration acting on nonlinear systems induces certain motion that represents a superposi-
tion of rapid oscillations on a slow motion. This slow motion is usually of the main interest
and may be described by equations that di�er signi�cantly from the original equations
of mechanics by the presence of additional forces, which, according to P.L. Kapitsa, are
called vibrational forces [1-3]. These forces are the ones inducing the e�ects that often
seem paradoxical, such as the emergence and disappearance of equilibrium positions of
systems, changes in stability characteristics of equilibrium positions and motions, changes
in rheological properties of materials in relation to slow or static e�ects, and the apparent
changes in the magnitude and direction of the force of gravity. Non-conservative systems
"on the average" tend to become potential and "non-smooth" systems acquire a certain
"smoothness".
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2 Main Areas of Research

The vibrational mechanics approach has been applied to the following classes of problems
[1-6]: 1. The e�ects of vibration on machinery and machine parts (pendulum and pen-
dulum systems), vibration-induced rotation and termination of rotation under vibration,
synchronization of rotors; 2. The e�ects of vibration on industrial processes; 3. Vibrorhe-
ology, the e�ects of vibration on granular materials, �uids, gas-�uid systems, suspensions,
dry friction systems; 4. Problems related to the creation of dynamic vibration materials.
These studies laid the basis for the development of a number of new vibration processes
and vibrational machines.

Figure 1: Photograph of the experimental setup designed to study the classi�cation
of granular materials.

Figure 2: Paradoxical e�ects under vibration: a) buckling of a pipeline span near
the sea bottom, b) buoyancy of boulders in the ground, c) peculiar occurrence of
nodules.
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Figure 3: Suspension of vibrating bodies in a �uid: a) suspension of a particle in the
bottom �uid �ow; b) increased buoyancy of a body with a trapezoidal cross-section.

3 New Results

1) The expanded application of the direct separation of motions in vibrational mechanics
[7, 3]. The main results in this �eld include application of the method for solving systems of
equations that do not satisfy the conditions of theorems N.N. Bogolyubov, V.M. Volosov
and B.I. Morgunov, and the use of the perturbation method to systems without small
parameters.
2) The generalized application of the vibrational mechanics approach to the problems of
vibrational e�ects on any nonlinear dynamic systems (oscillatory strobodynamics). Finding
of solutions for a number of problems of such e�ects on physical, chemical and biological
systems [3].
3) The discovery and research of the e�ect of vibrational di�usion segregation of granular
materials [8]. The e�ect implies that in a granular medium consisting of particles of dif-
ferent sizes, at a su�ciently intense vibration , where A is the amplitude, is the vibration
frequency, g is the acceleration of gravity), particles of separate fractions move in the di-
rection opposite to the gradient of concentration of these fractions. In other words, the
concentrations of particle fractions tend to equalize, subject to the system of equations sim-
ilar to nonlinear di�usion equations. This may be illustrated by the following experiment
(Fig. 1).
A cylindrical container with circular holes along its side surface of 8 mm in diameter is �lled
with a mixture of grains of peas (d2 ≈ 6 mm) and hazelnuts (d2 ≈ 15 mm) in proportion
of 1: 2 by weight. The vessel was subjected to vertical vibration with amplitude A =
2.2 mm and frequency ω = 220s−1 (35 Hz), which corresponds to Aω2/g = 10.8. During
the �rst few seconds, over 90% of the peas were leaving the vessel, ejected from the holes;
after 60 seconds all peas were almost completely gone. This result is explained by the
above-mentioned e�ect of di�usion of peas intensely moving towards the vessel walls where
its concentration is less due to its screening through the holes.
The results obtained have already been used to create highly e�cient vibrating separators
[9].
4) Mathematical models were suggested for abnormal segregation when under the in�uence
of vibration the process of separation of the components of a granular mixture occurs in the
direction of increasing the potential energy of the system (the wedge e�ect, the Brazil nut
e�ect [3, 8]). These allowed to explain and describe such phenomena as �oating boulders
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in sandy soil under the in�uence of seismic vibrations, abnormal occurrence of nodules,
and buckling of pipeline sections near the sea bottom [10], Fig. 2.
5) The behavior of the oscillating bodies near the boundary of two media [10] was studied.
As a result, an explanation and mathematical description were obtained for the e�ect of
suspension of solids in near-wall turbulent �ows (hydraulic transportation, Fig. 3a), as
well as for the e�ect of increased buoyancy of oscillating bodies. For example, a body with
a trapezoidal cross-section (Fig. 3b) rises above the equilibrium level in the absence of
oscillations by the value of

∆h = 1
2η

2 A2

b+2h0η
, η = a−b

2h

where A is the oscillation amplitude.
The formula takes into account only the conservative (quasi-elastic) component of the
additional buoyancy force. A more complex dependence is observed when considering the
dissipative forces that also contribute to ∆h.
6) New models were developed for the vibratory screening process [11].
7) The e�ect of vibrational crossing of potential barriers. Detailed studies were conducted
for systems in which the barriers are caused by the presence of the gravity force ("vibration
against gravity"). These systems have a variety of important technical applications. Two
simple basic models of corresponding devices were built.
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Abstract

This study outlines the development of a new three-dimensional FE mod-
elling approach used to study the conventional and ultrasonically assisted
oblique turning processes of titanium (Ti-6Al-4V) alloy. Numerical simula-
tions with the models demonstrated that for the chosen machining parameters,
the ultrasonically assisted turning (UAT) process resulted in a 20% reduction
in the tangential cutting force compared to that in the conventional turning
(CT) process. The new approach enables the more accurate prediction of the
CT and UAT processes, while allowing the complete control of the machining
parameters within the 'real-time' turning simulation. This allows for the pre-
diction of the cutting force, resultant and residual stresses and chip formation.

1 Introduction

Hybrid machining processes have gained su�cient prominence in the manufacturing indus-
try. Ultrasonically assisted machining (UAM) is a hybrid machining technique, in which
high-frequency, low-amplitude vibration is superimposed on the cutting tool movement,
resulting in several well-documented advantages. Recent studies have seen the develop-
ment of the ultrasonically assisted turning (UAT) process in which the resultant cutting
forces show substantial reduction (in some cases >70%), as well as improved surface �n-
ish amongst other advantages [1, 2, 3, 4]. The UAM process has shown advantages when
applied to the drilling of composite materials [5].
Direct experimental studies of machining processes are expensive and time-consuming,
especially when there is a wide range of machining parameters that a�ect the complex
hybrid thermo-mechanical machining process. In recent years, the use of mathematical
simulations and, in particular, �nite-element (FE) techniques has gained prominence in
the research community; from the application of Smooth-Particle Hydrodynamics (SPH)
in the turning of metals [6, 7], to the 2D and 3D FE modelling of both the conventional
and ultrasonically assisted turning of many advanced alloys [8, 9, 10]. These modelling
approaches are typically restricted to simulations of orthogonal machining, which is not a
true representation of the actual cutting process, typically referred to as oblique machining.
This study is a part of on-going research at the Wolfson School of Mechanical and Man-
ufacturing Engineering, Loughborough University, UK, on multi-scale FE modelling of
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advanced machining processes. This paper outlines the current progress made on the
development of a 'real-time' FE models of both the CT and UAT processes.

2 Finite-element model of turning

A schematic of an oblique turning is shown in Figure 1, with the cutting tool geometry
taken from [2]. A FE model of the cutting in CT and UAT is shown in Figure 2 with the
cutting parameters listed in Table ??. The modelled domain formed a 5◦ section of the
work piece together with the previous tool path (including the 0.1 mm/rev feed rate o�-set).
The work piece was �xed with respect to the X-axis (axial direction) and rotated towards
the cutting tool. For CT the cutting tool was �xed in the Y (radial) and Z (tangential)
directions, with the tool feed rate applied in the X (axial) direction. In UAT, ultrasonic
vibration was applied in the Z (tangential) direction as shown in Figure 2. The cutting
tool was modelled as a rigid body. This modelling approach allows for the full 3D oblique
modelling of the CT and UAT process. This model was develop using the commercial FE
software SIMULIA Abaqus/Explicit 6.14.

Figure 1: True 3D oblique curved cutting path turning process
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Figure 2: 3D geometry of oblique curved cutting path modelling

Table 1: 3D cutting parameters used in FE Model

Parameter Unit Value

Cutting speed (Surface), Vf m/min 20
Tool feed, Vt mm/rev 0.1
Depth of cut mm 0.2

Ultrasonic frequency, f Hz 20,000
Ultrasonic amplitude (peak to peak), a µm 8

The workpiece material was Ti-6Al-4V, with it's behaviour described using a nonlinear
temperature- and strain-rate-sensitive Johnson-Cook (JC) material model using parame-
ters A,B, n,C,m, Tm along with other parameters as mentioned in [11] and can be found
in Table ??.
The primary equation of the JC model is

σy = [A+B(εp)
n][1 + C ln(ε̇∗p)][1− (T ∗)m)], (1)
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where

ε̇∗p =
ε̇p
ε̇p0

, T ∗ =
(T − T0)

(Tm − T0)
. (2)

Here, εp is the e�ective plastic strain, ε̇p and ε̇p0 are the plastic strain rate and e�ective
plastic strain rate used for the calibration of the model respectively, T and T0 are the
current and reference temperatures respectively.
The workpiece was discretised with a re�ned mesh around the cutting process zone. For
both CT and UAT models, 686565 linear hexahedral coupled temperature-displacement
elements (C3D8RT) were used. The cutting tool was meshed using quadratic tetrahedral
elements (C3D10M). Contact between the cutting tool and the workpiece was de�ned as
a hard contact for its normal behaviour, with a coe�cient of friction of 0.3384 [12] along
with a shear stress limit.

Table 2: Material parameters for Ti-6Al-4V

Material parameter Symbol (Unit) Value

Density ρ (kg/m3) 4428
Elastic modulus E (GPa) 113.8
Poisson's ratio ν 0.31

JC yield strength A (MPa) 1098
JC hardening coe�cient B (MPa) 1092

JC strain hardening exponent n 0.93
JC strain rate constant C 0.014
JC softening exponent m 1.1
Melting temperature Tm (K) 1878
Transition temperature Tg (K) 1163
JC damage constant d1 -0.09
JC damage constant d2 0.27
JC damage constant d3 0.48
JC damage constant d4 0.014
JC damage constant d5 3.87

Speci�c heat c (J/K) 560
Heat fraction α0 0.9

Given the large deformations observed within the cutting process zone, arbitrary lagrangian
eulerian (ALE) re-meshing was employed to allow for increased plastic �ow of the material
and formation of the chip. ALE re-meshing parameters were calibrated based on the
cutting speed and minimum element size. Mass scaling was used to improve computational
e�ciency for both models. The total modelled machining time was 0.8 ms, which was
su�cient for achieving consistent cutting forces.

3 Results and Discussion
The developed fully 3D approach allows the observation of the tangential and axial cutting
forces with increased accuracy, the radial forces are still challenging to observe given the
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discretised nature of the FE method. At this initial stage, the tangential cutting forces (Z
direction) were monitored, with the average force observed from the CT model reaching
50.9 N and for UAT 40.3 N. As a result, it can be shown that the additional ultrasonic
vibration leads to an approximate 20% reduction of the tangential cutting forces, which
is within the range seen in the previous study. It was found with these models that for
the de�ned turning parameters, the UAT peak cutting force was similar to that of CT but
the ultrasonic vibration allowed the tool to dis-engage form the workpiece (decreasing the
force) before subsequent re-engaging, resulting in the lower average cutting force.

With reference to Figure 3 it can be seen that stress distributions within the local pro-
cess zone for both the CT and UAT processes are very similar, showing the shear failure
region as expected; still, but shows no signi�cant qualitative di�erences can be observed.
Examining the peak stresses in the process zone for each process, it can be seen that the
CT process produces a stress of approximately 1730 MPa and the UAT process produces
1577 MPa and 1728 MPa for maximum retraction and penetration of the ultrasonic cycle,
respectively. This modelling approach can then also be used to model the residual stresses
induced by CT or UAT.

When examining the initial chip formation in both processes, it can been seen that both
chips begin to form full 3D helical shape as commonly observed as a result of real oblique
turning. Closer examination suggests that the radii of both chips are similar, but without
a longer simulated time the true chip formation and length before breakage cannot be
assessed properly. Both the CT and UAT models took approximately 48 hours of com-
putational time to run across 12 cores, demonstrating that the approach remains suitably
e�cient at this initial stage.
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Figure 3: Comparison between von Mises stress �elds within process zone for both
CT and UAT

4 Conclusions

This paper presents a new modelling approach for simulating both conventional and ul-
trasonically assisted turning of a titanium alloy. It allows for the complete control of the
machining parameters within the simulation, while modelling the 'real-time' turning and
workpiece deformation. As a result, this allows for the prediction of the cutting force
as well as an assessment of the resultant and residual stresses and chip formation. The
following conclusion are made:

1. It can been seen that for the chosen machining parameters the UAT process ofters
a 20% reduction in the average tangential cutting force compared to that in the CT
process, as expected and found in the literature.

2. This new modelling approach produces a more accurate prediction of the CT and
UAT processes taking into account their important 3D cutting geometry which, in
turn, enables a greater understanding of the e�ect of the machining parameters on
both processes.

3. The modelling approach shall be developed and taken forward to further investigate
and characterisate both processes in more detail, while also make vital comparisons
to experimental studies.
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Abstract

The method of movable cellular automata (MCA) was applied to simulate
the stress-strain behaviour of a nanocomposite consisting of an epoxy matrix
and 5 vol.% silica nanoparticles and for samples of pure components. The
size of the elements used for modelling was �xed at 10 nm, corresponding
approximately to the diameter of the �ller particles. Modelling results were
compared with tensile test results of both, pure epoxy as well as the epoxy-5
vol.% SiO2 composite. Since assuming bulk properties of the two constituents
did not yield satisfactory results, slight modi�cations of the nanoparticle re-
sponse functions and nanostructures were tested numerically. Finally, slightly
increased strength properties of both constituents had to be taken into account
for obtaining good correlation between experimental and modelling results.
The tendency of model parameter adjustments corroborate expected changes
of composite constituents compared to their respective bulk structures.

1 Introduction
The e�ect of considerably improving of mechanical as well as tribological properties of
conventional polymer matrix composites (PMCs) by adding of silica nanoparticles was
shown in [1, 2]. The explanation of this in�uence seems to be quite clear. It is expectable
that Youngâ��s modulus and strength increases if the epoxy matrix is �lled with particles
which are much harder than the polymer. On the other hand, it is not easy to estimate
this e�ect quantitatively, especially if the concentration of SNP volume fractions is less
than 10% (sometimes no more than 1%) and the particles are very small. The latter
circumstance rules out an e�ciency of �nite element modelling (FEM). In the paper a
method of discrete approach - movable cellular automata (MCA) method [3] was used to
simulate the mechanical behavior of multi-component nanostructured samples. Within this
approach a modelled composite is considered as linked nanoparticles bearing the properties
of the di�erent constituents. By introducing criteria for link-breaking and relinking, frac-
ture mechanisms and granular �ow can be simulated on the nanoscopic scale. The MCA
method have no restriction of particles size, therefore it is especially suitable for modelling
the mechanical behaviour of nanocomposites. In the paper the most signi�cant results of
our recent research works is presented. More detailed information is summarized in [4].
Within the MCA model the mechanical properties of the nanoconstituents are de�ned by
the corresponding response functions in the form of stress-strain curves. Usually such data
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are available only for bulk materials. It is not really clear yet, to what extend bulk prop-
erties can be used to characterize nanoparticles. Although there are innumerable papers
describing the size, shape and surface functionalities of silica nanoparticles, only very few
information on the mechanical properties of such nano-sized objects is available in the
literature. Yan et al. have shown that it is in principle possible to determine the elastic
modulus of soft and hard nanoparticles embedded in a polymeric matrix by nanoindenta-
tion in combination with �nite element modelling [5]. Basu et al. have shown that not only
elastic properties, but also stress-strain curves can be derived from nanoindentation tests
[6]. A great advantage of modelling is that we can vary material parameters hypotheti-
cally in a wide range. Thus it is possible to assess the impact of material properties and
volume fractions of constituents of a composite material by a series of parameter studies
in a theoretical way. The objective of this paper was to �nd the right range of material
parameters in order to reproduce experimental stress stain curves with our model.

2 Experimental data

The raw materials used for preparation of the EP + 5% SiO2 composite were: a standard
diglycidil ether of bisphenol A (DBEBA) o�ered by DOW as DER331, a cycloaliphatic
amine hardener HY 2954 from Huntsman and a colloidal silica masterbatch with a con-
centration of 40 mass % and a nominal particle diameter of 20 nm in DGBEBA o�ered as
Nanopox F400 from Evonik. A thin slice was prepared from the EP + 5% SiO2 composite
by microtomy and investigated in a Scanning Transmission Electron Microscope (STEM)
of type JEOL 2200FS.
Dumbbell-shaped specimens, 4 mm thick, were machined from casted plates and tested
according to DIN EN ISO 527 using universal testing machine (Zwick 1474) at room
temperature and at a crosshead speed of 0.5 mm/min. The displacement of each specimen
during tension was accurately measured by an extensometer with an initial gage length of
20 mm.

3 Numerical model

3.1 A general formalism

The MCA method is based on conventional concept of cellular automata [3, 7]. It is an
extension of cellular automaton approach achieved by incorporating some basic postulates
and relations of particle-related methods. The movable cellular automaton is an object of
�nite size, possessing translational and rotational degrees of freedom. Interaction between
automata is de�ned by normal (acting along the line connecting the mass centers) and
tangential forces, each of which is the sum of the corresponding potential and the dissipative
component. The principles of writing the equation of motion for a system of movable
cellular automata and prescribing interactions between them are described in [7].

3.2 Model description

The modelling setup was designed as shown schematically in �gure 1a. Two types of
the sample were considered: homogeneous sample like pure epoxy and nanocomposite on
the basis of epoxy as a polymer matrix �lled with silica nanoparticles. Their assumed
mechanical properties at room temperature, which are needed to de�ne their stress-strain
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behavior, are depicted in �gure 1b. Actually, the stress-strain curve for bulk silica was
derived from nanoindentation measurements [6], whereas the corresponding dependence of
the epoxy matrix was derived experimentally. The signi�cant input parameters to de�ne
the mechanical properties of each material are: Youngâ��s modulus, Poisson ratio, elastic
limit, yield strength, fracture strength, strain at yield strength and strain at fracture.

a) b)

Figure 1: The initial structure of modeled composite and a loading scheme (a); the
model response functions of the constitutive elements (b).

The automata size was adjusted to 10 nm according to the smallest size of silica nanopar-
ticles, which are currently used experimentally for polymer matrix composites. A constant
velocity (V ) equal to 0.2 m/s was applied on all automata of the top and bottom layers of
the sample in opposite directions. The geometry of the sample was: 15 µm along loading
direction and 3 µm in transvers direction. Thus, the loading conditions similar to uniaxial
tension test was reproduced for a small fragment of the real sample. For the composite
sample the concentration of silica inclusions embedded in epoxy was kept constant at 5
vol.%. The distribution of silica inclusions in modeled setup was adjusted in a way to
achieve best similarity with the real nanostructure. The total number of particles was
more than 8000.

4 Results of modelling

4.1 Modelling the stress-strain behavior of pure material

First the uniaxial tensile test of the sample in which the model parameters of all parti-
cles were corresponding to the mechanical properties of the pure epoxy was investigated.
Veri�cation of the parameters was carried out by comparing the resulting loading dia-
gram with the available experimental data for the similar sample. Figure 2a shows the
results of calculations for the homogeneous sample of pure epoxy. The curve marked by
�lled circles is the experimental stress-strain dependency which was also used as a target
response function for de�ning the behaviour of each element in the setup. Curve no. 1
depicts the stress-strain behaviour resulting from a modelling e�ort based exactly on this
assumption. The resulting curve has the same fracture strain but lower ultimate tensile
strength. Curves no. 2 and 3 correspond to the modeled samples in which slightly increased
strength properties had to be attributed to the nano-scale elements of the pure epoxy in
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order to obtain the desired �t with the experimental data. This can be interpreted in terms
of a size e�ect of mechanical properties, i.e. we should assume higher elastic, yield and
strength properties for nanoparticles, compared to bulk properties of the same material.
In fact, increased Youngâ��s modulus and fracture strength was observed experimentally
for silicon as well as silica nanowires [8].
From �gure 2b it is clear that the character of the main crack formed when the deformation
is about 7% is di�erent from the fracture pattern of the real sample (�gure 2c). This
distinction can be caused due to the two-dimensional formulation of the numerical model
or by the presence of imperfections such as voids or microcracks which are not considered
in the model.

a) b) c)

Figure 2: Results of calculation for the pure epoxy sample: resulting loading diagram
(a), modeled (b) (sample 3 on �g. 2a) and a real (c) sample after generation of crack.

Similar calculations of the uniaxial tensile tests were carried out for the homogeneous
samples in which the model parameters of the response functions for each element were
corresponding to the properties of silica nanoparticles. The resulting values for both com-
ponents were used to generate the composite sample based on the polymer matrix, as
described in the next section.

4.2 Modelling the stress-strain behavior of the composite
On the next stage of the investigation the uniaxial tensile test for a composite sample
consisting of epoxy matrix �lled with 5 vol.% silica nanoparticles was simulated. An at-
tempt to generate a sample, using the previously �tted model parameters of the response
functions for both constituents, did not give the expected result. Due to the introduc-
tion of the silica nanoparticles the resulting curve shows an increase of sti�ness of the
composite sample within 7 − 8% in comparison with the pure epoxy sample (curve no.1
in �gure 3a), while the experimental curve corresponds to an increase in sti�ness of the
composite samples over 20% (�lled diamond symbols in �gure 3a). At the same time the
modeled composite sample (curve no. 1) demonstrates very low fracture strain which can
be interpreted as weak adhesion properties between matrix and hard inclusions.
Attempting to achieve a better �t to experimental results, the procedure of the adhesive
properties modi�cation at the interface between soft matrix and rigid inclusion was used.
For this purpose the parameter which corresponds to the von Mises fracture criterion and
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a) b)

Figure 3: Results of calculation for the composite sample: resulting loading diagrams
(a), two consecutive snapshots of the structure evolution of the modeled sample 3
during a generation of the main crack (b).

controls the conditions of the linked to unlinked state transition in the pair of elements
of two materials was increased. Other curves depicted in the �gure 3a show that the
increasing of fracture criterion up to 98 MPa (curve of the sample 2) and 108 MPa (curve
of the sample 3) change only the deformation properties of the resulting composite sample,
while the slope of the curve is not changed. The resulting structures of the modeled sample
3 at the time of main crack nucleation and propagation are shown in the �gure 3b.

4.3 Introduction of additional interface particles
Within the framework of the most recent MCA modelling scheme, the existence of a tran-
sition layer can change the response of the system, as shown in [9]. In order to take into
account the presence of the interface layer around each hard inclusion additional elements
with intermediate mechanical properties de�ned by the rule described in cited paper were
introduced. Brie�y the main algorithm to de�ne the certain parameter of intermediate
particles can be formulated as

Pnew = PACA + PBCB (1)

where Pnew â�� calculated value of the selected parameter for the intermediate particle,
PA and PB â�� corresponding value of the same parameter for materials A and B (for,
example matrix and inclusion as in our case), CA and CB â�� corresponding concentration
of materials A and B in the intermediate particle. The fracture criteria can be found in the
same manner using the rule 1. Simultaneously with the introduction of interphase particles,
the absolute number of nanoinclusions was also reduced in order to keep the total volume
concentration of silica about the same amount in comparison with the previous calculations.
The detail information about the results of calculations with introducing of additional
interface particles is given in [4]. In short, the resulting loading diagrams demonstrate
that the used technique allowed one to change the angle of slope of the curves in the
right direction, while the deformation capacity of the composite sample declined sharply.
None of the modi�cations was capable of describing the experimental curve EP + 5SiO2

in respect of predicting the right strain at fracture.
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4.4 Modi�cation of the mechanical properties of the matrix

The next step towards de�ning modelling parameters which should �nally enable us to
simulate the stress-strain behaviour of the real nanocomposite was a modi�cation of the
mechanical properties of the particles of the matrix material, i.e. the epoxy. To go into this
direction is justi�ed by the �nding that cross-linking of the epoxy molecules is considerably
increased in the presence of silica nanoparticles [1, 10].

The result of modi�cations of epoxy mechanical properties for the satisfying variant of
modeled composite sample is shown in Table 3. Numbers in parentheses denote the devia-
tion of given parameter in comparison to the similar bulk epoxy properties. The resulting
response function for the considered example is depicted in �gure 4.

Table 3: Adjustment of epoxy properties in comparison to bulk one

â�¢ bulk(Epoxy) Epoxy in modeled composite

Youngâ��s modulus, GPa 2 2

Elastic limit (Y1), MPa 41 45(10%)

Yield strength (Y2), MPa 68 73(7%)

Strain at Y2 0.042 0.042

Ultimate tensile strength (UTS), MPa 88 96(9%)

Ultimate strain 0.075 0.075

a) b)

Figure 4: Resulting loading diagrams for the modeled samples (a), two consecutive
snapshots of the structure evolution of the modeled sample 9 during a generation of
the main crack (b).
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5 Conclusion

It has been demonstrated that the MCA-model, has the ability of simulating the tensile
properties of a polymer matrix composite �lled with silica nanoparticles. Although only
a two-dimensional structure was considered, representing a micron-sized �at sample with
a thickness corresponding to the element size (10 nm), it was possible to simulate the
same stress-strain behaviour and fracture pattern as observed for a macroscopic tensile
specimen.
In order to obtain the desired �t between experimental data and modelling results, several
modi�cations of input parameters, which were not a priori obvious, had to be tested numer-
ically. The parameter studies did not only �nally provide the best modelling values, but
they also shed light on the issue how certain parameters a�ect the mechanical behaviour
of both monolithic as well as composite nanostructures.
The re�ned response functions obtained by comparison with experimental tensile tests
are not only useful for simulating the stress-strain behaviour of a wide range of EP-SiO2

nanocomposites, but they will also be used in the future for simulating the sliding behaviour
of hybrid nanocomposites with exceptional tribological properties [2], as already mentioned
in the introduction.
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Abstract

In the paper simulation of the behavior of copper crystallite under local
frictional contact was carried out using the method of molecular dynamics.
Loading was realized by the movement of hard indenter along the surface
of the sample. Following con�gurations were considered: initially defect-free
crystallite, structure with a symmetrical tilt grain boundary Σ5. In�uence
of the initial structure on the behavior of the crystallite under loading was
analyzed. Nucleation of nanofragmentation of the surface layer was displayed.
Atomic mechanisms of a process of nanofragmentation were investigated. A de-
tailed analysis of the character of the atomic displacements in emerging blocks
shown that they have a rotational nature. Further calculations showed that
the amount of disorientation of formed nanoblocks along di�erent directions
is not more than 2 degrees. Despite what two limiting cases of arrangement
grain boundaries in the material has been studied only, it can be assumed that
the behavior of crystallites with defect disposed at an arbitrary angle relative
to the free surface is a combination of processes that occur in these cases.

1 Introduction
In many modern applications the state of the surface layer, its hardness, wear resistance,
mechanical behavior, processing quality and other characteristics are largely determine
the performance properties of the various parts of machines. Therefore, the problem of
studying the physical and mechanical properties of the surface and improve its performance
by applying various treatment methods to pay close attention [1]. Despite the constant
improvement of methods of experimental study, especially the evolution of structure in
which these changes occur, are still poorly understood. These di�culties are caused by the
simultaneous superposition of a large number of adverse factors occurring at di�erent scales
in contact area of the indenter with material surface. E�ective solution to this problem,
traceable in the modern literature is the use, in combination with experiment, di�erent
methods of numerical simulation. Molecular dynamics method still remains the main tool
for the theoretical description of the behavior of the modeled system at the atomic scale.
With the increasing performance of modern computing its contribution to the treasury of
new knowledge acquiring is reinforced. New features allow us to study the evolution of
the atomic lattice under dynamic loading with the explicit consideration of the internal
structure of the polycrystalline material. Thus, the purpose of the present study was to
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investigate with help of the method of molecular dynamics the characteristics of nucleation
and development of structural defects in the crystalline material containing grain boundary
under a localized loading conditions.

2 The model sample description

A fragment of polycrystalline copper, initially consisting of two grains separated by tilt
grain boundary (GB) Σ = 5(210)[001] was selected as an object of investigation. Two
boundary position, along X0Z and Y 0Z as shown in Fig. 1 were simulated. Note that
early similar crystallite was used to investigate its behavior under shear loading as initially
defect-free sample as well as containing the internal interface of various types [2, 3]. To
describe the interatomic interaction the potential built in the framework of the embedded
atom method was used [4, 5]. It was previously veri�ed in a number of tests for the
calculation of the elastic and energy characteristics.

Figure 1: The scheme of the modeled sample.

Along the direction Z in a sample, periodic boundary conditions were set. Along theX-axis
free surfaces were simulated. Thus, the considered sample can be represented as a single
projection surface of an extended form (so-called pleated surface). The initial roughness
of smaller scale was set additionally on the pleated surface. As a result surface stresses
due to shear loading distributed unevenly and varied in di�erent parts of the contact patch
and further contributed to the redistribution of the local stresses and the formation of
structural defects. The bottom layer of atoms (Figure 1) simulated unmovable substrate.
Over the substrate a speci�c "damping" layer of atoms, which used the procedure reducing
the kinetic energy was de�ned. By introducing of such a layer allow us to imitate the
distribution of the kinetic energy deep into material along Y direction. The dimensions in
the direction of the coordinate axes X, Y and Z were equal to 40.13× 24.95× 16.63 nm,
respectively. Total number of atoms exceeded 1500000. The equations of motion were
integrated with a time step ∆t = 0, 001 ps.

Localized shear loading was applied by modeling the interaction of sample surface with
microscopic counterbody, which acts as an absolutely rigid indenter. The indenter action
has been realized through the force �eld described by the following formula F (r) = K(r−
R)2, where K � constant, r � distance from the center of the cylinder to the atom and
the R � radius of the cylinder. At this at r > R F (r) = 0. The sample was loaded with
the indenter having a radius of 8 nm. The indenter moved in X direction with a constant
velocity V = 10 m/s, which is close to the maximal available rate of the surface �nishing
treatment.
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3 Results of simulation
Within the �rst stage the position of Σ5 grain boundary, was oriented parallel to a plane
X0Z and located in the center of the crystallite (position 1 in Figure 1). To analyze the
changing of the crystal lattice structure the algorithm which allows identifying the local
topology of inter atomic bonds [6], and reveals the formation of structural defects was
applied. The simulation results show that, due to the motion of indenter a lot of stacking
faults produced in the bulk of grain. The presence of GB leads to contain the spread of
a defect in the neighboring grains. It was also found that as a result of external shear
loading the grain boundary starts moving in the direction perpendicular to the plane of
the defect. This e�ect has been studied and described in [2]. Analysis of the structure
at di�erent times showed that the motion does not observed for all parts of the defect
simultaneously. Parts of the boundary which is located in front and under the indenter
move only. This leads to a curvature of the plane of the defect and its output to the free
surface. Fig. 2 shows the change in the structure of the simulated sample when the GB
under the in�uence of external localized load rises up to the free surface. The �gure marked
only the atoms, which local topology of structural relations is di�er from the initial fcc
lattice. It can be seen that the defects are concentrated in the upper grain. Only after
grain boundary beyond the free surface (Figure 2d), structural defects are formed in the
lower grain.

a) b)

c) d)

Figure 2: The structure of the modeled fragment at di�erent time steps: a) 0.15 ns,
b) 1.0 ns, c) 2.0 ns, d) 2.5 ns. Red spheres indicate position of atoms with hcp
local topology of atoms relation; gray spheres depict atoms located at the border
and close to GB. Hereafter arrows indicate the position of indenter.

Figure 3a demonstrates the position of the grain boundary at di�erent time steps. It is
clearly seen that the pro�le of the border is distorted due to indenter motion. Moving
in the direction of the free surface takes place only in the part of the boundary which is
situated in front of and under the indenter. Thus, the farther is the part of the border
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from the initial position of the indenter along the X axis, the longer time it is subject to
shear deformation and the greater distance in the direction perpendicular to the applied
stresses, it is shifted. According to the results at time t = 2.5× 106∆t a part of the grain
boundary beyond the free surface. After passing the indenter the position of this section
of the border over time remains unchanged.

a) b)

Figure 3: The projection of the grain boundary location on plane X0Y at di�erent
time step.

To verify the correlation between the loading direction and the GB structure the similar
sample containing a tilt grain boundary Σ5, which structure was mirrored relative to the
plane of the defect as compared with the above example was simulated. Figure 4 shows
the structure of the sample at the same time steps as in Figure 2. It can be seen that the
plane of the defect in this case is less distorted. This is because the distance between the
grain boundary and indenter increases due to motion of defect far from the free surface in
a direction perpendicular to the applied loading. According to the initial distribution of
structural defects depicted on the Fig. 4a some defects form in the grain, located below
the GB. Closeness to free side surface leads to further annihilation of its (Fig. 4b). So,
plural structural defects form only in the grain, which are directly exposed to the action
of the indenter (Fig. 4c and 4d).
Figure 3b shows the position of the GB for the described case for two time steps: at the
beginning and close to �nal of the loading. It is seen that in contrast to the previous
con�guration the resulting position of the grain boundary at the end of loading stage
changes only slightly in a direction from the free surface to the substrate. The o�set
position of the boundary grows up as the distance of this part of the defect increases from
the initial position of the indenter. This is due to the peculiarities of redistribution of
stresses and strains during the formation of defects in the system containing the grain
boundary. Subsequent movement to the grain boundary from free surface to the lower
grain is constrained by the presence of a �xed substrate.
The results showed that for both sample con�gurations the local shear loading leads to
formation of numerous structural defects in the volume of the loaded grain. This advanta-
geously stacking faults. Formation numerous defects in the surface layer can also mean a
possibility of surface nanofragmentation. In order to identify possible mechanisms leading
to the formation of the fragmented structure of the material in the volume of loaded grain
atomic displacements at di�erent time intervals for the central layer of the sample were
analyzed. The thickness of the selected layer was equal to three atomic planes and its
orientation was parallel to the X0Y plane. Figure 5 shows the displacement of the atoms
in the central layer of the bicrystal at the time moment near 0.5 ns and during the time
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a) b)

c) d)

Figure 4: The structure of the modeled sample in which GB was mirrored relative
to the plane of the defect as compared with the example shown in Fig. 2 at di�erent
time steps: a) 0.15 ns, b) 1.0 ns, c) 2.0 ns, d) 2.5 ns. Red spheres indicate position of
atoms with hcp local topology of atoms relation; gray spheres depict atoms located
at the border and close to grain boundary.

interval of 50 ps. The structure of building blocks in the upper grain, located in the area
close to the indenter is clearly visible.

a) b)

Figure 5: The map of displacements at the time interval (0.50 − 0.55) ns for the
atoms of the central cutting of the modeled bicrystal with the thickness of 3 atomic
layers. The size of segments is increased up to 5 times for the better visualization.
The arrow in zoomed fragment indicates the direction of rotation.

A detailed analysis of the character of the atomic displacements in forming blocks showed
that they can carry rotational type. Figure 5 shows enlarged view for one of the blocks
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forming in the structure. It is clearly seen that the block as a whole is rotated about an axis
parallel to the direction Z. Further calculations showed that the value of such rotations
along di�erent directions for forming nanoblocks is no more than 2 degrees.

Similar conclusions can be done by analyzing the displacements of atoms for selected central
layer in the subsequent time intervals, depicted in Figure 6.

a) b)

Figure 6: The map of displacements at di�erent time intervals for the atoms of the
central cutting layer of the modeled bicrystal with the thickness of 3 atomic layers:
a) (1.0−1.05) ns, b) (2.0−2.05) ns. The size of segments is increased up to 5 times
for the better visualization.

In the next stage of the research the sample in which the GB was located parallel to the
plane Y 0Z (position 2 in Figure 1) was generated. Simulation results have shown that
the similar action of the indenter on the grain boundary movement along the X axis is
not observed. The presence of GB, prevents to the spread of structural defects as in the
previous case, but only until the time where the indenter locates at a quite far distance
from the position of GB. When the indenter approaches the GB stacking faults occur in
the next grain as well. The structures of the modeled fragment for the respective time
steps are shown in Figure 7.

a) b)

Figure 7: The structure of the modeled fragment with vertical orientation of the GB
at di�erent time steps: a) 0.8 ns, b) 0.9 ns. Red spheres indicate position of atoms
with hcp local topology of atoms relation; gray spheres depict atoms located at the
border and close to grain boundary.
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4 Conclusion
In conclusion, we note that the results of computer simulation on the scale of individ-
ual atoms revealed the mechanism of plastic deformation of a material with an internal
structure in terms of the local shear loading. According to the results, this process can
occur through the formation of multiple intersecting planar defects � stacking faults. This
leads to the formation of separate fragments of nanoscale size separated by an interface
between them. It was found that the displacements of atoms in forming of fragments can
have rotational character. Thus, the resulting structure of the modi�ed surface layer is the
system of disoriented nanoblocks.
With the help of computer simulations it was shown that the presence of GB in the crystal
can limits the propagation of defects into the volume of the sample under shear load and
can lead to recrystallization of individual grains only. Despite what it has been studied
only the two limiting cases of grain boundaries arrangement in the material, it can be
assumed that the behavior of defective crystallites disposed at an arbitrary angle to the
free surface is a combination of processes that occur in these cases.
The obtained results can be use as well to understand the process of nanostructuring of
the surface during for example �nishing treatment.
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Abstract

A fast and e�cient numerical-analytical approach is proposed for modeling
the complex collective behaviour in complex plasma physics models based on
the BBGKY hierarchy of kinetic equations. Our calculations are based on
variational and multiresolution approaches in the bases of polynomial tensor
algebras of high-localized generalized coherent modes generated by action of
the internal hidden symmetry of the underlying functional space. We construct
the representation for hierarchy of reduced distribution functions via multiscale
decomposition in high-localized eigenmodes. Numerical modeling shows the
formation of zoo of various internal symmetry-generated structures (patterns)
which describe the (meta)stable/unstable type of behaviour in non-equilibrium
ensembles.

1 Introduction
The kinetic theory describes a lot of phenomena in beam/plasma physics which cannot
be understood on the thermodynamic or/and �uid models level. We mean �rst of all
local/metastable/non-gaussian �uctuations beyond the equilibrium state and collective/re-
laxation phenomena.
It is well-known that only kinetic approach can describe Landau damping, intra-beam
scattering, while, e.g., Schottky noise and associated cooling technique depend on the
understanding of spectrum of local �uctuations of the beam charge density [1], [2].
In this paper we review the applications of our numericalanalytical technique based on
multiresolution (a.k.a.) wavelet analysis approach for calculations related to description of
complex collective behaviour in the framework of general BBGKY hierarchy [3]�[21].
The rational type of nonlinearities allows us to use our results, which are based on the
application of wavelet analysis technique and variational formulation of initial nonlinear
problems. Wavelet analysis is a set of mathematical methods which give us a possibility
to work with well-localized bases in functional spaces and provide maximum sparse forms
for the general type of operators (di�erential, integral, pseudodi�erential) in such bases.
It provides the best possible rates of convergence and minimal complexity of algorithms
inside and as a result saves CPU time and HDD space.
In part 2 set-up for kinetic BBGKY hierarchy is described. In part 3 we present explicit
analytical construction for solutions of hierarchy of equations from part 2 based on tensor
algebra extension of multiresolution representation and variational formulation.
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We give explicit representation for hierarchy of n-particle reduced/truncated distribution
functions in the base of high-localized generalized coherent (regarding underlying a�ne
group) states given by polynomial tensor algebra of base wavelets, which takes into account
contributions from all underlying hidden multiscales from the coarsest scale of resolution
to the �nest one to provide full information about dynamics of complex process.
So, our approach resembles Bogolubov and related approaches but we do not use any
perturbation technique (like virial expansion) or linearization procedures.
Numerical modeling shows the creation of di�erent internal (coherent) structures from
hidden localized modes, which are related to stable (equilibrium) or unstable/metastable
type of behaviour and corresponding pattern (waveleton) formation.

2 Nonequilibrium dynamics: BBGKY hierarchy
Let M be the phase space of ensemble of N particles (dimM = 6N) with coordinates
xi = (qi, pi), i = 1, ..., N, qi = (q1

i , q
2
i , q

3
i ) ∈ R3, pi = (p1

i , p
2
i , p

3
i ) ∈ R3, q =

(q1, . . . , qN ) ∈ R3N . Individual and collective measures are:

µi = dxi = dqipi, µ =

N∏
i=1

µi (1)

Distribution function DN (x1, . . . , xN ; t) satis�es Liouville equation of motion for ensemble
with Hamiltonian HN :

∂DN

∂t
= {HN , DN} (2)

and normalization constraint∫
DN (x1, . . . , xN ; t)dµ = 1 (3)

where Poisson brackets are:

{HN , DN} =

N∑
i=1

(∂HN

∂qi

∂DN

∂pi
− ∂HN

∂pi

∂DN

∂qi

)
(4)

Our constructions can be applied to the following general Hamiltonians:

HN =

N∑
i=1

( p2
i

2m
+ Ui(q)

)
+

∑
1≤i≤j≤N

Uij(qi, qj) (5)

where potentials Ui(q) = Ui(q1, . . . , qN ) and Uij(qi, qj) are not more than rational functions
on coordinates. Let Ls and Lij be the Liouvillean operators (vector �elds)

Ls =
s∑
j=1

(pj
m

∂

∂qj
− ∂uj

∂q

∂

∂pj

)
−

∑
1≤i≤j≤s

Lij (6)

Lij =
∂Uij
∂qi

∂

∂pi
+
∂Uij
∂qj

∂

∂pj
(7)

For s=N we have the following representation for Liouvillean vector �eld

LN = {HN , ·} (8)

78



From localization to zoo of patterns in complex dynamics of ensembles

and the corresponding ensemble equation of motion:

∂DN

∂t
+ LNDN = 0 (9)

LN is self-adjoint operator regarding standard pairing on the set of phase space functions.
Let

FN (x1, . . . , xN ; t) =
∑
SN

DN (x1, . . . , xN ; t) (10)

be the N-particle distribution function (SN is permutation group of N elements). Then we
have the hierarchy of reduced distribution functions (V s is the corresponding normalized
volume factor)

Fs(x1, . . . , xs; t) = V s

∫
DN (x1, . . . , xN ; t)

∏
s+1≤i≤N

µi (11)

After standard manipulations we arrived to BBGKY hierarchy [2]:

∂Fs
∂t

+ LsFs =
1

υ

∫
dµs+1

s∑
i=1

Li,s+1Fs+1 (12)

It should be noted that we may apply our approach even to more general formulation than
(12). Some particular case is considered in [22]. For s=1,2 we have from (12):

∂F1(x1; t)

∂t
+
p1

m

∂

∂q1
F1(x1; t) =

1

υ

∫
dx2L12F2(x1, x2; t) (13)

∂F2(x1, x2; t)

∂t
+
(p1

m

∂

∂q1
+
p2

m

∂

∂q2
− L12

)
· F2(x1, x2; t) (14)

=
1

υ

∫
dx3(L13 + L23)F3(x1, x2; t)

3 Multiscale analysis
The in�nite hierarchy of distribution functions satisfying system (12) in the thermodynam-
ical limit is:

F = {F0, F1(x1; t), F2(x1, x2; t), . . . , FN (x1, . . . , xN ; t), . . . }

where Fp(x1, . . . , xp; t) ∈ Hp, H0 = R, Hp = L2(R6p) (or any di�erent proper functional
space), F ∈ H∞ = H0 ⊕H1 ⊕ · · · ⊕Hp ⊕ . . . with the natural Fock-space like norm (of
course, we keep in mind the positivity of the full measure) introduced by us [3]�[21]:

(F, F ) = F 2
0 +

∑
i

∫
F 2
i (x1, . . . , xi; t)

i∏
`=1

µ` (15)

Fk(x1, . . . , xk; t) =

k∏
i=1

F1(xi; t) (16)
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First of all we consider F = F (t) as function on time variable only, F ∈ L2(R), via mul-
tiresolution decomposition which naturally and e�ciently introduces the in�nite sequence
of underlying hidden scales into the game [23]. Because a�ne group of translations and
dilations is inside the approach, this method resembles the action of a microscope. We
have contribution to �nal result from each scale of resolution from the whole in�nite scale
of spaces. Let the closed subspace Vj(j ∈ Z) correspond to level j of resolution, or to scale
j.
We consider a multiresolution analysis of L2(R) (of course, we may consider any di�er-
ent functional space) which is a sequence of increasing closed subspaces Vj : ...V−2 ⊂
V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ ... satisfying the following properties: let Wj be the orthonor-
mal complement of Vj with respect to Vj+1: Vj+1 = Vj

⊕
Wj then we have the following

decomposition:

{F (t)} =
⊕

−∞<j<∞
Wj (17)

or in case when V0 is the coarsest scale of resolution:

{F (t)} = V0

∞⊕
j=0

Wj , (18)

Subgroup of translations generates basis for �xed scale number: spank∈Z{2j/2Ψ(2jt−k)} =
Wj . The whole basis is generated by action of the full a�ne group:

spank∈Z,j∈Z{2j/2Ψ(2jt− k)} = spank,j∈Z{Ψj,k} = {F (t)} (19)

Let the sequence {V t
j }, V t

j ⊂ L2(R) correspond to multiresolution analysis on time axis,
{V xi

j } correspond to multiresolution analysis for coordinate xi, then

V n+1
j = V x1

j ⊗ · · · ⊗ V
xn
j ⊗ V t

j (20)

corresponds to multiresolution analysis for n-particle distribution function
Fn(x1, . . . , xn; t).
E.g., for n = 2:

V 2
0 = {f : f(x1, x2) =

∑
k1,k2

ak1,k2φ
2(x1 − k1, x2 − k2), ak1,k2 ∈ `2(Z2)}, (21)

where φ2(x1, x2) = φ1(x1)φ2(x2) = φ1 ⊗ φ2(x1, x2), and φi(xi) ≡ φ(xi) form a multireso-
lution basis corresponding to {V xi

j }.
If {φ1(x1−`)}, ` ∈ Z form an orthonormal set, then φ2(x1−k1, x2−k2) form an orthonormal
basis for V 2

0 . Action of a�ne group provides us by multiresolution representation of L
2(R2).

After introducing detail spaces W 2
j , we have, e.g. V

2
1 = V 2

0 ⊕W 2
0 . Then 3-component basis

for W 2
0 is generated by translations of three functions [23]:

Ψ2
1 = φ1(x1)⊗Ψ2(x2),

Ψ2
2 = Ψ1(x1)⊗ φ2(x2),

Ψ2
3 = Ψ1(x1)⊗Ψ2(x2) (22)

In general case we can use the rectangle lattice of scales and one-dimentional wavelet
decomposition :

f(x1, x2) =
∑
i,`;j,k

< f,Ψi,` ⊗Ψj,k > Ψj,` ⊗Ψj,k(x1, x2)
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where the base functions Ψi,` ⊗Ψj,k depend on two scales 2−i and 2−j .
Then, after constructing such multidimension bases we can apply some of our variational
procedures introduced in [3]-[21]. As a result the solution of equations (12) has the following
multiscale/multiresolution decomposition via nonlinear high-localized eigenmodes

F (t, x1, x2, . . . ) =
∑

(i,j)∈Z2

aijU
i ⊗ V j(t, x1, x2, . . . )

V j(t) = V j,slow
N (t) +

∑
l≥N

V j
l (ωlt), ωl ∼ 2l (23)

U i(xs) = U i,slowM (xs) +
∑
m≥M

U im(ksmxs), ksm ∼ 2m,

which corresponds to the full multiresolution expansion in all underlying time/space scales.
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Figure 1: 6-eigenmodes representation for waveletons.

Formal representation (23) provide us with expansion into the slow part Ψslow
N,M (coarse

graining) and fast oscillating parts (�ne scales) for arbitrary N, M.
So, we can move from coarse scales of resolution to the �nest one for obtaining more
detailed information about our complex dynamical process.
The �rst terms in the RHS of formulas (23) correspond on the global level of function
space decomposition to resolution space and the second ones to detail space. In this way
we collect contributions to the exact solution from each scale of resolution or each hidden
time/space scale or from each nonlinear hidden eigenmode [3]�[21].
It should be noted that such representations provide the best possible localization prop-
erties in the corresponding (phase)space/time coordinates. In contrast with di�erent ap-
proaches representation (23) do not use perturbation technique or linearization procedures.
Numerical calculations are based on compactly supported wavelets and related wavelet
families [24] and on evaluation of the accuracy regarding norm (15):

‖FN+1 − FN‖ ≤ ε (24)
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Fig. 1 demonstrates waveleton (high-localized and metastable) pattern generated at level
6 of the scale/eigenmodes decomposition for solutions of hierarchies like (12).
So, �nally, using multiresolution decomposition constructed by properly generated action
of hidden symmetry of the underlying functional spaces, we provide the best possible
(phase) space/time localization properties and as a result the construction of high-localized
metastable waveleton structures in spatially-extended stochastic systems with collective
behaviour. Fig. 1 represents some possible image for the energy con�nement state in the
plasma fusion model [20].
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Abstract

We consider an application of modi�cation of our variational-wavelet ap-
proach to some nonlinear collective models of beam/plasma physics: the
Vlasov/Boltzmann-like truncation of general BBGKY hierarchy related to
the modeling of the propagation of intense charged particle beams in high-
intensity accelerators and transport systems. We use fast convergent multi-
scale variational-wavelet representations for solutions which allow to consider
the polynomial and rational type of nonlinearities. The solutions are repre-
sented via the multiscale decomposition in nonlinear high-localized eigenmodes
(waveletons). In contrast to di�erent approaches we do not use perturbation
technique or linearization procedures.

1 Introduction
We consider applications of numerical�analytical technique based on modi�cation of our
variational-wavelet approach to nonlinear collective models of beam/plasma physics, e.g.
some forms of Vlasov/Boltzmann-like reductions of general BBGKY hierarchy (section 2).
These equations are related to the modeling of propagation of intense charged particle
beams in high-intensity accelerators and transport systems [1], [2]. In our approach we
use fast convergent multiscale variational-wavelet representations, which allows to consider
polynomial and rational type of nonlinearities [3]-[22]. The solutions are represented via
the multiscale decomposition in nonlinear high-localized eigenmodes (some generalization
of the so-called Gluckstern modes, in some sense), which corresponds to the full multires-
olution expansion in all underlying hidden time/space or phase space scales.
In contrast with di�erent approaches we do not use perturbation technique or linearization
procedures.
In section 3 after formulation of key points we consider another variational approach based
on ideas of para-products and nonlinear approximation in multiresolution approach, which
provides the possibility for computations in each scale separately [23].
We consider representation (4) below, where each term corresponds to the contribution
from the scale i in the full underlying multiresolution decomposition as multiscale gener-
alization of old (nonlinear) δF approach [1], [2].
As a result, fast scalar/parallel modeling demonstrates appearance of high-localized coher-
ent structures (waveletons) and (meta)stable pattern formation in systems with complex
collective behaviour or the possibility of existence of relatively/locally stable order in the
systems with full disorder.
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2 Vlasov/Boltzmann�like reductions
Let M be the phase space of ensemble of N particles (dimM = 6N) with coordinates xi =
(qi, pi), i = 1, ..., N, qi = (q1

i , q
2
i , q

3
i ) ∈ R3, pi = (p1

i , p
2
i , p

3
i ) ∈ R3 with distribution

function DN (x1, . . . , xN ; t) and

FN (x1, . . . , xN ; t) =
∑
SN

DN (x1, . . . , xN ; t) (1)

be the N-particle distribution functions (SN is permutation group of N elements). For
s=1,2 we have from general BBGKY hierarchy [22]:

∂F1(x1; t)

∂t
+
p1

m

∂

∂q1
F1(x1; t) =

1

υ

∫
dx2L12F2(x1, x2; t) (2)

∂F2(x1, x2; t)

∂t
+
(p1

m

∂

∂q1
+
p2

m

∂

∂q2
− L12

)
F2(x1, x2; t) (3)

=
1

υ

∫
dx3(L13 + L23)F3(x1, x2; t)

where partial Liouvillean operators are described in [22]. We are interested in the cases
when and where

Fk(x1, . . . , xk; t) =
k∏
i=1

F1(xi; t) +Gk(x1, . . . , xk; t),

where Gk are the correlation patterns, really have additional reductions as in case of the
Vlasov-like systems.
Then we have in the equations (2), (3) not more than polynomial type of nonlinearities
(more exactly, multilinearities), i.e. we can apply our general approach [3]�[22] based on
Local Nonlinear (non-abelian) Harmonic Analysis [23].

3 Multiresolution via para-products
Our goal is the demonstration of advantages of the following formal representation

F =
∑
i∈Z

δiF, (4)

for the full exact solution for the systems related to equations (2), (3). It is possible to
consider the representation (4) as multiscale generalization of old (nonlinear) δF approach
[1], [2]. So, in our modi�ed version of the decomposition (4) each δiF term corresponds to
the contribution from the scale i in the full underlying multiresolution decomposition

· · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 . . . (5)

of the proper function space (L2, Hilbert, Sobolev, etc.) to which the tower F really be-
longs according to the properly chosen physical hypothesis. It should be noted that (4)
doesn't based neither on perturbations nor on linearization procedures. Although usually
physicists, who prefer computer modeling as a main tool of understanding of the physical
reality, don not think about underlying functional spaces, but many concrete features of
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complicated complex dynamics are really related not only to concrete form/class of oper-
ators/equations but also depend on the proper choice of function spaces where operators
actully act. Moreover, we have for arbitrary N in the �nite N-mode approximation

FN =
N∑
i=1

δiF (6)

the following more useful decompositions:

{F (t)} =
⊕

−∞<j<∞
Wj or {F (t)} = V0

∞⊕
j=0

Wj , (7)

in the case when V0 is the coarsest scale of resolution and where Vj+1 = Vj
⊕
Wj and

the bases in the scale spaces Wi(Vj) are generated from the base functions ψ(ϕ) by action
of the underlying a�ne group of the translations and dilations (the so called �wavelet
microscope�). The following constructions based on the variational approach provide the
best possible fast convergence properties in the sense of the combined norm:

‖FN+1 − FN‖ ≤ ε (8)

introduced and considered before in [3]�[22]. Our �ve basic points after the choice of the
model for the functional space are as follows:

1. The ansatz-oriented choice of the (multidimensional) bases related to some poly-
nomial tensor algebra. Some example related to the general BBGKY hierarchy is
considered in [22].

2. The choice of the proper variational principle. A few projection/ Galerkin-like prin-
ciples for the (weak) solution construction are considered in [3] - [21]. It should be
noted the advantage of formulation related to biorthogonal (wavelet) decomposition.

3. The choice of base functions in scale spaces Wj from the whole wavelet zoo. They
correspond to high-localized (nonlinear) oscillations/excitations, coherent (nonlin-
ear) resonances, etc. Besides the fast convergence properties of the corresponding
variational-wavelet expansions it should be noted the minimal complexity of all un-
derlying calculations, especially in case of choice of wavelet packets which minimize
Shannon entropy.

4. The operator representations provide the best possible sparse representations for the
arbitrary (pseudo) di�erential/integral operators

df/dx, dnf/dxn,
∫
T (x, y)f(y)dy), etc [23].

5. (Multi)linearization. Besides variation approach we consider now a di�erent method
to deal with (polynomial) nonlinearities.

We modify the scheme of our variational approach in such a way in which we consider
the di�erent scales of the multiresolution decomposition (5) separately. For this reason
we need to compute errors of approximations. The main problems come, of course, from
nonlinear (polynomial) terms. We follow according to the multilinearization (in case below
� bilinearization) approach of Beylkin, Meyer etc. from [23]. Let Pj be the projection
operators on the subspaces Vj (5):

(Pjf)(x) =
∑
k

< f,ϕj,k > ϕj,k(x) (9)
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and Qj are projection operators on the subspaces Wj : Qj = Pj−1 − Pj . So, for u ∈ L2(R)
we have uj = Pju and uj ∈ Vj . It is obviously that we can represent u2

0 in the following
form:

u2
0 = 2

n∑
j=1

(Pju)(Qju) +
n∑
j=1

(Qju)(Qju) + u2
n (10)

In this formula there is no interaction between di�erent scales. We may consider each term
of (10) as a bilinear mappings:

M j
V W : Vj ×Wj → L2(R) = Vj⊕j′≥jWj′ (11)

M j
WW : Wj ×Wj → L2(R) = Vj ⊕j′≥j Wj′ (12)

For numerical purposes we need formula (10) with a �nite number of scales, but when we
consider limit j →∞ we have

u2 =
∑
j∈Z

(2Pju+Qju)(Qju), (13)

which is the very useful para-product of Bony, Coifman and Meyer [23]. Now we need to
expand (10) into the wavelet bases. To expand each term in (10) we need to consider the
integrals of the products of the basis functions corresponding to decomposition (7), e.g.

M j,j′

WWW (k, k′, `) =

∫ ∞
−∞

ψjk(x)ψjk′(x)ψj
′

` (x)dx, (14)

where j′ > j and

ψjk(x) = 2−j/2ψ(2−jx− k) (15)

are the basis functions proper for (7). For compactly supported wavelets

M j,j′

WWW (k, k′, `) ≡ 0 for |k − k′| > k0, (16)

where k0 depends on the overlap of the supports of the basis functions and

|M r
WWW (k − k′, 2rk − `)| ≤ C · 2−rλM (17)

Let us de�ne j0 as the distance between scales such that for a given ε all the coe�cients
in (17) with labels r = j − j′, r > j0 have absolute values less than ε. For the purposes
of computing with accuracy ε we replace the mappings in (11), (12) by

M j
V W : Vj ×Wj → Vj ⊕j≤j′≤j0 Wj′ (18)

M j
WW : Wj ×Wj → Vj ⊕j≤j′≤j0 Wj′ (19)

Since
Vj ⊕j≤j′≤j0 Wj′ = Vj0−1, Vj ⊂ Vj0−1, Wj ⊂ Vj0−1

we may consider bilinear mappings (18), (19) on Vj0−1×Vj0−1. For the evaluation of (18),
(19) as mappings Vj0−1 × Vj0−1 → Vj0−1 we need signi�cantly fewer coe�cients than for
mappings (18), (19). It is enough to consider only coe�cients

M(k, k′, `) = 2−j/2
∫ ∞
∞

ϕ(x− k)ϕ(x− k′)ϕ(x− `)dx, (20)
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Figure 1: N = 1 coarse grain contribution to (6).
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Figure 2: Localized metastable pattern.

where ϕ(x) is scale function. Also we have

M(k, k′, `) = 2−j/2M0(k − `, k′ − `), (21)

where

M0(p, q) =

∫
ϕ(x− p)ϕ(x− q)ϕ(x)dx (22)

M0(p, q) satisfy the standard system of linear equations and after its solution we can
recover all bilinear quantities (14). Then we may apply some variational approach from
[3]-[21] but, in contrast with previous attempts, at each scale separately. Finally, after the
application of points 1-5 above, we arrive to the explicit numerical-analytical realization of
representations (4) or (6). Fig. 1 demonstrates the coarse grain level contribution to the
full solution (6) while Fig. 2 presents our �nal goal: the localized non-gaussian (meta)stable
pattern as the solution of the system like (2),(3). We evaluate the accuracy of calculations
according to norm considered for the whole kinetic hierarchy in companion paper [22].
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Various images for di�erent types of possible patterns are parametrized by details of the
underlying (multi)linear algebra related to aspects of multiresolution decomposition as well
as by features related to the internal structure of the underlying functional spaces. Both
structures have direct relation to the underlying physics of ensembles.
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Abstract

The paper presents experimental data obtained by testing composites
based on polyethylene and silicate needle �ller (palygorskite) of di�erent con-
centration. At the macro level, stress-strain curves are plotted for materials
with di�erent �ller concentration, and the mechanical properties of these ma-
terials are explored. Research at the micro level examines the microstructure
and local mechanical properties of composite materials.

1 Introduction

Nanocomposites based on various types of polyole�ns (polyethylene, polypropylene, etc.)
and nanodispersed silica ultra�ne particles (nanoclay) are currently the subject of intense
research. This family of composite materials attracts attention because of their unique
physical and chemical properties compared to the conventionally �lled polymers. They
are known for their high performance, environmental friendliness, relatively low cost and
ease of production. Polyole�ns are the most popular and accessible group of thermoplastic
polymers.
It has been recognized [1, 2] that incorporation of even small quantities of silicate nanopar-
ticles into polymers signi�cantly enhances the di�usion barrier properties of the material,
its thermal stability and resistance to thermal buckling. Most likely this is due to the
fact that nanostructured materials have some speci�c features. Firstly, unlike conventional
composites, whose individual components are of micron and submicron sizes, nanomate-
rials have an extremely high interface area enabling the volume concentration of surface
layers formed on dispersed particles to very signi�cant. Modifying their physical proper-
ties, one can e�ectively change the macro properties of the material. Secondly, the size
and shape anisotropy of �ller inclusions contribute much to �ller texturing in a polymer.
Thirdly, the very small particle sizes inhibit the processes of matrix delamination due to
enormous surface tension, which certainly favors the increase in the strength of the com-
posite. Taken together, all these factors provide a considerable improvement of various
physical characteristics of nanomaterials at low �ller concentration [3].
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This paper presents the results of experimental studies of composites based on polyethylene
and silicate needle-like nano�ller at the macro and micro levels. At the macroscopic scale,
the experimental stress-strain curves obtained for materials with di�erent �ller fraction
were analyzed. The microstructural and local mechanical properties were studied by the
AFM techniques.

2 Fabrication of materials and preparation of sam-
ples

Low density polyethylene grade PE 107-02K (ρ = 0.91 g/cm3) was taken as a polymer
matrix. The initial modulus was 85 MPa, and the degree of crystallinity determined by
di�erential scanning calorimetry was equal to approximately 35-40 %.
As a �ller (the �lling degree varies from 0 to 15 wt. parts), the modi�ed nanoclay based on
palygorskite (produced by "Keramzit" Serpukhov) was used. This mineral is water magne-
sium aluminum silicate. The crystalline structure of palygorskite is intermediate between
the so-called belt and layered silicates. Palygorskite crystals are composed of double chains
of Si-H tetrahedra interconnected by octahedrally coordinated magnesium and aluminum
cations. During the grinding, the mineral breaks into particles having the form of elon-
gated bars â�� �bers. Under mechanical treatment, needle particles form tangled �brous
aggregates. Palygorskite clay generally has a light gray color, sometimes with a yellowish
tinge. Its density is 2000-2300 kg/m3, and its hardness is 2-2.5 in mineralogical scale and
increases signi�cantly after calcination. This mineral in its pure form is widely used in
construction as an eco-friendly thermal insulator.
The surface of palygorskite crystals, as well as other clay minerals, is hydrophilic, making it
di�cult to wetting with hydrophobic organic substances. Before combining with polymers,
it must be treated with special surface active substances (surfactants) to create organophilic
layers with the necessary level of interaction with a polymer matrix.
For the production of polymer-silicate nanocomposites, a one-step mixing procedure devel-
oped at the Institute of Petrochemical Synthesis, Russian Academy of Sciences was applied
[4, 5]. This method assumes that a polymer, a silicate and a surfactant are loaded into
the extruder simultaneously. Surfactant molecules di�use to silicate particles directly in a
polymer melt.

3 The experiments

Mechanical testing. The mechanical properties of the materials under study were investi-
gated at the macro level on a testing machine Testometric FS-100CT at room temperature.
The strain rate was 100%/min. The loading of the samples was carried out until their rup-
ture. For each �ller concentration, �ve experiments were performed.
Atomic force microscopy. The properties of composites at the nano scale were studied by
an atomic force microscope (AFM) Dimension Icon in the nanomechanical mapping regime
(PeakForce QNM). In this mode an AFM tip performs nanoindentation in each point of the
surface with a frequency of 2 kHz. Hence, the following structural-mechanical properties of
the surface can be mapped: (a) relief; (b) adhesion force between the tip and the sample;
(c) indentation u - the depth of penetration of the tip into the material; (d) Young modulus,
i.e. the material sti�ness E calculated by the DMT-model. In our experiments, the NSG10
probes (NT-MDT) with a nominal radius of 10 nm and a calibrated sti�ness 9 N/m were

94



The study of structure and mechanical properties of polyethylene - silicate needle
nano�ller at the macro and micro level

used. For each material, ten AFM images of 10x10 µm with a resolution of 1024x1024
points in the xy-plane were captured and analyzed (Fig. 1). Hereinafter, in the lower
left-hand corner of the image (Fig. 1) the horizontal line shows the length of the examined
segment. To the right of the vertical scale, the range of the measured value and units
are given. Apart from needle-shaped palygorskite, the �at and round-shaped inclusions of

Figure 1: AFM images of the surface (left column) of the appropriate indentation
depth (middle column) and sti�ness (right column) of materials with �ller wt. frac-
tions: (a) â�� 5, (b) â�� 10, (c) â�� 15.

di�erent sizes are clearly visible in the images (see. Fig. 1b); this is probably the clay.
Note that the fraction of large inclusions is comparable with the palygorskite fraction.
The microstructure of materials was studied in both the undeformed and stretched states.
In the latter case, the samples were �xed and stretched in a special device. The experiments
were performed without removing the load from the samples.

4 Results and discussion

Mechanical properties. The averaged engineering stress-strain (σ-ε) curves obtained for
samples subjected to uniaxial load at constant rates are presented in Fig. 2. At the
stage of the plastic �ow corresponding to di�erent concentrations, the curves σ0(ε) are
very close. Therefore, the evolution of the plastic �ow causes actual stresses to become
aligned for the systems with di�erent �ller concentration. There is a two-fold di�erence
in Youngâ��s modulus (85 MPa for un�lled polyethylene versus 170 MPa for 15% �ller
polyethylene). It has been found that incorporation of needle-like �ller into the polymer
reinforces the material much more strongly than in the case of conventional micro-sized
�ller. For instance, considering the appropriate concentration obtained by Farris [6] and
supposing that the �ller density is approximately twice as much as that of the matrix (15%
by weight corresponds to the 7.6% by volume), an 1.5 fold increase in the modulus of the
polymer �lled with conventional micro-particles could be expected.
Microstructural analysis. Despite the fact that the �ller is well seen in the maps of me-
chanical properties (Fig. 1), the polymer-�ller interface has never been contrast, yet it has
a certain slope up to several tens of nanometers wide. This can be attributed to the fact
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Figure 2: Stress-strain curves obtained for samples tested under uniaxial stretching
for �ller weight fractions: 1 � 0, 2 � 5, 3 � 10, and 4 � 15.

that some portion of the �ller lies hidden under the polymer surface, as well as to the fact
that the probe slips over the edge of the �ller inclusion. For a quantitative analysis of the
�ller structure, especially the thickness of palygorskite needles, the criteria for belonging
of a certain point in the AFM image to polymer or �ller need to be de�ned. Figure 3
presents the histograms of indentation depth corresponding to the maps given in Fig. 1.
For 2.3 nm depth indentation, the distribution histograms for materials with 10 and 15%

Figure 3: Distribution histograms of indentation depth for the surfaces depicted in
Fig. 1. Filler fraction: (a): � 5%, (b) -â�� 10%, (c) � 15 % wt.

�ller content exhibit a local maximum (Fig. 3b, c). A similar pattern was observed for the
rest of the images obtained for these materials. Such a pronounced local maximum was
not observed for the material with 5% of �ller content because of the low �ller fraction.
Let us assume that in all the images the indentation depth ≤ 2.3 nm corresponds to the
�ller. Figure 4 shows �ller silhouettes isolated in Fig. 1. Further the structural analysis

Figure 4: Fig. 4. Filler silhouettes (Fig. 1).
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of black-and-white images was carried out. For each material, several hundreds of needles
were explored. The average thickness of �ller inclusions 27 nm was the same for all ma-
terials, and the average length was equal to 0.63, 0.50 and 0.56 microns for di�erent �ller
concentration. Long needles up to 1.8 microns long were also observed. Palygorskite is
able to form in the material secondary structures in the form of multiple stacks of needles
arranged in parallel and in close proximity to one another (Fig. 5). It is not always possible

Figure 5: Sti�ness map for the material with 10 % of �ller. The formation of
secondary structures having the form of parallel needles (black lines) is shown. The
lamellar structure of polyethylene (gray �laments) is visible.

to unambiguously identify the boundaries of individual needles in agglomerates. This may
cause an overestimation of the length and thickness of the objects to be measured. The
study of the microstructure of the stretched materials reveals that some needles become
wavy shaped (see. Fig. 6a, the axis of elongation is vertical). Apparently, this is due to
the non-uniform local deformation of polyethylene and/or the compression of the material
in the direction orthogonal to its elongation. Figure 6a shows dense inclusions with round
surfaces (shown in boxes) that have good adhesion with a polymer. Inclusions that look
like �at tablets are also encountered in the material; the delamination of the polymer, i.e.
microcrack nucleation, can be observed near such inclusions (Fig. 6b). An increase in

Figure 6: AFM-height images and the corresponding indentation maps of the 10%
�lled material at 100% tension; the arrows (a) point to the wavy structure of paly-
gorskite; the frames (b) indicate the detachment of the polymer near the large and
�at inclusions.

elongation causes the surfaces of the material to become su�ciently inhomogeneous - the
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oriented structure of polymer heterogeneities appears on the surface of polyethylene, and
the e�ects observed (palygorskite waving, delaminations) are strengthened.

5 Conclusions
The structure and mechanical properties of polyethylene �lled with silicate needle �ller
(palygorskite) have been studied. Compared to the un�lled polymer, such composites
have improved resistance to combustion, i.e. they are less in�ammable and toxic.It has
been found that the addition of the �ller results in a roughly two-fold increase in the initial
elastic modulus. At the stage of the plastic �ow the mechanical properties of the material
di�ered only slightly. Therefore, it has to be emphasized that the mechanical properties
of the material did not worsen. The analysis of the polymer microstructure indicates that
some �ller needles form in the material secondary structures in the form of stacks. The
average thickness of a palygorskite needle is 27 nm, and its length is 0.6 microns. As the
stretch of the composite increases, the shape of inclusions becomes wavy.
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Abstract

We performed numerical studies of hydroelastic vibration and wave pro-
cesses which included two approaches: one solving coupled problems in AN-
SYS CFX software package, and another using national algorithm for solving
problems of hydroelasticity stated as a couple. In ANSYS CFX package we
obtained results of computational modelling of cavitation e�ect caused by vi-
brations of the wall in a closed type (return-�ow) pipe �lled with �uid. We
revealed the dependence between the cavitation parameters and the vibration
parameters. We also constructed the domain (range) of in�uence of ampli-
tudes and frequencies of vibration upon concentration of cavitation bubbles.
At the second stage of the studies we developed standardized algorithm for
solving problems of dynamic hydroelasticity, worked out the model problem of
piston motion of piston in the closed type pipe, and conducted a comparative
analysis of numerical and analytical solutions of the model problem.

Introduction

Unpredictable failures in the course of operation of hydraulic automatic equipment of
aircraft engines occur increasingly often. To predict them is a di�cult and time-consuming
task. It is true that failures may be related to the drastic increase of operation noise
generated by hydraulic systems of aircraft engines, and therefore it might be suggested
that they are brought about by cavitation e�ects in the pipelines caused by vibrations
of the component walls. This paper is concerned with the possibility of modelling the
cavitation e�ect during the operation of hydraulic automatic equipment.
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1 Solution of the Problem in ANSYS CFX Software
Package

Physical Model

To carry out computing experiments we developed a physical model which proposed a
three-dimensional statement. In doing so, we took a pipe as the computation domain,
compressible �uid (water) as the actuating medium, and sinusoidally movable wall as the
loading; assumed that the �ow was multiphase (consisting of water as carrier phase, and
air as carried phase), the process was adiabatic, and the pipe walls were impenetrable and
smooth, and accepted standard ke model of turbulence.

Mathematical Model

In accordance with the accepted physical model, we used a mathematical model based on
the mass, momentum and energy conservation laws, and implemented within ANSYS CFX
reverse engineering system. It re�ected the convection-di�usion transfer of components to
be mixed and turbulent �ow. The set of equations was enclosed by the initial and boundary
conditions. [1]
The �nite volume method implemented in ANSYS CFX software package was chosen to
solve the original set of equations.

Solid Model and Setting of Initial and Boundary
Conditions

The computational domain was divided into �nite volumes (400,000 cells). Figure 1 shows
the solid model and boundary conditions. The following initial conditions were set: V = 0
m / s; P = 0.1 MPa; T = 293 K; ρw = 1000kg/m3.
The boundary condition adopted for the walls of chamber was "sti� or rigid wall" when
the normal velocity component at the boundary was equal to 0. The boundary condition
adopted for the mobile body was �movable wall� when the normal velocity component at
the boundary was set by equation V = V0sin(ωt), where V � �ow or �uid velocity, V0 �
wall velocity amplitude, ω � oscillation frequency, and t � time. [2] - [5]

Figure 1: Boundary Conditions and Computational Grid

The time step was set at 5 · 10−4 sec, and the number of iterations for each calculation did
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not exceed 2000. Therefore, each of the options was studied on the real-time interval from
0 to 1 sec. The calculation time was 4 . . . 5 hours.

Analysis of the Results of Computing Experiments

The plan of computing experiments envisaged that V0 varied in the range 0.001 . . . 10m/sec
and ω - in the range 500 . . . 4000 Hz. All calculations were made on the basis that the initial
pressure within an enclosure was 1 MPa at an initial temperature (T) of 200C.
In accordance with the plan, di�erent values of carried phase concentration were derived
from the results of computing experiments.
According to the calculations based on all options of set boundary conditions, we obtained
a certain area of cavitation arising due to vibration at various combinations of frequencies
and wall velocity amplitudes. In Fig. 2: x-axis is used to specify the change in the speed
of oscillation, y-axis to specify the change in the frequency of oscillation, and z-axis � the
change in the mass content of carried phase. [6]

Figure 2: Area of Cavitation Due to Vibration

The analysis of the results revealed a maximum corresponding to the frequency of 2000Hz.
As the frequency of vibration increased or decreased the concentration decreased. The wall
velocity amplitude corresponding to the maximum concentration of the carried phase was
0.1m/sec, and as it increased or decreased the concentration decreased as well.

2 Development and Implementation of Standard-
ized Algorithm Based on the Particle-in-Cell
Method

At present, with current sanctions against Russia, this is particularly important to develop
national algorithms for solving complex interdisciplinary problems, including hydroelastic-
ity.
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Physical Model
We developed the physical model that enabled the processes occurring in structure and
in �uid to be stated dynamically in two-dimensions; for that purpose, we assumed that
the structure was multilayered and made of elastic material; the �uid was compressible
and remained in contact with the movable wall; and the pipe walls were impenetrable,
impermeable, not heat conducting and smooth; and took no account of gravity.

Mathematical Model
In accordance with the accepted physical model, we constructed a mathematical model
of hydrodynamic process based on the mass, momentum and energy conservation laws,
control of compressible �uid state, and initial and boundary conditions recorded with due
regard for sti�ness of loading system.
Mathematical model of deformable structure also included the mass and momentum con-
servation laws, and was enclosed by Cauchy equations, generalized Hooke�s law, and initial
and boundary conditions recorded with due regard for sti�ness of loading system.
To develop the original system of di�erential equations we chose one of the methods of
�nite di�erences - the particle-in-cell method.

Standardized Algorithm for Solving Problems of Dy-
namic Hydroelasticity
Based on the chosen method we developed the algorithm which included several stages
(Figure 3). The initial stages were designed to solve the hydrodynamic problem, whereas
the subsequent stages were meant to estimate parameters of the dynamic stress-strain state
(SSS) or tensely deformed condition (TDC) of structure. [7]

Figure 3: Standardized Algorithm for Solving Problems of Dynamic Hydroelasticity

First, we described the initial conditions and produced a computational grid in the �eld
of solution for both �uid and structure. Then, we formed the boundary conditions for the
�uid with due regard for the loading system, and then focused on three successive stages.
At the Eulerian stage we neglected all e�ects associated with the movement of unit cell
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(when there was no mass �ow through the cell borders), and took into account the e�ects
of material acceleration only through pressures; here we determined intermediate values of
the desired �ow conditions (characteristics) for a large particle. At the Lagrangian stage
we calculated the mass �ows crossing the borders of the Eulerian cells. At the �nal stage,
at a new moment we determined the �nal values of the �ow conditions (characteristics)
for each cell, and for the entire system on the �xed computational grid. The obtained
parameters of hydrodynamic �ow were used as the initial data for the subsequent time
step and were included in the calculations of the boundary conditions to estimate the
dynamic stress-strain state (SSS) or tensely deformed condition (TDC) of structure.
Further, the same three stages were sequentially performed for the structure. The following
stages were new from the viewpoint of traditional approaches to the particle-in-cell method
and included algorithms to determine the movements, strains and stresses at each time step.
That completed the computing cycle of one time step, and the results of calculation at that
time step provided a baseline for the next one.
The use of this standardized algorithm for simultaneous solution of hydrodynamic problem
and calculation of parameters of the stress-strain state of the structure is an innovation
and makes it possible to study and reveal the physical entity of the occurrence and course
of abnormal unpredictable hazardous processes and phenomena in case of the nonlinear
interaction in the dynamic system using the united methodological tools. This will allow
�nding ways to ensure operability of expensive high-tech structures yet at the design stage.

Analysis of the Results of Model Problem Solution

Testing of the proposed algorithm for solving problems of dynamic hydroelasticity was
conducted in MARS domestic package for the model problem �about the motion of piston
in the �uid �lled pipe�. Design scheme is presented in Figure 4.

Figure 4: Design Scheme

The following initial conditions were set: L = 0.5m � the pipe length; Pin = 450 · 106Pa �
internal �uid pressure; V = 10m/sec � the speed of piston; ρw = 1000kg/m3 � the liquid
density; K = 5.0 � �uid adiabatic exponent. In this case, at this stage the structure is not
deformable (strained), but this may be considered in future.
Upon starting, the wave of compression will move ahead of the piston at a speed of N1 in
a medium at rest (�uid at rest). Once it reaches the wall, the direct wave will re�ect from
the wall, and the re�ected wave will propagate at a speed of N3 in the direction opposite
to that of the moving �uid (Figure 5.). [8]

Figure 5: Direct and Re�ected Waves
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Results of the solution of model problem for the direct wave are given in Figure 6. The �g-
ure shows that the front of direct wave has run halfway along the pipe length. Downstream
the wave front there are oscillations caused by numerical e�ects.

Figure 6: Change in Hydrodynamic Parameters along the pipe length, at t = 0.16 ·
10−3sec, a. � pressure b. � speed c. � density

Subsequently, after the re�ection these e�ects disappear. Results of the solution of model
problem of the re�ected wave are shown in Figure 7.

Figure 7: Change in Hydrodynamic Parameters along the pipe length, at t = 0.57 ·
10−3sec, a. � pressure b. � speed c. � density

To verify the obtained numerical solutions analytical calculations for this model problem
were made with the use of known analytical dependences.
Table 1 gives the results of comparison between numerical and analytical solutions in the
following parameters: P1, ρ1 � pressure and density of the direct wave, respectively; X1

�displacement of the front of direct shock wave from the original position; N1 � speed of
the front of direct wave; P3, ρ3 � pressure and density of the re�ected wave, respectively;
X3 � displacement of the front of re�ected wave from the original position; N3 � speed of
the front of re�ected wave.
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Table 4: Comparison between Numerical and Analytical Solutions

Controlled Parameters Results of Numerical Solution Results of Analytical Solution
P1,Pa 465 · 106 465 · 106

ρ1, kg/m3 1006,6 1006,6
X1, m 0,24 0,24

N1, m/sec 1515 1515
P3, Pa 480, 6 · 106 480, 6 · 106

ρ3, kg/m3 1013,3 1013,3
X3, m 0,36 0,36

N3, m/sec 1525 1525

The comparative analysis of numerical and analytical solutions has shown that the results
of solutions agree very closely. There is a "smearing" of the shock wave front associated
with the schematic viscosity.

Conclusions

1. We have carried out the studies using two approaches: on the basis of the solution of
the coupled problem in ANSYS CFX commercial package and MARS domestic package,
and solved hydroelasticity problems stated as a couple.
2. We have constructed physical and mathematical models for computing experiment
and performed numerical computations. We have discovered and constructed the area of
cavitation brought about by vibration, and have revealed that the cavitation e�ect was
maximized at certain combinations of amplitudes and frequencies of oscillations.
3. To develop national algorithm for solving coupled problems of dynamic hydroelasticity
we have constructed physical and mathematical models, and have developed standard-
ized algorithm. We have solved the model problem of dynamic hydroelasticity stated in
one dimension. We have made analytical calculations and comparative analysis with the
numerical solution. It has shown that their results agree very closely.
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Abstract

This paper presents a rational approach to the problem of kinematic dynamos
in spherical cavities and the related induction equation. An operator notation us-
ing poloidal-toroidal decompositions is developed in order to analyze the governing
differential equation. A solution of the induction equation is sought by using series
expansions. Applying projection methods leads to a fully analytic system of differential
equations in one coordinate, i.e., the radius, for the series coefficients.

1 Introduction

Larmor proposed in 1919 that the magnetic field of large astronomical objects, such
as the Earth or the Sun, is generated by fluid flow in the interior. This is due to self-
excitation processes caused by coupling of fluid- and electromagnetic fields, cf., [11]. The
coupling is described by additional terms in Maxwell’s equations and the equation of
linear momentum. The transfer of kinetic energy to electromagnetic energy can lead to an
amplification of the magnetic field. This process is a.k.a. dynamo action.

(a) Before dipole reversal. (b) After dipole reversal.

Figure 1: Simulation of a geodynamo in reversal by Glatzmaier, from [6]. Magnetic field
lines are shown. Blue/yellow colors indicate the field is directed inward/outward.
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vacuum

𝜎 = 0
𝑣 = 0

𝜎 ̸= 0

𝑅E

𝑣 ̸= 0

𝑟 → ∞

matter

𝑂

Figure 2: Sketch of the considered problem.

By paleomagnetic investigations, it is known that the Earth’s magnetic field is reversing,
i.e., changing its polarity, cf., [11]. In order to understand and predict the magnetic
field’s reversal, the so-called geodynamo is used as a modell. A geodynamo simulation by
Glatzmaier illustrating the field reversal is shown in Fig. 1. The origin of the Earth’s
magnetic field and its reversal is a topic of past and current research. Some aspects of it
will be presented in this paper.

2 Induction equation—derivation and discussion
The considered model problem is sketched in Fig. 2. It consists of a spherical cavity
filled with a conducting fluid surrounded by vacuum. The governing field equations of
electrodynamics of the problem are given by Maxwell’s equations. Suppose the fluid is
neither polarizable, i.e., 𝑃 = 0, nor magnetizable, i.e., 𝑀 = 0. In an inertial frame of
reference the field equations and related jump conditions read:

∇ · 𝐵 = 0 , [[𝐵]] · 𝑒 = 0 , (1a)
𝜕𝐵

𝜕𝑡
+ ∇ × 𝐸 = 0 , [[𝐸]] × 𝑒 + [[𝐵]]𝑤⊥ = 0 (1b)

𝜀0∇ · 𝐸 = 0 , 𝜀0 [[𝐸]] · 𝑒 = 𝑞
𝐴

f , (1c)

𝜀0
𝜕𝐸

𝜕𝑡
− 1
𝜇0

∇ × 𝐵 = −𝐽 f , − 1
𝜇0

[[𝐵]] × 𝑒 + 𝜀0 [[𝐸]]𝑤⊥ = 𝐽
𝐿

f . (1d)

Note that the Maxwell-Lorentz aether relations have already been inserted in the
system above. Moreover, Ohm’s law for a moving conductor has been used as a constitutive
law. Hence, for the diffusive current 𝑗f we have, cf., [8]:

𝑗f = 𝜎 (𝐸 + 𝑣 × 𝐵) . (2)

After performing a scaling analysis and by assuming ||𝑣|| ≪ 𝑐 it may be shown that, cf., [9],

𝒪
(︂
𝜀0
𝜕𝐸

𝜕𝑡

)︂
≪ 𝒪

(︂ 1
𝜇0

∇ × 𝐵

)︂
, 𝒪

(︁
𝑞f𝑣
)︁

≪ 𝒪
(︂ 1
𝜇0

∇ × 𝐵

)︂
, (3)

where the Landau symbol 𝒪 indicates the order of magnitude. This shows that the
convective current is negligibly small w.r.t. the left-hand right of (1d). Hence, the total
current 𝐽 f is given by the diffusive Ohmic current 𝑗f only. Application of Eqns. (2) and
(3) to Eqn. (1d) leads to:

1
𝜇0

∇ × 𝐵 = 𝜎 (𝐸 + 𝑣 × 𝐵) ⇔ 𝐸 = 1
𝜎𝜇0

∇ × 𝐵 − 𝑣 × 𝐵 . (4)
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This analysis is part of the so-called magnetohydrodynamic approximation. If, in addition,
we assume that the conductivity 𝜎 is constant, which corresponds to a homogeneous
conductor, the induction equation is obtained by expressing the curl of the electric field 𝐸
in Eqn. (1b) through Eqn. (4). Hence, the induction reads, cf., [9]:

𝜕𝐵

𝜕𝑡
+ 1
𝜎𝜇0

∇ × ∇ × 𝐵 = ∇ × (𝑣 × 𝐵) . (5)

This equation can be interpreted as an evolution equation for the magnetic field 𝐵. The
velocity 𝑣 is present in the equation above. Consequently, the velocity influences the
evolution of the magnetic flux density. From mechanics it is known that the evolution of
the velocity is described by the balance of linear momentum. This shows that the equation
above can, in general, only be solved in combination with the balance of linear momentum.
In this paper we consider so-called kinematic dynamos, which indicates that the velocity
field is prescribed. Therefore, the balance equations of mechanics are not considered any
further.

In what follows we consider the non-dimensional form of the induction equation. It
reads:1

𝜕𝐵

𝜕𝑡
+ ∇ × ∇ × 𝐵 = Remag.∇ × (𝑣 × 𝐵) , (6)

in which Remag. is the so-called magnetic Reynolds number. The magnetic Reynolds
number relates electromagnetic diffusion to fluid-dynamic transport. For a static velocity
field the induction equation can be formulated as a generalized eigenvalue problem. A
solution ansatz in exponential form in time leads to:

𝜆𝐵 + ∇ × ∇ × 𝐵 = Remag.∇ × (𝑣 × 𝐵) , (7)

in which 𝐵 is a function of space variables only and 𝜆 is the eigenvalue. Eigenvalues with
positive/negative real part indicate exponential growth/decay of the related eigenmode 𝐵.
Static solutions both for the magnetic and for the velocity field correspond to 𝜆 = 0. An
exponential growth indicates an amplification of a so-called seed field by a given fluid flow.
This would demonstrate that dynamo action may be possible.

In order to solve the eigenvalue problem, boundary conditions for the magnetic field
at the boundary between the material interior and vacuous exterior, i.e., at 𝑟 = 1, are
necessary. It can be shown that for the case of a fixed boundary, 𝑤⊥ = 0, a continuous
transition of the magnetic field results. Hence,

[[𝐵]] = 0 . (8)

In the presented model the cavity is the only source. Therefore, in the exterior, which is
under vacuum, electromagnetic waves travel from the boundary on to infinity. Because
of the fact that for the source, i.e., the material interior, the magnetohydrodynamic
approximation applies, it also holds for the exterior. In doing so the wave character of
the fields is broken. Applying the magnetohydrodynamic approximation to Maxwell’s
system in vacuum gives:

∇ · 𝐵 = 0 , ∇ × 𝐵 = 0 . (9)
1The choice of reference quantities, i.e., reference length, velocity, and magnetic flux density, inherently

determines the form of the non-dimensional induction equation. Other reference quantities may lead to
Re−1

mag. in front of the double-curl term.
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The solution of these equations is given by a scalar potential 𝜓 describing the spatial
behavior of the magnetic field. The time dependence is given by the source, i.e., the
material interior. The potential is obtained through Laplace’s equation and in spherical
coordinates its gradient, which is nothing else but the magnetic field, is given by the series:

𝐵 (𝑡, 𝑟, 𝜃, 𝜙) =
∞∑︁

𝑛=0
𝑟−(𝑛+2)

𝑛∑︁
𝑚=−𝑛

𝑐𝑚
𝑛 (𝑡) (− (𝑛+ 1)𝑌 𝑚

𝑛 (𝜃, 𝜙) 𝑒𝑟 + ∇𝜃,𝜙𝑌
𝑚

𝑛 ) . (10)

In conclusion, the exterior solution is determined up to time-dependent series coefficients
𝑐𝑚

𝑛 , which can be determined by the boundary condition discussed above.

3 Spherical harmonics and poloidal-toroidal decompositions

3.1 Properties of spherical harmonics

We introduce the scalar or inner product of two arbitrary functions 𝑓 and 𝑔 on a spherical
surface of radius 𝑟 as:

⟨𝑓, 𝑔⟩𝜕𝐵𝑟
:=

"

𝜕𝐵𝑟

𝑓 (𝑥) 𝑔 (𝑥) 1
||𝑥||2

d𝐴 =
2𝜋ˆ

0

�̂�

0

𝑓 (𝑟, 𝜃, 𝜙) 𝑔 (𝑟, 𝜃, 𝜙) sin (𝜃) d𝜃 d𝜙 . (11)

In the context of the Helmholtz equation spherical harmonics 𝑌 𝑚
𝑛 occur as the angular

part of the solution. In this paper complex spherical harmonics are used and defined by:

𝑌 𝑚
𝑛 (𝜃, 𝜙) := 𝑁𝑚

𝑛 exp (i𝑚𝜙)𝑃 |𝑚|
𝑛 (cos (𝜃)) . (12)

The symbol 𝑃 |𝑚|
𝑛 represents the associated Legendre polynomials. As an example two

spherical harmonics are plotted in Fig. 3. If the normalization factor 𝑁𝑚
𝑛 is chosen
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Figure 3: Plot of spherical harmonics 𝑌 𝑚
𝑛 .

appropriately, the spherical harmonics constitute an orthonormal system with respect to
the scalar product defined above. Accordingly, the following relation holds:⟨

𝑌 𝑚
𝑛 , 𝑌 𝑜

𝑝

⟩
𝜕𝐵𝑟

= 𝛿𝑚𝑜𝛿𝑛𝑝 . (13)
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This orthogonality relation allows for a series expansion of scalar functions in spherical
harmonics. In general, the series coefficients may be radially dependent. By further
inspection of the Helmholtz equation it can be shown that the spherical harmonics
represent the eigenfunctions of the Laplace operator on a spherical surface, viz.:

Δ𝜃,𝜙𝑌
𝑚

𝑛 = −𝑛 (𝑛+ 1)𝑌 𝑚
𝑛 (𝜃, 𝜙) . (14)

3.2 Poloidal-toroidal decomposition

It can be shown that every solenoidal, i.e., divergence-free, vector field 𝐹 can be further
decomposed in a toroidal vector field 𝑀2 and a poloidal vector field 𝑁 , cf., [12]. Thus, we
may write for arbitrary 𝐹 obeying ∇ · 𝐹 = 0:

𝐹 = 𝑀 + 𝑁 . (15)

In spherical coordinates, the summands are given by a series of spherical harmonics, i.e.:

𝑀 =
∞∑︁

𝑛=0

𝑛∑︁
𝑚=−𝑛

𝑚𝑚
𝑛 , 𝑁 =

∞∑︁
𝑛=0

𝑛∑︁
𝑚=−𝑛

𝑛𝑚
𝑛 . (16)

The so-called toroidal and poloidal modes are given by:

𝑚𝑚
𝑛 := ∇ × [𝑟𝑚𝑚

𝑛 (𝑟)𝑌 𝑚
𝑛 (𝜃, 𝜙) 𝑒𝑟] = 𝑚𝑚

𝑛 (𝑟) 𝒟𝜃,𝜙[𝑌 𝑚
𝑛 ] , (17a)

𝑛𝑚
𝑛 := ∇ × ∇ × [𝑟𝑛𝑚

𝑛 (𝑟)𝑌 𝑚
𝑛 (𝜃, 𝜙) 𝑒𝑟]

= 𝑛 (𝑛+ 1)
𝑟

𝑛𝑚
𝑛 (𝑟)𝑌 𝑚

𝑛 (𝜃, 𝜙) 𝑒𝑟 +𝐷(1)
𝑟 [𝑛𝑚

𝑛 ] ∇𝜃,𝜙𝑌
𝑚

𝑛 .

(17b)

The symbol ∇𝜃,𝜙 represents the gradient on a spherical surface.3 Moreover, the operators
introduced in the equations above are defined as follows:

𝒟𝜃,𝜙[𝑓 ] := 1
sin (𝜃)

𝜕𝑓

𝜕𝜙
𝑒𝜃 − 𝜕𝑓

𝜕𝜃
𝑒𝜙 , 𝐷(1)

𝑟 [𝑓 ] := 1
𝑟

d
d𝑟 [𝑟𝑓 (𝑟)] . (18)

The special choices for the toroidal and poloidal fields are motivated by the problem of the
vectorial Helmholtz equation, cf., [5]. As an example, a toroidal vector field is shown in
Fig. 4b.

3.3 Orthogonality of toroidal and poloidal vector fields

The orthogonality of toroidal and poloidal vector fields is analyzed below with respect to
the inner product of two arbitrary vector fields 𝑓 and 𝑔:

⟨𝑓 , 𝑔⟩𝜕𝐵𝑟
:=

"

𝜕𝐵𝑟

𝑓 (𝑥) · 𝑔 (𝑥) 1
||𝑥||2

d𝐴 = 1
𝑟2

"

𝜕𝐵𝑟

𝑓 (𝑥) · 𝑔 (𝑥) d𝐴 . (19)

We consider the operators ∇𝜃,𝜙 and 𝒟𝜃,𝜙. By using the product rule for the divergence,
we may write:

∇𝜃,𝜙𝑓 · 𝒟𝜃,𝜙[𝑔] = ∇𝜃,𝜙 · (𝑓𝒟𝜃,𝜙[𝑔]) − 𝑓∇𝜃,𝜙 · 𝒟𝜃,𝜙[𝑔] . (20)
2For reasons of notation we use 𝑀 for toroidal field. This symbol does not represent the magnetization.
3The gradient of a function 𝑓 on a spherical surface is given by:

∇𝜃,𝜙𝑓 = 𝜕𝑓

𝜕𝜃
𝑒𝜃 + 1

sin (𝜃)
𝜕𝑓

𝜕𝜙
𝑒𝜙 .
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After a simple calculation we conclude that:

∇𝜃,𝜙 · 𝒟𝜃,𝜙[𝑔] = 1
sin (𝜃)

(︃
𝜕

𝜕𝜃

(︂
sin (𝜃) 1

sin (𝜃)
𝜕𝑔

𝜕𝜙

)︂
− 𝜕2𝑔

𝜕𝜙𝜕𝜃

)︃
= 0 . (21)

Hence, the scalar product of the considered operators is:

⟨∇𝜃,𝜙𝑓,𝒟𝜃,𝜙[𝑔]⟩𝜕𝐵𝑟
= 1
𝑟2

"

𝜕𝐵𝑟

∇𝜃,𝜙 · (𝑓𝒟𝜃,𝜙[𝑔]) d𝐴 = 0 . (22)

In the last step Gauss’ integral theorem was applied to a closed surface, see [4]. Then the
boundary integral vanishes because the field of integration is an empty set. By using the
product rule and Gauss’ integral theorem, we may write:

⟨
∇𝜃,𝜙𝑌

𝑚
𝑛 ,∇𝜃,𝜙𝑌

𝑜
𝑝

⟩
𝜕𝐵𝑟

= 1
𝑟2

"

𝜕𝐵𝑟

(︁
∇𝜃,𝜙 ·

(︁
𝑌 𝑚

𝑛 ∇𝜃,𝜙𝑌 𝑜
𝑝

)︁
− 𝑌 𝑚

𝑛 Δ𝜃,𝜙𝑌 𝑜
𝑝

)︁
d𝐴

= 𝑝 (𝑝+ 1)
⟨
𝑌 𝑚

𝑛 , 𝑌 𝑜
𝑝

⟩
𝜕𝐵𝑟

. (23)

This shows that the pairwise orthogonality of the operator ∇𝜃,𝜙 is reduced to the orthog-
onality of the spherical harmonics. The same holds for the operator 𝒟𝜃,𝜙. Because of
the orthogonality of the constitutive operators and spherical harmonics the toroidal and
poloidal modes constitute a fully orthogonal set. Hence, in spherical coordinates every
solenoidal vector field may be expanded in these orthogonal components, cf., [12].

4 Projection method
In this section we apply the so-called projection method to the induction equation, i.e.,
the eigenvalue problem (7). This procedure is also presented in [2]. We suppose that the
material is compressible. Hence, ∇ · 𝑣 = 0 and the velocity may be expanded in toroidal
and poloidal vector fields as well, cf., [2, 4]. We write the magnetic and the velocity field
such that:

𝐵 =
∞∑︁

𝑗=0

𝑗∑︁
𝑖=−𝑗

(︁
𝑚𝑖

𝑗 + 𝑛𝑖
𝑗

)︁
, 𝑣 =

∞∑︁
𝑙=0

𝑙∑︁
𝑘=−𝑙

(︁
𝑜𝑘

𝑙 + 𝑝𝑘
𝑙

)︁
, (24)

where 𝑜𝑘
𝑙 /𝑝𝑘

𝑙 represent the toroidal/poloidal modes similar to Eqn. (17). As an example,
Fig. 4 shows a prescribed toroidal velocity field. We define the so-called toroidal/poloidal
filters �̃�𝑚

𝑛 , �̃�𝑚
𝑛 as:

�̃�𝑚
𝑛 := 𝒟𝜃,𝜙[𝑌 𝑚

𝑛 ] , �̃�𝑚
𝑛 := 𝑛 (𝑛+ 1)

𝑟
𝑌 𝑚

𝑛 (𝜃, 𝜙) 𝑒𝑟 . (25)

Due to the orthogonality of toroidal and poloidal fields or rather their constitutive operators,
the scalar product of the magnetic field and the toroidal/poloidal filters gives:

⟨𝐵, �̃�𝑚
𝑛 ⟩𝜕𝐵𝑟

= 𝑗 (𝑗 + 1)𝑚𝑖
𝑗 (𝑟) 𝛿𝑖𝑚𝛿𝑗𝑛 , (26a)

⟨𝐵, �̃�𝑚
𝑛 ⟩𝜕𝐵𝑟

= 𝑗2 (𝑗 + 1)2

𝑟2 𝑛𝑖
𝑗 (𝑟) 𝛿𝑖𝑚𝛿𝑗𝑛 . (26b)

This operation is called the projection onto a toroidal or rather poloidal mode. The
Kronecker-𝛿-property may be interpreted as a fully decoupled term. Note that by virtue
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(a) Magnitude in the 𝑥-𝑧-plane. (b) Toroidal vector field on a spherical surface of
radius 1/

√
2. Colors indicate magnitudes.

Figure 4: Toroidal velocity field with radial function 𝑟2 (︀1 − 𝑟2)︀2. Vortices indicate a
complex 3D fluid flow inside the spherical cavity.

of construction the curl of a toroidal field is a poloidal field and vice versa. It follows that
the double curl of either a toroidal or poloidal field is again a toroidal or poloidal field.
The projection of the double curl term in equation (7) gives:4

⟨∇ × ∇ × 𝐵, �̃�𝑚
𝑛 ⟩𝜕𝐵𝑟

= 𝑗 (𝑗 + 1)
(︃
𝑗 (𝑗 + 1)

𝑚𝑖
𝑗 (𝑟)
𝑟2 −𝐷(2)

𝑟

[︁
𝑚𝑖

𝑗

]︁)︃
𝛿𝑖𝑚𝛿𝑗𝑛 , (27a)

⟨∇ × ∇ × 𝐵, �̃�𝑚
𝑛 ⟩𝜕𝐵𝑟

= 𝑗2 (𝑗 + 1)2

𝑟2

(︃
𝐷(2)

𝑟

[︁
𝑛𝑖

𝑗

]︁
− 𝑗 (𝑗 + 1)

𝑛𝑖
𝑗 (𝑟)
𝑟2

)︃
𝛿𝑖𝑚𝛿𝑗𝑛 . (27b)

Since the Kronecker-𝛿-property applies again, the double terms do not cause a coupling
of the modes.

4.1 Velocity dependent terms

The remaining term in Eqn. (7) is the velocity dependent term. The more complicated
nature of this term necessitates a stepwise procedure using operator notation:

1. Exploit linearity of the cross product, the curl, as well as the scalar product;
2. Calculate the cross products (4 terms);
3. Calculate the curl of the cross products (4 terms);
4. Apply the projection to these 4 terms (8 terms).

The resulting terms contain non-linear expressions in terms of spherical harmonics and the
operators introduced above. As an example we have:

∇ ×
(︁
𝑜𝑘

𝑙 × 𝑚𝑖
𝑗

)︁
=
𝑜𝑘

𝑙 (𝑟)𝑚𝑖
𝑗 (𝑟)

𝑟
𝒟𝜃,𝜙

[︁
𝒟𝜃,𝜙

[︁
𝑌 𝑘

𝑙 , 𝑌
𝑖

𝑗

]︁]︁
, (28a)

4The operator 𝐷
(2)
𝑟 is defined through the recurrence relation:

𝐷(𝑛)
𝑟 [𝑓 ] = 𝐷(1)

𝑟

[︀
𝐷(𝑛−1)

𝑟 [𝑓 ]
]︀

, 𝑛 ∈ N .
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where the anti-symmetric operator 𝒟𝜃,𝜙 is defined as:

𝒟𝜃,𝜙[𝑓, 𝑔] := 𝜕𝑓

𝜕𝜃

𝜕𝑔

𝜕𝜙
− 𝜕𝑓

𝜕𝜙

𝜕𝑔

𝜕𝜃
. (28b)

These non-linearities disturb the Kronecker-𝛿-property and lead to a coupling of modes.
After extensive calculations and application of additional theorems concerning the operators
and so-called triple product integrals it can be shown that the coupling structure is governed
by the so-called Adams-Gaunt- and Elsasser-integrals 𝐾𝑖𝑘𝑚

𝑗𝑙𝑛 and 𝐿𝑖𝑘𝑚
𝑗𝑙𝑛 . These integrals

are defined as:

𝐾𝑖𝑘𝑚
𝑗𝑙𝑛 :=

"

𝜕𝐵𝑟

𝑌 𝑖
𝑗 𝑌

𝑘
𝑙 𝑌

𝑚
𝑛

1
𝑟2 d𝐴 , (29a)

𝐿𝑖𝑘𝑚
𝑗𝑙𝑛 :=

"

𝜕𝐵𝑟

𝒟𝜃,𝜙

[︁
𝑌 𝑖

𝑗 , 𝑌
𝑘

𝑙

]︁
𝑌 𝑚

𝑛

1
𝑟2 d𝐴 . (29b)

In the following, we demonstrate exemplary how the Elsasser-integral occurs. It may be
shown that for arbitrary functions 𝑓 and 𝑔:

𝒟𝜃,𝜙[𝑓 ] · 𝒟𝜃,𝜙[𝑔] = ∇𝜃,𝜙𝑓 · ∇𝜃,𝜙𝑔 . (30a)

By applying Gauss’ integral theorem analogously to Eqn. (23) and using Eqn. (14), we
obtain:"

𝜕𝐵𝑟

∇𝜃,𝜙

(︁
𝒟𝜃,𝜙

[︁
𝑌 𝑘

𝑙 , 𝑌
𝑖

𝑗

]︁)︁
· ∇𝜃,𝜙𝑌 𝑚

𝑛

1
𝑟2 d𝐴 =

"

𝜕𝐵𝑟

𝒟𝜃,𝜙

[︁
𝑌 𝑘

𝑙 , 𝑌
𝑖

𝑗

]︁
Δ𝜃,𝜙𝑌 𝑚

𝑛

1
𝑟2 d𝐴

= −𝑛 (𝑛+ 1)
"

𝜕𝐵𝑟

𝒟𝜃,𝜙

[︁
𝑌 𝑘

𝑙 , 𝑌
𝑖

𝑗

]︁
𝑌 𝑚

𝑛

1
𝑟2 d𝐴 . (30b)

Hence:⟨
𝒟𝜃,𝜙

[︁
𝒟𝜃,𝜙

[︁
𝑌 𝑘

𝑙 , 𝑌
𝑖

𝑗

]︁]︁
,𝒟𝜃,𝜙[𝑌 𝑚

𝑛 ]
⟩

𝜕𝐵𝑟

= −𝑛 (𝑛+ 1)
"

𝜕𝐵𝑟

𝒟𝜃,𝜙

[︁
𝑌 𝑘

𝑙 , 𝑌
𝑖

𝑗

]︁
𝑌 𝑚

𝑛

1
𝑟2 d𝐴 = 𝑛 (𝑛+ 1)𝐿𝑖𝑘𝑚

𝑗𝑙𝑛 . (30c)

This provides a brief insight into what manipulations are necessary to tackle the velocity
dependent terms. The operator notation presented in this paper turned out to be extremely
beneficial in context with the projection method. As an example for the components of
the velocity dependent terms, we present two expressions:⟨

∇ ×
(︁
𝑜𝑘

𝑙 × 𝑚𝑖
𝑗

)︁
, �̃�𝑚

𝑛

⟩
𝜕𝐵𝑟

= −𝐿𝑖𝑘𝑚
𝑗𝑙𝑛 𝑛 (𝑛+ 1)

𝑜𝑘
𝑙 (𝑟)𝑚𝑖

𝑗 (𝑟)
𝑟

, (31a)⟨
∇ ×

(︁
𝑝𝑘

𝑙 × 𝑚𝑖
𝑗

)︁
, �̃�𝑚

𝑛

⟩
𝜕𝐵𝑟

= −𝐿𝑖𝑘𝑚
𝑗𝑙𝑛 𝑙 (𝑙 + 1)𝑛 (𝑛+ 1)

𝑚𝑖
𝑗 (𝑟) 𝑝𝑘

𝑙 (𝑟)
𝑟3 . (31b)

Note that the first expression leads to a coupling of the toroidal mode 𝑚𝑖
𝑗 and other toroidal

modes. The second expression leads to a coupling of the toroidal mode 𝑚𝑖
𝑗 with other

poloidal modes. The existence of the coupling is governed by the prescribed velocity field.
The coupling structure is controlled by the Adams-Gaunt- and Elsasser-integrals, which
may be zero or non-zero depending on the index pairs. The values of the Adams-Gaunt-
and Elsasser-integrals may be attributed to the so-called Wigner-3𝑗- symbols, cf., [1, 13].
The Wigner-3𝑗-symbols obey so-called selection rules and may be numerically calculated
using recurrence relations, cf., [10].
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4.2 Boundary condition and projection method

In general, from this point on the kinematic dynamo problem is treated numerically by
using finite difference methods, cf., [2, 3, 7]. This requires consideration of the boundary
condition, i.e., Eqn. (8), in terms of the toroidal-poloidal decomposition. The boundary
conditions for the modes, i.e., the radial functions 𝑚𝑖

𝑗 and 𝑛𝑖
𝑗 respectively are obtained by

applying the projection method again. This is convenient since the exterior solution in
Eqn. (10) is determined up to a constant 𝑐𝑚

𝑛 . If the exponential solution ansatz is applied
to Eqn. (10) the factor 𝑐𝑚

𝑛 is no longer time dependent.

5 Conclusion
A rational approach to dynamo theory based on Maxwell’s equation was presented.
A scale analysis lead to the so-called induction equation, i.e., Eqn. (5). In this context
kinematic dynamos with a prescribed velocity were addressed in this paper. In case of an
exterior vacuum it was shown that the solution for the external magnetic is determined up
to a constant.

By using the toroidal-poloidal decomposition for the magnetic and velocity field and
by applying the projection method the induction equation was analytically converted to
a coupled system of ordinary differential equations. Since in the case of the kinematic
dynamo the velocity is prescribed, the unknowns of this system are given by the radial
functions 𝑚𝑖

𝑗 and 𝑛𝑖
𝑗 . The induction equation was therefore treated in a spectral sense

with respect. This paper presented a short insight on how the velocity dependent terms
need to be addressed mathematically.
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Abstract

Non-destructive evaluation of metals with residual stresses was performed
by the photoacoustic method. Main attention was paid to experimental inves-
tigations of areas inside Vickers and Rockwell indentations in metal samples
under external loading. It is shown that external normal and shear stresses
in�uence on the behavior of the photoacoustic signal inside indented areas
in metals. The obtained results can be used for estimating sensitivity of the
photoacoustic method to mechanical stress determination in metals. The the-
oretical model of the photoacoustic thermoelastic e�ect in solids is proposed
for the explanation of the obtained results. It is based on the modi�ed non-
linear model of elastic body that takes into account a possible dependence of
Youngâ��s modulus of a metal on temperature. The proposed model is ap-
plied for the explanation of the photoacoustic signal behavior in indented areas
of metals and its modi�cations under residual and external stresses. Theoreti-
cal and experimental study of the photoacoustic signal behaviour resulted in a
new method of residual stress evaluation based on thermoelastic photoacoustic
e�ect and Vickers indentation.

1 Introduction
Recent investigation of the thermoelastic photoacoustic (TEPA) e�ect in solids reveals
the dependence of thermal, thermoelastic and elastic properties on the internal stress
[1, 2, 5, 4, 5, 6, 7, 8, 9]. These works open new possibilities for the non-destructive
evaluation of objects with residual stresses at a microscopic level. It has an utmost practical
as well as fundamental signi�cance. A long history of the technique and industries shows
the vitality of the residual stresses for the life expectance and reliability, whereas the
mechanisms of stress e�ect are far from the deep consideration. Because of the universal
character of The photothermoacoustic methods they can be apply for investigating the
great diversity of materials.
Previously, the residual stress e�ect on thermal and thermoelastic properties was investi-
gated experimentally for several ceramic composites [4, 5, 8, 9]. It was clearly demonstrated
under external subjection like temperature and pressure, that the internal stress very
strongly in�uences on the photoacoustic piezoelectric signal. Our experimental approach
consisting in applying simultaneously di�erent photothermoacoustic methods reveals main
mechanisms of the TEPA signal formation in the investigated ceramics.
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Figure 1: The photoacoustic piezoelectric images of two Vickers indented areas (a,
b) and a Rockwell indented area (c) in steel smple. The size of the each image is
0.6x0.6 mm2. The modulation frequency is 142 kHz.

To interpret the obtained results a non-linear model of the TEPA e�ect in solids with
residual stress was developed. The model quantitatively explains the behaviour of the
TEPA signal, for example, near vertical crack tips [8, 10, 11].
The photoacoustic methods provide unique opportunity for the microscopic study of the
residual stress. In this case a three dimensional model for inhomogeneous objects is needed
for a quantitative analysis. Here we present analytical expressions for the TEPA signal
obtained in the framework of the perturbation theory.
Experimental part of the work is devoted to the photoacoustic investigation of metals
with residual stresses. The objects of study were steel samples with Vickers and Rockwell
indentation.

2 Experimental results and discussion

For microscopic study of the thermoelastic properties of solids we use photothermoacoustic
microscope with built-in compressive mechanism that allows us to investigate samples
under external load up to 2000 N parallel to the sample surface. The microscope provides
scan images with minimal step 2.5 µm in two directions. Thermal waves and acoustic
vibrations were excited in the sample by radiation of an argon-ion laser modulated by an
acoustooptic modulator. The radiation was absorbed at the front surface of a sample. To
detect the photoacoustic signal a piezoelectric detector was attached to the rear side of
the sample and had an operation frequency about 140 kHz. The modulation frequency in
photoacoustic microscopy is one of the pacing factors of spatial resolution. For instrumental
steel U8 the corresponding thermal wave length is about 3 µm.
In this work we focused on studying steel samples. Residual stresses were produced in
the sample by Vickers or Rockwell indentation. The indentation load was 98 N. In these
materials there was no cracks unlike the case of ceramics [8, 10], so, the main attention
was paid to the TEPA signal behaviour inside the prints and in the nearest vicinities.
Fig. 1 presents images of indented areas of a steel sample. There are two Vickers inden-
tations made at angle 45◦ and Rockwell indentation. The load of indentations is 98 N.
One of the features of such images is high amplitude of the TEPA signal along the Vickers
indentation diagonals which are the strong stress concentrators. The highest signal is in
the indentation center. Its magnitude is about two to three times larger than the average
signal outside the indentation zone. In this case a signal higher than average corresponds
to the compressive stress and a lower signal corresponds to the tensile stress, which is
similar to the case of ceramics [10].
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Figure 2: The photoacoustic piezoelectric images of a Vickers indented area while
annealing 870◦C. (A) is an image of the initial state, (b) is an image after 1h anneal-
ing and cooling in air, (c) is an image after the following 1h annealing and cooling in
athe furnace. The image size is 0.6x0.6 mm2. The modulation frequency is 142 kHz.

To reveal the nature of photoacoustic piezoelectric response from metals with residual
steress we performed experiments with thermal development of the samples. For this
purpose we have made images of the indented areas after two annealing circles. The
annealing was made at 870◦C. The �rst stage was one hour heating and cooling in air.
The second stage was one hour heating also but cooling in the furnace. Fig. 2 shows three
images of one of the indents before and after the two annealing circles. The image after
the �rst circle (Fig. 2b) exibits a certain decrease of the TEPA signal deviation from
the average value but together with appearence of some new features corresponding to
thermal stresses induced by the quick cooling in the air. The second annealing circle with
the slow cooling results in a much more smooth image with a maximum signal of 160%
of the average amplitude along one diagonal only (Fig. 2c). We propose that this signal
feature may be due to plastic deformation. Elimination of other features implies that the
main part of residual stresses disappeared during anniealing. So we con�rmed once more
that the TEPA signal is well attributed to stress �eld in objects.
Let us consider now an external load in�uence on indentation images and residual stress
distribution. Fig. 3 presents behavior of the TEPA images of two Vickers indentation
oriented at di�erent angles to the external load axe. The indentation were made at the same
sample not far from each other. The initial free state of the sample is shown in Fig. 3a and
3b. The di�erence of the images may be both due to initial residual stress before indentation
and orientation of the prints relative to the piezoelectric detector. According to images
3c and 3d, there was a strong redistribution of the stresses inside the indentation print
under moderate external pressure 24 MPa. After cancelling the load indentation image
of the �rst indentation returned to the initial state because images 3c and 3e are similar.
This means that all changes under the load were forced by elastic deformations. Signal
behavior across the indent diagonal is shown in Fig. 4. The normed signal changed from
1.5 to 3.0 under the load and relaxed down to 1.7 after the load cancel. So the di�erence
in signal between 1.7 and 1.5 corresponds to the plastic deformation and that between 3.0
and 1.7 corresponds to the elastic deformation under external pressure 24 MPa. The most
interesting peculiarity of image 2c is opposite change of th signal on the two diagonals.
According to our above suggestions one diagonal is subjected to compressive and the other
one to tensile stress, although the both diagonals are at the angles close to 45◦ to the load
axe. That means that the stress �eld is redistributed inside the indent print.
The other indent exibits a di�erent behavior under the same external load. One can see
from Fig. 3f that the load cancel does not change practically the TEPA image. This means
that the all changes have the plastic character. Apparengly, the residual compressive
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Figure 3: The photoacoustic piezoelectric images of two Vickers indented areas in
the steel sample. Arrows denote external pressure direction. The image size is
0.6x0.6 mm2. The modulation frequency is 142 kHz. (A) and (b) are the di�erent
indentations in free state, (c) and (d) are the images of the sample under external
load 24 MPa, (e) and (f) are the images after the load cancel.

stress concentrated along one diagonal was so high that the low external pressure was
enough to produce plastic deformation. At that, irreversible changes took place not only
at this diagonal but in the whole area of the indentation. In this experiments the Vickers
indentation behaves itself as one system with connections between its parts.

3 Theoretical model of the thermoelastic photoa-
coustic e�ect in inhomogeneous solids

The theoretical model of the TEPA e�ect in solids with residual stresses was proposed in
our previous works [4, 5, 6]. Here we present the further three-dimensional development of
the model for a case of inhomogeneous objects with non-uniform mechanical stress �elds.
We consider the residual stress in�uence on the properties of a material by introducing the
dependence of thermoelastic constant on elastic deformations. Previously, the photoacous-
tic signal variations resulted from non-uniform residual stresses was obtained for the case
of �xed sample boundary [12]. Here we need an expression for TEPA signal for the case
of a free sample surface. The non-stationary deformations can be de�ned by solving the
general equation of motion for elastic solids [13]

ρ
∂2ui

∂t2
=
∂σij
∂xj

, (1)

where ρ is the density of deformed body, ui are the displacement components, σij are the
stress tensor components accounting the thermoelastic e�ect
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Figure 4: Distribution of the photoacoustic signal amplitude across the upper right
part of diagonal of the indent shown in Figs. 3a, 3c and 3e. Black squares correspond
to the initial state, grey circles correspond to the sample under the external pressure
of 24 MPa, light grey triangles correspond to the sample after cancelling the load.

σij = 2µ(~r)uij + [λ(~r)ukk − γ(~r)(T − T0)]δij , (2)

µ and λ are the Lame coe�cients, γ is the thermoelastic coupling coe�cient, uij is the ten-
sor of the total strain of the body, T is the object temperature, and T0 is the environmental
temperature.
In line with the assumption made in [12], we will consider only the thermoelastic coupling
coe�cient depending on the object nonhomogeneity. Namely, γ = γ0 + γ1(~r), where γ0

is the thermoelastic coupling coe�cient of the homogeneous object and γ1 corresponds
to the nonhomogeneity. If the variations of the elastic deformation are small and nonho-
mogeneity is weak we can use the perturbation theory approximation. We believe that
for weak nonhomogeneity γ0 >> γ1. Than in the frame of the perturbation theory the
temperature variation in the object resulted from the laser irradiation and the thermoe-
lastic displacement components are ∆T = ∆T (0) + ∆T (1) and ∆ui = ∆ui

(0) + ∆ui
(1) with

∆T (0) >> ∆T (1) and ∆ui = ∆ui
(0) + ∆ui

(1).
For the case of a free surface the boundary conditions are

σiznz
∣∣
z=0

= 0, (3)

where ni are the components of the normal to the surface, and z=0 corresponds to the
illuminated surface.
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To solve the problem we can follow the work [13]. The general expressions are very complex.
For the case z2 >> (x− x0)2 + (y− y0)2, where (x0, y0) is the center of the laser beam; the
TEPA signal may be expressed in a simpli�ed form

∆V = −C (1− 4ν2)(1 + ν)

πE(1− ν)

1

z2

∫
dx′
∫
dy′γ1(x′, y′, 0)∆T (0)(x′, y′, 0), (4)

where C is a coe�cient depending on the piezoelectric detector, ν is Poisson's ratio, E is
Young's modulus, z is the sample thickness.
Expression (4) can be used for de�nition of internal stress in�uence on the TEPA signal
behaviour around indentation zones, where the signal magnitude is small. At this, the
following circumstances must be taken into account. Firstly, according to results of works
[? ? ? ? ] changes of the thermoelastic constant of a material due to internal stress near
the sample surface may be considered proportional to σxx + σyy. Secondly, the residual
stress distribution around the indentation may be considered as spherically symmetric [14],
and then σxx + σyy is proportional to σr, where according to Yo�e [14]

σr = −σr
(0)r0

2

r2
, (5)

where r0 is the indentation size, σr(0) is an average stress at the indentation border.
The experimental average TEPA signal distribution along lines passing through the center
of the Vickers print in various directions demonstrate r−2 dependence in accordance with
the obtained expression.
Of cause, the proposed model does not take into account the residual stress existing in a
sample before indentation and its application to the 2-order central symmetrical Vickers
indentations would be a priori incorrect.

4 Conclusion
To investigate residual stress in�uence on the thermoelastic properties of metals we have
studied theoretically and experimentally the TEPA e�ect in steel under subjection of ther-
mal development and external pressure. The imaging of Vickers indented areas showed
strong dependence of residual stress localization on initial stresses in the samples. Using
the photoacoustic microscope combined with press machine we have demonstrated the pos-
sibility to chose external pressure for reproducing initial stress e�ect on the TEPA images
of Vickers indentations. So, the combination of the TEPA microscopy and Vickers inden-
tation technique may result in a simple method of the local residual stress estimation in
metals. To develop the method we plan to apply and study di�erent types of indentations.
We have continued also developing non-linear model of TEPA e�ect in solids with resid-
ual stresses. The paper presents an expression for TEPA signal for solids with weakly
heterogeneous thermoelastic properties obtained within the framework of the perturbation
theory. It was successfully applied for the description of the TEPA signal behaviour around
Vickers indentations.
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Abstract

We present a mathematical model of the inverted pendulums. Theoretical
analysis is carried out for the system of two objects. The stability problem of
N inverted pendulums is analysed numerically.

1 Introduction
From the point of view of studying various physical processes the system of coupled pendu-
lums is an instructive model. The case of small linear oscillations in a vicinity of the stable
equilibrium position is described in the literature [1]. In the unstable (inverted) position
there are interesting features in the behavior. For example, the upper vertical position of
the pendulum might be stable when the driving frequency is fast [2],[3]. Pyotr Kapitza
was the �rst to analyze this highly unusual phenomenon in 1951 [4].
Stability of two inverted connected pendulums was investigated in [5]. The stability prob-
lem of a �nite number of inverted pendulums in a linear interaction hasn't been considered
yet. It is pointed that behavior of the inverted pendulums is linked with the study of the
domino e�ects [6] . In particular it is shown [7]-[9] that the domino-structure plays an
essential role in determination of rock brittleness and instability at failure. Therefore, the
inverted interacting pendulums are naturally called domino system with weak interaction.
This paper presents a mathematical model of the inverted pendulums and examines its
properties.

2 Construction of the Lagrangian
We determine the Lagrangian and the equation of motion of the following chain. The
â��chainâ�� is a set of massless upright pendulums with N + 1 mass points . A mass
m is �xed to one end of a massless bar; the other end of the bar is �xed to a hinge. The
N + 1 hinges are placed in the vertical direction and divided by the constant distance a.
The pendulums of equal length l are connected by a non-linear spring, and the coupling is
not weak in the general case (Figure. 1.).
Let the displacement of the mass j be denoted by rj = (xj , yj) . Then we have the
following presentation

(xj , yj) = (aj + l cosϕj , l sinϕj), j = 0, 1, . . . , N (1)

where ϕj is an angle between the bar and the horizontal axis. We introduced plane polar
coordinates for the problem and adopt the set of the polar angles {ϕj} as generalized
coordinates of the chain.
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Figure 1: Interacting dominoes.

The Lagrangian of the system is equal to L = T −P . The kinetic energy of the chain T is
calculated in accordance with the formula

T =
N∑
j=0

m
1

2
(ẋ2
j + ẏ2

j ) =
N∑
j=0

m
(lϕ̇j)

2

2
. (2)

The total potential energy P of the chain is given by the expression

P = Pg + Pnonlin. (3)

Here Pg is the potential energy corresponding to the external uniform gravity and Pnonlin
arises from internal forces of the interacting masses. The potential energy of a mass due
to uniform gravity is P (j)g = mgl sinϕj then the corresponding potential energy of the
chain is

Pg =

N∑
j=0

P (j)g =

N∑
j=0

mgl sinϕj . (4)

The internal potential energy function Pnonlin depends on a potential interaction between
the masses:

Pnonlin =

N−1∑
j=0

U(lj,j+1) (5)

here lj,j+1 is the distance between neighboring masses. We use (1) for calculation of lj,j+1:

lj,j+1 =
√

[a+ l(cosϕj+1 − cosϕj)]2 + l2(sinϕj+1 − sinϕj)2. (6)

From (2)-(5) we have the Lagrangian of the system

L = T − P =
N∑
j=0

[m
(lϕ̇j)

2

2
−mgl sinϕj ]−

N−1∑
j=0

U(lj,j+1) . (7)

3 Background equations
Lagrange's equations corresponding to the Lagrangian (7) are the following ones:

d

dt

∂L

∂ϕ̇j
− ∂L

∂ϕj
=

d

dt

∂T

∂ϕ̇j
+
∂U

∂ϕj
⇔
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⇔ ml2ϕ̈j = mgl cosϕj +
∂U(lj−1,j)

∂ϕj
+
∂U(lj,j+1)

∂ϕj
. (8)

The two last derivatives are equal to

∂U(lj−1,j)

∂ϕj
+
∂U(lj,j+1)

∂ϕj
=
∂U(lj−1,j)

∂lj−1,j

∂lj−1,j

∂ϕj
+
∂U(lj,j+1)

∂lj,j+1

∂lj,j+1

∂ϕj
. (9)

It is clear that:

∂lj,j+1

∂ϕj
=

1

2lj,j+1

∂l2j,j+1

∂ϕj
,

∂lj−1,j

∂ϕj
=

1

2lj−1,j

∂l2j−1,j

∂ϕj
. (10)

The distance lj,j+1 is expressed in the terms of the quantities

ϕ+,j =
ϕj+1 + ϕj

2
, ϕ−,j =

ϕj+1 − ϕj
2

.

For this purpose we use the formulae

cosϕj+1 − cosϕj = −2 sin
ϕj+1 + ϕj

2
sin

ϕj+1 − ϕj
2

,

sinϕj+1 − sinϕj = 2 cos
ϕj+1 + ϕj

2
sin

ϕj+1 − ϕj
2

and rewrite (6) in the form

lj,j+1 =
√
a2 − 4al sinϕ+,j sinϕ−,j + 4l2 sinϕ−,j . (11)

Since
∂ϕ+,j

∂ϕj
=

1

2
,
∂ϕ−,j
∂ϕj

= −1

2

we substitute (11) into (10), and it results in

∂l2j−1,j

∂ϕk
= −2al cosϕ+,j−1 sinϕ−,j−1 − 2al sinϕ+,j−1 cosϕ−,j−1 + 4l2 sinϕ−,j−1 cosϕ−,j−1,

∂l2j,j+1

∂ϕk
= −2al cosϕ+,j sinϕ−,j + 2al sinϕ+,j cosϕ−,j − 4l2 sinϕ−,j cosϕ−,j . (12)

If we consider the weak coupling between the pendulums then the potential U(lj,j+1) can
be written in the traditional form

U(lj,j+1) ≡ k

2
(εj)

2, εj ≡
lj,j+1 − a

a
, (13)

where εj is the relative deformation. The particlesâ�� displacements are not small in the
general case, i.e. ϕk ∼ 1. But the relative deformation εj is supposed to be a �rst order
linear with respect to ϕ−,k then from (11), (13) one has

|εj | ≈
2l

a
|ϕ−,j | sinϕ+,j � 1. (14)

Forces that keep the pendulums together are assumed to be a �rst order linear with respect
to the relative deformation εj . It allows us to replace sinϕ−,j → 0 and cosϕ−,j → 1 in
(12) and remain the linear term with respect to ϕ−,j in lj,j+1 :

∂l2j−1,j

∂ϕj
≈ −2al sinϕ+,j−1, lj,j−1 ≈ a− 2ϕ−,j−1l sinϕ+,j−1,
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∂l2j,j+1

∂ϕj
≈ 2al sinϕ+,j , lj,j+1 ≈ a− 2ϕ−,jl sinϕ+,j .

From here and (10) we obtain

∂lj,j+1

∂ϕj
= l sinϕ+,j ,

∂lj−1,j

∂ϕj
= −l sinϕ+,j−1, (15)

including the leading order with respect to |ϕ−,k| � 1. Substitution of the expression (15)
into (9) results in

∂U(lj−1,j)

∂ϕj
+
∂U(lj,j+1)

∂ϕj
= l

∂U(lj−1,j)

∂lj−1,j
sinϕ+,j−1 − l

∂U(lj,j+1)

∂lj,j+1
sinϕ+,j . (16)

Combination of (16) and (8) allows us to obtain the corresponding equations of a discrete
chain:

ml2ϕ̈0 − k
(
l

a

)2

(ϕ1 − ϕ0) sin2 ϕ+,0 +mgl cosϕ0 = 0,

ml2ϕ̈j−k
(
l

a

)2

[(ϕj+1−ϕj) sin2 ϕ+,j− (ϕj−ϕj−1) sin2 ϕ+,j−1]+mgl cosϕj = 0, (17)

ml2ϕ̈N + k

(
l

a

)2

(ϕN − ϕN−1) sin2 ϕ+,N−1 +mgl cosϕN = 0, j = 1, . . . , N − 1.

Introducing the pendulum time t0 =
√
l/g of the chain, we can go to t→ t

√
l/g and write

the motion equation (17) in the following form

ϕ̈0 −
1

p2
(ϕ1 − ϕ0) sin2 ϕ+,0 + cosϕ0 = 0, p2 =

mgl

k
(
l
a

)2 ,
ϕ̈j −

1

p2
[(ϕj+1 − ϕj) sin2 ϕ+,j − (ϕj − ϕj−1) sin2 ϕ+,j−1] + cosϕj = 0, (18)

ϕ̈N +
1

p2
(ϕN − ϕN−1) sin2 ϕ+,N−1 + cosϕN = 0, j = 1, . . . , N − 1.

4 Analysis of the two pendulum model
The system (18) for the two pendulums can be written as

ϕ̈0−
1

p2
(ϕ1−ϕ0) sin2 ϕ+,0 + cosϕ0 = 0, ϕ̈1 +

1

p2
(ϕ1−ϕ0) sin2 ϕ+,0 + cosϕ1 = 0. (19)

We use functions ϕ+,0, ϕ−,0 (12) in (19):

ϕ̈+,0 + cosϕ+,0 cosϕ−,0 = 0, ϕ̈−,0 +
2ϕ−,0
p2

sin2 ϕ+,0 − sinϕ+,0 sinϕ−,0 = 0. (20)

Since there is the condition (14) we can replace cosϕ−,0 → 1 with accuracy of
(ϕ−,0)2 cosϕ+,0 and sinϕ−,0 → ϕ−,0 with accuracy of (ϕ−,0)3 sinϕ+,0 in (20). The system
(20) is reduced to

ϕ̈+,0 + cosϕ+,0 = 0, ϕ̈−,0 +

[
2

p2
sin2 ϕ+,0 − sinϕ+,0

]
ϕ−,0 = 0.
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The �rst equation coincides with the equation of the nonlinear pendulum. It has a sta-
tionary solution ϕ+,0 = π/2. In this case ϕ−,0 satis�es the equation

ϕ̈−,0 +

[
2

p2
− 1

]
ϕ−,0 = 0.

Behavior of ϕ−,0 over time depends on the value of the parameter p . It is clearly that the
condition

p2
∗ =

mgl∗
k∗(l∗/a∗)2

= 2 (21)

determines the critical value p∗ =
√

2 separating di�erent regions of behavior. If there is
the condition p <

√
2 then the solution ϕ−,0 is oscillatory one. In the case of the enequality

p >
√

2 function ϕ−,0 contains exponentially growing contributions.
The system (18) was investigated numerically using an implicit Runge-Kutta method with
the help of the package "Mathematica 9.0". We supposed that the initial speed was equal
to zero. It is shown that decrease of the parameter p2 results in increase of the oscillation
frequency. In particular, the corresponding elliptical trajectories for p2 = 2 and p2 = 1.5
are shown in (Figure. 2). They indicates the existence of the stability regions in a vicinity

Figure 2: Phase portraits for N = 2 at p2 = 2 (curve 1) and p2 = 1.5 (curve 2).

of (0, π/2). The phase portrait of the second pendulum is identical to the �rst one on
condition that ϕ̇1 = −ϕ̇2.
Numerical investigation of the system (18) at p2 > 2 shows that the elliptical trajectories
disappear and an unstable trajectories appear. This con�rms the analytical formula (21)
for the critical value of the parameter p∗.

5 Investigation of stability for N pendulums
Model of two pendulums showed that the quantity p2 is a control parameter of the system.
In particular, the value of p2 = 2 is the highest value of the parameter p for which the
stable equilibrium is observed for N = 2. This allows us to formulate a heuristic idea of
separating stable trajectories for N > 2.
We begin to calculate the trajectories of the system (18) starting from p2 = 2 for di�erent
initial angles at zero initial velocity. Reducing p2 we control the appearance of elliptic
trajectories in the phase plane by means changing the initial angle and analyzing the
phase trajectories of each pendulum. If there is an elliptic point on the plane than the
position of a pendulam is a stable one. This procedure allows us to calculate the critical
value p∗ of the system. The software package Mathematica 9.0 was used to construct the
solution for N = 4; 6; 8; 10 pendulums.
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It is shown that the critical value p∗ decreases monotonically with respect to N. Analytical
investigation of stability of the system (18) was carried out on the information about zeroes
of the matrix determinant in a small vicinity of the equilibrium. The asymptotic formula
is obtained in case of small p∗ and written in the form

1

p2
∗

=
2 cos π

N+1 cos2 π
2(N+1)

sin π
2(N+1)

− 1. (22)

But we expand (22) for the �nite p∗ as well and the calculated values are presented in the
Table 1. Table 5: Numerical and asymptotic values of with respect to N.

N
Asymptotic
values p2

∗

Numerical
values p2

∗

2 2.0000 2.000
4 0.2676 0.560
6 0.1493 0.220
8 0.1053 0.120
10 0.0819 0.085

6 Discussion
We constructed the 1D model of the inverted interacting pendulums. It was found that in
the case of two inverted connected pendulums the upper vertical position of the system has
a critical behavior with respect to the interaction parameter p. The relative angle between
two pendulums contains wavy terms when p <

√
2. If the parameter p >

√
2 the solution

behaves monotonically.
For a �nite number N of inverted pendulums critical behavior of the parameter p is de�ned
by the value of N. The asymptotic formula for the critical value of p with respect to N is
proposed in the work. It is shown that the critical value leads to its decrease. Hence the
kinematic characteristic N in�uences on physics behaviour e�ectively.
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Abstract

To minimize the calculation time required by numerical models that de-
scribe dynamic interactions involving nonlinear behaviour, it is useful to divide
the model into two separate domains. One domain close to the interaction
point, which consists of a sophisticated model capable of describing nonlin-
ear phenomena, and another domain at a distance from the interaction point
where only linear behaviour remains. The key issue in such numerical models
is the coupling of the two domains. The presence of said nonlinear phenomena
implies the necessity to work in the time domain rather than in the frequency
domain. Nevertheless, frequency domain approaches are preferred as they
allow for much faster calculations than time domain approaches. So-called
hybrid models exist that attempt to maximize the use of frequency domain
approaches for the modelling of nonlinear dynamic behaviour, but these mod-
els are often iterative, thereby increasing calculation times.

This contribution presents a non-iterative method to describe the non-
smooth dynamic behaviour of a signi�cantly nonlinear system coupled to a
linear continuum. Although this method shows the potential to be particularly
e�ective for applications in two- or three-dimensional media, this paper treats
the coupling of a one-dimensional linear medium to illustrate this method.

1 General Introduction
To determine the loads on a structure due to the dynamic interaction of a structure with its
environment, it is vital to correctly model the response of the environment. In this paper,
we focus only on the response of the environment and include the structure as an external
load applied to an environment. Near the point of interaction between structure and envi-
ronment, the behaviour of the environment may be governed by nonlinear phenomena and
is therefore modelled by a medium capable of describing these nonlinear phenomena, which
typically occur in soil-structure and ice-structure interaction. From a numerical point of
view, it is desirable to keep the domain of this nonlinear medium as small as possible to
minimize the required calculation time. Therefore, the environment is divided into two
separate media; a sophisticated nonlinear medium in the region of interaction with the
structure, and a linear-elastic medium at such distance from the interaction point that its
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response is always linear. As nonlinear phenomena are di�cult to capture by continuum
models [2], we use a discrete lattice model in the near-�eld. Applications of lattice models
are for example found in the �elds of fracture mechanics [5] and micromechanics [4], but
also in the �eld of ice-structure interaction [1]. The linear-elastic far-�eld response is mod-
elled by a semi-in�nite continuum, thus providing the lattice model with a non-re�ective
boundary.

In some cases, the system of equations of motion for a coupled one-dimensional model can
be analytically derived in the time domain. However, as soon as multiple dimensions are
considered, a time domain solution can no longer be obtained analytically. Instead, the
system of equations of motion has to be derived in the frequency domain and the integration
involved with the inverse transformation from the frequency to the time domain must be
performed numerically [3]. For a coupled system that is completely linear, one needs to
solve the algebraic system of equations of motion in the frequency domain once and then
apply numerical integration at every time step to obtain the time domain solution. This
requires severely less numerical e�ort than to solve the system of di�erential equations
in the time domain at every time step. Unfortunately , nonlinear phenomena cannot be
described in the frequency domain and thus, coupled systems that incorporate nonlinear
phenomena must generally be solved in the time domain. Nevertheless, the nonlinearities
in the dynamic response of lattice models may generally be described to be signi�cantly
nonlinear, i.e. the dynamic properties change at any given moment in time, but the
change in behaviour is instant. In other words, every single time a nonlinearity occurs the
system changes instantly, while the system itself still behaves in a linear manner during
the following time steps. Thus, for the period between any two nonlinearities, the system
of equations of motion can still be solved algebraically in the frequency domain. Assuming
that the featured nonlinearities are signi�cantly nonlinear thus allows us to describe the
dynamic response of a nonlinear medium to be piecewise linear. The approach described
in this paper can be considered as a mixed time-frequency domain (MTFD) method as
the nonlinearities are applied between time steps and thus in the time domain, while the
response of the coupled model, during each piecewise linear period, is found by solving
the corresponding algebraic system of equations of motion in the frequency domain. This
approach is somewhat super�uous for one-dimensional models, as the coupling between
one-dimensional media may often be solved analytically, but shows the potential to be
particularly e�ective for the modelling of coupled two- or even three-dimensional media.
Nevertheless, the method is here explained on the basis of the one-dimensional coupled
linear-elastic system depicted in �gure 1, because its system of equations of motion for the
coupled linear elastic model can be solved in both the frequency domain and directly in
the time domain, and therefore the correct application of the MTFD-method can be easily
veri�ed for this system.

In the following, we will �rst discuss the methodology of the mixed time-frequency domain
approach. Consecutively, we will derive the system of equations of motion for the one-
dimensional discrete-continuous linear-elastic system in the time domain for zero initial
conditions, which serves as a benchmark for the MTFD-method. The derivation of the
system of equations of motion for the MTFD-approach including nonzero initial conditions
is then discussed in section 4. In section 5, an improved statement for the inverse Laplace
transform is presented that allows for its numerical application for a system with nonzero
initial conditions. Subsequently, the results of the MTFD-method are compared to the
benchmark system in section 6.
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Figure 1: The one-dimensional semi-in�nite discrete-continuous linear-elastic system

2 Methodology of the mixed time-frequency do-
main approach

Let us consider an arbitrary system of particles that may respond signi�cantly nonlinear
to an applied load. When the system is at rest and has zero initial conditions, it is safe to
assume that this system will initially respond in a linear manner. To describe the response
of said system for the time period until the occurrence of the �rst nonlinear event, we
describe the system in the frequency domain using the Laplace transform and solve the
resulting algebraic system of equations of motion yielding the frequency domain response of
the system. We then obtain the time domain response for the system by straightforwardly
applying the inverse Laplace transform at every time step. This method remains valid for
as long as the system behaves linearly.

Now, suppose that at a given time t = t0, a signi�cant nonlinear event occurs. Due to the
signi�cant nonlinear event, the behaviour of the system changes, but the change is instant
and the response of the system after this signi�cant nonlinear event, i.e. for t > t0, is once
again linear. That is, for the time period until the next signi�cant nonlinear event. As
the response of the system for the time period between any two nonlinear events is always
linear, we can again obtain this response by describing the system in the Laplace domain
and solving the corresponding algebraic system of equations, but now for its new properties
and with nonzero initial conditions. As the nonzero initial conditions represent the response
of the system prior to t = t0, we may consider the system for the time period between the
�rst and second nonlinear event, to start anew at t = t0. To properly consider the new
situation for the system that starts at t = t0 in both the time and the Laplace domain, we
reset the time domain and describe the new situation for the system to start at t = 0, but
with nonzero initial conditions. The time domain response after the signi�cant nonlinear
event is then once again obtained by solving the corresponding algebraic system in the
frequency domain and applying the inverse Laplace transform. This new time domain is
valid until the next nonlinear event. Each time the time domain is reset, the response
of the system prior to the occurrence of the nonlinear event is included in the new time
domain through the nonzero initial displacement at t = 0. Note here that, since the initial
conditions are nonzero and di�erent for each piecewise linear time period, we here apply
the Laplace transform rather than the Fourier transform as the Laplace transform takes
the initial conditions into account in the frequency domain, while the Fourier transform
neglects the initial conditions in the frequency domain. The procedure described here has
been visualized in �gure 2.
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Figure 2: Resetting the time domain every time a nonlinear event occurs

3 Governing equations for the discrete-continuous
system in the time domain

The one-dimensional semi-in�nite discrete-continuous linear-elastic system, previously de-
picted in �gure 1, is comprised of a one-dimensional linear-elastic discrete lattice composed
of N particles in series, and a semi-in�nite linear-elastic rod. Each particle n has a di-
mensionless mass Mn and the distance between any two adjacent nodes is `. Each two
adjacent particles n and n+1 are kinematically related by a spring with a dimensionless
sti�ness Kn,n+1

e . The linear-elastic rod has a density ρ, cross-section area A and Young's
modulus E. The discrete lattice and the semi-in�nite linear-elastic rod are connected at
particle N with coordinate x = xInt. The coupling between the one-dimensional Hooke
system and the linear-elastic rod is described by the equation of motion of particle N.
The dimensionless equations of motion for particles n=1...N-1 respectively read:

M1ü1 −K1,2
e e1,2 = F (t) (1)

Mnün +Kn-1,n
e en-1,n −Kn,n+1

e en,n+1 = 0 (2)

Here, en,n+1 denotes the elongation of the kinematic element between particles n and
n+1. Furthermore, dimensionless time and space are respectively introduced as t → tω0

and x → xω0/c, where ω0 and c are respectively the natural frequency of and the wave
speed in the system.
To assure homogeneity between lattice and rod, their material properties are matched.
The relation between the material properties of the lattice and the rod is established by
matching the equation of motion for the rod with the homogeneous equation of motion for
an arbitrary particle inside the lattice in the long-wave limit. Applying the Taylor expan-
sion to the equation of motion for an arbitrary particle inside the lattice by replacing the
particle displacement un by the continuum displacement u(x, t) and replacing the displace-
ments of the adjacent particles, un-1 and un+1, by the second order Taylor polynomial of
the corresponding continuum displacement u(x± `, t) yields the equation of motion for an
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arbitrary particle inside the lattice in the long-wave limit [7]. Comparing the resulting ex-
pression with the equation of motion for the rod shows that the mass of a particle inside the
homogeneous system is found asM = ρA` and the spring sti�ness of the springs inside the
homogeneous system is found as Ke = EA/`. Therefore, the dimensionless mass of a parti-
cle n and the dimensionless sti�ness of the spring between particles n and n+1 in equations
(1) and (2) are generally introduced as Mn → Mn/M and Kn,n+1

e → Kn,n+1
e /Ke. For a

homogeneous system, we thus �nd that Mn = Kn,n+1
e = 1.

The equation of motion of particleN, also denoted as the interface equation, is obtained by
combining the one-dimensional wave equation for the semi-in�nite rod and the interface
conditions that follow from respectively the equilibrium of forces and the displacement
relation at the lattice-continuum interface. In the time domain, the dimensionless coupling
statement reads:

ü(x, t)− u′′(x, t) = 0 (3)

u′(xInt, t) = MNüN +KN-1,N
e eN-1,N (4)

u(xInt, t) = uN (5)

Solving the one-dimensional wave equation (3) in the Laplace domain accounting for the
appropriate behaviour of the linear-elastic rod for x → ∞, and inserting the resulting
Laplace domain displacement along the semi-in�nite rod into the interface conditions (4),
as well as taking into account (5), yields the interface equation in the Laplace domain.
Subsequently applying the inverse Laplace transform to the resulting Laplace domain ex-
pression then yields the interface equation, i.e. the equation of motion for particle N, in
the time domain as:

MNüN +KN-1,N
e eN-1,N + u̇N = 0 (6)

By choosing the point of coupling between lattice and rod at a particle and keeping the
distance between the particles equal to `, it follows from the systems' geometry that particle
N only represents half the length `. To maintain a homogeneous distribution of mass and
spring sti�ness along the coupled system, it then follows that MN = 1

2 and KN-1,N
e = 1.

Note here that di�erent combinations of mass and sti�ness may be chosen at the discrete-
continuous interface as testi�ed by Metrikine et al. [4], where it is shown that there will
be no re�ection at the lattice-rod interface in the long-wave limit as long as the interface
mass and sti�ness are related as:

KN-1,N
e =

2

1 + 2MN
(7)

Together, equations (1), (2) and (6) give the full system of dimensionless equations of
motion for the one-dimensional coupled system in the time domain.
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4 Laplace domain equations for the coupled 1D-
system for nonzero initial conditions

In the previous section, we have derived the equations of motion for the one-dimensional
coupled linear-elastic system in the time domain assuming zero initial conditions. For
the application of the MTFD-method however, we require the corresponding system of
equations to account for nonzero initial conditions in the Laplace domain. Applying the
unilateral Laplace transform to equations (3) to (5) with respect to time, which accounts
for possible nonzero initial conditions, yields the dimensionless coupling statement in the
Laplace domain as:

s2ũ(x, s)− ũ′′(x, s) = su0(x) + v0(x) (8)

ũ′(xInt, s) +MN(suN0 + vN0 ) = MNs2ũN +KN-1,N
e ẽN-1,N (9)

ũ(xInt, s) = ũN (10)

Here, the tilde denotes a variable in the Laplace domain, while s is the complex Laplace
parameter. Furthermore, u0(x) and v0(x) are respectively the initial displacement and
initial velocity along the linear-elastic rod, while uN0 and vN0 denote the initial displacement
and initial velocity of the interface particle. Accounting for the appropriate behaviour of
the rod for x→∞ and noting that Re(s) > 0, the general solution to equations (8) reads:

ũ(x, s) = C1e
−sx + ũp(x, s) (11)

The �rst right-hand-side term is the solution to the homogeneous equation, where C1 is
derived by considering the boundary condition at xInt. Furthermore, ũp(x, s) denotes the
yet unknown particular solution. For zero initial conditions, equation (8) reduces to a
homogeneous equation, so that the particular solution is exclusively related to the nonzero
initial conditions. Applying the di�erentiation to space to equation (11) and rearranging
yields:

ũ′(x, s) = −sũ(x, s) + sũp(x, s) + ũ′p(x, s) (12)

Substituting equation (12) into equation (9), as well as taking equation (10) into account,
yields the interface equation in the Laplace domain as:

MNs2ũN +KN-1,N
e ẽN-1,N + sũN = MN(suN0 + vN0 ) + f0(s) (13)

where : f0(s) = sũp(xInt, s) + ũ′p(xInt, s) (14)

Note here that all terms related to the nonzero initial conditions are collected at the right-
hand-side of equation (13).
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The particular solution to equation (8) is found using a Green's function approach. To this
purpose, we replace the right-hand-side of equation (8) by the Dirac delta function. Ap-
plying the Fourier transform with respect to space to the resulting equation of motion then
yields the corresponding Greenâ��s displacement in the frequency-wavenumber domain.
Applying the inverse Fourier transform using contour integration by means of the residue
theorem yields the Green's displacement of the linear-elastic rod in the Laplace domain as
g̃u(x, s) = 1

2se
−s|x|. Consequently, we �nd the particular solution at x = xInt as:

ũp(xInt, s) =
1

2s

∫ ∞
0

e−s|xInt−ξ|(su0(ξ) + v0(ξ))dξ (15)

Using Leibniz' rule for di�erentiation under the integral sign to obtain the spatial deriva-
tive of the particular solution and subsequently substituting equation (15) and its spatial
derivative into equation (14) then yields the expression f0(s) as:

f0(s) =

∫ ∞
xInt

e−s(ξ−xInt)(su0(ξ) + v0(ξ))dξ (16)

Equation (16) denotes the contribution of the rod's initial conditions to the interface equa-
tion. If we only allow loads to be applied inside the lattice, it is evident that at any time
moment the response of the rod is due to the input at its interface with the lattice, and thus,
we can express the displacement and velocity along the rod in terms of the response of the
interface particle N. The relation between the time domain response of the rod and that of
the interface particle can be derived by considering the boundary value problem for the rod
assuming zero initial conditions. In the Laplace domain, the relation between the displace-
ment along the rod and that of the interface particle is found as ũ(x, s) = ũNe−s(x−xInt).
Applying the inverse Laplace transform then yields the corresponding relation in the time
domain as u(x, t) = uN(t − (x − xInt))H(t − (x − xInt)). Deriving the velocity relation
accordingly and substituting both displacement and velocity relations into equation (16),
as well as replacing the variable of integration ξ by the variable of integration τ = ξ−xInt
then yields the expression f0(s) as:

f0(s) =

∫ t0

0
e−sτ (suN0 (t0 − τ) + vN0 (t0 − τ)dτ (17)

The remaining expression for f0(s) can now be interpreted as a convolution integral over
the time domain prior to the time moment t0 at which the system was reinitiated and new
nonzero initial conditions were speci�ed. Consequently, equations (13) and (17) together
describe the Laplace domain interface equation exclusively in terms of the discrete lattice.
The Laplace domain system of equations of motion for the one-dimensional coupled linear-
elastic system that accounts for nonzero initial conditions is completed by including the
Laplace domain equations of motion for the particles n=1...N-1 that read:

M1s2ũ1 −K1,2
e ẽ1,2 = F̃ (s) +M1(su10 + v10 ) (18)

Mns2ũn +Kn-1,n
e ẽn-1,n −Kn,n+1

e ẽn,n+1 = Mn(sun0 + vn0 ) (19)
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Here, F̃ (s) is the Laplace domain expression for the external force applied at particle 1.
Note here that, once the time domain is reinitiated at a time t0 this must also be accounted
for in the Laplace domain expression of the applied load.

5 Transformation to the time domain accounting
for nonzero initial conditions

Solving the algebraic system of equations of motion given by equations (13) and (17) to (19)
yields the Laplace domain displacements of all particles in the one-dimensional lattice. The
time domain displacements of all particles in the lattice are then obtained by applying the
inverse Laplace transform to the corresponding Laplace domain displacements. The inverse
Laplace transform of these Laplace domain displacements can not be derived analytically
and must therefore be obtained numerically. As a consequence, the semi-in�nite domain
of integration of the inverse Laplace transform has to be truncated. This truncation leads
to several problems, in particular for nonzero initial conditions. If we describe the inverse
Laplace transform in terms of frequency, rather than in terms of the complex Laplace
operator s, we may �nd the time domain displacement of a particle n in the lattice as:

un =
eσt

π

∫ ωtr

0
Re
{
ũneiωt

}
dω (20)

Here, ωtr is the truncation frequency. The corresponding velocities and accelerations may
then be obtained by taking the �rst and second time derivatives of equation (20), which
is equivalent to respectively applying the inverse Laplace transform to ṽn = sun and
ãn = s2un. Now, we may only apply the inverse Laplace transform numerically, if their
integrands are su�ciently convergent within the truncated domain of integration. Solving
equation (19) for ũn shows that, taking nonzero initial conditions into account, the Laplace
domain displacement has a convergence ω−1 for ω →∞. Consequently, it follows that the
Laplace domain velocity and acceleration, i.e. ṽn and ãn, are both non-convergent. As
shown by �gure 3, the lack of convergence is due to the nonzero initial conditions; Figure 3a
shows the convergent Laplace domain displacement, velocity and acceleration of a particle
n for zero initial conditions, while �gure 3b gives the response for nonzero initial conditions.

As an alternative, and in correspondence with the Laplace transform, we may respec-
tively describe the velocity and acceleration in the Laplace domain as ṽn = sun − un0 and
ãn = s2un − sun0 − vn0 . Substituting ũn, found from solving equation (19), into these ex-
pressions shows that the Laplace domain velocity and acceleration now both have the same
convergence for ω →∞ as the Laplace domain displacement. Although the given Laplace
domain expressions for displacement, velocity and acceleration are now convergent, these
expressions still do not lead to a proper numerical application of the inverse Laplace trans-
form. To illustrate this, let us consider the inverse Laplace transform and note that by ap-
plying the causality principle, the integrand of the inverse Laplace transform may alterna-
tively be described as either one of Re

{
ũneiωt

}
= 2Re {ũn} cos(ωt) = −2Im {ũn} sin(ωt).

These integrands may however only be interchanged if, and only if, the limit ω → ∞ is
taken into account. For either integrand, numerically applying the integration over its
truncated domain yields an incorrect behaviour of the time domain displacement near the
nonzero initial conditions as depicted in �gure 4. Due to the �nite domain of integration,
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the integrand with the term sin(ωt) must always give a zero displacement at time t = 0
of the time domain reinitiated at t = t0. Additionally, taking the time derivative of the
integrand with the term cos(ωt) shows that u̇0 = σu0, where σ is the small positive real
value of the complex Laplace parameter. Consequently, the corresponding time domain
displacement has a slope that is signi�cantly smaller than the slope of the exact solution.
To improve the behaviour of the inverse Laplace transform with a truncated domain of
integration for a system that, in the time domain, has nonzero initial conditions, we extract
the initial conditions from the corresponding Laplace domain expression and separately
include the contribution of the initial conditions in the time domain. As a consequence, the
remaining Laplace domain expression, henceforth denoted as the improved Laplace domain
expression, can be considered as a Laplace domain expression for a system with zero initial
conditions, thereby improving its behaviour in the time domain. To obtain expressions for
the displacement, velocity and acceleration that appreciate the rules of di�erentiation, we
do not only extract the initial displacement from the Laplace domain displacement, but we
also extract the contributions of the initial velocity and initial acceleration. Consequently,
the time domain expressions for the displacement, velocity and acceleration of an arbitrary
particle n in the lattice now become:

un =
eσt

π

∫ ωtr

0
Re
{
ũnimpe

iωt
}
dω + un0 + vn0 t+ an0

t2

2
(21)

u̇n =
eσt

π

∫ ωtr

0
Re
{
sũnimpe

iωt
}
dω + vn0 + an0 t (22)

ün =
eσt

π

∫ ωtr

0
Re
{
s2ũnimpe

iωt
}
dω + an0 (23)

Here, the improved Laplace domain displacement is found as:

ũnimp = ũn − un0
s
− vn0
s2
− an0
s3

(24)

Substituting ũn, found from solving equation (19), into equation (24), shows that the
improved Laplace domain displacement now has a convergence ω−3 for ω →∞. Figure 5

Figure 3: Absolute Laplace domain displacement, velocity and acceleration for: a) zero
initial conditions; b) nonzero initial conditions.
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Figure 4: Displacement for a truncated domain of the inverse Laplace transform: a) in
the original time domain; b) close-up in the time domain reinitiated at t0.

shows the displacement of particle n obtained using the improved statement for the inverse
Laplace transform given by equation (21).

Figure 5: Displacement obtained using the improved statement: a) in the original time
domain; b) close-up in the time domain reinitiated at t0.

6 The mixed time-frequency domain method ap-
plied to the coupled 1D-system

Figure 6 shows the longitudinal displacements along the one-dimensional discrete-
continuous linear-elastic system due to an applied single-sinus pulse load at 6 consecutive
time moments. The discrete lattice consists of 80 particles at an inter-particle distance
of ` = 0, 2m and the linear-elastic rod has a density ρ = 1960kg/m3, a cross-section area
A = 1m2 and a Young's modulus E = 19, 6MPa.
The continuous line shows the displacements that result from applying the MTFD-method,
while the dashed line shows the resulting displacements from applying a Runge-Kutta
scheme to solve the system directly in the time domain, here denoted as the TD-method.
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The simulation consists of a 1000 time steps and for the application of the MTFD-method,
the system was reinitiated after every 100 time steps. Figure 6 veri�es that the MTFD-
method yields the proper response of the system. Although the MTFD-method is here
applied to a rather simplistic linear-elastic coupled system, and thereby hardly yields any
computational pro�t, its real gain is found in the application of the MTFD-method to a
coupled system consisting of a nonlinear lattice bounded by a viscoelastic environment,
especially, for multi-dimensional systems.
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Abstract

Transient analysis in hydraulic networks has been well recognized of high
importance due to sudden changes in flow or pressure introduced by valve
closures or component failures. Therefore, accurate and robust numerical
models are necessary to analyse the travelling pressure waves as a result of such
abrupt changes, i.e. waterhammer effects. This work presents the formulation
of a semi-analytical impulse response method applied to transient laminar flow
in hydraulic networks. The method is based on the exact solution of a two-
dimensional viscous model in the frequency domain with various interface and
boundary conditions. The numerical computations are based on the use of the
fast Fourier transform and a discrete numerical convolution with respect to
time. A numerical example is presented and the results are compared with the
method of modal approximations which is widely used in practice. The results
show that the proposed method is able to predict the transient behaviour
with better accuracy and without the need of spatial discretization. Thus,
it is expected that for large networks, the computational cost of the impulse
response method will have a great advantage when compared to existing grid-
space methods.

1 Introduction

Transient flow in hydraulic networks is a common phenomenon as a result of either
accidental or normal operation of hydraulic systems. The study and analysis of
unsteady-flow conditions is very important due to the large disturbances in pressure
and flow conditions that might be introduced [1]. Several numerical methods exist
to model fluid transients [2, 3]. To date, the method of characteristics (MOC) is
the most popular one due to its accuracy, simplicity and ability to include different
boundary conditions in the one dimensional case [4]. This method has also been
adapted for two dimensional cases to account for the frequency dependence of the
friction forces [5, 6] and extended to be applied in more complex hydraulic networks,
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[7, 8]. However, the MOC together with other discrete formulations such as finite
differences [9], require a spatial discretization of the lines in the network, which
turns to be computationally demanding as discussed in [10].

For laminar flow, another approach to model the fluid transients is possible
through modal approximations. The idea behind this technique is to represent the
transcendental expressions in the frequency domain, as a finite summation of low-
order polynomial transfer functions. Thus, it is possible to approximate each mode of
the transmission line by a second order linear differential equation [11, 12, 13, 14].
The modal method can also be formulated directly in the time domain using a
variational method [15].The modal approximation has certain advantages when used
in time domain simulations, not only because it is easily coupled to other mechanical
or hydraulic subsystems, but additionally because it can be implemented and solved
numerically with a variable time step ODE solver. Furthermore, several studies
have shown that modal methods are more convenient and numerically stable when
compared, for example, with discrete methods [16, 17]. On the contrary, when modal
approximations are used to construct hydraulic networks as a part of a complex fluid
power system, i.e. through bond-graph models [18, 19], each line in the network
should include enough number of modes to cover the frequency range of interest of
both the overall system and input disturbance. Due to the different line geometries
and interface conditions, the selection of the required number of modes for each line
is not straightforward. Therefore, the modal method has the disadvantage of lacking
a direct control on the accuracy of the results due to a propagation error introduced
by the number of modes used for each line.

A semi-analytical approach is presented in this paper based on the impulse re-
sponse method (IRM). This method has been extensively used for dynamic analyses
in other areas, like for example vibrations of mechanical systems, however its use
in hydraulic systems has not been completely exploited. A variation of this method
has already been used for analysis of a single pipeline as referred in [20, 21]. This
work presents a direct extension towards a solution of a hydraulic network system
consisting of multiple lines including dissipative boundary conditions. The approach
is remarkably simple in its application. It consists of a solution of a coupled system
of linear algebraic equations and the use of the Fourier transform. The method is ac-
curate and reliable for the solution of large networks, overcoming the disadvantages
of several other approaches.

The paper is composed as follows. Section 2 revises the mathematical formulation
of the two dimensional viscous compressible model for a single pipeline together
with the exact solution of a hydraulic network in the frequency domain. Section
3 describes the application of the impulse response method to solve a hydraulic
network using the equations of the previous section. In section 4, a numerical
example of a simple hydraulic network is presented in which the time-domain results
are compared with the ones obtained by the use of the modal method. Finally the
conclusions are presented in the last section.
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2 Mathematical formulation and exact solution in

the frequency domain

2.1 Transient laminar flow

Consider a laminar, axisymmetric flow of a Newtonian fluid through a constant di-
ameter line with constant material properties, in which the mean fluid velocity is
considerably less than the acoustic velocity and the thermodynamic effects are ne-
glected. The velocities in the axial x-coordinate and radial r-coordinate are denoted
by u(x, r, t) and v(x, r, t), respectively. Assuming that the motion in the radial
direction is negligible compared to the motion in the axial direction u >> v, the
radial pressure distribution is constant across the cross-sectional area, i.e. P(x, t).

Figure 1: Schematic of a single hydraulic line

The fluid properties are designated through the fluid density ρ, the fluid dynamic
viscosity µ and the fluid bulk modulus of elasticity K. Hence, the partial differential
equations corresponding to the mass conservation and the momentum equilibrium
in the axial direction, are reduced to [1],

∂P(x, t)

∂t
+ c2ρ

[

∂u(x, r, t)

∂x
+

∂v(x, r, t)

∂r
+

v(x, r, t)

r

]

= 0 (1)

∂u(x, r, t)

∂t
+

1

ρ

∂P(x, t)

∂x
= µ

[

∂2u(x, r, t)

∂r2
+

1

r

∂u(x, r, t)

∂r

]

(2)

where the effective speed of sound in the fluid is c = (Ke/ρ)
1/2; the effective bulk

modulus of the fluid Ke takes into account the flexibility of the pipeline, compress-
ibility of the hydraulic fluid and the effect of any entrapped air into the system.

The cross-sectional volumetric flow is obtained through the integration of the
axial velocity across the cross-sectional area of the line with finite radius r0. The
volumetric flow is also defined as the product of the average velocity ū(x, t) and the
cross-sectional area.

Q(x, t) = π r20 ū(x, t) =

∫ r0

0

u(x, r, t) 2πr dr (3)

The previous equations correspond to what is known as a two-dimensional viscous
compressible model or dissipative friction model [2, 3].
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2.2 General solution of a single line

The general solution of equations 1 and 2 can be obtained in the frequency do-
main by using the Fourier transform with respect to time according to the following
transformation pair,

f̃ (ω) =

∫
∞

−∞

f (t) e −jωtdt (4)

f (t) =
1

2π

∫
∞

−∞

f̃ (ω) e jωtdω (5)

here ω represents the frequency and j =
√
−1 is a complex value. The average

velocity and the pressure are then given by the following two equations [1],

Ū(x,ω) =

[

A(ω) cos
jωβ

c
x + B(ω) sin

jωβ

c
x

] J0

[

j
(

jω r2
0

ν

) 1
2

]

β2
(6)

P̄(x,ω) =

[

A(ω) sin
jωβ

c
x − B(ω) cos

jωβ

c
x

]

ρc

β
J0

[

j

(

jω r20
ν

)
1
2

]

(7)

in which A(ω) and B(ω) are the unknown integration constants to be obtained
from the applied boundary conditions; ν = µ/ρ is the kinematic viscosity of the
fluid and the constant β is expressed through the Bessel functions of the first kind
Jn(z) with n = 0, 1.

β =









2

j
(

jω r2
0

ν

)
1
2

J1

[

j
(

jω r2
0

ν

)
1
2

]

J0

[

j
(

jω r2
0

ν

)
1
2

] − 1









− 1
2

(8)

Using the boundary conditions at the upstream section where x = 0, and at
the downstream section with x = L, the integration constants A(ω) and B(ω) are
obtained for a single pipeline. Hence the velocity and pressure at the upstream side
Ūu(ω), P̄u(ω) can be expressed in terms of the downstream velocity and pressure
Ūd(ω), P̄d(ω). If the volumetric flow is used instead of the average velocity using
equation 3, the following relations are formulated in matrix form,

[

Pu(ω)

Qu(ω)

]

=





cos jωβL
c

− βρc

π r2
0

sin jωβL
c

π r2
0

βρc
sin jωβL

c
cos jωβL

c





[

Pd(ω)

Qd(ω)

]

(9)
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A most common representation of the previous equation is done in terms of
hyperbolic functions instead of trigonometric functions. The hyperbolic notation is
a popular way to show the solution for a single line and its derivation is found in
the Appendix.

Two pipeline parameters are introduced, the line impedance constant Z0 and the
dissipation number of the line Dn are defined respectively as:

Z0 =
ρ c

πr20
(10)

Dn =
νL

r20c
(11)

2.3 Extension towards the solution of a hydraulic network

The solution of a complete hydraulic network consisting of multiple lines is an ex-
tension of the solution given by equations 6 and 7. Using equation 3, a general
solution for the flow and pressure of each of the lines of the network, denoted by the
subscript i, is given by:

Qi(x,ω) =

[

Ai(ω) cos
jωβi

c
x + Bi(ω) sin

jωβi

c
x

]

ρc

Z0,i

J0

[

j
(

jω r2
0,i

ν

)
1
2

]

β2
i

(12)

Pi(x,ω) =

[

Ai(ω) sin
jωβi

c
x− Bi(ω) cos

jωβi

c
x

]

ρc

βi

J0

[

j

(

jω r20,i
ν

)
1
2

]

(13)

The difference from the solution for a single pipeline is that the integrations
constants for the pressure and flow descriptions cannot be determined explicitly for
each of the lines of the hydraulic network. Instead they are obtained numerically
by solving a linear system of coupled equations compiled from the various boundary
and interface conditions according to the particular configuration of the system. The
system of equations written in matrix form is

A ~x = ~b (14)

where A is the global system matrix, whose elements are frequency dependent.
The vector ~x corresponds to the unknown integration constants for the network
consisting of n lines.

~x =
[

A1(ω), B1(ω), A2(ω), B2(ω), ..., An(ω), Bn(ω)
]T

(15)

The right-hand side vector ~b corresponds to the external forcing terms at the
boundary conditions or interfaces. Thus, the solution of a complex network is only
limited by the computational considerations to solve a system of algebraic linear
equations. The order of this system of equations is twice the number of lines in the
hydraulic network, 2n.
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2.3.1 Interface and boundary conditions

The interface conditions correspond to the junction points or nodes in systems of
branching pipes. At these particular locations, the continuity equation is used to
relate the inflows and outflows of the discharges at each node or junction, see equa-
tion 16. In addition, another set of equations is obtained through the general as-
sumption of uniqueness of the pressure at each junction or node k according to
equation 17.

∑
Qin (xk, ω) −

∑
Qout (xk, ω) = 0 (16)

P l (xk, ω) = P r (xk, ω) (17)

The different boundary conditions at the terminations of the lines could include
any linear static or dynamic hydraulic component. An example of a static bound-
ary condition is a resistive component, which relates the volumetric flow with the
pressure difference across the element at each moment of time through the hydraulic
resistance R; in the frequency domain this condition is given by,

Pa (ω) − Pb (ω) − R Qb (ω) = 0 (18)

A dynamic termination as a boundary condition is also possible, (i.e. a line
termination with a large volume of fluid or an actuator). For this example the
relation is given through a first order linear differential equation for the pressure
Pb, where the hydraulic capacitance C1 accounts for the fluid compressibility. The
representation in both time and frequency domain is given as,

C1

dPb (t)

dt
−Qb (t) = 0 (19)

C1 jω Pb (ω) −Qb (ω) = 0 (20)

The treatment of a non-linear boundary condition at one of the terminations is
also possible through this method; in this case a simultaneous numerical solution
of the non-linear boundary condition equation and the convolution integral at the
boundary is required. An example is shown in [20], for the particular case of a
non-linear valve description.

3 Impulse response method for hydraulic net-

works

The impulse response method makes use of the superposition property of linear
systems; if an arbitrary but known input is decomposed to a series of impulses of
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different amplitudes, the response of the system is obtained by the superposition of
the responses of each impulse. Thus, if the system or hydraulic network pressure
and/or flow response to an impulse is known in the time domain, its response to
a general forcing function can be obtained through the convolution of the impulse
response and the forcing function.

A known input at one of the boundaries of the hydraulic network can be given
as either a pressure function ∆P (t) or flow function ∆Q (t). The pressure response
of the system at a given location P(x, t) is therefore provided by the convolution
of the pressure response at the same location to a pressure impulse rP x (t) and the
desired pressure input function ∆P (t),

P(x, t) =

∫ t

0

rP x (t− τ)∆P (τ)dτ (21)

in which τ is a time variable used for the convolution. Or in the case of a flow
input ∆Q (t) the convolution uses the pressure response to a flow impulse rQ x (t)

and the flow input function,

P(x, t) =

∫ t

0

rQ x (t− τ)∆Q (τ)dτ (22)

Hence, in order to obtain the system response to an impulse, the complete hy-
draulic network is first solved in the frequency domain rx (ω). Afterwards, the
inverse Fourier transform of the pressure and/or flow is applied at the desired loca-
tions to obtain the time domain description rx(t).

rx(t) =
1

2π

∫
∞

−∞

rx (ω) e jωtdω =
1

π
Re

[∫
∞

0

rx (ω) e jωtdω

]

(23)

An efficient way to obtain such response from a numerical perspective, is to
use the discrete fast Fourier transform (FFT). Although the FFT is based on a
fixed discrete time step, the impulse response has only to be calculated once for the
whole network. Once this response is available for the particular configuration, the
numerical convolution is obtained in a separate step for any desired input without
the necessity to solve the system once more. Furthermore the convolution can also
be implemented for a variable step approach.

3.1 Computational efficiency comparison

For large hydraulic networks, the computational efficiency of the proposed method
can be compared with other approaches. A general overview is observed in table 1.

Hence let us consider a network comprising of nlines = 100. In the MOC, first
of all an internal discretization is required; assuming that ten elements are used per
line, a final grid of around 1, 000 points is obtained. Every time step, a solution
using finite differences is found for all the points in the grid. With the modal method
no discretization is required, however a few modes are needed at least to model each
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Table 1: Overview of calculation requirements for hydraulic networks

Approach Calculation requirements per ∆t
MOC Solution required at all interior points of the grid;

results are approximate.
Modal method Solution to a system of linear ordinary differential equations

nlines(4nmodesperline + 1) ; results are approximate.
IRM Solution to a system of linear algebraic equations

2nlines × 2nlines ; exact results in freq domain, accuracy in time
domain depends on FFT required at the end of the method.

line nmodesperline = 4. Assuming that four modes are used to describe accurately
each line, a system of 900 ode’s is obtained. It is important to mention that the
order of the final system might be considerably higher as the number of modes per
line is independent and some lines would require higher modes in order to obtain a
minimum accuracy. Finally the IRM requires the solution of an independent linear
system of equations of 200×200 per frequency (which is equivalent as per time step
in the frequency domain), where the obtained solution is exact. At the end of the
method, an inverse FFT is required but the computational cost of this operation is
also independent of the number of lines in the network.

4 Numerical results

In order to illustrate the proposed method and to compare the predictions with the
modal approach proposed in the literature [18], three cases are solved numerically
based on the simple hydraulic network shown in figure 2. The forcing input function
∆P(t) is a unit step pressure at the upstream side x = 0. The examples include
different linear terminations and the input parameters for each case are summarized
in table 2. It is important to note that the dissipation numbers of each line are
relatively high Dn >> 0.0001. Dn is an adimensional number which is used to
characterize both transient and frequency response of a pipeline and given by equa-
tion 11; a high value implies that the energy dissipation due to the shear friction at
the wall of the line is important. Therefore the dissipative model with frequency-
dependent friction will give a more accurate description of the transient behaviour
than the linear friction model.

Figure 2: Schematic of the hydraulic network used for the numerical simulations
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In general, there exist two unknown integration constants for each line comprising
the network. This means that for the particular configuration shown in figure 2, six
independent linear equations are required. The first equation corresponds to the
boundary condition at the upstream side of the supply line where the required
pressure impulse is applied at x = 0. Three more equations are obtained from the
interface conditions at the branching node a; one for the continuation of flows; the
other two from the uniqueness assumption of the pressure. The supply line of the
network is noted by the subscript s, while the two other branch lines are noted by
the subscripts 1 and 2 respectively.

at x = 0 Ps (0,ω) = 1 (24)

at x = Ls Qs (Ls, ω) −Q1 (Ls, ω) −Q2 (Ls, ω) = 0 (25)

Ps (Ls, ω) − P1 (Ls, ω) = 0 (26)

Ps (Ls, ω) − P2 (Ls, ω) = 0 (27)

The fifth and sixth equations are derived from the boundary conditions at the termi-
nations of the hydraulic lines 1 and 2. Once the integration constants are obtained
for all the lines in the network, the average velocity and pressure can be evaluated at
any desired location by equations 12 and 13. The time domain response of the pres-
sure impulse is obtained numerically through the discrete inverse FFT. For all cases,
the number of samples used was N = 216, with a discrete step time of 0.0001s. The
selected time step allows to follow the pressure wave propagation along the spatial
coordinate with sufficient detail. Furthermore, it includes frequency components up
to 5000Hz which are sufficient to describe the step input considered in the examples.
The final step is to convolute numerically the impulse response with a step function
to obtain the desired step response of the system in the time domain.

Table 2: Numerical parameters for the different cases taken from [18]

Dns Dn1 Dn2 L1/Ls L2/Ls A1/As A2/As R1/Zs R2/Zs C1/Cc*
Case 1 0.1 0.1 0.1 1 1 1 1 ∞ 3 -
Case 2 0.01 0.01 0.1 1 5 1 0.5 ∞ ∞ -
Case 3 0.01 0.1 0.1 5 10 0.5 1 2 6 0.25
* with Cc = πLsr

2
s/ρc

2

4.1 Model comparison and discussion

The results for each case are compared with the results of the same network using
the modal method. The modal method is based on four modes for each of the lines
in the hydraulic network as presented in [18].

4.1.1 Case 1

All the lines have the same geometric characteristics; one of the terminations of
the pipeline is blocked while the other consist of a linear resistance element; the



A semi-analytical impulse response method for transient laminar flow in hydraulic
networks 153

boundary conditions are shown in equations 28 and 29.

at x = L1 Q1 (L1, ω) = 0 (28)

at x = L2 P2 (L2, ω) − R2 Q2 (L2, ω) = 0 (29)

The pressure response to an impulse at the locations Pa, P1, P2 is shown in fig-
ure 3(a); this response is numerically convoluted with a unit step input to obtain
the results of figure 3(b). Figure 3(c) shows the comparison of results with the
modal method. The pressure transient shows a smooth response which is accurately
described, with minor differences, by both methods. However, the modal method
contains spurious oscillations at the initial moments in time, which are not present
in the results of the IRM. The oscillations present in the modal method are impos-
sible to eliminate since this would require the inclusion of infinitely many modes. In
the presented method such oscillations are absent since the solution is exact.
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Figure 3: Time domain response comparison of case 1
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4.1.2 Case 2

In this case, different geometries of the lines are used and both terminations are
blocked; the respective boundary conditions are given in equations 30 and 31.

at x = L1 Q1 (L1, ω) = 0 (30)

at x = L2 Q2 (L2, ω) = 0 (31)

As seen in figure 4, when blocked terminations are used, the modal approxi-
mations are inadequate to provide an accurate response of the system. Spurious
oscillations are again present at the initial moments of time for the reason explained
previously. In addition, a higher dissipation of the transient response is observed in
the modal approximations together with a phase difference.
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Figure 4: Time domain response comparison of case 2

The results provided by the IRM method also show sharp variations in the pres-
sure response due to reflected wave fronts, however this effect is not captured cor-
rectly by the modal method.
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4.1.3 Case 3

In the final case 3, different geometries are present with both dynamic and static
terminations, such boundaries are given through equations 32 and 33.

at x = L1 P1 (L1, ω) −

(

1

C1jω
+ R1

)

Q1 (L1, ω) = 0 (32)

at x = L2 P2 (L2, ω) − R2 Q2 (L2, ω) = 0 (33)

In figure 5 the results show a relatively smooth response for both methods. As
can be seen, the pressure response Pa at the hydraulic branch using modal approxi-
mations, presents large oscillations specially after the first wave front surpasses the
branch junction. The oscillations might be reduced by increasing the number of
modes for this particular line. Hence, it is evident that even for a relatively simple
network the modal method has not direct control in the required number of modes
for each line.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Normalized time νt/r
2

P
re

s
s
u
re

 

 

P
a

P
1

P
2

(a) Impulse response

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

1.5

2

Normalized time νt/r
2

P
re

s
s
u

re

 

 

P
a

P
1

P
2

(b) Step response

0 0.1 0.2 0.3 0.4 0.5

0

0.5

1

1.5

2

Normalized time νt/r
2

P
re

s
s
u
re

 

 

P
a
 IRM

P
1
 IRM

P
2
 IRM

P
a
 modal approx

P
1
 modal approx

P
2
 modal approx

(c) Step response comparison between the IRM and modal approximations

Figure 5: Time domain response comparison of case 3

From the results presented in the previous cases, it is clear that sharp wave fronts
and reflections cannot be approximated with a few number of modes. For larger
networks with multiple number of lines, the inclusion of a large number of modes
per line can be both computationally demanding and inexact. On the contrary,
the adopted IRM method is based on an exact solution in the frequency domain,
making this approach more accurate and reliable for the solution of larger networks,
overcoming the disadvantages of several other approaches.
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5 Conclusions

An application of a semi-analytical impulse response method to hydraulic networks
was presented for transient laminar flow using a two-dimensional viscous compress-
ible model. By solving analytically the complete network in the frequency domain, a
unique impulse response of pressure and/or volumetric flow is obtained in the time-
domain through the inverse FFT. A discrete numerical convolution with respect to
time is then applied separately to obtain the response of the complete network to
a chosen arbitrary input. Although the application of the method was shown for a
simple hydraulic network, it can be easily extended to networks with large numbers
of lines with various interface and boundary conditions.

Since the IRM does not require any spatial discretization, it is expected that
the computational cost has a great advantage, specially for applications in large
networks, when compared to existing grid-space methods. The method is only
limited by the numerical considerations to solve a system of coupled linear algebraic
equations and the fast Fourier transform. This means that for large networks, the
increase in computational cost is only determined by the order of the global system
matrix, which is linearly dependent to the number of lines forming the system.

In addition, the presented results show that the adopted IRM method provides a
more accurate description of the transient behaviour than the modal approximation
of individual lines used for network modelling. For a large network, the modal
method might provide inaccurate results, as the required number of modes for each
line is not a priori known.
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Appendix

The matrix solution for a single line can also be expressed in terms of the complex
Laplace variable s = σ + jω; where σ is a decay factor and ω represents the
frequency. Hence, equation 9 is rewritten as,

[

Pu(s)

Qu(s)

]

=





cos sβL
c

− βρc

π r2
0

sin sβL
c

π r2
0

βρc
sin sβL

c
cos sβL

c





[

Pd(s)

Qd(s)

]

(34)

The previous equation can also be expressed in terms of hyperbolic functions
instead of trigonometric function using the relations sin jx = j sinh x and cos jx =

cosh x. The hyperbolic notation is the most usual way to show the solution for a
single line as it is expressed only in terms of the line characteristic impedance Zc(s)

and the propagation operator Γ(s) [2, 3].

[

Pu(s)

Qu(s)

]

=

[

cosh Γ(s) Zc(s) sinh Γ(s)

1
Zc(s)

sinh Γ(s) cosh Γ(s)

] [

Pd(s)

Qd(s)

]

(35)

This general notation allows to use the solution for the different distributed
parameters models (i.e. 1D inviscid model, 1D linear friction model) depending
on the expression used for the terms Zc(s) and Γ(s). Using the normalized Laplace
operator s = s/ωc, whereωc = ν/r20 is the viscosity frequency, the line characteristic
impedance Zc (s) and the propagation operator Γ (s) are given by,

Zc (s) = Z0
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2

j (s)
1
2

J1

(

j (s)
1
2
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(36)

Γ (s) = Dn s
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Abstract

In this paper dynamic fracture process due to high-speed impact of steel
plunger into ceramic sample is simulated. The developed numerical model is
based on �nite element method and a concept of incubation time criterion,
which is proven to be applicable in order to predict brittle fracture under
high-rate deformation. Simulations were performed for ZrO2(Y2O3) ceramic
plates. To characterize fracture process quantitatively fracture surface area
parameter is introduced and controlled. This parameter gives the area of
new surface created during dynamic fracture of a sample and is essentially
connected to energetic peculiarities of fracture process. Multiple simulations
with various parameters made it possible to explore dependencies of fracture
area on plunger velocity and material properties. Energy required to create
unit of fracture area at fracture initiation (dynamic analogue of Gri�th surface
energy) was evaluated and was found to be an order of magnitude higher as
comparing to its static value.

1 Introduction

The investigation of fracture properties of ceramics is of big interest due to application
of these materials in protection systems. Multi-layered ceramic composites are used in
bulletproof vests and demining devices due to their exceptional properties (good impact
energy absorption, low weight). In order to optimize construction and design of protection
systems elaborate numerical schemes for simulation of impact into ceramic targets should
be developed. Such numerical models should take into account peculiar properties of dy-
namic fracture [1]. Despite considerable advances in theoretical studies of impact problems,
generally applicable fracture criteria for ceramic materials have not been developed yet [2].
In the presented paper the numerical scheme involves incubation time fracture criterion
which is proven to be an e�ective tool for fracture process simulation for a wide range
of brittle and quasi-brittle materials subjected to dynamic loading [3, 4]. The developed
scheme is based on �nite element method and is used to simulate impact of steel cylindrical
plunger into round ceramic plate. Due to obvious axial symmetry of the problem two-
dimensional formulation is used. Both bodies (target and plunger) are supposed to show
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purely elastic behavior up to the moment of fracture. Temperature e�ects are neglected in
the presented research. Such simpli�cations of the model made it possible to concentrate
on fundamental features of dynamic fracture process â�� evolution of fracture surface in
the target, fragmentation and surface energy (analogous to Gri�thâ��s surface energy)
calculation.

2 Problem formulation
Plunger and target are supposed to be linear elastic bodies and their stress-strain state is
de�ned by Lame equations and Hook's law:

ρ
∂2Ui
∂t2

= (λ+ µ)∇i
(
∇ • Ū

)
+ µ∆Ui, (1)

σi,j = δi,jλ∇ • Ū + µ

(
∂Ui
∂xj

+
∂Uj
∂xi

)
. (2)

The ceramic plate is supposed to be �xed on its outer radius. The plunger initial velocity
V is in the direction normal to the plate surface.
Material properties for the target are typical for ZrO2(Y2O3) ceramics [5, 6]. The plunger
is supposed to have properties of steel. Tables 1 and 2 give the material properties utilized
for the simulation.

Density, ρ, kg
m3 6000

Young's modulus, E,MPa 200
Poisson's ratio, ν, 0.25

Critical stress intensity factor, KIC ,MPa
√
m 13.3

Ultimate tensile stress, σc,MPa 750

Table 6: Target material properties

Density, ρ, kg
m3 7860

Young's modulus, E,MPa 200
Poisson's ratio, ν, 0.25

Table 7: Plunger material properties

3 Fracture criterion and simulation technique
To perform correct simulation of fracture in ceramics due to impact of a plunger one should
choose an adequate fracture criterion which will be able to predict fracture in transient
loading conditions. While classical fracture criteria (like critical stress criteria or criteria
based on dynamic fracture toughness concept) tend to be inapplicable for dynamic loading
cases [7], incubation time fracture criterion may be regarded as a universal tool for dynamic
fracture prediction [8, 9]. It is supposed that a similar approach can be used to predict
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fracture initiation, evolution and arrest in ceramic materials [10] for the studied class of
problems. The criterion for fracture event at point x, at time t, is formulated in the
following way [11]:

1

τ

∫ t

t−τ

1

d

∫ x

x−d
σ(x′, t′)dx′dt′ ≥ σc, (3)

where τ is the microstructural time of a fracture process (or fracture incubation time) - a
parameter characterizing the response of the material to applied dynamical loads (i.e. τ is
constant for a given material and does not depend on problem geometry, the way a load is
applied, the shape of a load pulse or its amplitude). d is the characteristic size of a fracture
process zone and is constant for the given material and chosen scale. d is calculated in the

following way d = 2
π
K2
IC
σ2
c

[1]. σ(x, t) is stress at a point x, changing with time, and σc is its
critical value (ultimate stress or critical tensile stress found in quasi-static experiments).
Fracture criterion (3) is integrated into numerical scheme which is based on �nite element
method. ANSYS software package is used as a solver and fracture criterion is implemented
via ANSYS user programmable feature (UPF) in FORTRAN. In addition to this external
program in C++ is used to control and optimize solution progress and manage output
data. Element size in the mesh is chosen to be equal d and thus minimal length of a
microcrack in the sample will be also equal d which is in agreement with approach based
on (3). Time step of the solution is chosen to be smaller than time needed for the fastest
wave to pass through single element of the mesh.
In the constructed mesh each element has its own set of nodes - neighbor elements do
not have common nodes, however nodes with equal coordinates have coupled degrees of
freedom. This means that while condition (3) is false they behave as a single node, and as
soon as (3) is true the nodes are separated and new surface appears.

4 Results

Experiments for incubation time evaluation in ceramics have not been performed yet and
value of τ for ZrO2(Y2O3) ceramic is unknown. However this makes it possible to inves-
tigate in�uence of incubation time alternation on fracture process features. Reasonable
range for possible incubation time variation was chosen keeping in mind values typical for
other brittle materials [9].

4.1 Fracture surface evolution

At each step of the solution fracture surface area is calculated in the external program.
While fracture surface area is calculated axial symmetry of the problem is considered:
length of each microcrack is multiplied by the distance to symmetry axis and then added
to the total fracture surface area. When fracture surface area stops to increase the solution
is stopped. Typical graph of fracture surface area - time dependence is presented in �gure
1.
It should be noticed here, that parts of the ceramic target separated in course of the fracture
process do not interact with each other, which is, of course, a signi�cant simpli�cation of
the model. This simpli�cation can have a kind of physical reasoning, connected to removal
of energy from the system (as separated parts are no longer interacting with the fracturing
media), that in real experiment is consumed by fracture, including heating, surface energy,
acoustic emissions, material dumping, etc. Possibly, interaction of separated particles with
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other particles, plunger and the resting bulk of ceramic material should not be neglected,
but this is the topic for a future study.
As plunger initial velocity is altered the amount of energy spent for fracture changes. Thus
the induced damage also changes. Figure 2 depicts dependence of �nal fracture surface
area on plunger initial velocity. These calculations were performed for 1 µs incubation time
value. Variation of incubation time value provided dependence of �nal fracture surface area
on τ (see �gure 3). As seen from the graph higher incubation time values correspond to
bigger �nal fracture surface area. This may be referred to the fact that greater incubation
time values induce fracture closer to the sample edges. The data was obtained for 100m/s
velocity of the plunger. Variation of the incubation time used in fracture criterion (3) in
fact, means the variation of the material as the incubation time is a material property
responsible for material response to dynamic loading.
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4.2 Fragmentation
In this study the mesh of the target is interpreted as a graph with elements being nodes of
this graph. If two elements are separated by a microcrack two nodes of the graph have no
edge between them. Such approach allows application of well developed algorithms from
graph theory to investigate fragments of the target (connected components from the graph
theory point of view). Variation of the incubation time value provided an opportunity to
investigate dependence of number of separate fragments appearing as a result of fracture
on incubation time. This dependence is presented in �gure 4. As incubation time increases
number of fragments drops. In addition to this distribution of sizes of fragments was
studied (�gure 5). One should note here that several points were eliminated from the
graph to highlight zone of interest (middle-sized fragments).
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4.3 Surface energy. Dynamic analogue of Gri�th's constant
The classical approach to fracture mechanics going back to Gri�th [12] is based on the
statement that a crack propagates if this process leads to a decrease in the total energy Π
of the system. For a plate of unit thickness, the crack-growth conditions can be written as

−∂Π

∂L
= 2γ. (4)

Gri�th initially interpreted the quantity 2γ as the surface energy, because it represented
the speci�c work (per unit area) expended to form a new surface. Irwin and Orowan
showed that this quantity should be interpreted as the total work (including the plastic
one) in the fracture zone. This work can be taken as the resistance to a certain dissipative
process proceeding in a small region near the crack tip. The study of this characteristic
includes the determination of its physical origin (di�erent for di�erent classes of materials)
and its measurement.
For the case of linearly elastic body the Gri�th's constant is equal to

γ =
K2
Ic

2E
, (5)

where E is Young's modulus and KIc is critical stress intensity factor for mode I loading.
Thus, γ can be indirectly determined in this case from the standard tests. However it was
shown [13] that in case of dynamic loading surface energy appears to be much higher than
values obtained for static cases.
In the present study the energy spent for fracture Π is calculated as di�erence between
initial (E) and residual (Er) kinetic energies of the plunger. These energies are calculated
using formulas E = mV 2/2 and Er = mV 2

r /2 where m is the plunger mass and V and
Vr are initial and residual velocities of the plunger. To calculate dynamic analogue of
Gri�th's energy - γd - one should apply the following formula:

γd =
dΠ

dS


S=0

, (6)

where S is the area of fracture surface created in a result of interaction. Calculation of
γd using (6) gives γd = 1171 J

m2 for the studied case. This value is considerably higher
(approximately an order of magnitude) than fracture surface energy evaluated in quasi-
static loading conditions [14].
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5 Conclusions
The presented research is the �rst attempt to analyze and simulate dynamic fracture of
ceramics due to impact of steel plunger applying incubation time approach. Dependen-
cies of �nal fracture surface area and fragmentation properties on incubation time (and
thus material) were investigated. Moreover fracture surface area for dynamic fracture was
calculated appearing to be an order of magnitude higher than the value for static loading
conditions.
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Abstract

In the original problem for which this model was developed, one-
dimensional �exible objects interact through a non-linear contact model. Due
to the non-linear nature of the contact model, a numerical time-domain ap-
proach was adopted.

One of the goals was to see if the coupling between axial and transverse
deformations had an in�uence on the results and so this capacity had to
be included. In addition, large deformations should be allowed as well as
non-prismatic, non-symmetrical cross-sections and inhomogeneous constitu-
tive properties. To accommodate these requirements the linear model which
was being used, was upgrade to meet these requirements.

The model created with the procedure explain in this paper consist of dis-
crete masses connected by a set of nonlinear springs. The expressions for the
masses and springs are obtained by discretization of the continuum represen-
tation of a Timoshenko beam. The required number of springs is proportional
to the desired order of geometrical nonlinearity the model should accurately
capture.

This paper explains the procedure to create a model which can accurately
capture geometrically nonlinear e�ects up to a desired order..

1 Introduction
While studying the interaction between level ice and a downward sloping structures, the
question arose whether axial deformation and buckling had an e�ect on the breaking length
of the ice. To investigate this, the linear discrete element model of a Timoshenko beam was
improved so that it could accurately capture geometrically nonlinear (GN) e�ects as well as
non-prismatic, non-symmetrical cross-sections and inhomogeneous constitutive properties.
The linear model used falls in the category of discrete models whose origin is generally
credited to [4] whom introduced the framework method to solve the plane stress problem.
The earliest derivation found of a discrete system which accurately captures a Timoshenko
beam was done by [3]. These models have been applied to study cracked beams [1] and
moving loads [9].
In all works listed above, the authors assumed an element layout (the number of springs
and their geometry) which involves some level of judgment and trial and error to obtain
an element layout which can be matched to the continuum. The matching results in
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expressions for the parameters of the discrete model, such as the springsâ�� sti�ness and
their geometry, in terms of quantities of the continuum such as the area, Youngâ��s
modules or density. In this paper we take the more traditional approach by directly
discretizing a continuum. A consequence of directly discretizing the continuum, is that the
element layout is obtained as a result of the derivation rather than a starting point like it
was in previous works. The linear models and their element geometries can be obtained
by linearizing the GN models derived in this paper.
In the �rst part of this paper the procedure is derived for obtaining discrete models which
can accurately capture GN e�ects up to a given order. Next, using this procedure, the
simplest possible model is created and is used to validate the procedure.

2 The discrete element

In this paper we start with the kinematic assumptions as de�ned in [6, 7]:

Figure 1: A non-prismatic, non-symmetric beam. The dashed line is the chosen
reference axis while the dotted line is the neutral axis of the cross-section. The
distance r1 is the o�set between the two. For beams with a cross-section which is
symmetric with respect to its neutral axis, r1 will be zero for all elements. However,
for non-symmetric beams r1 will be none zero and vary along the length. The coor-
dinate s runs along the chosen reference axis and the coordinate h runs tangential
to it.

To ensure that the de�ections of the beam reside in the x,z-plane, the cross-section and
loading are assumed to be symmetric with respect to this plane. From this continuous
beam a piece is cut with a length l. The potential energy of this piece is:

Vpiece,ε =
1

2

∫ sn+l/2

sn−l/2

∫
A(s)

σ (s, h) ε (s, h) dA dx

Vpiece,γ =
1

2

∫ sn+l/2

sn−l/2

∫
A(s)

τ (s, h) γ (s, h) dA dx

(1)

where sn is the midpoint of the piece, σ is the normal stress, ε is the normal strain, τ is
the shear stress and γ is the shear strain and all the constitutive properties are allowed to
be a function of s. This continues piece is now discretized using �nite di�erences. In this
paper a two-point discretization scheme is used for simplicity, resulting in a linear element
as can be seen in the �gure below.

167



Proceedings of XLIII International Summer School�Conference APM 2015

Figure 2: The element n which is part of a Timoshenko beam and connects nodes i
and j.

Due to the presence of two nodes per element, the following expressions relate the contin-
uum and the discrete element:

xj − xi = l
∂x(s)

∂s

∣∣∣∣
s=sn

+O (l) ,
xj + xi

2
= x (s)|s=sn +O

(
l2
)

(2)

In these equations the x-displacement was used but the same relations apply to any prop-
erty which is a function of s, such as z(s, h) or γ(s, h). These relations also show that
for all s-dependent constitutive properties, the value half-way the element should be used,
again resulting in a second order error in their discretization. This will be denoted with a
subscript n, so for instance En stand for E(s)|s=sn . This discretization also requires the
inhomogeneous or non-prismatic nature of the beam to be smooth so that higher order
derivatives with respect to s are small.
After discretization the integral over s becomes trivial as all s-dependencies have been
removed and so the expression for the potential energy (Eq. (1)) of the discrete element
becomes:

Vn,ε =
l

2

∫
An

σn (h) εn (h) dA

Vn,γ =
l

2

∫
An

τn (h) γn (h) dA

(3)

where σn, εn, τn and γn are the stresses and strains of the element. These will be de�ned
in the next section which covers to potential energy of the element. The kinetic energy is
discussed afterwards.

2.1 Potential energy
The following geometrical relations apply the element shown in Figure 2 (note that all
coordinates are global):

x̂i (h) = xi + (h+ r1,n) cos (ϕi + π/2) = xi − (h+ r1,n) sin (ϕi)

ẑi (h) = zi + (h+ r1,n) sin (ϕi + π/2) = zi + (h+ r1,n) cos (ϕi)

x̂j (h) = xj − (h+ r1,n) sin (ϕj)

ẑj (h) = zj + (h+ r1,n) cos (ϕj)

(4)
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Similarly to what is done in in�nitesimal strain theory, [8] the normal and shear strains
are de�ned using the relations in Eq. (4):

εn (h) =
ln (h)− l

l
=

∆ln (h)

l
=

1

l

(√
∆X2

n (h) + ∆Z2
n (h)− l

)
(5)

−γn (h) =
γi (h) + γj (h)

2
− π

2
− γ0,n

=
1

2

((
ϕi +

π

2

)
− αn (h) +

(
ϕj +

π

2

)
− αn (h)

)
− π

2
− γ0,n

=
ϕi + ϕj

2
− αn (h)− γ0,n = ϕn − αn (h)− γ0,n

→ γn (h) = αn (h)− ϕn + γ0,n

(6)

αn (h) = arctan

(
∆Zn (h)

∆Xn (h)

)
∆Xn (h) = x̂j (h)− x̂i (h) , ∆Zn (h) = ẑj (h)− ẑi (h)

(7)

where ln is the current length of the element, ∆ln is the elongation of the element, γn is
the shear angle of the element where −π/2 subtracts the default shear angle which account
for the fact that by default the cross-section is perpendicular to the beam axis and γ0,n

accounts for any non-zero shear angle in the undeformed state, ∆xn and ∆zn are the
distance between the two nodes in their respective direction and is the undeformed length
(element size) given by L(N + 1) where L is the length of the beam and N is the total
number of elements.
Next the following linear stress-strain relations are assumed:

σn = Enεn (h) =
En
l

∆ln (h)

τn = Gnγn (h)
(8)

Usage of nonlinear materials is also possible as long as both stresses remain uncoupled.
Using these relations, the potential energy of the element becomes:

Vn,ε =
l

2

∫
An

En
l2

∆l2n (h) dA

Vn,γ =
l

2

∫
An

Gnγ
2
n (h) dA

(9)

The next step is to solve the two cross-sectional integrals.

2.2 Solving the cross-sectional integrals

Due to the complexity of the expressions for the elongations, analytically solving the cross-
sectional integrals (CSI) in Eq. (9) results in so many terms that it makes evaluation
impractically slow. Because of this, we seek to �nd an approximate system for which the
integral can be solved, whose error compared to the exact solution of the CSI is acceptable.
The �rst step in �nding this approximate system is to investigate a Taylor series expansion
(TSE) of the squared strains. The TSE is done for an element which is part of a beam
whose undeformed shape is a straight line and which is not subjected to any pre-stress.
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The approximate system will prove to be independent of these two assumptions. The TSE
of the element can be written in the following form:

Vn,ε =
l

2

En
l2

∫
An

Bn,0h
0 +Bn,1h

1 +Bn,2h
2 + ..+Bn,∞h

∞

Vn,γ =
l

2
Gn

∫
An

Cn,0h
0 + Cn,1h

1 + Cn,2h
2 + ..+ Cn,∞h

∞
(10)

where the coe�cients B0 and C0 contain all terms which are proportional to h0 of their
respective strain and so on. The order of h-dependency goes up to in�nity because the
normal strain contains a square root and the shear strain an arctangent.
Because the strains were assumed to be constant over the width of the beam, the CSI is only
dependent on h. Looking at Eq. (8) however, these h-dependencies are all multiplications
with a certain order of h. These simple dependencies on h allow the CSIs to be calculated
in a trivial manner if two assumption are made: 1) that the elasticity of the material is
uniform over the cross-section and 2) that all terms which result from the TSE have the
same pro�le over the height as the strain they originate from. This implies that higher
order strain components, for instance say those in Bn,5, have the same pro�le as the normal
strain they originates from, which is a linear pro�le. Under these assumptions the integral
in Eq. (10) evaluates to:

Vn,ε =
l

2

En
l2

∫
An

Bn,0h
0 +Bn,1h

1 +Bn,2h
2 + ..+Bn,∞h

∞

Vn,γ =
l

2
Gn

∫
An

Cn,0h
0 + Cn,1h

1 + Cn,2h
2 + ..+ Cn,∞h

∞
(11)

Both equations contain in�nitely many terms. However, if this expansion is truncated at a
certain order $, which then de�nes the maximum order of geometrical nonlinearity of the
discrete system, the expansion only contains a �nite number of orders:

V($)
n,ε =

l

2

En
l2

(AnBn,0 +Anr1,nBn,1 + InBn,2 + ..+Anr$,nBn,$)

V($)
n,γ =

l

2
Gn (κ0,nAnCn,0 + κ1,nAnr1,nCn,1 + κ2,nInCn,2 + ..+ κ$,nAnCn,$)

(12)

The order of GN of a term in the expansion is de�ned as the total number of s-dependent
variables in that term. The relation between the total number of unique solutions to the
CSIs and $ is shown in the table below:

$ = 1 $ = 2 $ = 3 $ = 4 $ = 5 $ = 6
εn 3 3 3 4 5 6
γn 1 2 3 4 5 6

Table 8: The total number of unique solutions to the CSI for di�erent orders of GN
($) for both strains

To give an example, the 3 unique solutions to the CSIs in the potential energy of εn
truncated at $ = 1 are An, Anr1,n and In. Apart from an anomaly in the lower orders
of the normal strain, there is a linear relation between $ and the highest order of $-
dependency in the CSIs. This relation forms the basis of the approximation of the CSIs.
If the discrete system is only required to be accurate up to a certain order $, the number
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of solutions to the CSIs is �nite. To ensure that the approximate system can accurately
capture all GN e�ects up to order $, a solution is sought in the following form which is
based on Eq. (9):

V̂($)
n,ε =

l

2

∫
An

En
l2

Qε∑
q=1

kn,q∆l
2
n (h = hn,q) dA

V̂($)
n,γ =

l

2

∫
An

Gn

Qγ∑
q=1

gn,qγ
2
n (h = ηn,q) dA

(13)

where kn,q and gn,q are unknown dimensionless scaling factors, hn,q and ηn,q are unknown
o�sets of the springs with respect to the chosen reference axis and Qε and Qγ are the
total number of springs. The evaluation of the strains at a speci�c o�set (hn,q and ηn,q)
e�ectively turns the continuously distributed elasticity into a discrete spring with a certain
o�set, visualized below.

Figure 3: The continuously distributed normal strain has been replaced by a spring
with a certain o�set hn,q. The same applies to the shear strain.

This means that the integral over the cross-section has been replaced by a summation of
springs, each with an unknown scale and o�set. To understand the implications of this
approximation, the truncated TSE of the approximate form (Eq. (11)) and the exact form
(Eq. (13)) are compared (the exact same can be for the shear energy):

V($)
n,ε =

l

2

EnAn
l2

(Bn,0 + r1Bn,1 + ..+ r$Bn,$)

V̂($)
n,ε =

l

2

EnAn
l2

Qε∑
q=1

kn,q

(
B̂n,0h

0
n,q + B̂n,1h

1
n,q + ..+ B̂n,$h

$
n,q

) (14)

At this point it is important to understand how the approximation di�ers from the exact
solution, but, more importantly, how they are similar. Because the â��strain equationâ��
for each spring is based on those of the continuously distributed strain, their TSE will be
exactly the same apart from their dependence on h. This means that for any given state
of the elements the strain components which are contained in their respective TSE will
be exactly the same. This means that B0 = B̂0 and C0 = Ĉ0 and the same holds for all
other orders. The di�erent dependence on h results in a di�erent type of solution to the
CSIs: for the continuum the integral actually integrates over di�erent orders of h while
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the approximate system has become independent of h due to the substitution and so the
integral evaluates to An for all terms. However, as the approximate system still has two
unknowns per spring, the two equations in Eq. (14) can be matched, so that the CSI of
both systems ends up being the same. This results in the following set of equations:

Qε∑
q=1

kn,qh
0
n,q = 1

Qε∑
q=1

kn,qh
1
n,q = r1,n

...

Qε∑
q=1

kn,qh
$
n,q = r$,n

,



Qγ∑
q=1

gn,qη
0
n,q = κ0,n

Qγ∑
q=1

gn,qη
1
n,q = κ1,n

...

Qγ∑
q=1

gn,qη
$
n,q = κ$,n

(15)

where r0..$,n = 1/An
∫
An
h0..$ dA, κ0,n is the Timoshenko shear correct factor and κ1..$,n

are its higher order equivalents. The right hand side of both sets are di�erent as the
continuous normal and shear strains have a di�erent distribution along the height. The
total number of equations to be satis�ed is equal to the number of unique solutions to the
CSIs, which was shown in Table 1. Each spring has a total of two unknowns: its o�set
and scaling factor. Since the same number of unknown is needed as their are equations,
the required number of springs (Qε and Qγ) becomes:

Qε = max (d$/2e , 2) , Qγ = d$/2e (16)

where the brackets indicate the ceiling function and the minimum of two normal springs
is due to linear bending e�ects being proportional to In.
With all the unknowns determined the discrete element can accurately capture the poten-
tial energy up to the speci�ed order of geometrical nonlinearity $. This means that the
resulting discrete element is not an exact solution to the CSI and thus will have an error
compared to that exact solution. This error is independent of the mesh size and manifests
itself as an incorrect solution to the CSIs for orders higher than $. The error can be
reduced by increasing $ but for a given order of $ there will be a non-converging error.
Note that higher order (in terms of h) CSIs are also multiplied with higher order (in terms
of $) strain components. The error in the incorrect solution to the CSI is therefore only
as important as the â��magnitudeâ�� of the strain component it is multiplied with. As
the in�uence on the solution (displacements, stresses, etc.) diminishes as the order of the
strain components increases, the in�uence of the error to the CSI also diminishes.
The �nal item to consider is the state which was used to perform the TSE and whether
this has any in�uence on the matching process. A di�erent state does result in a di�erent
TSE of the potential energies but can always be rewritten in the form show in Eq. (10).
The strain components contained in Bn,0..∞ and Cn,0..∞ will be di�erent they will still be
equal to B̂n,0..∞ and Ĉ,0..∞ since both are based on the same strain equations. This means
that the matching process is independently of the state used for the TSE. The absolute
value of the non-converging error will be slightly di�erent for each state, as in each state
the importance of higher order is slightly di�erent. However, in general the importance
of higher orders is small and so the overall magnitude of the non-converging error will be
independent of the state of the system.
This ends the discretization of the potential energy. The next step is to consider the kinetic
energy.
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2.3 Kinetic energy
The kinetic energy requires the velocities. Based on Eq. (2) the expressions for the
velocities of the element are:

˙̂xn =
∂ (x̂i + x̂j)/2

∂t
=

1

2

(
ẋi − (h+ r1) cos (ϕi) ϕ̇i + ẋj − (h+ r1) cos (ϕj) ϕ̇j

)
˙̂zn =

∂ (ẑi + ẑj)/2

∂t
=

1

2

(
żi − (h+ r1) sin (ϕi) ϕ̇i + żj − (h+ r1) sin (ϕj) ϕ̇j

) (17)

Using these relations the kinetic energy of an element becomes:

Tn =
l

2

∫
A
ρ
(

˙̂x2
n + ˙̂z2

n

)
dA (18)

Luckily, the expressions for the velocities are much simpler than those of the strains and so
the CSI can be solved analytically under the assumption that the density is uniform over
the cross-section:

Tn =
Jn
8

((
− cos (ϕi) ϕ̇i − cos (ϕj) ϕ̇j

)2
+
(
− sin (ϕi) ϕ̇i − sin (ϕj) ϕ̇j

)2)
+
mn

4

(
ẋi − r1,n cos (ϕi) ϕ̇i + ẋj − r1,n cos (ϕj) ϕ̇j

)2
+
mn

4

(
ẏi − r1,n sin (ϕi) ϕ̇i + ẏj − r1,n sin (ϕj) ϕ̇j

)2 (19)

where Jn =
∫
An
ρnh

2l dA = ρnl (In + r1,nAn) and mn =
∫
An
ρnl dA = ρnAnl. With this,

both the kinetic and potential energy of the discrete element have been de�ned and so the
Lagrangian of the system if known.
Finally, to avoid numerical issues the arctan2 function should be used when computing
the shear angle γn. In addition, the vector containing the shear angle of all elements can
contain jumps of 2π because the range of αn is limited to the range of the arctan2 ([−π, π])
while γn does not have this limitation. These jumps should be removed from the vector.

3 Model validation
This chapter will validate the methodology derived in this paper. The �rst step is to create
a model. The model is then validated against solutions found in the literature.

3.1 Creating a simple beam model
The only step to be done in creation of the model is to perform is matching in Eq. (15).
To perform the matching, the order of GN of the model has to be set. $ is set to 1 as this
results in the fastest model possible and its performance is already su�ciently accurate.
To further simplify the model, the anomaly visible in Table 1 is investigated to see which
terms are proportional to In as those are the once which necessitate the second axial
spring. An investigation shows that the anomaly is caused by linear bending e�ects, e.g∫
AEz

2φxx dA = EIφxx. This strain component could be capture by the second axial
spring, as previously suggested, but can also be captured by a rotational spring. As the
rotational spring is faster, we opt for that solution. This results in the following set of
equations, similar to Eq. (15):{

knh
0
n = 1

knh
1
n = r1,n

,

{
gnη

0
n = κ0,n

gnη
1
n = κ1,n = κ0,nr1,n

,

{
l

2
kn,rot =

l

2

EnIn
l2

(20)
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where kn,rot is the unknown sti�ness of the rotational spring. This set of equations is readily
solved. The equations of motion (EOMs) can now be obtained using the Euler-Lagrange
equation. The EOMs were implemented in matlab at used to compute the results in the
following section.

3.2 Validation

The model is now validated against solutions found in existing literature:

� Cantilever with small point load at the end (linear behavior): quadratic convergence

� Cantilever with large point load at the end (GN behavior) (from [2]): initial converges
quadratically but then converges to a non-decaying error, see below:
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� GN cantilever with large moment causing the beam to roll up to a circle: exact
(error is equal to the error of the Newton-Rapson scheme used to solve the nonlinear
problem):
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� Axial buckling: the converged predicted buckling load has an error of about 0.44 %
when compared with the buckling load given by Eulerâ��s formula.

� Eigenfrequencies (from [2]): quadratic convergence

� GN cantilever with follower load (from [5]): good agreement, see below:
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4 Conclusion
A simple way to derive a discrete model of a geometrically nonlinear Timoshenko beam has
been presented. The model does not include warping e�ects and there are no compressive
e�ects in transversal direction. However, for problems where these e�ects can be ignored,
the results of the model are in good agreement with existing formulation. The relative ease
at which the model can be implemented makes it ideal for educational purposes.
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Abstract

The numerical simulation of two-dimensional viscous incompressible �ow
around airfoils by using vortex element method is considered. The numerical
scheme and the corresponding algorithm for this method are usually presup-
pose the replacement of the airfoil with the polygon which consists of panels,
and the unknown vortex layer intensity is assumed to be piecewise-constant
on the panels. The accuracy of this scheme varies from O(h2) to O(h3) for dif-
ferent airfoils (h is the panels' length). In the present research new high-order
numerical scheme is developed. The solution approximation as well as airfoil
boundary approximation is improved � vortex layer intensity assumed to be
not piecewise-constant, but piecewise-linear or piecewise-quadratic on the pan-
els, and the curvilinearity of the airfoil's boundary is taken into account. In
order to obtain linear algebraic equations system least squares method is used
instead of collocation-type conditions in separate control points or on average
on the panels. It is shown that the developed scheme has higher accuracy or-
der than the previously known schemes. For some particular model problems
(�ow around circular, elliptical and Zhukovsky airfoils) this approach allows
to obtain solution with accuracy O(h5).

1 Introduction
Vortex Element Method that belongs to particle-type meshless Lagrangian CFD method is
very useful when solving number of engineering problems, especially �uid-structure inter-
action (FSI) problems, when the �uid domain varies in time and the �ow can be considered
incompressible.
In 2D case there are some approaches for solving the Navier � Stokes equations by using
vortex methods, one of the most useful is Viscous Vortex Domains Method (VVD) which
is based on the so-called `di�usive' velocity computation for vortex wake evolution simula-
tion [1]. The accuracy of the �ow simulation and aerodynamic loads computation depends
on many factors. The most important factors are:

� the accuracy of the airfoil approximation;

� the accuracy of vortex layer intensity on the airfoil surface computation;
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� the accuracy of the vortex wake approximation and its evolution simulation.

Normally in 2D Vortex Element Method the intensity of vortex layer is computed as solu-
tion of singular boundary integral equation of the 1-st kind [2], and this approach sometimes
leads to signi�cant errors and even to qualitatively wrong results [3]. However, there exists
the alternative approach that corresponds to solving Fredholm-type integral equation of
the 2-nd kind [4]. The authors have developed this approach and it allows to raise the
accuracy considerably [3].
But the further accuracy improvement is restricted to the accuracy of the airfoil approxi-
mation. In the present research the algorithm is developed and the corresponding quadra-
ture formulae are derived which allow to take into account the curvature of the airfoil.
This approach allows to consider the solution to be piecewise-linear or piecewise-quadratic
along every curvilinear part of the airfoil whereas in traditional approaches the solution is
assumed to be piecewise-constant along straight airfoil's panels.
The mentioned ideas are very close to well-known `panel methods' [5], but there are some
signi�cant di�erences. Firstly, we don't assume the solution to be continuous along the air-
foil � it is important for correct �ow simulation around airfoils with angle points and sharp
edges. Secondly, in order to obtain linear algebraic equations system we use least squares
method along the curvilinear parts of the airfoil instead of collocation-type conditions in
separate control points. And thirdly, we provide integration along the curvilinear parts of
the airfoil using Gaussian quadratures instead of series expansions which are usually used
in panel methods.
The developed approach and numerical algorithm allow to raise signi�cantly the accuracy
of vortex layer intensity computation in Vortex Element Method.

2 Governing Equations
Viscous incompressible media movement is described by Navier � Stokes equations

∇ · ~V = 0,
∂~V

∂t
+ (~V · ∇)~V = ν∆~V −∇

(
p

ρ

)
,

where ~V (~r, t) is �ow velocity, p(~r, t) � pressure, ρ = const � density of the media, ν
� kinematic viscosity coe�cient. No-slip boundary condition on the airfoil surface and
boundary conditions of perturbation decay on in�nity

~V (~r, t) = 0, ~r ∈ K; ~V (~r, t)→ ~V∞, p(~r, t)→ p∞, |~r | → ∞

should be satis�ed.
Navier � Stokes equations can be written down in Helmholtz form using vorticity vector
~Ω(~r, t) = ∇× ~V (~r, t):

∂~Ω

∂t
+∇× (~Ω× ~U) = 0. (1)

Here ~U(~r, t) = ~V (~r, t) + ~W (~r, t), ~W (~r, t) is the so-called `di�usive velocity', which is
proportional to viscosity coe�cient [1]:

~W (~r, t) = ν
(∇× ~Ω)× ~Ω
|~Ω|2

.
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Equation (1) means that the vorticity which exists in the �ow moves with velocity ~U . `New'
vorticity is being generated only on airfoil surface, so we can consider that the vorticity
distribution in the �ow ~Ω(~r, t) is always known.
The streamlined airfoil in�uence is equivalent to superposition of the attached vortex
γatt(~r, t) and source qatt(~r, t) layer in�uences and free vortex layer γ(~r, t) in�uence. All
these layers are located on the airfoil surface,

γatt(~r, t) = ~VK(~r, t) · ~τ(~r, t), qatt(~r, t) = ~VK(~r, t) · ~n(~r, t), ~r ∈ K,

where ~n(~r, t) and ~τ(~r, t) are normal and tangent unit vectors [6, 3].
In the present research the airfoil is assumed to be rigid and immovable, so γatt(~r, t) = 0,
qatt(~r, t) = 0. If the vorticity distribution is known, �ow velocity can be reconstruted using
the Biot � Savart law:

~V (~r, t) = ~V∞ +
1

2π

∫
S

~Ω(~s, t)× (~r − ~s )

|~r − ~s |2
dS +

1

2π

∮
K

~γ(~s, t)× (~r − ~s )

|~r − ~s |2
dls. (2)

Here ~V∞ = const is uniform �ow velocity, S is �ow region, K is airfoil surface; vortex layer
intensity and vorticity vectors are ~γ = γ~k and ~Ω = Ω~k, where ~k is unit vector orthogonal
to the �ow plane; for each point at the airfoil surface ~n(~r )× ~τ(~r ) = ~k.
Vortex layer intensity γ(~s, t) can be found from no-slip boundary condition on airfoil
surface:

~V (~r, t) = ~0, ~r ∈ K.

For simplicity we consider the model problem and assume that there is no vorticity in the
�ow (Ω(~r, t) = 0) and we need to compute the vortex layer intensity on airfoil surface.
From mathematical point of view this problem is equivalent to ideal incompressible steady
�ow simulation around the airfoil. In real unsteady viscous �ow similar problem should be
solved every time step.

3 The integral equation for vortex layer intensity
computation

According to (2) and taking into account that the unknown vortex layer intensity γ(~s, t)
concerns to free vorticity which is part of vortex wake, it could be shown that the limit value
of �ow velocity on the airfoil surface is equal to (time dependence hereafter is omitted)

~V−(~r ) = ~V∞ +
1

2π

∮
K

~γ(~s )× (~r − ~s )

|~r − ~s |2
dls −

(~γ(~r )

2
× ~n(~r )

)
, ~r ∈ K. (3)

Classical approach which is normally being used in vortex element method, presupposes
that the unknown function γ(~r ) should be found from the equality to zero of normal
component of the �ow velocity limit value at the airfoil's surface:

~V−(~r ) · ~n(~r ) = 0, ~r ∈ K. (4)

This integral equation is singular and the principal value of the corresponding integral
should be understood in Cauchy sense [2]. This approach sometimes leads to signi�cant
errors and even qualitatively wrong solution can be obtained.
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In order to solve such problems another approach can be implemented. It is shown [4] that
`boundary condition' (4) is equivalent to the following condition

~V−(~r ) · ~τ(~r ) = 0, ~r ∈ K, (5)

which corresponds to the equality to zero of tangent component of the �ow velocity limit
value.
It should be noted that in case of smooth airfoils (5) leads to Fredholm-type integral
equation of the 2-nd kind with bounded kernel:

1

2π

∮
K

~n(~r ) · (~r − ~s )

|~r − ~s |2
γ(~s )dls −

γ(~r )

2
= −~V∞ · ~τ(~r ). (6)

The equation (6) as well as the singular equation which follows from (4) has in�nitely many
solutions; in order to select the unique solution an additional equation should be solved
together with them:∮

K
γ(~s )dls = Γ. (7)

Total circulation Γ of the vorticity layer on the airfoil can be found from problem statement.
For some simplest airfoils it is possible to construct conformal mappings to the circle
and to solve the problem analytically. Exact solutions are found for elliptical airfoils and
Zhukovsky airfoils [3].

4 Numerical scheme for vortex layer intensity com-
putation

4.1 Numerical scheme with straight panels
Normally in vortex methods curvilinear airfoil surface is being approximated with polygon
(whose legs are usually called `panels' and have lengths Li), and vortex layer intensity is
supposed to be piecewise-constant function on the legs.
For this approach the integral in equation (6) can be replaced with the sum of integrals
over panels, which are proportional to vortex layer intensities on these panels. The most
accurate results can be obtained if we satisfy equation (6) not in separate points on airfoil
surface, but on the average on the panels:

1

2πLi

N∑
j=1

γj

∫
Ki

(∫
Kj

~ni · (~r − ~s )

|~r − ~s |2
dls

)
dlr −

γi
2

= −~V∞ · ~τi, i = 1, . . . , N.

Coe�cients of this linear algebraic system can be calculated analytically [7].
Numerical experiments show that the accuracy of this approach varies from O(h2) to O(h3)
for di�erent airfoils (�g. 1).

4.2 Numerical scheme with curvilinear panels
In order to construct more accurate numerical scheme we should take into account that
the panels in reality are curvilinear and piecewise-constant approximation of the vortex
layer intensity also can cause the error. It is possible to develop new numerical scheme
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a b

Figure 1: Error of vortex element's circulations (in logarithmical scale) for numer-
ical scheme [3]: a � elliptical airfoil, dashed line corresponds to O(h3) error; b �
Zhukovsky airfoil, dashed lines correspond to O(h2) and O(h3) error; h is average
panel length

which is based on curvilinear approximation of the airfoil's surface and piecewise-linear or
piecewise-quadratic vorticity distribution along panels.
It is well-known [2] that vortex layer intensity is unbounded near angle points of the airfoil,
so when constructing high-order accuracy numerical schemes it is important to approximate
the airfoil by a smooth curve. We assume the airfoil's geometry to be known exactly by its
parametric equations x = x(t), y = y(t), t ∈ [0, 2π), so it is possible to calculate not only
coordinates of points on the airfoil's surface, but also tangent directions at these points.
We demand that the curve which approximates the airfoil on the particular panel, passes
over endings of the panel and has the same tangent directions as the original airfoil. Let's
denote the beginning of the i-th panel as Ci and its ending as Ci+1 (these points correspond
to ti and ti+1 parameter's value); ~τ 0

i is unit vector which is collinear to
−−−−→
CiCi+1; ~n 0

i is unit
normal vector which is orthogonal to ~τ 0

i (�g. 2).
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Figure 2: Piecewise-polynomial approximation of airfoil's surface. Dashed line is
the original airfoil's surface, solid line is its polynomial approximation

For every panel we introduce `local' coordinate system Ciξiηi, then points Ci and Ci+1 cor-
respond to ξ = 0 and ξ = Li, where Li = |

−−−−→
CiCi+1|. In order to construct the interpolation

curve we �rstly calculate tangents of angles ϕi and ψi by using the following formulae:

tanϕi =
y′+(ti)− x′+(ti) tan(θi)

x′+(ti) + y′+(ti) tan(θi)
, tanψi = −

y′−(ti+1)− x′−(ti+1) tan(θi)

x′−(ti+1) + y′−(ti+1) tan(θi)
.
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Here θi is angle between i-th panel and Ox axis; x′+, x
′
−, y

′
+, y

′
− denote right-hand and

left-hand derivatives with respect to t correspondingly.
The equation of the interpolation curve on i-th panel in local coordinates is

pi(ξ) =
ξ(Li − ξ)

Li

(
ai + bi

ξ

Li

)
,

where the conditions pi(0) = 0, pi(Li) = 0 are satis�ed automatically, coe�cients ai and
bi can be calculated from the conditions p′i(0) = tanϕi, p′i(Li) = − tanψi:

ai = tanϕi, bi = tanψi − tanϕi.

So the position vector of arbitrary point M which lies on the interpolation curve and has
coordinate ξ in local system is

−−→
OM(ξ) =

−−→
OCi + ξ~τ 0

i + pi(ξ)~n
0
i .

Assuming the original airfoil to be C4-smooth on the panel, the di�erence between the
constructed interpolation curve and the original airfoil is O(L4

i ). It can be proved using
Taylor series expansions.
We approximate vorticity layer intensity distribution along the i-th curvilinear panel by
quadratic polynomial:

γi(ξ) = αi + βi
ξ

Li
+ δi

ξ2

L2
i

.

Unknown coe�cient values αi, βi, δi, i = 1, . . . , N can be found from integral equation (6)
with additional condition (7). In order to obtain the approximate solution of this equation
we use least-squares method and minimize function

Ψ =

∮
K

(
1

2π

∮
K

~n(~r ) · (~r − ~s )

|~r − ~s |2
γ(~s )dls −

γ(~r )

2
+ ~V∞ · ~τ(~r )

)2

dlr−

− λ

(∮
K
γ(~r )dlr − Γ

)
→ min (8)

with respect to αi, βi, δi, λ.
Both outer and inner integrals in (8) can be replaced with the sums of integrals along
curvilinear panels:

Ψ =
N∑
i=1

∫
Ki

(
1

2π

N∑
j=1

∫
Kj

~n(~r ) · (~r − ~s )

|~r − ~s |2
γ(~s )dls −

γ(~r )

2
+ ~V∞ · ~τ(~r )

)2

dlr−

− λ

(
N∑
i=1

∫
Ki

γ(~r )dlr − Γ

)
→ min . (9)

All the integrals are calculated in local coordinates, so on i-th panel ~r = ~ri(ξ), on j-th
panel ~s = ~sj(ζ):

~ri(ξ) =
−−→
OCi + ξ~τ 0

i + pi(ξ)~n
0
i , ~sj(ζ) =

−−→
OCj + ζ~τ 0

j + pj(ζ)~n 0
j .

Introducing Jacobian of coordinates transformation

Ji(ξ) =
dlr
dξ

∣∣∣
~r=~ri(ξ)

=

√
1 +

(
p′i(ξ)

)2∣∣∣
~r=~ri(ξ)

,
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according that γ(~ri(ξ)) = γi(ξ) and denoting ~n(~ri(ξ)) = ~ni(ξ), ~τ(~ri(ξ)) = ~τi(ξ), we can
write down function (9) in the following form:

Ψ =

N∑
i=1

∫ Li

0

(
1

2π

N∑
j=1

∫ Lj

0

~ni(ξ) ·
(
~ri(ξ)− ~sj(ζ)

)
|~ri(ξ)− ~sj(ζ)|2

γj(ζ)Jj(ζ)dζ − γi(ξ)

2
+

+ ~V∞ · ~τi(ξ)
)2

Ji(ξ)dξ − λ
( N∑
i=1

∫ Li

0
γi(ξ)Ji(ξ)dξ − Γ

)
→ min . (10)

Unit tangent vector ~τi(ξ) is calculated not for original curve, but for obtained interpolation:

~τi(ξ) =
~τ 0
i + p′i(ξ)~n

0
i∣∣~τ 0

i + p′i(ξ)~n
0
i

∣∣ .
Unit normal vector ~ni(ξ) is orthogonal to ~τi(ξ).

The only unknown functions in (10) are γi(ξ), but they are quadratic functions with respect
to ξ, so

Ψ =

N∑
i=1

∫ Li

0

(
1

2π

N∑
j=1

(
αj

∫ Lj

0

~ni(ξ) ·
(
~ri(ξ)− ~sj(ζ)

)
|~ri(ξ)− ~sj(ζ)|2

Jj(ζ)dζ +

+ βj

∫ Lj

0

~ni(ξ)·
(
~ri(ξ)− ~sj(ζ)

)
|~ri(ξ)− ~sj(ζ)|2

ζ

Lj
Jj(ζ)dζ + δj

∫ Lj

0

~ni(ξ)·
(
~ri(ξ)− ~sj(ζ)

)
|~ri(ξ)− ~sj(ζ)|2

ζ2

L2
j

Jj(ζ)dζ

)
−

− 1

2

(
αi + βi

ξ

Li
+ δi

ξ2

L2
i

)
+ ~V∞ · ~τi(ξ)

)2

Ji(ξ)dξ −

− λ

(
N∑
i=1

∫ Li

0

(
αi + βi

ξ

Li
+ δi

ξ2

L2
i

)
Ji(ξ)dξ − Γ

)
→ min . (11)

Denoting

∫ Lj

0

~ni(ξ) · (~ri(ξ)− ~sj(ζ))

|~ri(ξ)− ~sj(ζ)|2
ζr

Lrj
Jj(ζ)dζ = I

(r)
ij (ξ),

∫ Li

0
Ji(ξ)

ξr

Lri
dξ = J

(r)
i ,

we obtain

Ψ =

N∑
i=1

∫ Li

0

(
1

2π

N∑
j=1

(
αjI

(0)
ij (ξ) + βjI

(1)
ij (ξ) + δjI

(2)
ij (ξ)

)
− 1

2

(
αi + βi

ξ

Li
+ δi

ξ2

L2
i

)
+

+ ~V∞ · ~τi(ξ)

)2

Ji(ξ)dξ − λ

(
N∑
i=1

(
αiJ

(0)
i + βiJ

(1)
i + δiJ

(2)
i

)
− Γ

)
→ min .

The minimum of this function corresponds to the equality to zero of all partial derivatives

183



Proceedings of XLIII International Summer School�Conference APM 2015

with respect to αi, βi, δi, λ:

∂Ψ

∂αk
=

N∑
i=1

∫ Li

0
2

(
1

2π

N∑
j=1

(
αjI

(0)
ij (ξ) + βjI

(1)
ij (ξ) + δjI

(2)
ij (ξ)

)
−

− 1

2

(
αi + βi

ξ

Li
+ δi

ξ2

L2
i

)
+ ~V∞ · ~τi(ξ)

)(
I

(0)
ik (ξ)

2π
− 1

2

)
Ji(ξ) dξ − λJ (0)

k = 0,

∂Ψ

∂βk
=

N∑
i=1

∫ Li

0
2

(
1

2π

N∑
j=1

(
αjI

(0)
ij (ξ) + βjI

(1)
ij (ξ) + δjI

(2)
ij (ξ)

)
−

− 1

2

(
αi + βi

ξ

Li
+ δi

ξ2

L2
i

)
+ ~V∞ · ~τi(ξ)

)(
I

(1)
ik (ξ)

2π
− 1

2

ξ

Lk

)
Ji(ξ) dξ − λJ (1)

k = 0,

∂Ψ

∂δk
=

N∑
i=1

∫ Li

0
2

(
1

2π

N∑
j=1

(
αjI

(0)
ij (ξ) + βjI

(1)
ij (ξ) + δjI

(2)
ij (ξ)

)
−

− 1

2

(
αi + βi

ξ

Li
+ δi

ξ2

L2
i

)
+ ~V∞ · ~τi(ξ)

)(
I

(2)
ik (ξ)

2π
− 1

2

ξ2

L2
k

)
Ji(ξ) dξ − λJ (2)

k = 0,

∂Ψ

∂λ
=

N∑
i=1

(
αiJ

(0)
i + βiJ

(1)
i + δiJ

(2)
i

)
− Γ = 0.

These expressions can be simpli�ed. If we denote integrals of known functions as

J
(p,q)
mnk =

Lm∫
0

I(p)
mn(ξ)I

(q)
mk(ξ)Jm(ξ) dξ, J (p,r)

mn =

Lm∫
0

I(p)
mn(ξ)

ξr

Lrm
Jm(ξ) dξ,

and introduce variable γ(u)
j , where

γ
(0)
j = αj , γ

(1)
j = βj , γ

(2)
j = δj , j = 1, 2, . . . , N,

the system of linear algebraic equations can be written down in compact form:

N∑
j=1

2∑
u=0

γ
(u)
j

(
1

2π2

N∑
i=1

J
(u,r)
ijk −

1

2π

N∑
i=1

(
J

(u,r)
ij

Lri
Lrk

)
− 1

2π
J

(r,u)
jk +

1

2
J

(u+r)
j

Lri
Lrk

)
−λJ (r)

k =

= −
N∑
i=1

Li∫
0

(
~V∞ · ~τi(ξ)

)( 1

π
Irik(ξ)−

ξr

Lrk

)
dξ, k = 1, 2, . . . , N, r = 0, 1, 2,

N∑
j=1

2∑
u=0

γ
(u)
j J

(u)
j = Γ. (12)

If we assume the solution to be piecewise-linear on the panels, variables r and u in sys-
tem (12) take the values 0 and 1.
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In order to calculate all the integrals in (12) numerically we use Gaussian quadrature
formula, according to which∫ b

a
f(x) dx ≈

ngp∑
k=1

ωkf(xk),

where weights ωk values and gaussian points positions xk are known [8]. In the present
research ngp = 7; in that cases when approximate integration accuracy is not enough,
special numerical integration procedure, implemented in Wolfram Mathematica, is used.

5 Numerical experiment

We consider circular airfoil with radius R = 1, elliptical airfoil with semiaxes a = 1.0,
b = 0.5 and Zhukovsky airfoil with parameters (a = 3.5, d = 0.4, h = 0.3) under angle of
incidence β = π/6.
Using the developed numerical scheme with curvilinear panels we �rstly compute vortex
layer intensity distribution along the panels (αi, βi and δi values) and then integrate it in
order to obtain total circulation on each panels:

Γi =

∫ Li

0

(
αi + βi

ξ

Li
+ δi

ξ2

L2
i

)
Ji(ξ)dξ, i = 1, 2, . . . , N.

Then using the analytical solution [3] exact values of Γ∗i are computed and then error can
be found:

∆Γ = max
i
|Γi − Γ∗i |.

The results of numerical experiments are nearly the same both for piecewise-linear and
piecewise-quadratic vorticity distribution, but in case of piecewise-quadratic solution ma-
trix of the system (12) sometimes becomes ill-conditioned.
In all cases (for circular, elliptical and Zhukovsky airfoils) the accuracy of the developed
approach is close to O(h5) (�g. 3).

Conclusion

For �ow simulation by using vortex methods new numerical scheme is suggested for vortex
layer intensity computation on an airfoil's surface. The developed approach allows to take
into account airfoil's curvature, which is important for solution of the integral equation
with high accuracy. Vorticity distribution assumed to be piecewise-linear or piecewise-
constant on the panels. It allows to reproduce discontinuous solutions, which take place
on airfoils with sharp edge (Zhukovsky airfoil). The numerical experiment showed that the
developed scheme has 5-th accuracy order.
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Figure 3: Error of total circulation on the panels circulations (in logarithmical scale)
for the developed numerical scheme (12): a � circular airfoil; b � elliptical airfoil; c
� Zhukovsky airfoil; dashed lines in all cases correspond to O(h5) error; h is average
panel length

References
[1] Dynnikova G.Ya. Vortex Motion in Two-Dimensional Viscous Fluid Flows // Fluid

Dynamics. 2003. V. 38, No. 5. P. 670�678.

[2] Lifanov I.K., Belotserkovsky S.M. Methods of Discrete Vortices. CRC, 1992.

[3] Kuzmina K.S., Marchevsky I.K. On Numerical Schemes in 2D Vortex Element Method
for Flow Simulation Around Moving and Deformable Airfoils // Proceedings of Sum-
mer School-Conference �Advanced Problems in Mechanics 2014�. St.-Peterburg, 2014.
P. 335�344. URL: http://www.ipme.ru/ipme/conf/APM2014/2014-PDF/2014-335.pdf

[4] Kempka S.N., Glass M.W., Peery J.S., Strickland J.H. Accuracy Considerations for
Implementing Velocity Boundary Conditions in Vorticity Formulations. SANDIA RE-
PORT SAND96-0583 UC-700, 1996.

[5] Vaz G., Falcao de Campos J.A.C., Eca L. A numerical study on low and higher-order
potential based BEM for 2D inviscid �ows // Computational Mechanics. 2003, V. 32,
Is. 4�6. P. 327�335.

[6] Andronov P.R., Guvernyuk S.V., Dynnikova G.Ya. Vortex Methods for Unsteady Hy-
drodynamic Loads. Moscow, MSU, 2006. [in Russian]

[7] Marchevsky I.K., Moreva V.S. Vortex Element Method for 2D Flow Simulation with

186



REFERENCES

Tangent Velocity Components on Airfoil Surface // ECCOMAS 2012 � Europ. Congr.
on Comp. Meth. in Ap. Sc. and Eng., e-Book. 2012. P. 5952�5965.

[8] Abramowitz M., Stegun I.A. Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables. New York, Dover, 1965.

Kseniya S. Kuzmina, Russia, 105005 Moscow, 2nd Baumanskaya st., 5
Ilia K. Marchevsky, Russia, 105005 Moscow, 2nd Baumanskaya st., 5

187



Proceedings of XLIII International Summer School�Conference APM 2015

Fracture Processes in Cortical Bone: E�ect of
Microstructure

Simin Li, Mayao Wang, Xing Gao, Elizabeth A. Zimmermann,

Christoph Riedel, Bjrn Busse and Vadim V. Silberschmidt*

V.Silberschmidt@lboro.ac.uk

Abstract

Understanding of bone fracture can improve medical and surgical proce-
dures. Therefore, investigation of the e�ect of boneâ��s microstructure and
properties as well as loading conditions on crack initiation and propagation
is of great importance. In this paper, several modelling approaches are used
to study fracture of cortical bone tissue at various length scales and di�erent
types of loading. Two major problems are tackled: crack propagation under
impact loading and bone cutting in surgical procedures.

In the former case, a micro-scale �nite-element (FE) fracture model was
suggested, accounting for boneâ��s microstructure and using X-FEM for
crack-propagation analysis [1, 2]. The cortical bone tissue was modelled as
four-component heterogeneous materials. The morphology of a transverse-
radial cross section captured with optical microscopy was used to generate FE
models; extensive experimental studies provided necessary mechanical input
data [3]. The problem of bone cutting was treated within the framework of
tool-bone interaction analysis [4, 5]. A two-domain approach was used, with a
process zone simulated using a smooth-particle hydrodynamics method. This
zone was embedded in a continuum domain with macroscopic anisotropic prop-
erties obtained in experiments. This study is supported by analysis of damage
induced by interaction between the cutting tool and the bone tissue using
wedge-indentation tests and considering also the anisotropic behaviour of the
bone.

1 Introduction
Research into mechanical behaviour of a natural composite material - cortical bone tis-
sue - has attracted great attention over the past few decades, not only because of its
important role in structural integrity of a musculoskeletal system, but also due to the
boneâ��s intrinsic hierarchical heterogeneous structure and anisotropic mechanical prop-
erties. Macroscopically, deformation mechanisms of bones di�er from those of metals,
polymers and composites since bones consist of a living tissue with a continuously evolv-
ing microstructure. Mechanical properties of cortical bone vary not only from bone to
bone; they demonstrate a spatial viability even within the same bone related to changes
of the underlying microstructure [3, 6]. Dissimilar mechanical properties measured with
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indentation at di�erent anatomical positions provide further information on its heterogene-
ity and anisotropic mechanical behaviour [7]. Considering the wide spectrum of material
properties of cortical bone and its intricate deformation processes associated with various
loading modes and orientations, a further investigation is needed to comprehend variations
of material properties in relation to the local regions and underpinning microstructural
constituents.
Microscopically, complex micro-architecture of the cortical bone tissue has a signi�cant
e�ect on its mechanical and fracture properties. Anisotropic deformation and fracture be-
haviours observed at macroscopic level [8] are largely attributed to preferential alignment
of micro-constituents at respective length scales, such as osteons and Haversian canals
at micro-scale, or collagen �brils and mineral crystals at nano-scale. From a fracture-
toughness perspective, those intricate structural hierarchy and material heterogeneity ob-
served in cortical bone tissues can often lead to an improved fracture resistance thanks to
various toughening mechanisms [8, 9].

2 Mechanical behaviour of cortical bone tissue

2.1 Variability of anisotropic mechanical behaviour in ten-
sion and compression

Uniaxial tensile and compressive tests were conducted on specimens of cortical bone to
characterise its deformation behaviours at di�erent loading conditions and orientations.
The specimens used for this study were obtained from mid-diaphysis of fresh bovine femoral
bones from a local butchery shop soon after slaughter since the mechanical behaviours of
bovie and human bones are close. Specimen preparation and storage procedures followed
exactly the generally adopted methods [3, 6]; details can be found in [4, 6]. Dumb-bell-
shape specimens (15 mm in gauge length ×5mm× 2 mm) oriented along both the longi-
tudinal and transverse directions of the bone were prepared and divided into four groups
according to their anatomical position (cortices, or quadrants): anterior, medial, posterior
and lateral for uniaxial tension tests (Fig. 1). The same categorisation was applies to
cylindrical specimens (Ø5 mm × 5 mm) for uniaxial compression test.
Experiments with specimens from four di�erent quadrants of the bone were performed on
an Instron 3366 (Instron, USA) system with a 10 kN load cell under quasi-static loading
conditions. Displacements were measured using an extensometer (2630 Series, Instron)
and a linear variable di�erential transducer (LVDT) sensor (2601 Series, Instron) in the
uniaxial tensile and compressive tests, respectively. The detailed experimental procedure
can be found in [6].

2.1.1 Results and analysis

The obtained results (detailed in [6]) correlate well with those reported in literature [10]
and indicate that mechanical responses of cortical bone diverge dramatically under di�erent
loading conditions and orientations. Transverse specimens loaded in tension appeared to
be rather brittle and failed at much lower strains compared with those for the longitudinal
direction, but the di�erence for compression is less prominent (Fig. 2). Regardless of the
loading mode, specimens loaded in the longitudinal direction always demonstrate a higher
sti�ness (a higher Youngâ��s modulus) and strength (higher ultimate stress) than those
in the transverse direction. Among the material properties measured for four anatomic
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quadrants, two orientations and two loading modes, the anterior quadrant had the high-
est Youngâ��s modulus in the longitudinal direction, while the medial quadrant has the
highest one in the transverse direction. The lowest values are for the lateral and posterior
quadrants for the longitudinal and transverse directions, respectively. A di�erence between
the highest and lowest values of the Youngâ��s modulus in each orientation was more than
20%. The relations across di�erent quadrants (Factor A) and loading modes (Factor B)
were compared in terms of signi�cance of variances using a two-way ANOVA analysis (α =
0.05) with a Tukey HSD test. Overall, the results showed a statistical signi�cance in factor
A (between cortices), but there is no uniform signi�cance in factor B (between loading
modes). The interaction between the two factors appears to be negative, which means
that loading modes do not have e�ective contribution to variability across the cortices and
vice versa. Results of the detailed Tukey HSD tests together with pairwise comparisons
between the studied factors are summarised in [6].

2.2 Fracture toughness of cortical bone tissue
Fracture toughness of cortical bone in di�erent orientations is studied in this section to
deepen our understanding of anisotropy and variability of fracture resistance of the cortical
bone tissue.
Fifteen specimens cut from each cortex of fresh bovine femurs were notched to allow crack
growth along three di�erent orientations relative to the bone axis â�� longitudinal, trans-
verse and radial as shown in Fig. 1. After cutting, specimens were polished and then
checked under microscope to insure that their surfaces were free from scratches and dam-
age. Specimens were kept hydrated in a 0.9% physiological saline solution prior to tests.
All specimens were prepared with the same dimensions, according to British Standard: BS
7448-1: 25 mm ×2.72mm× 5.43 mm (total length ×width× thickness). Also, a very �ne
slit of 2.7 mm was produced using a low-speed diamond blade for all specimens according
to the same standard.
The fracture toughness tests were performed on an Instron 3345 single-column bench-top
machine. All specimens were loaded quasi-statically up to failure with a displacement-
controlled loading rate of 1 mm/min. The load was measured using a 5 kN load cell
and the corresponding load-line displacement was acquired synchronously using a LVDT
sensor (2601 Series, Instron, USA), see Fig. 3. The obtained load-displacement curves
were then analysed according to the classi�cation described in BS 7448-1. After tests,
fracture surfaces of all the specimens were gold-coated and analysed using scanning electron
microscopy (SEM).

2.2.1 Results and analysis

Critical values of fracture toughness JC of the cortical bone tissue were calculated for
three crack-growth directions: longitudinal, radial and transverse; in addition, anisotropy
ratios of the fracture-toughness values were analysed. The obtained experimental data
demonstrated that all specimens exhibited signes of a non-linear fracture process; hence,
the J-integral (Table 1) was used to quantify fracture toughness based on British Standard:
BS 7448-1.
It can be noticed from these results that the fracture-toughness values for specimens cut
from di�erent cortices vary signi�cantly. In general, cortical bone shows higher resistance
to fracture when a crack grows perpendicular to the osteon direction and lower resistance
for those grow parallel to osteons (i.e. radial and longitudinal directions, respectively).
For a crack growing in the transverse direction, specimens from the medial quadrant had
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the highest critical value of J-integral while those from the posterior quadrant had the
lowest. The Tukey HSD test (α = 0.05) demonstrated statistically signi�cant di�erences
between medial to posterior (p = 0.035) and posterior to lateral (p = 0.028) cortices.
On the other hand, specimens with radially extended cracks had the highest fracture
toughness for the lateral quadrant and the lowest for the posterior one. The calculated
critical values of J-integral for the radial cracks, ranging from 983 N/m to 2664 N/m,
are signi�cantly lower compared with specimens with transverse cracks. Considerable
di�erences were found between anterior to lateral (p = 0.027) and posterior to lateral
(p = 0.015) quadrants. Finally, for specimens with cracks extending along the direction
parallel to osteons (longitudinal cracks), the critical J-integral values were comparable
with those for radial cracks, and their highest value was found for the lateral quadrant
whereas anterior specimens demonstrated the lowest. Statistically signi�cant di�erences
in this case were found between anterior to medial (p = 0.043) and anterior to lateral (p =
0.02) quadrants. Generally, comparing the data between cortices, higher levels of fracture
toughness was usually found in specimens cut from the medial and lateral quadrants. The
disparity between these two groups ranged from as low as 18.3% up to 171%.

Such non-uniform fracture resistance across di�erent cortices of the bovine femur implies
that the variation of microstructure has a great impact on the local fracture processes.
Previous research [3, 6] showed that a change in the volume fraction of constituents at
a microstructural level largely a�ected local material properties, such as elastic modulus,
yield stress, ultimate strength, which, in turn, in�uenced fracture properties. Preferen-
tial alignment of microstructural constituents also has an important e�ect on anisotropy
of fracture toughness. Higher resistance to fracture was found for cracks propagating
perpendicular to osteons, while lower resistance for cracks extending parallel to osteons.
The fracture anisotropy ratios (calculated as ratios of respective values of JC) between
transversely-orientated cracks and longitudinally- or radially-orientated cracks varied for
di�erent cortices, ranging from 2.13 to 4.36, with the lowest ratio found in the lateral
quadrant and the highest ratio in the anterior quadrant.

Fracture surfaces were analysed for all the tests using SEM. The results obtained for
di�erent crack-extension directions and cortex positions are grouped in Fig. 4. Dissimilar
characters of fracture-surface roughness were evident among the four cortex positions â��
an indication of a variety of fracture-toughening mechanisms acting in di�erent cortex
positions. A transition of the underlying microstructure from one type to another could be
the reason for these di�erences. As shown in Fig. 4, the fracture surfaces from the anterior
and posterior quadrants were relatively smooth compared with those for the medial and
lateral quadrants. Empirical evidence suggested that the surface roughness was associated
with the amount of energy required to generate the fracture surface: a lower level of fracture
energy indicates a smoother fracture surface.

Additionally, a combination of microstructural changes and di�erent crack-extension di-
rections triggered complicated toughening mechanisms, which, in turn, were re�ected in
diverse fracture-toughness values and levels of surface roughness. Generally, for the lon-
gitudinal fracture specimens, with crack fronts propagating along the direction parallel
to the osteons, the fracture toughening mechanism was dominated by uncracked-ligament
bridging during the process of osteons splitting, rupture, interface failure and �bre delam-
ination (see Fig. 5 L_a, L_b). Similarly, for cracks propagating in the radial direction,
the toughening mechanism was still governed by uncracked-ligament bridging as a result
of osteon splitting or �bre delamination. However, a slight di�erence in this case was the
existence of interface areas or empty spaces such as cement line or Haversian canals that
had a larger contribution towards crack arrest in these regions. As a result, twists and
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kinks of osteons were observed in the current analysis (see Fig. 5 R_a,R_b). In contrast
to the previous two cases, cracks growing along the transverse direction required a larger
traction force for the crack front to penetrate and cross the osteons as longitudinal strength
of osteons was much higher than transverse one. Cracks were therefore more likely to be
de�ected due to imperfections and heterogeneity of the microstructure or cause complete
pull outs of osteons (see Fig. 5 T_a). Consequently, higher values of fracture toughness
were obtained and rougher crack surfaces were observed. In the elastic-plastic fracture
regime, the tensional �eld at the back of the crack tip also promoted a multi-scale bridging
e�ect through shear sliding between interface regions at di�erent levels (see Fig. 5c).

3 Numerical modelling of fracture process of corti-
cal bone under impact loading

3.1 Model con�guration for Izod test

An extended �nite-element method (X-FEM) was adopted to study crack propagation
in human cortical bone under dynamic loading condition. This model was developed
according to the Izod test con�guration shown in Fig. 6 [1]. A cortical-bone specimen
was modelled as a rectangular beam with a pre-notch. Its model had two sections: a
microstructured area 1.278 mm in length and 0.958 mm in width was located in front
of the pre-notch as an area of interest, and a surrounding area of a homogenized bone
material (50 mm in length and 8 mm in width) was implemented to reduce the overall
computational cost. According to the Izod test, a loading condition was set as that of a
rotational impact with 5.33 rad/s immediately before the contact with the specimen. A
hammer was modelled as made of carbon steel, with isotropic material properties. Its elastic
modulus, Poissonâ��s ratio and density were 210 GPa, 0.3 and 7850 kg/m3, respectively.
A master-and-slave contact interaction between the hammer and the specimen was de�ned
during the impact process. The bottom half of the specimen was �xed completely using
an encastre-type constraint. A 4-node bilinear plain-strain quadrilateral (CPE4R) element
was used in this simulation. Mechanical properties of di�erent microstructural constituents,
such as osteons, interstitial area and cement line were based on the research from Li et al.
[2]. The elastic modulus of cement line was 25% lower than that of the osteons following
a suggestion in Budyn et al. [11].

The model employed X-FEM to simulate crack propagation in the bone specimen. This
simulation technique allows a crack to initiate and propagate along an arbitrary, solution-
dependent path, subject to a local material response. The local crack initiation and evolu-
tion criteria were established using a surface-based cohesive traction-separation criterion.
The initial horizontal 300 Âµm-long crack (pre-notch) was embedded into the homogenized
area next to the microstructured domain (Fig. 6). Crack initiation in a cortical bone is
commonly described as strain-driven; hence, a fracture strain of 0.6% was chosen based
on our previous study [6]. When the fracture strain was reached, damage evolution took
place. The evolution criterion was de�ned in terms of the fracture energy based on the
fracture-toughness alues obtained in the experimental part of this study (Table 2).
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3.2 Results and analysis

Four models with di�erent statistical realizations of morphologies, obtained for four types
of patients, were developed using random distributions of microstructural constituents (de-
tails in [2, 12]). The results of simulations indicated that the calculated crack-propagation
paths were di�erent for the studied groups, due to variations in spatial distributions of the
microstructural constituents. Crack paths for four groups demonstrated di�erent crack-
de�ection characteristics (Fig. 7) [3], with the young group having a lowest extent of
de�ections. For the diseased and treated groups, the crack paths exhibited more kinks
compared to the other two groups. Generally, crack propagation was more in�uenced by
surrounding cement lines and tended to go through Haversian canals. It was previously
indicated that the presence of cement lines might prevent a crack from destroying other
Haversian systems during the fracture process [6].
Comparing the evolution of crack lengths with time for all the studied groups, the di�erence
was not signi�cant, with a 6.75% standard deviation, for an average crack length of 1.419
mm. Of all the groups, the young group had the lowest crack length (1.37 mm), while it
took the longest time for the crack to propagate through the microstructured area. This
means that the micromorphological characteristics of bone in the young group hindered
crack propagation. According to the trend curves of four groups (Fig. 7), the senior group
had the lowest toughness, while the young group had the highest. For the initial 0.1 ms, the
four groups had similar crack growth rates, with the senior group demonstrating a higher
crack-growth rate after this. Apart from the senior group, the similar trends of crack
propagation were observed in other three groups prior reaching a length of 0.4 mm; then,
the crack in the diseased group began to accelerate quicker than those in the young and
treated groups, con�rming a considerable improvement for the treated group compared to
the non-treated group. The results obtained with the developed FE models demonstrated
that micromorphology of bone played a key role in in�uencing the crack propagation.

4 Experimental and numerical investigation of anisotropic
fracture process of cortical bone due to wedge test

To further elusidate the e�ect of microstructure on damage initiation and evolution in
cortical bone, a study employing wedge indentation was implemented.

4.1 Experimental analysis

A total number of 40 specimens (30 mm ×3mm× 3 mm) were prepared from the mid-
diaphysis of bovine femur for both longitudinal and transverse directions (Fig. 9b) using a
low-speed band saw and then a diamond-coated precision blade (Isomet Low-Speed Saw,
Buehler) under water irrigation. The specimens were further categorised into four groups
according to their anatomic quadrants (anterior, posterior, medial and lateral) in order to
reduce inconsistency caused by material variability across di�erent regions [6]. Penetration
tests were performed using Instron MicroTester 5848 with a 2 kN load cell. The specimens
were kept hydrated in saline solution prior to the experiments and then glued to the testing
base. Four penetrations were made for each cutting direction: perpendicular to osteons (L-
C and L-R planes, Fig. 9a) and along them (C-L and C-R planes) using a standard sharp
cutting tool under quasi-static loading conditions (displacement rate of 1.8 mm/min). A
high-speed camera (Fastcam SA-3, Photron) equipped with a micro-lens (AF Micro-Nikkor

193



Proceedings of XLIII International Summer School�Conference APM 2015

105mm f/2.8D, Nikon, 5000-7500 fps) was employed to capture the deformation process at
micro-scale.

4.2 Modelling approach

A 3D �nite-element modelling approach â�� encompassing both conventional and
smoothed-particle-hydrodynamics (SPH) elements â�� was implemented using Abaqus/-
Explicit. The developed FE model was con�gured in accordance with our experimental
setup. A plane-strain condition was assumed throughout the thickness of the tested spec-
imen, and, therefore, to improve the computational e�ciency; the cortical-bone specimen
was modelled with the following dimensions: (6 mm ×3mm× 0.02 mm) (length ×width×
thickness), with symmetric boundary conditions applied to both front and back sides in the
x-y plane as shown in Fig. 9d. The bottom surface of the specimen was fully constrained,
while two lateral edges were constrained in the y-z plane. Particle elements (PC3D) were
implemented in the middle part of the specimen with a width of 0.4 mm in the x-y plane
(Fig. 9d). The remaining two sections were modelled using continuum elements (C3D8R).
Tie constrains were applied at the boundaries between continuum and particle elements.
The cutting tool was modelled as an analytical rigid body with its geometry measured
using optical microscopy.
The bovine cortical-bone specimen was modelled as transversely isotropic elasto-plastic
material incorporating the Hillâ��s anisotropic yield criteria and progressive degradation.
The material properties used in the model were obtained mostly in the experiments per-
formed in this study (see Table 1 & 3).

4.3 Results and analysis

Penetration of the cutting tool was implemented in di�erent directions: perpendicular to
osteons (L-C and L-R planes) and parallel to osteons (C-L and C-R planes). The obtained
results indicated strong correlation between the penetration force and orientation of the
microstructure, and varied considerably across di�erent cortices. Generally, cortical bone
exhibited a higher peak force when the tool penetrated perpendicular to osteons (L-C and
L-R) with more energy required to cause damage; and a signi�cantly lower peak force
when the penetration direction was parallel to osteons (C-L and C-R), due to relatively
low levels of sti�ness and toughness. The anisotropic ratios de�ned as the ratios between
penetrations perpendicular to osteons and parallel to them are demonstrated in Table 4.
Apparently, the anisotropy ratio varied from one cortex to another in the range from 1.43
to 2.15, with the lowest ratio found in the lateral quadrant and the highest ratio in the
posterior one.
Images taken from the high-speed camera also revealed distinct deformation and dam-
age phenomena which were largely a�ected by the underlying microstructures and their
orientation [5]. Various microstructure-related toughening mechanisms were observed for
di�erent penetration directions. Generally, for penetration along the longitudinal axis (C-L
direction) and radial direction (C-R), damage was well ahead of the cutting tip and mainly
caused by material separation and subsequent crack propagation along the penetration
direction (Figs.10). Deformation and damage around the cutting tip happened in a rather
brittle fashion which was driven predominantly by the low sti�ness in the transverse di-
rection and the less e�ective longitudinal fracture resistance. As a result, low penetration
forces were measured. In contrast to the previous two cases, penetrating perpendicular
to osteons (L-C and L-R) required much higher force and energy due to the fact that the
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sti�ness and fracture toughness along bone's longitudinal direction are much higher than
the radial and circumferential directions. Damage was therefore more likely to be formed
laterally to the penetration direction. Additionally, there were two types of damage pat-
terns observed during our experiments on penetration perpendicular to osteons: a more
brittle damage pattern involving fragmentation and materialâ��s peeling o� was predom-
inantly observed at the plexiform bone region; a more di�used ductile damage pattern was
associated with large deformation of the osteonal structure.
Images taken with the high-speed camera also revealed distinct deformation and dam-
age phenomena, which were largely a�ected by the underlying microstructures and their
orientation [5]. Various microstructure-related toughening mechanisms were observed for
di�erent penetration directions. Generally, for penetration along the longitudinal axis (C-L
direction) and the radial direction (C-R), damage was well ahead of the cutting tip and
mainly caused by material separation and subsequent crack propagation along the penetra-
tion direction (Figs. 10). Deformation and damage around the cutting tip happened in a
rather brittle fashion, driven predominantly by low sti�ness in the transverse direction and
the less e�ective longitudinal fracture resistance. As a result, low penetration forces were
measured. In contrast to the previous two cases, indentations perpendicular to osteons
(L-C and L-R) required much higher forces and energy due to the fact that the levels of
sti�ness and fracture toughness along the bone's longitudinal direction are much higher
than those for the radial and circumferential directions. Damage was therefore more likely
to be formed laterally to the penetration direction. Additionally, there were two types
of damage patterns observed during our experiments on penetration perpendicular to os-
teons: (i) a more brittle damage pattern involving fragmentation and materialâ��s peeling
o� was predominantly observed at the plexiform bone region; (ii) a more di�used ductile
damage pattern was associated with large deformation of the osteonal structure.
To gain further detailed understanding on anisotropic deformation and fracture responses
to penetration of cortical bone in the vicinity of the cutting tip, numerical simulations
were conducted using a SPH-based FE approach. Eight models were developed for two
penetration directions (perpendicular and parallel to osteons) for each of four cortices. The
performed simulations clearly demonstrated that progressive damage mechanisms strongly
a�ected the deformation process. A comparison between the simulations and the exper-
imental data for relationships between the levels of speci�c force (per unit width) and
displacement demonstrated that the obtained numerical results were well within the range
of the experimental measurements (see details in [5]) for di�erent cutting directions and
cortices. Apparently, the relationships between the cutting force and the penetration depth
were linearly correlated up to a point somewhat below the maximum cutting force, and
their initial slopes for both cutting directions were similar (Fig. 11). However, the levels
of maximum force and corresponding displacement for specimens cut parallel to osteons'
directions (C-L or C-R) were much lower than those for other directions. This orientation-
dependent load-bearing capacity was directly a�ected by the distinct orientation-dependent
deformation and damage mechanisms observed in our experiments (Fig. 10). By incor-
porating these orientation-dependent material formulation and damage mechanisms, the
developed models were capable to reproduce the anisotropic character of failure, with both
forces and displacements predicted adequately for various cutting directions and cortices.

5 Conclusion
In this paper, the study was focused on the fracture processes in cortical bone at various
length scales. To implement it, mechanical behaviour of the cortical bone tissue was charac-
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terise for elastic, post-yield and damage regimes. The results from our studies demonstrate
speci�c features of varying anisotropic deformation and fracture behaviours of the cortical
bone tissue, which also depend on the applied loading conditions. Due to a natural loading
regime exerted by species' weight and muscle forces, long bones are normally exposed to
combined loading conditions that are spatially non-uniform [6]. As it is well known from
the literature [8], bone is a dynamic tissue that reacts to mechanical loading by adapting
its shape, internal microstructure and material properties to meet requirements of external
loading environment. The di�erences in the values of the Youngâ��s modulus and frac-
ture toughness (critical J-integral) could be the outcome of bone adaptation to its natural
non-uniform loading conditions.
Combining the characterised local material properties and crack initiation and evolution
techniques based on fracture mechanics, the developed microstructured model of the bone
tissue adequately characterizes the non-linear fracture processes in it caused by impact
loading. The further implementation of the hybrid SPH/continuum FE model enables the
numerical realisation of the anisotropic deformation and damage evolution in the vicinity
of the tool-bone interaction zone and povides valuble insights for further development of
advanced surgical devices.
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Figures:

Figure 1: Fig. 1 Schematic illustration of specimen preparation process for: (a)
uniaxial tension and compression tests; (b) three-point bending tests
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Figure 2: Fig. 2 Typical stress-strain curves for longitudinal & transverse specimens
in tension and compression (anterior quadrant); Inserts show strengthening portions
for longitudinal specimens

Figure 3: Fig. 3 Three-point bending test with single-edge-notch cortical bone
specimen and LVDT mounted on Instron 3345
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Figure 4: Fig. 4 SEM images of fracture surfaces for various cortex positions and
crack propagation directions: A, M, P, L denote anterior, medial, posterior and
lateral; _L, _R, _T denote crack propagation directions for longitudinal, radial
and transverse ones, respectively, white arrows indicate crack growing direction
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Figure 5: Fig. 5 Schematic illustrations and SEM images of various toughening
mechanisms for longitudinal (a), radial (b) and transverse (c) cracks-growth direc-
tions, Labels at the bottom of each image indicate the corresponding magni�ed areas
in Fig. 4
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Figure 6: Fig. 6 Schematic illustrations of model con�gurations for Izod impact
testing using microstructural bone model

Figure 7: Fig. 7 Typical crack propagation of four di�erent microstructure realiza-
tions (a) Young (b) Senior (c) Diseased (d) Treated
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Figure 8: Fig. 8 Typical crack length versus time curves for di�erent microstructural
realizations
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Figure 9: Fig. 9 (a) Notation of penetration directions according to ASTM E399
standard; (b) schematic of specimen preparation and cutting con�guration; (c) setup
for cutting experiments mounted on Instron MicroTester 5848; (c) superimposed
image of razor and cortical-bone specimen taken with high-speed camera (Fastcam
SA-3, Photron); (d) speci�cation of model geometry
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Figure 10: Fig. 10 High-speed-camera images of distinct damage processes in cutting
parallel to osteons' direction,: (a-c) C-L direction; (d-f) C-R direction; white lines
designate pro�le of razor blade, red dotted lines indicate crack path and white arrows
point at positions of osteons
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Figure 11: Fig. 11 Force (per unit width) - displacement diagrams for cutting of cor-
tical bone in di�erent orientations across four cortices; ⊥ and // denote penetration
perpendicular and parallel to osteons' direction, respectively

Figure 12: Table 1 Average and standard deviation of critical J -integral values for
all cortex positions and crack growth directions
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Figure 13: Table 2 Material properties of microstructural constituents of cortical-
bone tissue and homogenous material

Figure 14: Table 3 Material properties used in simulations
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Figure 15: Table 4 Anisotropic ratios for di�erent penetration directions for four
anatomic cortices

208



REFERENCES

Vadim V. Silberschmidt Wolfson School of Mechanical and Manufacturing Engineering
Loughborough University Loughborough Leicestershire LE11 3TU, U.K.

209



210 APM Proceedings

Generalized Continua and Size Effects in
Elastostatic Bending Experiments

Christian Liebold, Wolgfang H. Müller
Christian.Liebold@TU-Berlin.de

Abstract

In this work we deal with a finite element approach to the modified
strain gradient theory, which will be used to describe size dependent ma-
terial behavior within the framework of an elastic theory. The couple stress-,
strain gradient-, and material surface theories are analyzed in context with
beam bending. The derivation of a variational formulation of the modified
strain gradient theory is presented and implemented in an open-source FE-
environment for solution. By using an atomic force microscope to record force
and deflection data of micro-cantilevers made of the material epoxy, a size ef-
fect is revealed and higher-order material coefficients could be measured and
obtained.

Introduction

Driven by miniaturization and by the quest for reducing the costs of materials the
simulation and the valuation of reliability of engineering materials grows in impor-
tance. Size effects in elasticity need to be accounted for, either in a physically
detailed manner, or as an alternative technique of homogenization. Materials with
intrinsic micro- or nano-structure may show size-dependent material behavior, which
is reflected by a stiffer or softer elastic response to external forces when the size of
the material body is reduced. This has been observed in several experiments on
metals and polymers, for example, in copper [8], silver [15], zinc oxide [21], lead [4],
carbon nanotubes [20], epoxy [3] and polypropylene [16]. Conventional (Cauchy-)
continuum theory is unable to predict size effects. Several continua of higher order
were proposed in the literature, such as non-local theories [7], strain gradient theo-
ries [18], micropolar theories [5, 19], theories of material surfaces [10] or fractional
continuum mechanics [2].
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1 Some continuum mechanical theories of higher

order

With respect to size effects we distinguish between micromorphic and strain gradient
theories [7] as an extension to the conventional Cauchy continuum. Additionally,
the theory of elastic material surfaces [10] is taken into account. The origin of gen-
eralized continua is detailed in [1]. By quoting Eringen (cf. [6], pp. 33) we may
state that “a micromorphic continuum may be thought of as a classical continuum
to each point of which is associated another continuum.” The additional continuum,
thought as a continuous distribution of deformable point particles, is restricted to
homogeneous deformations1. The intrinsic deformation of the point particles is de-
scribed by directors, which are first-order tensors “attached” to each material point.
A second-order tensor Qij maps the particle’s orientation and deformation between
different configurations. In the special case of a micropolar continuum, Qij is an
arbitrary proper orthogonal tensor. The point particles are restricted to rotations
only. In the Couple Stress-, or pseudo-Cosserat continuum (CS), the rotational
degree of freedom ϕi of the associated continuum is related to the macroscopic ro-
tation vector 1

2
εijk uk ,j , where use is made of the summation convention on repeated

indices. In what follows comma separated indices denote partial spatial derivatives
with respect to a Cartesian coordinate system defined in the current frame.
The theory of material surfaces, a.k.a. Surface Elasticity (SE), captures surface char-
acteristics that may differ from those of the volume. For example, these differences
are caused by surface oxidation, aging, coating, atomic and molecular rearrange-
ment or even surface roughness. Discrete formulae for the problem of simple beam
bending are given, using the Euler-Bernoulli assumptions for the displacement
field ui. From these relations, generalized elastic moduli for isotropic materials of
the CS- and SE theory read [22, 17]:

ECS = E

(
1 + 6

`2

T 2

)
, ESE = E + Esurf

(
6

T
+

2

W

)
, (1)

where E denotes the conventional Young’s modulus, and T the thickness of beams
with rectangular cross-sections, W being their width, and `, as well as Esurf the
corresponding additional material parameters of the underlying higher order theory.

In contrast to micromorphic continua and to the theory of material surfaces,
the idea behind Strain Gradient theories (SG) is the extension of the kinematic
variables by defining second order derivatives of the displacement vector, without
introducing additional degrees of freedom. Hence, the gradient of the small strain
tensor η̃ijk = εkj ,i is used explicitly in the strain energy density u and it is connected
to stress measures as follows [18]:

uSG = u(εij , η̃ijk ) , σij =
∂uSG

∂εij
, µijk =

∂uSG

∂η̃ijk
, (2)

where σij denotes the Cauchy stress tensor and µijk the higher-order stress tensors.

1The displacement gradient is constant for the (sub-)body.



212 APM Proceedings

2 The Modified Strain Gradient theory (MSG)

The decomposition of η̃ijk in combination with utilizing the macroscopic rotation
vector ϕi results in a reduction of independent additional material parameters from
five down to three. Fleck & Hutchinson (1997) [9] first introduced independent
metrics of ηijk =uk ,ij and decomposed the second order displacement gradient into
its symmetric and anti-symmetric part, ¯̄ηijk and ηA

ijk :

¯̄ηijk = 1
3

(uk ,ij + ui ,jk + uj ,ki ) , ηA
ijk = 2

3
(εikl η̄lj + εjkl η̄li ) , (3)

where η̄ij = ϕi ,j is the gradient of rotation (decomposed into its symmetric and
anti-symmetric part, χS

ij and χA
ij as well):

η̄ij = 1
2
εilk uk , lj , ϕi = 1

2
εilk uk , l , χA

ij = 1
2

(ϕi ,j − ϕj ,i ) , χS
ij = 1

2
(ϕi ,j + ϕj ,i ) , (4)

εilk being the alternating tensor (Levi-Civita symbol). ¯̄ηijk is further decomposed

into its spherical and deviatoric parts, η
(0)
ijk and η

(1)
ijk . η

(0)
ijk is related to χA

ij and the

dilatation gradient εmm,i in the following manner [9]:

η
(0)
ijk = 1

5
(δij ¯̄ηmmk + δjk ¯̄ηmmi + δki ¯̄ηmmj ) , ¯̄ηmmi = εmm,i + 2

3
εilnχ

A
ln . (5)

By assuming symmetry of the couple stress tensor µij , the anti-symmetric part of
the gradient of rotation does not influence the strain energy, as shown in [13, 22]. A
linear strain energy density for nonsimple isotropic materials of the modified gradient
type reads:

uMSG = û(εij , εmm,i , η
(1)
ijk , χ

S
ij ) = 1

2
σij εij + 1

2
pi εmm,i + 1

2
µ

(1)
ijk η

(1)
ijk + 1

2
µij χ

S
ij , (6)

and the corresponding work-conjugated stress measures are:

σij =
∂uMSG

∂εij
=λεkk δij + 2µεij , pi =

∂uMSG

∂εnn,i
=2µ`2

0εmm,i

µ
(1)
ijk =

∂uMSG

∂η
(1)
ijk

=2µ`2
1η

(1)
ijk , µij =

∂uMSG

∂χS
ij

=2µ`2
2χ

S
ij .

(7)

λ and µ are Lamé’s constants, whereas `0 =`1 =`2 =` denote the additional material
length scale parameters, which are chosen to be equal to ` without providing further
arguments.

3 Finite element approach

A solution strategy for the modified strain gradient theory is presented using finite
elements in context with the open-source FE-project FEniCS©, [14]. It allows to
directly implement variational formulations of partial differential equations.
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3.1 Variational formulation of MSG theory

The starting point is the local form of the equilibrium equation of the linear mo-
mentum of MSG theory, given by [12]:

σik ,i − pi ,ik − µ
(1)
ijk ,ij − 1

2
εjlkµij ,il + fk = ρük . (8)

The variational formulation of the strain energy in a global formulation results after
multiplication of an arbitrary first-order tensor function for displacements (so-called
test function) δuk:

»

V

(
σik ,i δuk − pi ,ik δuk − µ

(1)
ijk ,ij δuk − 1

2
εjlkµij ,il δuk

)
dV = 0 , (9)

where the body-force vector fk is set to be equal to zero and static conditions are
assumed. In view of the so-called test function uk, Eqn. (9) represents a partial
differential equation of fourth order. Reduction from fourth-order to a third-order
differential equation is achieved by applying, first, the product rule for differentiation
to each summand:»

V

σik ,i δukdV =

»

V

(σik δuk),i dV −
»

V

σik δuk ,i dV ,

»

V

pi ,ik δukdV =

»

V

(pi ,i δuk),k dV −
»

V

pi ,i δuk ,k dV ,

»

V

µ
(1)
ijk ,ij δukdV =

»

V

(
µ

(1)
ijk ,i δuk

)
,j

dV −
»

V

µ
(1)
ijk ,i δuk ,j dV ,

»

V

1
2
εjlkµij ,il δukdV =

»

V

(
1
2
εjlkµij ,i δuk

)
, l

dV −
»

V

1
2
εjlkµij ,i δuk , l dV ,

(10)

and, second, Gauss’ theorem to transform volume into surface integrals:

»

V

σik ,i δukdV =

¾

∂V

σik δuknidA−
»

V

σik δuk ,i dV ,

»

V

pi ,ik δukdV =

¾

∂V

pi ,i δuknkdA−
»

V

pi ,i δuk ,k dV ,

»

V

µ
(1)
ijk ,ij δukdV =

¾

∂V

µ
(1)
ijk ,i δuknjdA−

»

V

µ
(1)
ijk ,i δuk ,j dV ,

»

V

1
2
εjlkµij ,il δukdV =

¾

∂V

1
2
εjlkµij ,i δuknldA−

»

V

1
2
εjlkµij ,i δuk , l dV .

(11)

The reduction from a third-order to a second-order differential equation is achieved
by a second manipulation of this kind to Eqns. (11)2, (11)3 and (11)4:
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»

V

pi ,i δuk ,k dV =

¾

∂V

pi δuk ,knidA−
»

V

pi δuk ,ki dV ,

»

V

µ
(1)
ijk ,i δuk ,j dV =

¾

∂V

µ
(1)
ijk δuk ,j nidA−

»

V

µ
(1)
ijk δuk ,ji dV ,

»

V

1
2
εjlkµij ,i δuk , l dV =

¾

∂V

1
2
εjlkµij δuk , lnidA−

»

V

1
2
εjlkµij δuk , li dV .

(12)

We now insert Eqns. (11) and (12) into (9) and separate volume from surface inte-
grals:

−
»

V

(
σik δuk ,i + pi δuk ,ki + µ

(1)
ijk δuk ,ji + 1

2
εjlkµij δuk , li

)
dV =

¾

∂V

(
−σikniδuk + pi ,inkδuk + µ

(1)
ijk ,injδuk + 1

2
εjlkµij ,inlδuk

)
dA −

¾

∂V

(
piniδuk ,k + µ

(1)
ijk niδuk ,j + 1

2
εjlkµij niδuk , l

)
dA .

(13)

We identify the resulting boundary conditions for the surface-traction vector t̄k:

¾

∂V

(
σikni − pi ,ink − µ

(1)
ijk ,inj − 1

2
εjlkµij ,inl

)
δukdA =

¾

∂V

(
σik − pj ,j δik − µ

(1)
lik , l − 1

2
εjikµlj , l

)
nilooooooooooooooooooooooomooooooooooooooooooooooon

t̄k

δukdA ,
(14)

the surface double-traction tensor m̄jk , as well as the surface dilatation vector p̄i :

¾

∂V

(
piniδuk ,k + µ

(1)
ijk niδuk ,j + 1

2
εjlkµij niδuk , l

)
dA =

¾

∂V

piloomoon
p̄i

niδuk ,k dA+

¾

∂V

(
µ

(1)
ijk + 1

2
εljkµil

)
niloooooooooomoooooooooon

m̄jk

δuk ,j dA .
(15)

m̄jk and p̄i are set equal to zero, since in practice they are difficult to realize and
apply anyway. The final variational formulation of the MSG theory reads:

»

V

(
σik δuk ,i + pi δuk ,ki + µ

(1)
ijk δuk ,ji + 1

2
εjlkµij δuk , li

)
dV =

¾

∂V

t̄kδukdA . (16)



Generalized Continua and Size Effects in Elastostatic Bending Experiments215

3.2 Model implementation and boundary conditions

We follow a three-dimensional elasto-static finite element analysis of a cantilever
beam (clamped on one side). Dirichlet boundary conditions are applied to the
surface at x = 0, and a surface-traction vector t̄k = (0, 0, F/A) acts on the surface
at x = L, where F and A are a single point force and the cross-sectional area
of the beam, respectively, cf. Fig. (1). The Galerkin method is used for spatial
discretization. The mesh consists of equidistantly distributed tetrahedral continuous
Lagrange elements with a polynomial degree of two, corresponding to the order
of the resulting partial differential equation (16). The system matrix is solved by
using the method of Gaussian elimination (LU, for a lower/upper decomposition)
with low effort in time. The conventional elastic coefficients were chosen to be
E=3.8 GPa and ν=0.38, which are suitable for the material epoxy [11].

y

x

z

Figure 1: Mesh and deformation of a cantilever beam calculated in FeniCS©.

3.3 Analysis of the FE model

In a post-processing algorithm of the numerical solution, the present FE-model is
analyzed regarding to the behavior of the higher-order stress measures presented in
Eqn. (7). In addition to the deflection uz we calculate the following quantities:

� the y-component of the rotation vector: ϕy = 1
2
εyij uj ,i ,

� an equivalent dilatation stress: peqv =
`
pipi,

� an equivalent couple stress: µeqv =
`
µij µij ,

� an equivalent strain: εeqv =
`
εij εij ,

� and an equivalent double-stress: µ
(1)
eqv =

b
µ

(1)
ijk µ

(1)
ijk ,

each along a line at y =W/2 and z = T (cf. Fig. (2), (3) and (4)), where T is the
thickness of the beam.
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Figure 2: Deflections and equivalent strains along the line at z = T .

Figure 3: y-component of the rotation vectors and equivalent double-stresses.

Figure 4: Equivalent couple stresses and equivalent dilatation stresses.

If ` is set equal to zero (`=1x10 15 m), the solutions converge to the classical con-

tinuum solution, where there is no peqv, µeqv, and µ
(1)
eqv. If ` is increased, uz, ϕy and

εeqv decrease, while the corresponding higher-order stress measures peqv, µeqv, and

µ
(1)
eqv increase. The deviations close to the beam coordinate at x=0 in Fig’s. (2), (3)

and (4) are caused by a more complex stress state due to the boundary condition
that is used for the clamped surface.
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4 Experimental analysis

Static bending tests were performed on freestanding micro-beam structures made of
epoxy. A load of 0.5<F <250 µN was applied by using an off-axis laser-reflective
Atomic Force Microscope (AFM) and deflections of 40 nm < w < 10.0 µm were
recorded. By assuming rectangular cross-sections of the specimens, the classical
relation,

E∗ =
4L3

WT 3

F

w
, (17)

between the AFM measures (F/w) and the elastic modulus from the measurement
E∗ was used, where L is the length of the beam. The specimens had ratios of width
to thickness of W/T ≈ 2–5 and length to thickness of L/T ≈ 15–40.

5 Results and conclusions

Figure 5: Results of the experiments, the couple stress model (Eqn. (1)1), the surface
elastic model (Eqn. (1)2) and the finite element approach of the MSG theory

The results for the increasing elastic moduli are in very good agreement to the results
of the couple stress and the surface elasticity analysis (both based on the Euler-
Bernoulli assumptions) and to the AFM-experiments as well. The method of least
squares gives the following values for the bulk elastic modulus and the corresponding
additional material parameter: E = 3.93 GPa and ` = 7.75 µm for the CS theory
and E = 3.37 GPa and Esurf = 1.3 kN/m for the surface theory of elasticity. The
FE-model for the MSG theory gives proper results in case of E = 3.7 GPa and
` = 7.9 µm, see Fig. (5).
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and disordered multiwalled carbon nanotubes. Adv. Mater. Weinheim, Ger., 11,
pp. 161165 (1999-b)

[21] Stan G., Ciobanu C.V., Parthangal P. M., Cook R.F.: Diameter-dependent
radial and tangential elastic moduli of ZnO nanowires. Nano Letters, 7(12),
pp. 3691–3697 (2007)

[22] Yang F., Chong C.M., Lam D.C.C., Tong P.: Couple stress based strain gradient
theory for elasticity. Int. J. of Sol. and Struct., 39(10), pp. 2731–2743 (2002)

Christian Liebold, Wolfgang H. Müller
Berlin University of Technology, Faculty of Mechanics,
Chair of Continuum Mechanics and Materials Theory
Einsteinufer 5, 10587 Berlin, Germany



Proceedings of XLIII International Summer School�Conference APM 2015

Indentation in single crystals

Qiang Liu, Murat Demiral, Anish Roy, Vadim V. Silberschmidt

A.Roy3@lboro.ac.uk

Abstract
The process of indentation in three types of single crystals (FCC cop-

per, BCC Ti-64 and Ti-15-3-3) was investigated using crystal-plasticity mod-
elling. In order to investigate the e�ects of strain gradient on nanoindenta-
tion, both conventional single-crystal-plasticity and mechanism-based strain-
gradient crystal-plasticity models were employed. For each type of single
crystal, idealized conical and spherical indenters were incorporated into in-
dentation simulations. The simulation results indicate that realization of in-
dentation size e�ect was signi�cantly a�ected by the indenter geometry and
imposed strain gradient. Indentation hardness decreased with depth for a con-
ical indenter but increased for a spherical one in the range of small indentation
depths.

1 Introduction
Modelling of micro-/nano-indentation of single crystals has been developed extensively to
elucidate experimentally observed features such as the size e�ect, pile-up phenomenon
and lattice rotations. For instance, Liu et al. [1] performed crystal-plasticity (CP)
�nite-element (FE) numerical simulations and micro-indentation experiments to determine
mechanical properties of single-crystal copper. Lee and Chen [2] adopted a mechanism-
based strain-gradient crystal-plasticity (MSGCP) theory to model the size e�ect in micro-
indentation in the same material. Wang et al. [3] studied an e�ect of crystallographic
orientation on pile-up patterns and micro-textures using a CP FE model for single-crystal
copper. Correct numerical predictions of the surface pile-up patterns were achieved; how-
ever, a di�erence of an order of a magnitude in the load-displacement curve between ex-
periments and simulations was reported. Liu et al. [1] performed a similar study using a
spherical indenter instead of a conical one, where satisfactory agreements between the nu-
merical and experimental load-displacement curves were demonstrated. However, di�erent
magnitudes of a coe�cient of friction were used to represent a contact condition between
the indenterâ��s tip and the workpiece material for di�erent orientations to match nu-
merically obtained surface pro�les with the experimental data. An error of up to 50%
was reported for a magnitude of the maximal pile-up. In the study of Demiral et al. [4],
where both the incipient and evolving strain gradients were considered in the calibration
procedure (unlike prior studies), a better agreement for the load-displacement curves and
maximum pile-up heights was obtained. Zahedi et al. [5][6] studied the e�ects of crystal
orientation on a cutting force and chip morphology in metal machining, where the contin-
uum CP FE method was combined with smoothed particle hydrodynamics to overcome
the problem of element distortion in CP FE simulations.
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Some numerical studies have attempted to analyse physical deformation mechanisms lead-
ing to lattice rotations. For instance, Wang et al. [3] demonstrated lattice rotations for a
single crystal of Cu with di�erent orientations using a 3D elastic viscoplastic CP FE tech-
nique. Zaafarani et al. [7] proposed a physically based CP model based on dislocation-rate
formulations to explain potential reasons for deformation-induced patterns consisting of
multiple narrow zones with alternating crystalline rotations. However, the model consis-
tently overestimated the extent of lattice rotations in the experiment. Demiral et al. [8]
developed a 3D FE model of nano-indentation incorporating an enhanced model of the
strain-gradient crystal plasticity [9] to simulate accurately deformation of a body-centred
cubic metallic material. It was noted that deformation-induced lattice rotations can be
predicted correctly using the strain-gradient CP theory since the e�ect of GNDs was ac-
counted for (via strain gradients). This study demonstrated that the introduction of strain
gradients altered the activity of slip systems and the relative contribution to the overall
plastic slip.

2 Model
In this part, the indentation size e�ect(ISE) of three types of single crystals, namely, FCC
copper, BCC β phase of Ti-6Al-4V (β-Ti-64) and BCC β phase of Ti-15V-3Cr-3Al-3Sn (β-
Ti-15-3-3-3), was investigated using crystal-plasticity models. In indentation modelling,
idealised conical and spherical indenters were chosen to study the e�ects of indenter's
geometry on the mechanical response of the tested material. The chosen half-angle of the
conical indenter was 72◦ and the radius of spherical indenter 2.5µm; dimensions of the
modelled work-piece were (16 × 16 × 8)µm3. The top surface of the modelled workpiece
was free of constraints and normal displacements of all the other faces were �xed. Friction
between the indenter and the indented surface was ignored for simplicity. The maximum
indentation depths for all simulations was hmax = 0.5µm.
A crystal plasticity model was used to describe the material's behaviour of these single
crystals during nanoindentation. It is well known that conventional CP models do not
account for the deformation mechanism at the smallest length-scale accurately as they do
not consider dislocation evolution and propagation explicitly. In our study, a conventional
single-crystal plasticity (SCP) model [10] and the MSGCP model [11] were employed to
compare and contrast the (de)merits of the two models. Both models had a similar con-
stitutive framework, with the latter accounting for the e�ect of strain-gradients. The
relationship between the shear rate γ̇(α) and resolved shear stress τ (α) on the slip system
α is expressed by the power law proposed by Hutchinson [12], as

γ̇(α) = γ̇0|
τα

gα
|nsgn(τα) (1)

where γ̇0 is the reference shear rate, g(α) is the slip resistance and n is the rate-sensitivity
parameter. The evolution of g(α) is given by

ġ(α) =

n∑
i=1

hαβ|γ̇(β)| (2)

where hαβ is the hardening modulus that is calculated from the relation propose by
Hutchinson [12]:

hαα = h0sech
2(

h0γ

τs − τ0
), hαβ = qhαα(α 6= β), γ =

∑
α

∫ t

0
|γ̇(α)|dt. (3)
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Here, h0 is the initial hardening modulus, q is the latent hardening ratio, τ0 and τs are
the shear stresses at the onset of yield and the saturation of hardening, respectively. The
accumulative shear strain over all the slip systems is represented by γ. Generally, τ0 is
equal to the value of initial slip resistance τ0 = g(α)|(t=0) = g0.
The sole di�erence between SCP and MSGCP is the calculation of the slip resistance g(α)

. In the SCP model, g(α) was only determined by SSDs. In contrast, the contribution of
GNDs was also taken into account in the MSGCP model, and g(α) was rede�ned as

g
(α)
T =

√
(g

(α
SSD)2 + (g

(α
GND)2, (4)

where, g(α)
SSD and g(α)

GND are contributions to the slip resistance caused by SSDs and GNDs,

respectively. The evolution of slip resistance g(α)
SSD was given by a strain-hardening equa-

tion:

ġ
(α)
SSD =

n∑
i=1

hαβ|γ̇(β)| (5)

The slip resistance g(α)
GND was determined by the e�ective density of GNDs :

g
(α)
GND = αµ

√
bη

(α)
G (6)

η
(α)
G = |m(α) ×

∑
β

(sαβ 5 γ(α))×m(β)|. (7)

In equation (6), b and µ are the Burgers vector and shear modulus, respectively. In equation
(7), m(α) is the normal unit vector of slip plane, s(α) and s(β) de�ne the slip direction.

Consequently, the MSGCPmodel could be reduced to the SCP model if g(α) = g
(α)
T = g

(α)
SSD.

The two types of crystal-plasticity models were implemented in the commercial FE code
ABAQUS/Standard by using the user interface subroutine, UMAT. Calculation of a strain
gradient in the MSGCP model was realized with the use of C3D8 element available in
the FE package. The simulation results were reported in the form of hardness-indentation
depth curves. Hardness H was de�ned as

H =
Fmax
A

, (8)

where Fmax was the maximum load applied in indentation and A was the projected area
of contact between the indenter and the work-piece. The contact area was determined by
accounting for the contact nodes on the surface of the work-piece as outlined in the work
of Lee and Chen [2]. To capture an accurate description of the contact area, a �ner local
mesh was used in regions underneath the indenter tip.

3 Results and Discussions

3.1 Indentation of FCC copper single crystal
The material parameters used in the work of Lee and Chen [2] was adopted for copper single
crystal. The magnitude of Burgers vector for copper is b = 0.255nm, shear modulus µ =
42.0GPa and the empirical coe�cient in the Taylor model is α = 0.5. For the investigated
FCC copper single crystal, the slip was assumed to occur on the usual twelve {111}〈110〉
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Figure 1: Indentation size e�ect for copper single crystal for conical and spherical
indenters

slip systems. For both conical and spherical indenters, the indentation simulations were
performed on the crystallographic plane of the work-piece.
Variations of hardness with indentation depth in nanoindentation with conical and spher-
ical indenters are presented in Figure 1. ISE was clearly observed for the two types of
indenter, although the hardness-indentation depth curves for the spherical indenter ex-
hibited lower depth sensitivity. Interestingly, the trend of the change in hardness with
indentation depth was di�erent for conical and spherical indenters. We observed that the
reported hardness reduce with increasing depth for the conical indenter, however, the trend
was opposite for the spherical one. Therefore, the indenter geometry not only a�ected the
magnitude of calculated hardness but also the nature of ISE. Our study demonstrated
that the di�erence in hardness related to indenter geometry was more signi�cant at lower
indentation depths.
For the two types of indenters, it was clear that predictions based on the MSGCP model
were signi�cantly di�erent from those with the SCP model, as shown in Figure 1. This
implies that strain gradients played a pivotal role in de�ning hardness (and overall de-
formation). It also infers that strain gradient lead to an increase in hardness at smaller
indentation depths for the conical indenter; however, the tendency was reversed for the
spherical indenter. For the simulation results based on SCP modelling, it was noted that
the hardness became insensitive to the depth when the indentation depth exceeded 0.2 µm.
This phenomenon was di�erent for MSGCP modelling. A gradual decrease or increase of
hardness with higher indentation depth was observed for conical and spherical indenta-
tions, respectively. Therefore, the e�ect of indenter geometry on hardness was observed
even at a large indentation depth due to the e�ect of strain gradients.

3.2 Indentation of BCC Ti-64 single crystal

Material parameters used for modelling the BCC β-Ti-64 single crystal were cited in
literature [13][14]. The magnitude of Burgers vector b = 0.286nm, the shear modulus
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Figure 2: Indentation size e�ect for copper single crystal for conical and spherical
indenters

µ = 42.085GPa [15] and α = 0.5 were chosen based on prior studies. Twelve {110}〈111〉
slip systems were considered for β-Ti-64. For both conical and spherical indenters, the
simulations were performed on the [110] crystallographic plane.
In Figure 2, the variations of hardness with indentation depth are shown demonstrating
a signi�cant ISE. For both SCP and MSGCP simulation results, there was an evident
discrepancy in hardness caused by the indenter geometry. At a small indentation depth,
the hardness obtained for the conical indenter was larger than that for the spherical one;
however, a higher hardness was observed for the spherical indenter at large indentation
depths. It is important to point out that the discrepancy in hardness between the two
types of indenters existed even if the e�ect of strain gradients was neglected. Note that Ti-
64 has a much higher slip resistance than Cu. For the range of indentation depths studied,
the proportion of plasticity to elasticity in the contact area of Cu is larger than that in
Ti-64. Thus, an increase in hardness was observed when using the spherical indenter due to
its propensity to induce elastic deformation. At each indentation depth, the strain-gradient
e�ect was small.

3.3 Indentation of BCC Ti-15-3-3 single crystal

Material parameters of a BCC β-Ti-15-3-3 single crystal were obtained by calibrating
experimental results in our previous work [4]. Here, twelve {112}〈111〉 were taken as
the dominant the slip systems. For both conical and spherical indenters, the indentation
simulations were performed on the [110] crystallographic plane of the material.
The ISE in Ti-15-3-3 is shown in Figure 3. The hardness magnitudes obtained for the
conical indenter exhibit a signi�cant depth-dependence in comparison to those for the
spherical indenter. For the SCP model, the e�ect of indenter geometry on hardness was
considerable when the indentation depth was smaller than 0.25 µm but could be neglected
at larger depths, similar to the results for the FCC Cu single crystal (Figure 1). In contrast,
the results from the MSGCP model indicate that a di�erence in hardness for the two types
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Figure 3: Indentation size e�ect for copper single crystal for conical and spherical
indenters

of indenters exists, but is less signi�cant than that for BCC Ti-64 (Figure 2).

4 Conclusions

The ISE was observed for nanoindentation of the three investigated single crystals for both
conical and spherical indenters at small indentation depth. The indenter geometry had
a signi�cant e�ect on the features of ISE: the calculated hardness magnitude decreased
with the indentation depth for the conical indenter but increased for the spherical one.
Therefore, a great discrepancy in hardness for di�erent types of indenters was observed,
especially when the indentation depth was relatively small. However, hardness became
less sensitive to the depth at larger indentation depths. For all the three types of single
crystals studied, the variation of hardness with indentation depth was higher for the conical
indenter. In these monocrystals, strain gradients played di�erent roles in nanoindentation.
It is emphasized that both the e�ects of indenter geometry and strain gradients were
related to each other. The di�erence in hardness caused by the indenter geometry could
be neglected when the e�ects of strain gradients were not considered for metal single
crystals with low slip resistance (FCC copper and BCC Ti-15-3-3 single crystals). The
indenter geometry also in�uenced strain gradients that, in turn, a�ected hardness. The
discrepancy in hardness between the results of MSGCP and SCP models decreased with
indentation depth for the conical indenter but the trend was opposite for the spherical
indenter. The presented simulation results indicate that there are several geometrical and
mechanical factors, which a�ect the data obtained with nanoindentation of single crystals.
The modelling approach such as described here helps to elucidate the mechanisms that
lead to deformation in the small scale.
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Finite element investigation of the gravitational
and rotational deformation of the Earth
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paul.lofink@tu-berlin.de

Abstract

In this paper we investigate the deformation of Earth due to self-
gravitation and constant rotation, i.e. centrifugal accelerations. A first rough
estimate of a rotating, self-gravitating sphere made of iron using linear elastic-
ity and infinitesimal strains shows that the deformations due to gravity alone
are about 14 percent. These are comparatively large deformations. Conse-
quently, we apply the concept of finite deformations instead and solve the
local balance equations for mass and linear momentum in the current con-
figuration, using the Almansi strain tensor. The stress and strain measures
are related by a constitutive law similar to St.Venant-Kirchhoff. In order to
solve this highly nonlinear problem, finite element calculations are conducted
by using the research tool FEniCS [? ]. Results show that the purely gravita-
tional displacements are about two magnitudes larger compared to the ones
from centrifugal forces, which has an impact on the accuracy of the so-called
flattening parameter. We treat this problem by a thorough investigation of
the magnitude of all participating terms, which leads to a decoupling of the
system of highly non-linear differential equations. We compare the results
with previously conducted analytical work presented in [? ].

1 State of work and guide to the paper

The problem we investigate in this article is not completely new and was initially
discussed by the masters of the old days, namely Newton [? ? ], Sommerfeld and
Klein [? ]. However, nowadays computational power is steadily increasing and
numerical calculations enable us to tackle the subject by using advanced numerical
techniques. Our initial investigations will concern the prediction of the so-called
flattening parameter, which describes Earth’s ellipsoidal shape. Newton himself
found an approximate analytical expression for the flattening of Earth [? ]:

fNewton =
a− c
c

=
5

4

ω2
0 a

3

Gm
= 4.35 · 10−3 , (1)
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a and c being the equatorial and polar radius, ω0 the angular velocity, m the mass of
Earth and G = 6.673 ·10−11m3/kg s2 the gravitational constant. We will try to recover
Newton’s result by performing a 3D finite element analysis of an rotating sphere
with the elastic properties of iron. This is the natural choice, since it is nowadays
commonly accepted that Earth’s inner core is essentially made of that. Moreover,
initially we will assume the deformation to be small. Consequently, we will apply
geometrically linear elastic theory in combination with an isotropic Hooke’s law.
First results will reveal deformations of a size that definitely challenges the validity of
a geometrically linear theory. Hence, we will eventually switch to finite deformations,
while concentrating exclusively on self-gravity, which is the dominant force to begin
with. By doing so we end up with a radially symmetric, highly non-linear problem.
Again, we will apply an isotropic constitutive relation for the Cauchy stresses, i.e.,
σ. However, this time we will base the deformation on the Green-Almansi strain
tensor, e, and assume a homogeneous initial mass distribution with an average
current mass density, ρ0 = 5515 kg/m3. This seems to be a reasonable estimate
since mass is a conserved quantity. The governing differential equation will then
be recast into dimensionless form containing Poisson’s ratio, ν, and an additional

parameter, αk =
4πGρ20r

2
0

3k
, which accounts for the influence of self-gravitation and

effective stiffness of the Earth (r0 refers to Earth’s average current outer radius).
Since we have no direct knowledge regarding the effective bulk modulus, k, of Earth,
we will use the modulus of iron leading to αk = 1.976. Unfortunately the direct finite
element solution of the nonlinear problem, based on the Newton-Raphson algorithm,
will not be successful. However, by incrementally increasing αk we will be able to
handle αk-values of up to αk = 1.1 leading to displacements of about 20 % of the
current outer radius, r0. Results are shown for both linear and non-linear modeling
in Section 4 after a continuum theory based description of the mechanical problem
in Sections 2 and 3.

2 Theoretical background

In this section we derive the equations governing the problem of a self-gravitating
rotating Earth. We start with the global balance equations for mass and linear
momentum:

d

dt

ˆ
Vt

ρ dV = 0 ,
d

dt

ˆ
Vt

ρv dV =

˛
∂Vt

n · σ dA+

ˆ
Vt

ρf dV (2)

ρ denoting the current mass density, v the velocity, σ the Cauchy stress tensor,
n the outward normal vector, and f the specific body force. It is convenient to
transform the equations onto a frame co-moving at the center of Earth, i.e., rotating
at a constant angular velocity ω = ω0ez. To this end, we perform a Euclidian
transformation [? , Chap. 8], where dashed quantities always describe entities in
the co-moving frame:

x = x′ − b′ or xi (t) ei = x′i (t) e
′
i (t)− b′i (t) e′i (t) . (3)

In this and all the following relations we use Einstein’s summation convention. Now
we investigate this equation component-wise and calculate the time derivatives. The
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Figure 1: The co-moving basis vectors and quantities for the Euclidian transforma-
tion.

change of basis vectors is a pure rotation with the angular velocity ω where the
origins O and O′ of the systems coincide (cf., Fig. 1):

v = ẋiei = ẋ′ie
′
i + x′iω

′ × e′i , a = ẍ′ie
′
i + 2ẋ′iω

′ × e′i + x′iω
′ × (ω′ × e′i) . (4)

Since we use the co-moving system we may assume a stationary configuration, where
Earth particles have no relative motion ẋ′i, ẍ

′
i = 0 and therefore:

v = ω′ × x′ , a = −ω′ × (ω′ × x′) . (5)

These results are necessary for obtaining the local balance equations. To this end
we apply Reynold’s transport theorem and assume the global balances to be valid
for every sub-domain. Therefore the integrand itself has to be equal to zero:

dρ

dt
+ ρ∇ · v = 0 , ρa = ∇ · σ + ρf . (6)

In context with Euclidian tensor properties of the occurring fields the following
useful relations apply:

ρ = ρ′ , ∇ =
∂

∂xi
ei =

∂

∂x′i
e′i , σ = σijei⊗ej = σ′ije

′
i⊗e′j , f = fiei = f ′ie

′
i. (7)

By assuming a constant angular velocity in e′3 - direction, a further simplification
results:

−ρ′ω′ × (ω′ × x′) = −ρ′ω2
0 (x′1e

′
1 + x′2e

′
2) = ∇′ · σ′ + ρ′f ′. (8)

The body forces f ′ result from self-gravity only. Since the gravitational force is
conservative we may derive it from a scalar potential, U ′, obeying Poisson’s equation:

f ′ = −∇′U ′ , ∇′ · (∇′U ′) = 4πGρ′. (9)

For the sake of brevity we will omit dashes in what follows. We will see later that
a formulation in the reference configuration is useful for deriving certain required
relations for the unknown fields. The corresponding basic transformations read:

dx = F · dx0 , n dA = JF−T · n0 dA0 , dV = J dV0 , (10)
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with the deformation gradient:

F =
∂zi

∂Zj
gi ⊗ g

j
0 , J = detF , (11)

zi and Zj being the coordinates and gi and gj0 the (potentially) curvilinear base vec-
tors in the current and referential configurations, respectively. With these identities
we may write for the balance of mass:

d

dt

ˆ
V0

ρJ dV0 = 0 ,
d

dt
(ρJ) = 0 , ρJ = ρ0 = const. , (12)

and for the balance of linear momentum:

d

dt

ˆ
V0

ρJv dV0 =

˛
∂V0

J
(
F−T · n0

)
· σ dA0 or ρ0a = ∇x0 · P + ρ0f . (13)

Herein we have used the first Piola-Kirchhoff stress tensor P = JF−1 · σ.

3 Constitutive equations

In order to close the system of equations we have to specify constitutive relations,
which connect the stress tensors σ or P with quantities of deformation. In the
geometrically linear case we use well known Hooke’s law:

σ = λ tr (ε) 1 + 2µε with ε =
1

2

(
∇x ⊗ u+ (∇x ⊗ u)T

)
. (14)

If we adopt the concept of finite deformations in the reference configuration we may
use the St. Venant-Kirchhoff law, which relates the second Piola-Kirchhoff stress
tensor, S, and the Green-Lagrange strain tensor, E:

S = λ tr (E) 1 + 2µE , S = J F−1 · σ · F−T , E =
1

2

(
F T · F − 1

)
. (15)

If we prefer to stay in the current configuration we may use a constitutive equation
based on the Almansi strain tensor, e:

σ = λ tr (e) 1 + 2µ e , e =
1

2

(
1−B−1

)
, B = F · F T . (16)

If infinitely small deformations are assumed, all three constitutive equations coincide,
cf., [? ].

4 Results

In order to prepare the balance equations for a finite element analysis, we have
to generate weak forms. Therefore we apply the procedure described in [? ], i.e.,
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we multiply by a test function, δu , integrate over the entire domain, and perform
integration by parts:

ˆ
Vt

σ·(∇x ⊗ δu) dV −
˛
∂Vt

n·σ·δu dA =

ˆ
Vt

ρf ·δu dV +

ˆ
Vt

ρω2
0 (x1e1 + x2e2)·δu dV.

(17)

Analogously we derive for the potential, U , with a test function, δU :

−
ˆ
Vt

∇xU · ∇xδU dV +

˛
∂Vt

n · ∇xU δU dA =

ˆ
Vt

4πGρ δU dV. (18)

For completion of the boundary value problem we require the following conditions
to hold:

U |x=0 = 0 , u|x=0 = 0 and n · σ|x∈∂Vt = 0. (19)

In the last equation we neglect surface stresses since they are very small compared
to the stresses in the interior. We simulated the geometrically linear case with linear
continuous Galerkin elements (tetrahedra). Both Eqns. (17) and (18) were written
in weak form and solved simultaneously. Additionally, we incorporated a spatially
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Figure 2: Mass density distribution according to PREM (left) and the corresponding
gravitational acceleration (right) [? ].

varying mass density, ρ, (see Fig. 2) of the PReliminary Earth Model (PREM, [?
]) derived from a study of propagation velocities for seismic waves. The results in
Fig. 3 show that for an earth-like celestial body deformations due to self-gravitation
are beyond the validity of linear deformation theory. By comparing the curve for
the total displacements, utotr , i.e., gravity plus centrifugal acceleration, and purely
gravitational displacements, ugravr , there is almost no difference. By plotting the
rotational displacements exclusively, we realize a difference of about two or three
magnitudes. The flattening parameter of Eqn. (1) can now be calculated by taking
the difference between displacements along the equatorial plane and poles:

f =
urotr (ϑ = π/2)− urotr (ϑ = 0)

r0
= 1.1 · 10−3. (20)
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Figure 3: Analytic results from [? ] based on a constant average mass density (left)
and FE-results for normalized displacements along the equatorial plane from a 3D
Cartesian simulation with the PREM mass density (right).

Consequently, from now on we concentrate on deformation by gravity alone and use
non-linear theory. Now we have two possibilities: Either we transform all equations
onto the reference configuration or onto the current configuration. The reference
configuration has one major drawback, namely the unknown initial radius, R0. A
possible solution is to determine the radius iteratively by adjusting the radius in a
stepwise manner, and always comparing the result to the real current outer radius.
However, it is more convenient to transform all equations onto the current config-
uration and to use the real outer radius for the mesh. If we omit rotation we have
a purely radially symmetric problem. Therefore, we switch to spherical coordinates
and assume the deformation to be purely radial as well:

Z1 = R (r , ϑ , ϕ) = r−ur (r) , Z2 = Θ (r , ϑ , ϕ) = ϑ , Z3 = Φ (r , ϑ , ϕ) = ϕ, (21)

with corresponding base vectors:

gi =

{
er ,

1

r
eϑ ,

1

r sinϑ
eϕ

}
and g0k = {eR , ReΘ , R sinΘeΦ} . (22)

This motion results in the following deformation measures:

F−1 =

dR
dr 0 0
0 1 0
0 0 1


g0i
⊗gk

=

(1− dur
dr

)
0 0

0 R
r 0

0 0 R
r


e0i⊗ek

, J =

(
1− dur

dr

)−1 ( r
R

)2
.

(23)

With the help of the deformation gradient we may derive the only non-zero Green-
Almansi strain components:

err =
dur
dr

(
1− 1

2

dur
dr

)
, eϑϑ = eϕϕ =

ur
r

(
1− 1

2

ur
r

)
. (24)

With Eqn. (16) we can now detail the Cauchy stress components. It is reasonable
to normalize them by the bulk modulus, k:

trr =
σrr
k

=
3 (1− ν)

1 + ν

dur
dr

(
1− 1

2

dur
dr

)
+

2ν

1 + ν

ur
r

(
1− 1

2

ur
r

)
, (25)
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tϑϑ = tϕϕ =
σϑϑ
k

=
σϕϕ
k

=
ν

1 + ν

dur
dr

(
1− 1

2

dur
dr

)
+

3

1 + ν

ur
r

(
1− 1

2

ur
r

)
. (26)

If the balance equation (13) is observed it turns out that only the radial component
is different from zero. In addition to introducing normalized stresses, we define a
dimensionless current radius, x = r/r0, and a dimensionless displacement, u = ur/r0,
by dividing both by the outer radius of the Earth, r0 = 6378 km:

dtrr
dx

+
1

x
(2 trr − tϑϑ − tϕϕ) = −ρ r0

k
fr . (27)

For a radial mass distribution Eqn. (9) reduces to:

1

r2
d

dr

(
r2

dU

dr

)
= 4πGρ (r) ⇒ dU

dr
=

1

r2

ˆ r̃=r

r̃=0

4πρ (r̃) r̃2 dr̃ , (28)

and therefore the gravitational accelerations are given by:

fr = −Gm (r)

r2
= −Gm (R)

r2
= −

G 4
3
πρ0R

3

r2
= −4

3
πGρ0

(
1− ur

r

)3
r . (29)

Herein we have used a homogeneous medium mass density, ρ0 = 5515 kg/m3 (see Fig.
2). By inserting this result in Eqn. (27) and by using Eqn. (23)2 we get:

dtrr
dx

+
1

x
(2 trr − tϑϑ − tϕϕ) = αk

(
1− u

x

)5(
1− du

dx

)
x , αk =

4π Gρ20 r
2
0

3 k
. (30)

Simulations were carried out for different parameters αk, always keeping Poisson’s
ratio at ν = 0.3 (Fig. 4, left) and ν = 0.38 (Fig. 4, right), respectively. The results
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Figure 4: Nonlinear solution for ν = 0.3, starting from αk = 0.1, upper blue line, to
αk = 1.1, lower red line in steps of 0.1 (left), and for ν = 0.38 and αk = 0.1 · · · 1.2
(right).

(see Fig. 4) show once more very clearly that purely gravitational deformations
of a massive, earth-like celestial body are beyond the validity of linear geometric
theory. Therefore finite deformation theory was applied to the radially symmetric
self-gravitational problem of a sphere and results are shown for different constella-
tions of parameters. Unfortunately no convergence was achieved for the case when
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αk turned to 1.976, which corresponds to α = 2.45 when referring to the alternative
mass-stiffness parameter α = αk

2(1+ν)
3(1−ν) of the paper by Müller and Weiss [? ] in the

same proceedings. Their largest converging value of α is 1.76, obtained with the
finite difference technique for ν = 0.38. This corresponds to αk = 1.18, which is
almost exactly the same value we were able to achieve (see Fig. 4 (right)) with the
finite element algorithm. We tried to solve the differential equation by adaptively
refining the mesh at regions were the displacement gradient is large, but to no avail:
Convergence could not be achieved for larger values of αk.

Paul Lofink, Technische Universität Berlin, Sekr. MS 2, Einsteinufer 5, 10587 Berlin

Wolfgang H. Müller, Technische Universität Berlin, Sekr. MS 2, Einsteinufer 5,
10587 Berlin
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Abstract

It is known that critical speeds exist for a constant load uniformly moving
around an elastic ring, which is elastically connected to an immovable axis.
However, in the inverted case, namely in the case of a rotating ring subject to
a stationary constant load, the existence of such critical speeds is still being
debated by the research community. Various rotating thin ring/shell models
are available in literature. Especially active is the tire research community
within which the rotating ring/shell models are often employed to mimic vi-
brations of the tire tread of pneumatic tires. The theoretical predictions of
the critical speeds made on the basis of the existing models are not convincing
and sometimes confusing. Properly formulated governing equations including
the pretension due to rotation and a due linearization are needed to predict
the critical speeds correctly. In this paper, a rotating thin ring elastically
mounted on an immovable axis and subjected to a stationary point load is
investigated. The governing equations are obtained by modifying one of the
most widely used rotating ring models in order to describe the pretension in a
more accurate way. The parameters are adopted from a pneumatic tire. Free
and forced vibrations are investigated. Instability and stationary modes are
found which were not reported in literature before. The results of the forced
vibration clearly reveal that a critical speed of a rotating ring does exist. The
deformation patters of the ring rotating at the sub-critical and super-critical
speeds are shown and discussed.

1 Introduction
The in-plane vibration of rotating thin rings and shells has wide engineering applications. A
special position among those is occupied by the pneumatic tires, whose dynamics has been
investigated by many researchers with the help of rotating ring models. Such simplistic
models are useful because the predicted natural frequencies are in good agreement with the
ones measured in experiments. Various rotating thin ring models have been developed and,
among those, the models based on the Loveâ��s thin shell theory in Ref. [1, 2, 3] are most
commonly used. Critical speed clearly exists for a constant load moving around an elastic
ring [4] but the existence of the critical speed for a rotating ring subjected to a stationary
constant load is still being debated. Signi�cant wave-like deformation was observed when
a pneumatic tire rolls on the ground with a speed higher than a certain critical value
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which suggests a rotating ring may have a critical rotation speed. However, the theoretical
predictions for the critical speed are not convincing and, sometimes, confusing when use is
made of the existing rotating ring models. Some references gave a prediction for the critical
speed but the pretension due to rotation was not properly included or even not included at
all, e.g. Ref. [5, 6]. Many other references did not mention the critical speed problem, e.g.
in [2, 3]. In Ref. [7], Huang and Hsu concluded that no critical rotational speeds exist for
the forced response to a stationary constant point load subjected to a rotating thin shell.
The aim of this paper is to show that there exist critical speeds for rotating thin rings but
a modi�cation of the model is needed to predict those. The rotating thin ring model used
in this paper is a modi�ed version of that presented in ref. [2].The modi�cation concerns
the pretension caused by rotation. Parameters from a pneumatic tire are applied. The
physical parameters of the ring are obtained by matching the natural frequencies predicted
by the adopted analytical model with the measured ones from ref. [8]. Free vibrations
are studied �rst in order to show the e�ect of the gyroscopic forces. Thereafter, the ring
response to a constant stationary point load is analyzed.

2 Governing Equations
In this paper, pneumatic tires are chosen as the engineering application of rotating ring
model. The tire is modeled as a thin ring with a uniform rectangular cross section. Radial
and circumferential distributed springs are used to model the sidewall of the tire. It is
assumed that the center of the ring is �xed and the ring rotates about it.
The rotating ring model and the reference systems are shown in Figure 1. It is assumed
that the mean radius of the ring is R, whereas w and u are the small displacements in
the radial and circumferential directions, respectively. p is the internal air pressure of the
tire. The sti�nesses of the radial and circumferential springs per unit length are designated
as kr and kc, respectively. It is also assumed that all springs possess viscosity per unit
length equal to σ. Furthermore, ρ is the mass density of the rim, E is the Youngâ��s
modulus, A is the cross-sectional area and I is the cross sectional moment of inertia. P is
the magnitude of the constant radial point load which represents the contact force between
the tire and the ground. Ω is the angular frequency of the tire rotation.
The linearized equations governing the model vibrations in the nonrotating reference sys-
tem are the same as in ref. [2] and can be written as

ρAü+ 2ρAΩ(u̇′ + ẇ)− ρAΩ2(u− 2w′ − u′′) +
EI

R4
(w′′′ − u′′)

−EA
R2

(w′ + u′′) +N(u− w′) + kcu+ σ(u̇+ Ωu′) = 0,

ρAẅ + 2ρAΩ(ẇ′ − u̇)− ρAΩ2(w + 2u′ − w′′) +
EI

R4
(w′′′′ − u′′′)

+
EA

R2
(w + u′) +N(u′ − w′′) + krw + σ(ẇ + Ωw′) = Pδ(θ),

(1)

where the overdot and the prime designate the partial derivatives with respect to time and
the angle θ, respectively.
Note that because of rotation, the ring has a static radial deformation we and the pretension
N = EAwe/R (see Ref. [2]). Equation (1) governs small vibrations about the static
equilibrium.
In Ref. [1, 2, 3] and in most of the other references, the pretension is approximated by

N = pbR+ ρAR2Ω2. (2)
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Figure 1: Rotating ring

A proper approximation for the pretension due to rotation is needed to predict the critical
speed. If we take an element of the rotating ring and analyze the force equilibrium, the
pretension can be shown to be described by

N =
EA

R

pbR+ ρAR2Ω2

EA/R+ krR
. (3)

If EA/R >> krR, i.e. if the extensional sti�ness EA of the tire treadband is very high,
then the approximation N = pbR+ρAR2Ω2 can be applied. However, in the present paper,
the more general equation (3) is retained. Consequently, the static radial deformation is
taken as

we =
pbR+ ρAR2Ω2

EA/R+ krR
. (4)

3 Identi�cation of the parameters
One of the main factors the validity of the rotating thin ring model depends upon is the
estimation of the values for the parameters in the governing equations. A reasonable way
to determine those is to match the natural frequencies predicted by the analytical model
with those measured using nonrotating tires [2, 8].
Let us derive expressions for the natural frequencies. To this end, we assume the following
form of the solution:

w(θ, t) = Wei(nθ+ωnt), u(θ, t) = Uei(nθ+ωnt). (5)

Substituting the above expressions into the governing equation (1), one can obtain the
frequency equation in the form of a fourth order polynomial:

ωn
4 + a3ωn

3 + a2ωn
2 + a1ωn + a0 = 0. (6)
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For brevity, the expressions for the coe�cients of the above polynomial are omitted. These
coe�cients are functions of all the model parameters, as well as of the mode number n and
speed of rotation Ω.
Generally, the geometrical and material parameters ρ,A,R,b,h(b is the width and h the
thickness of the ring), are obtained based on the tire geometry and its material properties.
In contrast, the equivalent parameters EA,EI,kr,kc are identi�ed from experimental modal
analysis. By comparing the measured natural frequencies and natural frequencies predicted
by equation (5), the values of EA,EI,kr,kc can be identi�ed. The experimental natural
frequencies, along with geometrical and material parameters used in this paper are taken
from Ref. [8] for a 195/70R14 radial tire. The geometrical and material parameters are

b = 0.16m, h = 0.01m, A = 0.0016m2, R = 0.285m,
ρ = 2.28× 103kg/m3, p = 2.5× 105N/m2

Table 9: The measured and theoretically predicted natural frequencies

Mode number n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8

1 fn(Hz):measured - 108.53 132.38 158.30 186.92 213.60 248.14 287.54

2 fn(Hz):predicted 91.14 108.53 132.38 159.32 186.92 215.17 245.92 287.54

The �rst row in Table 9 lists the measured natural frequencies of the tire adopted from Ref.
[8]. The second row contains the natural frequencies predicted by the model whose param-
eters were chosen such as to give a close correspondence between the measured and calcu-
lated frequencies. In order to determine four equivalent parameters, namely EA,EI,kr,kc
four measured natural frequencies were substituted in the characteristic equation (6).
The natural frequencies of n=2, 3, 5, 8 were used. Upon solving the four obtained nonlinear
algebraic equations the following �gures for the equivalent parameters were obtained:

EA = 13374.99N, EI = 17.37Nm2, kr = 4.49× 106N/m2, kc = 1.16× 106N/m2

Substituting the above �gures to equation (6) and solving it for the frequency, the natural
frequencies shown in the last row of Table 9 were obtained. Table 9 demonstrates good
agreement between the theoretical and measured natural frequencies. Note that in Table 9,
the measured natural frequencies are associated with the dominant bending modes. Since
no inextensibility assumption is employed here, the natural frequencies of the extensional
modes can be obtained as well by solving equation (6).

4 Free vibration
Making use of the identi�ed equivalent parameters, the natural frequencies of the rotating
ring can be obtained. The dependence of the natural frequencies on the rotation speed for
the modes from 0 to 5 are shown in Figure 2. The absolute values of the real part of the
natural frequencies are shown.
The following conclusions can be drawn from Figure 2:
1. Frequency bifurcation. The nonrotating ring has two distinct natural frequencies (for
each mode number) associated predominantly with the radial and circumferential vibra-
tions. Usually, the lower one corresponds to the predominantly radial motion while the
higher one is associated with the predominantly circumferential motion(for n ≥ 2). When
the ring rotates, for any mode number greater than zero, both the lower and the higher
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Figure 2: Natural frequencies versus rotation speeds

natural frequencies split into two di�erent frequencies which results in four distinct natural
frequencies. This phenomenon is referred to as the frequency bifurcation. One needs to
note that the natural frequencies corresponding to n=0 do not bifurcate.
2. Instability. For mode 0, the higher natural frequency increases monotonically as the
rotation speed grows, whereas the lower one �rst decreases to zero and then its real part
turns to zero at certain velocity. This means that as from this velocity (and up to the
velocity at which the real part becomes nonzero again) the natural frequency is purely
imaginary which indicates that the system is unstable and the type of the instability is
divergence. For the modes n ≥ 1, the two distinct natural frequencies of the lower set
coalesce into one at a particular velocity and become complex-valued after this velocity.
When the speed of rotation increases further, the natural frequencies may become real
again. Since the coe�cients of the characteristic polynomial (6) are all real, the complex
roots appear in conjugate pairs. Therefore, there must be at least one root with negative
imaginary part. This means the motion in unstable and �utter instability may occur.
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3. Stationary modes. For the modes n ≥ 1, zero natural frequencies are observed at
certain speeds of rotation for both predominantly radial and predominantly circumferential
vibrations. In the case of zero frequency, equation (5) reduces to

w(θ, t) = Weinθ, u(θ, t) = Ueinθ (7)

and the deformation of the ring becomes time independent. This means that the modes
corresponding to zero natural frequencies are stationary with respect to an earth-bound
observer. This phenomenon was not reported in literature.
4. The natural frequencies of both the radial and circumferential modes are nearly the
same in the case of a nonrotating tire (Ω = 0). This fact has been con�rmed by many
modal tests in literature, for example in Ref. [9].
The maximum velocity in Figure 2 is 500m/s. The operational speed of a tire cannot reach
such high a velocity in reality. Furthermore, even if it would, the validity of the model
would be jeopardized by a very large static deformation. Therefore, the predictions of the
natural frequencies for the high rotation speeds are provided herein for the sake of the
completeness of the mathematical analysis only.

5 Steady-state response of a rotating ring
In this section, the forced vibration of a rotating ring is computed. The so-called
â��method of imagesâ�� is employed to solve the governing equations. This method
was �rst used to solve the response of an elastic ring subject to a moving load in Ref. [4]
and recently applied for computing the response of a rotating train wheel in [10]. The
parameters have been given in Section 3.
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Figure 3: v=50m/s

Figures 3-5 show the radial displacement w, the circumferential displacement u and the
corresponding ring shapes for three di�erent rotating speeds. The magnitude of the applied
force is 1.0×104N and the damping σ used is 500Ns/m2. In �gures 3-5(a), the radial and
circumferential displacements are plotted versus the distance from the load ξ ( ξ = 0 is the
loading point,ξ > 0 corresponds to the position when 0 < θ ≤ π , ξ < 0 corresponds to
the position when π < θ ≤ 2π ). In �gures 3-5(b), the dotted line represents the original
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undeformed ring, the dash line represents the static equilibrium of the ring obtained by
equation (4). The ring shape after deformation is depicted by solid line. Note that in all
the �gures, the ring rotates anticlockwise.

Three di�erent velocities are considered. In Figure 3, the ring rotates with velocity v =
50m/s , it is clearly seen that the ring de�ections are symmetrical with respect to the
loading point (the ring de�ections are not perfectly symmetrical because of the damping,
but if there is no damping or the rotating speed is small enough, the de�ections will be
perfectly symmetrical). In this case, it is obvious that the ring rotates at sub-critical speed.
In Figure 4, the response for v = 70m/s is shown. Both the radial and the circumferential
displacements become wave-like which indicates that the ring now is rotating at a velocity
that is higher than the critical speed. The displacements become more wavy and spread
from the loading point to the whole ring in Figure 5 when the rotating speed increases
to v = 80m/s. Further calculation shows the critical speed to be about the same as the
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minimum phase speed v = 62m/s of a stationary ring with the same parameters.

6 Comments on other rotating ring models
In most publications, researchers claim that no critical speeds exist for rotating thin ring
models, see for example Ref. [1]. As shown in this paper, when the model in Ref. [2] is
chosen as a basis in our study, together with a modi�ed pretension, steady state wave-
like deformations are predicted. If one follows the procedure proposed in this paper and
modi�es the pretension to the form of equation (3), one may wonder if other rotating
ring models are also capable of predicting the standing waves. Following the procedure
presented in this paper, the other two popular rotating thin ring models proposed in Ref.
[2, 3] are examined. The examinations show that they can predict critical speed as well,
and the resulting critical speeds are similar to those obtained in Section 4 of this paper.

7 Conclusions
In this paper, the following conclusions are made:
Stationary modes for both bending dominant modes and extension dominant modes are
reported for a rotating ring using the parameters of a pneumatic tire.
Critical speed is successfully predicted for a rotating ring.
The above formulated conclusions are based on one of the most popular rotating ring
models with the modi�cation of the pretension caused by rotation. Other rotating ring
models may also be capable of predicting the existence of the critical speed provided that
the same modi�cation is implemented.
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Abstract

We consider the �uid �ows in a variable vibrating container while assuming
that the width of the Stokes layer is of the same order as the magnitude of
the vibration. With no additional assumptions we build the asymptotic ex-
pansions of the general vibrational �ow. In particular, we get an explicit form
of the general equations and boundary conditions for the mean �ow ('steady
streaming'). We apply these results to exploring the steady 3D streaming in
a round pipe due to the transverse deformation of the pipe wall spreading in
the form of spiral wave.

1 The steady streaming and the Stokes drift
Let us consider a viscous incompressible and homogeneous �ow con�ned within a container
which moves itself and/or changes the shape of itself periodically but with no displacement
or deformation on average. The characteristic scales of such motion are: the averaged size
of the container, the magnitude of the displacement or deformation, and the correspondent
frequency. We denote them as L, A and Ω, respectively. We take L as the unit of length ,
Ω−1 às the unit of time, U = AΩ as the unit of velocity, and ρALΩ2 as the unit of pressure
(where ρ stands for the �uid density). The Navier-Stokes eqs. take the form

vτ + δ(v,∇)v = −∇p+ ε2∆v, ∇ · v = 0 in D(τ); v(x̄+ δỸ, τ) = Ỹτ , x̄ ∈ S̄. (1)

Here τ = Ωt, δ = A/L, ε2 = ν/(ΩL2), where ν is the viscosity of the �uid. Further, D(τ)
stands for the current liquid domain, Ỹ = Ỹ (x̄, τ, δ) describes the current displacement of
the wall, S̄ is the reference (`averaged') position of the wall and D̄ denote the reference
domain which is con�ned within S̄. The Reynolds number is Re = (LU)/ν = LAΩ/ν =
δ/ε2.
While letting ε → +0 and δ → +0 in (1) we formally arrive at the vibrational limit
which is linear Euler system v0τ = −∇p0, div v0 = 0 endowed with an extra boundary
condition, namely v0 = Ỹ0τ on S̄. Thus, the leading approximation gives an irrotational
(curl v0 = 0) �ow in the bulk of the �uid while the e�ect of the viscosity as well as the
vorticity concentrate themselves within the Stokes layer alongside S̄ the thickness of which
is of order ε. However the senior approximations discover a global steady vortex �ow which
is widely known as `steady streaming'.
In spite of its relative weakness the steady streaming is capable of making e�ect on the
long-term mixing processes. For clarity, let us consider the dimensionless equation of the
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�uid particles which is written in the form dx/dT = δ−1v(x, τ, δ), where T = δ2τ is
the `slow' time. Assume v = ṽ(x, τ) + δ(v̄(x) + ṽ1(x, τ)) + O(δ2), δ → 0 where `tilde'-
terms vanish on average. Then x = x̄(T ) + δ(x̄1(T ) + x̃(τ, T )) + O(δ2), δ → 0 where
dx̄/dT = v̄(x) + [ṽ, w̃]/2 and the square brackets denote the common commutator of
vector �elds, and ṽ = w̃τ . Generically, both summands in dx̄/dT possess vorticity1 and
the latter is known as the Stokes correction.
There is a number of di�erent treatments of the steady streaming depending on the as-
sumptions about dimensionless quantity Res = (ΩA2)/ν = δ2/ε2 which is widely known as
the streaming Reynolds number. In fact,

√
Res is nothing more than the ratio of amplitude

of the displacements of the boundary to the thickness of the Stokes layer. Assume that
they are of the same order i.e.

δ → 0, ε→ 0,
√
Res = δ/ε

def
= β ≡ const ∼ 1, Re = βε−1 →∞. (2)

Considering of such scales goes back to Craik and Leibovich (1976), Duck and Smith
(1979), Haddon and Riley, (1979), Gopinath (1993) 2. Our approach is more formal and
general. We develop asymptotic expansion of general problem (1) with the use of the
Vishik-Lyusternik method. V. Levenshtam (2000) employed similar approach in the case
of a constant domain and vibrating mass force. Our analysis results in the universal
description of the steady streaming and Stokes drift with no use of special assumptions
about the �ow except for those of (2). On such base we easily treat a number of important
particular cases.

2 Governing equation

We start with a number of auxiliary matters. Given a vector �eld a on D̄ consider the
orthogonal (in the natural metric of the energy) decomposition a = b+∇χ and associated
projectors Π : a 7→ ∇χ Π′ : a 7→ b, where b is divergent-free �eld being tangential to S̄.
Let ḡ = ḡ(·) be the averaged value of g = g(·, τ) with respect to τ . We set g̃ = g − ḡ.
Apparently, ˜̄g = ¯̃g = 0. In what follows we overline the non-oscillating terms and put tilde
over the terms vanishing on average. The integration operator ∂−1

τ : g 7→ f , ∂τf = g is
well-de�ned in the space of time-periodic g : ḡ = 0.
Let a be a power expansion. Denote as ma the m−th order polynomial obtained by the
truncating of a. Further, let b, c, . . . be polynomials perhaps with variable and vector-valued
coe�cients. Denote as op(b, c, . . .) an algebraic expression over b, c..., may be, involving
the derivatives of the coe�cients.
We seek asymptotic solution v, p to the system (1) subject to assumptions (2) in the form
(v, p) = (vı, pı)+(v[, p[) where ı -terms are to describe the inner �ow inside the bulk of the
�uid while [ -terms are to describe the �ow near the boundary within the Stokes layer the
width of which is of order ε. Both vı, pı and v[, p[ are expanded in εk, k = 0, 1, 2, . . .. The
coe�cients (vık, p

ı
k) and (v[k, p

[
k) of both expansions have to be smooth in x ∈ D̄ and 2π -

periodic in τ . In addition, [ - coe�cients depend on η = ρ/ε, where ρ is a non-tangential
coordinate nearby S̄. These dependencies have to be such that (v[k, p

[
k)(·, η) = o(η−n) for

every n.

1The commutator of two irrotational generically has nonzero curl
2We omit the detailed references for the sake of compactness. The details can be found

in the articles listed at the end of this one. They all are readily accessible via arxiv.org or
www.researchgate.net
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With this in mind we substitute the unknowns in (1) with the above expansions and arrive
at the chain of equation for ı - coe�cients: ∂τv

ı
k = −∇pık + fk, ∇ · vık = 0 inside D̄,

v · n = γk on S̄, where fk = op( k−1v
ı), γk = op( k−1v

[, k−1v
ı, kỸ ) and n stands for the

inward normal �led on D̄. There exists a solution provided that Π′̄fk = 0 and no solutions
exist otherwise; the solution (if any) is de�ned up to the mean �eld v̄ık. We have to �nd
the mean �eld while reducing the solvability condition for the next approximation.
Let us come through more details. Let Nγ̃ denote the velocity of the irrotational �ow the
normal component of which on S̄ is equal to γ̃. To get the iterating started, we set f0 = 0,
γ̃0 = n̄ · Ỹ0τ , where γ̄0 = 0 as the boundary does not vary on average, and Ỹ0 = Ỹ (x, τ, 0).
Then vı0 = v̄ı0 + Nγ̃0; ∇p̃ı0 = −∂τNγ̃0. While calculating the �rst-order terms, we face
the solvability condition which coincides with the steady incompressible Euler equation in
D̄. In sec. 3 we'll see that we have to seek the solution obeying both no-�ux and no-slip
boundary conditions. Such problem seems to be overdetermined but there always exists
the trivial solution v̄0 ≡ 0. Although another choice can be of sense too we do not explore
such possibility here.
Thus the �rst-order term v̄1 is the leading one for the steady streaming. Next we pass
to the second order terms but the evaluating of them produce no equation for v̄1 as
the correspondent solvability condition turns out to be always satis�ed. The solvability
condition for the third-order terms takes the following form

∆v̄ı1 −∇H1 = βω̄ı1 ×V; ∇ · v̄ı1 = 0; V = v̄ı1 + β[ξτ , ξ]/2, ξ = N(∂−1
τ γ̃0) (3)

where ω̄ı1 = ∇ × v̄ı1.
3 Thus, V is the total drift velocity which is responsible for the

transporting of the mean vorticity into the bulk of the �uid. The averaged commutator
β[ξτ , ξ]/2 is nothing more then the Stokes correction.

3 Boundary condition.
Currently, our target is the deriving of the boundary conditions for the mean �ow. To
this end, we have to consider asymptotic expansion inside the Stokes layer. To do so we
employ coordinates x 7→ (ρ, θ) where ρ(x) = dist(x, S̄), θ is the point in S̄ which is nearest
to x. Such mapping induces the decomposition h = hq + hn, where the former summand
is the tangential component and the latter one is the normal component of h.4 We rewrite
system (1) relative to the coordinates (ρ, θ) and then separate the normal and tangential
projections of it. Next we in�ate the Stokes layer with the stretched normal coordinate
η = ρ/ε. We use slightly di�erent expansions for the normal and tangential velocities
as well as for the pressure; namely (v[0)n = p[0 = p[1 = 0, (v[k+1)n = u[k, p

[
k+2 = P [k,

w[
k = (v[k)

q k = 0, 1, . . .. Then the equations for the boundary layer corrections and
boundary conditions take the form(

∂τ + βγ̃0∂η + ∂2
η

)
w[
k=Fk; ∂ηu

[
k = Sk; ∂ηP

[
k = Rk; η > βη̃0(θ, τ); (4)

w[
k = βk(Ỹkτ − bk)

q −wı
k; uık = βk(Ỹkτ − bk)n − u[k−1; if η = βη0, (5)

η̃0(θ, τ) = ∂−1
τ γ̃0(θ, τ) = (Ỹ0)n|ρ=0; (w[

k, u
[
k, P

[
k) = o(η−s), η →∞ ∀s > 0; (6)

bk = op( k−1v
ı, k−1w

[, k−1u
[, kỸ ); Sk = op( kv

ı, kp
ı, k−1u

[, k−1P
[, kw

[); (7)

Fk = op( k−1u
[, k−1w

[, k−1P
[, k−1v

ı, k−1p
ı); Rk = op( kv

ı, kp
ı, ku

[, k−1P
[, kw

[). (8)

3For the deriving of Eq.(3) we employ the equality a×[b, c]+c×[a,b]+b×[c,a] = ∇(a·(b×c))
which is valid for every three of the divergence free �elds.

4Now we direct the normal towards the bulk of the �uid.
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Here all the ı−terms or their derivatives are restricted onto S̄ i.e. to ρ = η = 0. Note also
that Fk, Rk and Sk possesses the decay rate (6) provided that the [−terms they involve
possesses the same decay rate.
Substituting η with s = η− βη0 > 0 transforms the �rst equation of (4) into the canonical
heat equation in a semi-plane {(s, τ) : s > 0} and the �rst boundary condition (5) then
moves to the line s = 0. Note that the appearing of the advection in the �rst equation of
(4) is the direct consequence of assumption (2).
The oscillating projection of the �rst equation in (5) gives boundary condition to the �rst
equation in (4) while the oscillating projection of the second gives the boundary condition
to the normal velocity of the inner �ow. The averaging of the both gives the boundary
values for v̄ık i.e. for the mean �ow. The calculating of them involves w̄[

k and ū
[
k which one

can get via the averaging of the �rst and second equations of (4) with account of the decay
condition. We emphasize that the averaging is always performed relative to the moving
frame i.e. we �rst write all the things using s-variable �rst and next perform the averaging.
System (4-8) possesses triangular structure which allows us to �nd w[

k �rst, u
[
k next and

P [k �nally. To get the process started we set b0 = 0, F0 = 0. Then w̄ı
0 = 0 and γ̄0 = 0 as

stated in Sec. 2.
Now we formulate the boundary conditions for v̄ı1. We denote as ĥm, m ∈ Z the Fourier
coe�cients for periodic function h. Also, Ŷm stands for the Fourier coe�cient of Ỹ0 =
Ỹ (x, τ, 0). On S̄, we de�ne a vector �eld q = Ỹ0 − ξ, q ‖ S̄. Thus,

β−1w̄ı
1

∣∣
S̄

= (∇q · q)qτ/2−
∑
|m|

(
∇q|q̂m|2 + 4(∇q · q̂m)q̂−m

)
/4− [Ỹ q

0τ , Ỹ
q

0 ]/2−

−1

2

∑
|m|

(
∇q · (Ŷm ×∇ρ)

)
(∇ρ× q̂−m)− 2(curl (ξ ×∇ρ) · ∇ρ− η̃0∆ρ)qτ −

−η̃0∇qη̃0τ − 2η̃0τ (Ỹ q
0 ,∇)∇ρ− (∇q · (Ỹ0 ×∇ρ)) (∇ρ× ξτ )−∇q(ξqτ · Ỹ

q
0)− (9)

−β(Ỹ
q
0 · ∇η̃0) Ws|s=0; Wτ = Wss, s > 0, W(0, τ) = qτ , W(∞, τ) = 0.

β−1ūı1
∣∣
S̄

= β−1γ̄ı1 = [ξ, ξτ ]n/2. (10)

Equations (3) and boundary conditions (9-10) gives us the total drift velocity V. Note
that V is always tangential to S̄.

4 Examples

1. The tangential and torsional vibrations are natural provided that a subgroup of the
motions acts on S̄. For such vibrations, the Stokes term is always equal to zero.
For instance, consider the tangential vibrations of a circular pipe. Then D̄ = {r < 1},
and ρ = 1− r (relative to proper cylindrical coordinates). Every tangential motion of the
boundary can be written as Y0 = κ̃0(τ)eθ + κ̃1(τ)ez = q. where κ̃0(τ) and κ̃1(τ) are given
scalar periodic functions. Apparently, ∇q ·q = 0, ∇q|q̂k|2 = 0 and ∇q · (q̂k ×∇ρ) = 0 once
again. Thus, translational-rotational tangential vibrations of the circular pipe produce no
steady streaming in the leading approximation.
Consider now the torsional oscillations of a ball submerged in unbounded �uid. Then the
averaged �ow domain is D̄ = {r > 1}, r = |x|, S̄ = {r = 1}, ρ = r − 1, ∇ρ = θ = x/r.
Let Ỹ0 = µ(τ)k × θ, where k ≡ const, |k| = 1, µ is scalar 2π-periodic function vanishing
on average. Then q̂m = µ̂mk× θ and no one term on the righthand side of (9) contributes

in w̄ı
1 except for −1

4

∑
|m|∇q|q̂m|2 and for −1

2

∑
|m|

(
∇q · (Ŷm ×∇ρ)

)
(∇ρ× q̂−m). In

the end, we get w̄ı
1|S̄ = −(κβ/4) sin 2ψe, κ =

∑
|m||µ̂m|2, cosψ = k · θ here ψ is the

248



Steady streaming in a vibrating container at  high Reynolds numbers

latitude on S, ψ = π/2 on the equator and e is the unit vector associated with ψ; on the
equator, e is directed as k. Thus, the steady streaming driven by the torsional oscillations
of a submerged ball moves the �uid from the poles towards the equator that is in agreement
with the experiments of Hollerbach et al (2009), see Morgulis (2010) for more detailed
analysis.
Consider the translational vibrations of a submerged ball. Then Ỹ0 = µ(τ)k (with the same
D̄, S̄, µ and k as in the case of the torsional vibration). Such vibrations are not tangential
but produce no Stokes correction again, i.e. [ξτ , ξ] = 0 everywhere in the �ow domain. As
a result, ūı1 = 0 on S̄, see (10). Furthermore, q = 3µ(θ × (k× θ))/2. No one term on the
righthand side of (9) contributes in w̄ı

1 except for −1
4

∑
|m|

(
∇q|q̂m|2 + 4(∇q · q̂m)q̂−m

)
,

and w̄ı
1 = (45κβ/16) sin 2ψe. This time, the steady streaming driven by the translational

oscillations of a submerged ball moves the �uid from the equator towards the poles.
2. The normal vibrations are such that Ỹ q

0 = 0. Then Ỹ0 = η̃0∇ρ, q = −ξq. For instance,
consider the normal vibrating of the lid of a liquid half-space. Let ex, ey, ez be the unit
vectors of Cartesian coordinates system Oxyz relative to which D̄ = {z > 0}, S̄ = {z = 0}
and ρ = z. Let η̃0 = η̃0(x, τ). Then ξ = ξex + ηez, η̃0 = η|z=0 and q = −ξex. Further,
curl (ξ ×∇ρ) · ∇ρ = −ξx, and ∆ρ = 0. Then

w̄ı
1|S̄ = wex, w = βη̃0xη̃0τ − (3β/2)(ξxξτ + (∂x/2)

∑
|k||ξ̂k|2)|z=0;

β
2 [ξτ , ξ] = β(ψ̄zex − ψ̄xez); ūi1 = βψ̄x|z=0, ψ̄ = ηξτ ; .

Consider now normal vibration being produced with a planar traveling wave, i.e. set
η̃0(x, τ) = f(αx− τ), where f(σ) =

∑
f̂ke

ikσ is prescribed. Then

η =
∑
f̂ke
−α|k|z+ikσ; ξ = −i

∑
f̂ksgn ke−α|k|z+ikσ; σ = αx− τ ;

η̃0xη̃0τ = ξxξτ |z=0 = −αf ′2; ψ̄ = −
∑
|f̂k|2|k|e−2|k|αz;

ūı1 = 0, v̄ı1 = wex, w = αβf ′2/2 ≡ const,
β
2 [ξτ , ξ] = βψ̄′(z)ex = 2βα

∑
|f̂k|2k2e−2|k|αz.

Here the mean �eld v̄ı1 is constant. The total drift velocity is

V = W (z)ex, where W (z) = αβf ′2/2 + 2βα(
∑
|f̂k|2k2e−2|k|αz).

Thus the steady streaming being induced by the spreading of the normal displacements in
the form of a planar wave traveling along the lid of a liquid semi-space moves the drifting
particles in the direction of the wave propagation (as W (z) > 0 for every z > 0). The
streamlines are everywhere parallel to the direction of the wave propagation. The velocity
magnitude depends on the depth only and attains a nonzero limit far down from the lid as
the Stokes correction becomes negligible.
Finally, consider the normal vibrations of the wall of a circular pipe being produced with a
spiral traveling wave. Again, D̄ = {r < 1}, S̄ = {r = 1} and ρ = 1 − r relative to the
cylindrical coordinates r, θ, z, and

η̃0(θ, z, τ) = f(αz + nθ − τ), n ∈ N, f = f(σ) =
∑

f̂ke
ikσ.

We treat this case by analogy with the previous one. As usual, Ip(s), p ∈ N, stands for
modi�ed Bessel function of �rst kind (bounded for s → +0) of order p. For the sake of
convenience, de�ne

χk,n,α(s) = d
2ds

(
In|k|(s)

I′
n|k|(αn|k|)

)2

; µk,n,α =
I|k|n(α|k|)
I′|k|n(α|k|) , k ∈ Z;
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The tangential and normal components of the mean velocity on S̄, the mean velocity itself,
the Stokes correction, and the drift velocity �eld have the forms

w̄ı
1 = βCn,α (neθ + αez) ; ūı1 = 0; v̄ı1 = βCn,α(nreθ + αez); (11)

Cn,α =
∑
k2|f̂k|2

(
3
2(1 + n2

α2 )µ2
k,n,α −

2µk,n,α
|k|α − 1

)
; (12)

(β/2)[ξτ , ξ] = β(vn,α(r)neθ + wn,α(r)αez); (13)

vn,α = 1
r

∑
k2|f̂k|2

(
χ′k,n,α(α|k|r)− χk,n,α(α|k|r)

α|k|r

)
; (14)

wn,α =
∑
k2|f̂k|2

(
χ′k,n,α(α|k|r) +

χk,n,α(α|k|r)
α|k|r

)
; (15)

V = (β/2)[ξτ , ξ] + v̄ı1 = β
(
vdn,αneθ + wdn,ααez

)
; (16)

vdn,α = rCn,α + vn,α; wdn,α = Cn,α + wn,α (17)

Thus the steady streaming being induced with the spreading of the normal displacements
in the form of a spiral wave traveling along the wall of a circular pipe gives rise to a
translational-rotational motion of the drifting particles. The axial and rotational velocities
depend only on the distance from the pipe axis and the streamlines are helixes.
The Stokes corrections to the axial and rotational velocities are always positive i.e. the
directions of the correspondent rotating and translating of the drifting particles are the
same as those of the deforming wave. Indeed, the modi�ed Bessel equation implies that(

I ′pIp
)′

+ s−1I ′pI = I ′ 2p + (1 + s−2p2)I2
p ;(

I ′pIp
)′ − s−1I ′pI =

(
I ′p − s−1Ip

)2
+ (1 + (p2 − 1)s−2)I2

p .

Then every summand in (14-15) is positive. Despite of this observation, the components
of total drift velocity (17) can change their signs, i.e. the directions of the translating or
revolving of di�erent layers of the �uid can be opposite one to another. Indeed, consider
the long-wave limit i.e. let α → 0. For simplicity, let f be a trigonometric polynomial of
degree N . Then

Cn,α =
∑

k2|f̂k|2 (1/2− 2/(|k|n) +O(α)) , α→ 0;

vdn,α

∣∣∣
r=1

=
∑

k2|f̂k|2 (5/2− 4/(|k|n) +O(α)) , α→ 0;

wdn,α

∣∣∣
r=1

=
∑

k2|f̂k|2 (5/2− 2/(|k|n) +O(α)) , α→ 0;

Thus Cn,α can be negative, that is, the rotational and axial components of mean velocity
can be directed oppositely to those of the deforming wave provided that n = 1, 2, 3 while
α is small enough. If n = 1 in addition then vdn,α can be negative for r = 1, that is, the
rotating of the drifting material particle can be opposite to that of the deforming wave
near the wall5 of the pipe. Finally, wd1,α is positive in the long-wave limit, that is, the axial
drift always follows the wave near the pipe wall.
Consider now the vicinity of the pipe axis. It is convenient to watch the behaviour of
angular velocity. Then

lim
r→+0

vn,α(r)
r = α2

∑
0<n|k|≤2

k2|f̂k|2
4|kn|I′ 2

n|k|(α|k|)
; n = 1, 2;

lim
r→+0

vn,α
r = 0, n > 2; w1,α|r=0 = 5|f̂1|2

2I′ 21 (α)
, w1,α|r=0 = 0, n > 1.

5"Near the wall" means that the distance from the wall is small enough but still much greater
when the width of the boundary layer (which is of order ε)
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We conclude that in the long-wave limit, wdn,α, n = 1, 2, 3 can be negative on the axis but
always positive near the wall. Consequently, the axial drift of the material particles can
change its direction in the bulk of the �uid; namely, the axial drift always follows the wave
near the pipe wall but the counter drifting can occur near the axis. However if n = N = 1
then the axial drift follows the wave on the axis too. (We remind that N is the degree of
polynomial f).
Consider now the long-wave limit for the angular velocity Γn,α(r) = Cn,α + r−1vn,α. If
n > 3 then the drifting particles and the deforming wave revolve themselves in the same
direction. Otherwise the rotating keeps the same direction near the pipe wall while the
counter revolving can occur near the axis. If n = 1 there is an extra possibility: the counter
revolving occurs both near the wall and near the axis and so happens inevitably provided
that n = N = 1, see Fig. 1.
On Fig. 1, the pro�les of the angular velocity of the total drift vs the distance from the pipe
axis are presented for the case of the vibrations being produced by single harmonic, that
is, for f(σ) = cosσ. The right hand panel displays the plots for di�erent azimuthal wave
numbers while the wave length is �xed. The left hand panel displays plots for di�erent
wave lengths while azimuthal wave number is �xed. It is worth to note that there are such
the values of the wave length that the angular velocity turns out to be much smaller near
the pipe wall than near the axis. While looking at the right hand panel, it can be seen that
the doubling of the azimuthal wave number is able to re-direct the rotating of all of the
drifting particles. Further increase of the wave number from doubled to tripled changes the
direction of the rotation again; however, the changing happens not everywhere but near
the axis only.

Figure 1: The left hand panel displays Γn,α vs r where n = 1 while α = 1.13 (solid line),
α = 1.1 (dotted line), α = 0.99 (dash-dotted line) and α = 0.9 (dashed line). The right
hand panel displays Γn,α vs r where α = 0.5 while n = 1 (dashed line), n = 3 (dash-dotted
line) and n = 2 (solid line).
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Abstract

The microstructure of �lled rubber (heterogeneous �ller network in rub-
ber matrix) is modelled by a volume �lled with thousands of rigid spherical
inclusions. Inclusions could be grouped into secondary structures â�� fractal
clusters. Inclusions are connected by damageable links representing the me-
chanical behaviour of the elastomer in the gaps between �ller particles. The
formation of the interfacial polymer layer is taken into account. The volume
is subjected to stepwise deformation. Hysteresis losses under cyclic loading
conditions are modelled by way of breaking links. The in�uence of the mi-
crostructure (�ller fraction, cluster/random �ller distribution) and properties
of interfacial layers, on the macroscopic characteristics of �lled elastomers are
discussed.

1 Introduction
Reinforcement of elastomers by active �llers, in particular carbon black (CB) improves the
mechanical and strength characteristics of rubbers. Elastic properties inherent in un�lled
vulcanizates remain unchanged. CB is represented by the primary indivisible aggregates
of the order of 0.1. . .0.2 µm. However, the �ller is added to the polymer in a pelletized
form (grains of size 1 â��- 3 mm). During the process of mixing of composite ingredients
these grains are somehow separated and distributed throughout the matrix. Depending
on the mixing parameters and elastomer viscosity, part of the �ller is left in the composite
in the form of bulk inclusions â�� micropellets. At the same time CB aggregates in the
polymer matrix form secondary structures â�� fractal clusters. At some volume fraction,
the �ller in the matrix forms a continuous network of clusters. Experimental studies have
revealed that the surface of active �ller in a rubber is surrounded by a reduced-mobility
polymer layer [1]. The thickness of this layer is 2 nm, and it exhibits properties similar
to the polymer in a glassy-like state. According to some hypotheses [2], the mobility of
molecules increases gradually outward from the surface and at a distance of 10 nm passes
into the matrix. One of the e�ective ways of explaining the mechanical properties of the
composites is structural-mechanical modeling. The �nite element method is used in the
works [5, 6] to determine the macroscopic properties of �lled rubber. On the basis of the
periodicity cell, the authors examine the stress-strain state, depending on the location
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[5, 6] and shape [6] of inclusions. Both works describe the e�ect of stress softening. In
the �rst case [5] stress softening e�ect is modeled by reducing (result of local ruptures)
the number of elastic macromolecular segments in the second [6] - due to the viscoelastic
properties of the binder. FEM models are limited by large computational costs and the
complexity of calculations arising from the large deformations and on the borders of the
hard and soft phases. In the work of Xi and Hentschke [7] �lled elastomer is presented by
the volume of elements, each of which is either part of the �ller or fragment of matrix. The
force interactions between the elements exist. Introducing the force response under low
shear stress, the authors simulate the Payne e�ect. We should also mention the work of
Garishin and Moshev [8], which is describe the discrete model of behavior of random �ller
structure in an elastomer matrix under uniaxial loading. In the present work, a structural-
mechanical model for �lled elastomers is proposed which takes into account the peculiar
microstructural features of the material. Inclusions are connected by hyperelastic links.
The mechanical properties of these links are dependent on the size of the gap between
inclusions and the characteristics of hypothetical interfacial layers.

2 Concept of the model

The structure of the composite is represented as a system of rigid spherical inclusions. For
modelling of interfacial interactions the links are used (Fig.1), which are, in fact, the rods
pivotally connected to the centres of inclusions and working in tension and compression
only. Two types of links are considered: 1. Links between inclusions with the initial gap

Figure 1: Continuum structure (a) and discrete model (b) of the �lled elastomer.
Di�erent types of links are indicated by the numerals (description is given in the
text).

δ0 <20 nm, which has a common special layer with a thickness 10 nm. 2. Links between
inclusions that do not have common intersecting layers (δ0 ≥ 20 nm) and interact in the
material via the elastomer matrix. The external load changes the location of inclusions
and the con�guration of links. Shortly speaking, the links are irreversibly broken under a
particular load. In addition, the case where the special layers are absent, i.e. the properties
of links coincide with the properties of the matrix, is analyzed.
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3 Mechanical interaction of the pair of inclusions in
the elastomer

The force due to the stretching or compression of the link between two inclusions was
determined by the �nite element method by analyzing the stress-strain state in the gap
between two rigid inclusions embedded in a hyperelastic low compressible polymer (Poisson
ratio � 0.495). In the calculation, an elastomeric matrix was assigned the properties of
un�lled styrene butadiene vulcanizate, and the corresponding experimental uniaxial tension
curve was approximated by the third-order Ogden potential.
For simplicity, we suggest that the forces occur in the gaps between the nearest carbon
black particles of the neighboring aggregates (Fig.2a). The particle radius is assumed to
be equal to 15 nm. The special layer is divided into 5 equal parts with the corresponding
elastic modulus: Ei = 60, 30, 7, 5, 3 MPa (Fig. 2b). The modulus of the matrix is 1
MPa. In the case of inclusion interaction in the absence of a special layer, Ei = 1 MPa.
It is assumed that the inclusion is an absolutely rigid one, and the interface between the
inclusion and the matrix is in perfect adhesion. As a cohesive failure criterion for the

Figure 2: Carbon black aggregates in the matrix surrounded by a special layer and
the structural element for calculating force interactions (a); elastic modulus of the
layer versus the distance from the surface (b).

structural element, we have taken the Gent approach [3]: < σ > = 5/6E, where < σ > is
the hydrostatic stress in the center of the gap between inclusions; E is the elastic modulus
in the center of the gap. The plots of force F versus elongation in the gap λg up to the
point at which the fracture begins are presented in Fig.3. The results indicate that the
structural elements with speci�c layers begin to fracture at lower deformation, and the
resulting force is twice as much as the force for elements without speci�c layers.

4 Structural � mechanical modelling

The microstructure is modelled as a cube non-uniformly �lled with spheres of equal size.
The minimum acceptable space between the spheres is 2 nm. The spheres are assembled
into fractal clusters. Comprehensive analysis of fractal structure and the synthesis algo-
rithms are given in work [4]. Apart from the clustered structure, the case of random �ller
distribution is also considered. The �ller volume fraction in the investigated structures is
0.13 (30 weight parts of �ller).
By virtue of the constancy of the volume, the structure is deformed by the step-wise
displacement of inclusions. After each deformation step, the coordinates of inclusions are
re�ned in the context of forces that occur in links. This is done by minimizing the local
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Figure 3: Plots of force F versus elongation in the gap for di�erent initial gaps δ0:
(a) â�� inclusions are surrounded by a speci�c layer; (b) â�� characteristics of the
layer coincide with the matrix.

elastic energy of links. The minimization is performed by the Nelder â��- Mead method.
On achieving the optimal state of all the inclusions, the con�guration of links is speci�ed:
at maximum elongation, the link is broken. The part of the material in the gap with the
broken link begins to respond to compressive forces only and makes no resistance in other
cases. If the breakage of links takes place, then the equilibrium seeking for the system is
repeated. When a new optimal state of the structure is found, the structural-mechanical
characteristics of the system are determined, and the next step of loading is performed.

5 Results and discussion

Two uniaxial stretching â�� compression cycles with an increasing amplitude (elongation
ratio λ was equal to 2 and 4) were applied to each structure. Example of the initial
and stretched 4-times structure is shown in Fig. 4. At a certain local elongation of the

Figure 4: Fragment of the model clustered structure before loading (a), after stretch-
ing 4 times (b). Unbroken links are shown in green and blue, and broken links in
red. Clusters are shown in di�erent shades of gray.

gap between inclusions the corresponding link was broken. The typical behaviour of the
rupture of the links is shown in Fig. 5a. At λ less than the maximum value (unloading or
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repeating loading), the number of broken links remains unchanged. Thus, the rupture of
links leads to the hysteresis of the stress-strain curve (Fig. 5b), which is typical of �lled
rubbers. The stress of links of the clustered model without layers, starting at λ = 2.5

Figure 5: Typical response of the structure to elongation â�� number of links (a)
and their stress (b).

in Fig. 6a, reaches its maximum and then begins to diminish; no material reinforcement
takes place. The reason is that the forces caused by the deformation of the material in
the gap between two inclusions without layers (Fig.3b) do not increase for δ0 > 20 nm.
At the same time, despite the fact that the links in the material with layers are broken
at lower elongation, their elastic properties of layers have the reinforcement e�ect on the
composite. Based on the obtained results, it can be concluded that the model with the
layers with variable sti�ness is more appropriate to describe the mechanical behavior of
�lled elastomers than others. The stresses in randomly �lled structure are higher than in

Figure 6: Stress in links vs. elongation of the structure: (a) â�� comparison of the
structures with and without layers; (b) â�� comparison of clustered and random
distribution.

the clustered (Fig. 6b). This is due to the fact that the random distribution of inclusions
is more homogeneous compared to that of clusters. Hence, in the structural-mechanical
model of random structure many through-matrix links occur, that is, the matrix fraction
working under deformation increases. So, this is accompanied by an increase in stresses.
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6 Conclusions

A structural-mechanical model for describing the eleastic behavior of �lled elastomers has
been proposed. The model explicitly takes into account the peculiar properties of the
microstructure of the material and interphase interactions in it. The behavior of part of
the polymer placed in the gaps between inclusions has been modeled by links with nonlinear
elastic force response. At some stretch factor the elastomeric link is broken, which allows
us to model the Mullins e�ect at the macrosopic level.
The results of simulation of cyclic stretching-compression of materials with clustered and
random distribution of inclusions are presented. The cases where polymer layers with
variable sti�ness are present or absent around inclusions (the layer of macromolecules
adsorbed on the active surface of inclusions) have been examined. Based on the structural-
mechanical model, it can be concluded that the absence of interfacial layers of variable
sti�ness does not lead to the reinforcement e�ect characteristic of �lled vulcanizates.
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Abstract

This paper presents an analysis of the deformation in terrestrial objects,
such as the inner planets, rocky moons, or asteroids, which is due to self-
gravitation. The problem of modeling such structures is quite old and goes
back to the work of Kelvin, Rayleigh, Love, and Jeans in the late 1800. In
those days a linear-elastic, closed-form solution was presented and studied.
However, it turns out that in the case of huge objects, such as Earth or Venus,
the resulting strains can become quite large. Thus, in the sixties, non-linear
elasticity was used and large strains were taken into account. The conclusion
was that some crucial parameters, e.g., the location of the Love radius, do
not change much when switching from the linear to the non-linear regime.
However, this is true only for certain choices of effective stiffness parameters
for the celestial body. At that time this was difficult to see, because the
non-linear analysis is based on numerical solution procedures, which were less
developed back then.

In this paper we will first present some of the history of the problem, then
show the breakdown of the linear-elastic solution and, finally, use modern
continuum mechanics tools to derive the underlying non-linear equations. We
will solve them by applying two numerical techniques, namely Runge-Kutta
methods for the solution of differential equation as well as finite differences.

At the end we will discuss the limits of the numerical approaches and
present an outlook to further alternatives.

1 Introduction and problem statement

The problem of modeling the deformation, i.e., the displacements, stresses and
strains in self-gravitating terrestrial bodies by suitable constitutive equations for
solids is quite old. In what follows we will restrict ourselves to homogeneous solid
spheres, so that the problem reduces to a fully radially symmetric case. First at-
tempts at finding such solutions were based on the linear theory of elasticity, i.e., on
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the combination of the static balance of momentum with Hooke’s law, formulated
at small strains. A rather extensive exposition of this problem for a constant, homo-
geneous mass density, including also the effects of centrifugal forces, can be found
in [Hoskins1910]. A corresponding analytical result for the radial displacement is
presented in [Love1927], Sect. 98. Most recently, results for this problem have been
summarized resulting in concise formulae in [MuellerEtAl2015]. The differential
equation for the radial displacement in the linear small strain case reads (dashes
denote differentiations w.r.t. the radius, r, G = 6.67410−11m3kg−1s−2 is the gravi-
tational constant, ρ0 is the (constant) mass density, λ = Eν

(1−2ν)(1+ν) , µ = E
2(1+ν)

are

Lamé’s constants, E and ν are Young’s modulus and Poisson’s ratio, respectively):

u
′′

r + 2
u

′
r

r
− 2

ur
r2

=
4πGρ20

3(λ+ 2µ)
r, (1)

and its solution is given by:

ur = −αk
30

1 + ν

1− ν

(
3− ν
1 + ν

− r2

r20

)
r, αk =

4πGρ20r
2
0

3k
. (2)

where k = E
3(1−2ν) is the (homogenized, i.e., effective) bulk modulus of the terrestrial

body (a.k.a. elastic modulus of compressibility), and r0 denotes the outer radius.
This relation can be used to determine the position where the radial strain changes
sign. This was first done in [Love1927] where it was found that:

rLove = r0

√
3− ν

3(1 + ν)
. (3)

The radial strain is of tensile nature above this position and compressive below.
Note that the circumferential strain is always compressive. Love did not say if he
intended this quantity to be more than just a curiosity. We may speculate that
the tensile nature of a principal strain could be used in context with a damage
criterion, but we will not discuss this any further in this paper. Eqn. (2) was used
to calculate the strain on the surface for various terrestrial bodies based on data
compiled in [MuellerEtAl2015], as a function of varying effective compressibility.
The latter is hard to specify in each particular case, especially since the planets
are not completely solid. Therefore, a range of reasonable values for k should be
examined. The results are shown in Fig. 1. On the left we see plots for the inner
planets (Mercury and Mars in red and dashed-black, respectively, nearly coinciding,
Venus in green, and Earth in blue). On the right we see results for Earth’s Moon
(red), Io (green), Europa (blue), Ganymede (black), Callisto (magenta), and Titan
(cyan). For the moons, Mercury, and Mars the strains are small enough in order to
accept linear small strain elasticity as a viable tool for computing the deformation.
In the case of Venus and of Earth the strains are not small. Rather they turn out to
be of the order of 10 percent and more, which is alarmingly high, to say the least.

Thus, in the sixties there was a revival of the problem. First, because based
on seismic measurements more complex models of the density distribution of the
Earth became available, e.g., [Pan1963], [Samanta1966], and, second, because
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Figure 1: Strains on the periphery of various terrestrial bodies as a function of
effective compressibility (for color code see text).

of the conclusion that linear strain theory might be insufficient to describe the
situation in rather massive terrestrial bodies. This concern was expressed explicitly
in [BoseChattarji1963] and [Pan1963]. This analysis was based on the paper
by Seth [Seth1935] on finite elasticity, which operates in current space, uses the
Eulerian-Almansi tensor as a strain measure, and related it to the current Cauchy
stress in terms of a quasi Hookean equation. The numerical approach used infinite
series for a displacement related quantity in context with a corresponding highly
linear differential equation stemming from the static equation of momentum in the
current configuration together with empirically motivated equations for the mass
density and the corresponding self-gravitating force field. We will elaborate on this
in the next section.

2 The governing equations in the nonlinear case

We consider the purely radially symmetric case of self-gravitation for a sphere with a
homogeneous mass density ρ0 in the unstressed reference configuration, B0. In fact,
just like the effective compressibility, k, this is a parameter, which is relatively hard
to assess. Indeed, frequently we do know the total mass, m, of a terrestrial object.
However, we do not know its outer radius R0 before gravity has been “switched on,”
so-to-speak. Therefore, the equation ρ0 = m

4π
3
R3

0

cannot directly be used to determine

the reference mass density. However, we shall see later that ρ0 and the effective
elastic parameters of the terrestrial object in question form a dimensionless factor,
α. It is this factor we will vary within reasonable bounds, since the effective elastic
parameters are just as elusive as the mass density of the reference configuration.

It is for such reasons that it is useful to formulate the continuum mechanics
equations w.r.t. the current configuration, B(t), and not w.r.t. B0. This contradicts
to a certain degree standard procedures of modern continuum mechanics, which has
a certain preference for the use of the reference configuration in terms of a full
description in material space. It is interesting to note that the need for the concept
of a reference configuration for self-gravitating bodies was anticipated quite early in
the papers of Jeans [Jeans1903] and Lord Rayleigh [Rayleigh1906], respectively.
It has also received further attention more recently, e.g. in [Geller1988]. However,
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as indicated above, this is a treacherous way to go, at least from a practical point-
of-view, since the outer radius of an undeformed planet is not a directly measurable
quantity. With this in mind we will start from the static balance of momentum in
current spherical coordinates. In the totally radially symmetric case only the radial
component is different from zero and reads (cf., [mueller2014], pg. 116, σij denote
the Cauchy stresses in spherical coordinates):

dσrr
dr

+
2σrr − σϑϑ − σϕϕ

r
= −ρfr , ρ =

ρ0
detF

, fr = −Gm(r0)

r2
. (4)

In the present case it is reasonable to make the ansatz r = r(R)⇔ R = R(r) for
the deformation (r refers to the current radial and R to the radial position in the
reference configuration, respectively). Hence the deformation gradient, F, and the
Euler-Almansi strain tensor, e, read in spherical coordinates:

F =

 dr
dR

0 0
0 r

R
0

0 0 r
R

 ⇒ 2e =

 1−
(
dR
dr

)2
0 0

0 1−
(
R
r

)2
0

0 0 1−
(
R
r

)2
 . (5)

From Eqn. (5)1 we find immediately that detF−1 = dR
dr

(
R
r

)2
. Moreover, the form

of the body force in Eqn. (4) deserves a comment: At the current position r of a
sphere with an exclusively radial mass density distribution, ρ(r), the attraction is
directed toward the center and dictated by the total mass, m(r), situated beneath
this position. However, due to mass conservation we have m(r) ≡ m(R) = 4π

3
ρ0R

3.
In this context it should be noted that Eqn. (4)3 is a direct and exact consequence
of Poisson’s equation for the potential, U , in case of a radially symmetric mass
distribution, ρ(r):

1

r2
d

dr

(
r2

dU

dr

)
= 4πGρ(r) ⇒ (6)

fr ≡ −
dU

dr
= −4πG

r2

∫ r=r0

r=0

r2ρ(r)dr ≡ −Gm(r0)

r2
.

We now turn to the constitutive equation for the stress-strain relations. Following
[Seth1935], pg. 234 these are given by Hooke’s law where the linear strains, εij, have
been replaced by the nonlinear ones, eij, j ∈ r, ϑ, ϕ. Therefore the non-vanishing
Cauchy stress components, σij, read:

σrr = (λ+ 2µ) err + λ( eϑϑ + eϕϕ) , σϑϑ ≡ σϕϕ = 2(λ+ µ) eϑϑ + λ err. (7)

If Eqns. (4)-(6) are inserted into each other a nonlinear differential equation of
second order for r(R) results, which can be rewritten in terms of the radial dis-
placement ur(r) ≡ r − R(r). It is instructive to convince oneself that this equation
reduces to Eqn. (1) of the linear case if all nonlinear terms are neglected. Clearly,
the nonlinear differential equation must be analyzed numerically. For this purpose
it is useful to, first, change to dimensionless coordinates by normalizing the current
radius with the current outer radius, r0, so that x = r/r0 and u(x) = ur/r0. Sec-
ond, following [BoseChattarji1963], we introduce an auxiliary quantity, β(x), by
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R(r) = rβ(r) ⇒ ur(r) = r[1 − β(r)]. This will prove to be beneficial during the
numerical analysis. Hence, we arrive at:

d

dx

[
3β2 +

(
β′2 +

2ββ′

x

)
x2
]

+
2(1− 2ν)

1− ν
xβ′2 = −α(β + xβ′)β5x, (8)

where the factor α =
8πGρ20r

2
0

3(λ+2µ)
has been introduced, which bears a certain similarity

to the one in Eqn. (1)2. Both differential equations are of second order and need
two boundary conditions for their analytical or numerical treatment, respectively.
In the case of Eqn. (8) these result from the requirement that the (normalized)
radial displacement, u(x), must be an odd function in x, i.e., β′(0) = 0. Moreover,
the surface of the sphere is traction-free, i.e., σrr|r=r0 = 0, which is equivalent to
1+ν
1−ν [1− β2(1)]− [β′2(1) + 2β(1)β′(1)] = 0.

3 Numerical analysis and discussion

At the beginning of this section it should be mentioned that in the work by Bose
and Chattarji [BoseChattarji1963] and Pan [Pan1963] a solution for β(x) was
sought in form of a Taylor power series. In fact, this is a very tedious and sometimes
inaccurate approach, in particular, if more complex density distributions are studied.
The latter affect directly the right hand side of Eqn. (4)1. In fact, these authors
insert highly nonlinear expressions for ρfr, because they want to model the impact
of Earth’s heterogeneous mass distribution.

Interestingly ρ(r) and fr(r) are given in separate, but related† equations based
on some earlier work by Bolt [Bolt1957]. The right hand side of Eqn. (8) is highly
linear, too, despite the fact that the reference density is homogeneous. Clearly, our
current density is not homogeneous because of Eqn. (4)2. However, in contrast to
the previous authors, it is not neither phenomenological nor assumed. Rather it
is a straightforward continuum mechanics result from the assumption of a single
reference mass density. In other words, the current distribution of the mass density
can be calculated once we have solved the boundary value problem for β(x). More-
over, fr is nonlinear because of the nonlinearity inherent to Eqn. (4)3. It is an exact
expression for purely radial mass density distributions, ρ(r), and that is all there is
to it.

We now turn to a numerical solution of Eqn. (8). The first technique to be used
is based on the NDSolve command from Mathematica ([Wolfram2014]). NDSolve
is based on Runge-Kutta integration techniques for ODEs. In addition we used
the option “stiffness switching,” since Eqn. (8) reacts in a stiff manner, due to its
inherent singularity at r = 0 or x = 0. The latter is already present in the linear
case described by Eqn. (1). However, there it can simply be excluded by putting
the corresponding constant of integration in the analytical solution equal to zero.
Moreover, it should be pointed out that despite this optional choice, we were not
able to obtain a solution for the proper boundary condition β′(0) = 0. Rather we
had to choose β′(ε) = 0 with ε = 10−3.

†by Newton’s gravitational principle
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Figure 2: Radial displacement as a function of radial position.

Two results are shown in Fig. 2. For the plots geometry and mass data for
Mercury and Earth were chosen from [MuellerEtAl2015]. It should be pointed out
that ρ0 was estimated by using the relation m

4π
3
r30

, i.e., the current outer radius of the

planets. In the case of Mercury the values of iron were chosen for Young’s modulus
and Poisson’s ratio, leading to α ≈ 0.35. If the same elastic data was used for Earth α
increased up to 1.96. For this value convergence could no longer be obtained. Hence,
Poisson’s ratio was raised to 0.38, which is equivalent to α ≈ 1.75. The reason for
the lack of convergence becomes apparent by looking at the plots: In the case of
Mercury, there is already a slight discrepancy to the analytical solution, uanalr (r),
shown in Eqn. (2)1. The analytical solution underestimates the displacement. This
is not surprising since a radial strain, which is roughly given by ur/r0, of more than
two percent is already testing the limits of a linear theory.

In the case of Earth the situation is much more dramatic. First, the difference
between the analytical and the numerical solution is huge and, second, even the
analytical solution already predicts strains of almost 10%, whereas the numerical
solution amounts to 30% and more. Note that the curvature of ur(r) “on the left”
becomes more and more pronounced when the α-values increase. For large values
of α, i.e., for large values of reference density and small values of Young’s modulus
and/or Poisson’s ratio, the ur(r)-curve will first decline very steeply and then show
an essentially linear behavior with a moderate slope. Such extreme gradients with
kinks are very difficult to master numerically.

It is for this reason that we now turn to a potentially alternative numerical
method, namely a finite-difference scheme. Eqn. (8) is transformed into a set of non-
linear coupled equations, resulting in a sparsely populated matrix, by approximating
the solution in discrete points, i = 1..., imax on the interval x ∈ [0, 1] separated by
the distance ∆x. “In the flesh” we use finite difference approximations of O(∆x2)
for the first and second order differential quotients as follows:

β′(x) ≈ β(i+ 1)− β(i− 1)

2∆x
, β′′(x) ≈ β(i− 1)− 2β(i) + β(i+ 1)

∆x2
. (9)

At the left and right hand side of the [0, 1]-interval we use for the first derivatives
with the same degree of accuracy:

β′(0) =
−3β(1) + 4β(2)− β(3)

2∆x
+ O(∆x2), (10)
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Figure 3: Finite difference vs. Runge-Kutta method.

β′(1) =
β(imax − 2)− 4β(imax − 1) + 3β(imax)

2∆x
+ O(∆x2).

Some results are shown in Fig. 3. The plots on the left show that the finite difference
method leads to exactly the same results of the NDSolve command, at least as long
as the parameter α does not reach a certain threshold. This is explored in the
plots on the right. Recall that ν = 0.38, E = 210 MPa with Earth parameters,
i.e., α ≈ 1.75 was the convergence limit in case of NDSolve. The finite difference
technique allows to go a little beyond this value up ν = 0.37, i.e., α ≈ 1.86. The
plots show that an increasing value of α leads to an increase of strain, as anticipated.
Moreover, the initial slope of the displacement curves increases rapidly. Then, at
larger values of r/r0, the displacement shows a more or less linear behavior. If
we keep increasing α the transition zone is governed by huge gradients and turns
essentially into a kink. However, this is very hard to capture numerically. In fact,
the finite difference method fails to converge above the afore-mentioned α value. It
might be an alternative to use a non-equidistant discretization. However, this is left
to future research. Moreover, another numerical alternative might be to use finite
elements. This will be explored in these proceedings in the paper by Müller and
Lofink.

The curves in Fig. 3 also indicate that the position of the Love radius, i.e., the
position of the minimum of the ur-curves, as predicted by the analytical solution
shown in Eqn. (3) will change in the case of massive terrestrial objects. This is ex-
plored in detail in the plots of Fig. 4. The left inset presents three curves. First, the
dependence of the Love radius according to Eqn. (3), which is labeled as the “ana-
lytical solution.” Second, the plot called “Mercury,” for which mass and geometry
data of Mercury were used. Moreover, Young’s modulus was that of iron, Poisson’s
ratio varied within the possible bounds, and the NDSolve command was applied to
find a numerical solution of the nonlinear boundary-value problem. Thus, α-values
changed between 0.47 and 0, when ν increased from 0 to 0.5. The result confirms the
statements in [BoseChattarji1963] or [Pan1963] according to which the location
of the Love radius is hardly affected by the nonlinear treatment of the deformation
problem. However, this is only true, if α stays small, which is not guaranteed for a
large object, such as Earth. This is shown in the third plot of Fig. 4 (left). In this
case α varied between 0 and 1.75 when ν decreased from 0.5 to 0.38. Obviously, the
difference to the analytical solution can become very large.
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Figure 4: Position of the Love radius (see text).
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Figure 5: Normalized distribution of mass density predicted.

In summary, the location of the Love radius depends on two parameters, Pois-
son’s ratio (which is the only parametric dependence in the analytical solution) and
the mass-stiffness parameter, α. The plot on the right hand side of Fig. 4 explores
this in more detail: The Love radius is plotted vs. α for various values of ν. The
corresponding values for the Love radius according to the analytical solution are
indicated by circles. They are valid for small values of α.

We now turn to the assessment of the redistribution of density due to the defor-
mation. The non-linear numerical analysis is based on Eqn. (4)2, which leads us to
conclude that:

ρ

ρ0
= [β(x) + xβ′(x)]β2(x). (11)

In the case of the analytical solution from Eqn. (2) we may write:

ρ

ρ0
= 1− u′r(x)− 2

ur(x)

x
. (12)

Fig. 5 shows results obtained by evaluating both equations. Clearly, the mass
density increases toward the center of a planet even if the reference mass density is
homogeneous and constant. In the case of a small planet (like Mercury) the density
distributions from both equations are relatively close together. In the case of a large



268 APM Proceedings

planet (like Earth) the numerical, i.e., the solution from the non-linear equation of
deformation leads to densities at the center much larger than those obtained from
the linear solution. In other words: The nonlinearity allows us to understand and
potentially model the dramatic increase of mass density in the center of massive
terrestrial planets without assuming a denser core to begin with.

As a matter of fact, the increase in mass density shown on the right hand side
of Fig. 5 is much too large. This is due to the assumption that the effective elas-
ticity of Earth is essentially that of iron, which it is not, and that the Earth was
homogeneous in the beginning when it formed, which it was certainly not. In-
deed, the plot is intended to demonstrate the potential of a nonlinear description
of deformation, a fact which, to the best knowledge of the authors, has not been
emphasized in the literature so far. Indeed, the density distribution of the PREM
model [DziewonskiAnderson1981] are phenomenologically based on seismic mea-
surements which were analyzed by using (anisotropic) linear elasticity. All we wish
to say at this point is that modeling the density distribution of Earth should be
attempted in combination with a nonlinear deformation theory.

4 Summary and conclusion

In this paper we have analyzed the deformation in self-gravitating, initially homo-
geneous, solid spheres. An analytical solution valid for linear, small strain theory
was juxtaposed to a numerical one of the corresponding boundary-value problem
based on nonlinear, elastic, large strain theory. Problems in context with the nu-
merical treatment of the nonlinear equation were discussed. It turns out that two
dimensionless parameters govern the deformation problem, first, Poisson’s ratio, ν,

and, second, a mass-stiffness parameter, α =
8πGρ20r

2
0

3(λ+2µ)
, characteristic of a particular

sphere, i.e., terrestrial planet. Presently, convergence of the numerical solution can
only be guaranteed within a certain range of α. Further investigations, based on
adaptive meshing techniques, are currently underway to expand this range. How-
ever, it can already be said that in contrast to previous statements in the literature,
the location of the Love radius, i.e., the transition between compressive to tensile
radial strains within the sphere, is affected if nonlinear is used and the body in
question is sufficiently massive and not too stiff.
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Abstract

It has been well known that plastic deformation of bulk metallic glasses
(BMGs) is localised in thin shear bands. So, initiation of shear bands and
related deformation should be studied for comprehensive understanding of de-
formation mechanisms of BMGs. In this paper, indentation techniques are
extensively used to characterise elastic deformation of Zr-Cu-based metallic
glass, followed by a systematic analysis of initiation and evolution of shear
bands in the indented materials. Our results, obtained with a suggested wedge-
indentation technique, demonstrated initiation of shear bands in materialâ��s
volume.

Key words: Metallic glass; shear bands; indentation.

1 Introduction
Modern high-tech industries rely on the manufacture and synthesis of advanced materials
that are stronger than conventional ones. Bulk metallic glasses (BMGs) have received
much scienti�c and technological attention due to their advanced mechanical properties
such as a high ratio of elastic limit to the Youngâ��s modulus and higher fracture tough-
ness, when compared to their crystalline counterparts of the same composition. This is
typically attributed to the absence of a long-range order in their atomic structure and a
lack of defects such as dislocations, which control ductility in traditional metallic mate-
rials. BMGs are brittle and exhibit negligible plasticity in the macro-scale. Some recent
experiments on sub-micron and nano-sized BMG specimens showed that the process of
shear localisation become more stable and less catastrophic, when compared to a response
exhibited by large-size samples [1]. These desirable and unique properties of metallic make
them an ideal candidate for many applications such as MEMS (micro-electromechanical
systems), miniaturised biomedical devices and implants as well as in micro-robotics. A
number of mechanistic theories have been proposed to describe the plastic �ow and de-
formation behaviour of BMGs. Some popular theories are concepts of free volume and
shear transformation zones (STZs) proposed in Argon and Spaepenâ��s model, based on
motion of atoms [2, 3]. The deformation mechanism of metallic glasses based on these
concepts is realised homogenously or inhomogenously, depending on the levels of strain
rate, temperature and applied stress [4]. A signi�cant amount of experiments was car-
ried out to understand deformation mechanisms. Prior studies showed that shear bands
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with a characteristic thickness of the order of 10-20 nm were responsible for deformation
of BMGs at low temperatures and/or high stresses. More recently, deformation-induced
crystallisation was observed in a number of BMGs that led to substantial plastic deforma-
tion [5]. These changes in shear bands were not only induced by bending or compression
of BMGs [6], but were the results of their nanoindentation or microhardness testing [7],
ball milling or cold rolling process [8]. However, various research groups suggested contra-
dicting conclusions on shear band crystalisation, based on similar experiments performed
with various BMG systems [4, 9]. Thus, a question on propensity for crystallisation is still
open. Traditional indentation techniques have been used extensively over years to deter-
mine mechanical properties and deformation mechanisms of metallic glasses [10]. These
techniques helped researchers to perform mechanical characterisation at micro-scale and
analyse the mechanism of plastic �ow in BMGs. Although shear bands typically initiate
beneath the indenter, in nano- and micro-indentation experiments, by their very nature,
shear bands could be observed only after they evolved to the surface. So, a wedge inden-
tation experiment was designed to overcome the limitation of nano- and micro-indentation
to observe the initiation and propagation of shear bands under the indenter surface [1]. As
the length of the wedge indenter was considerably larger than its width, the wedge inden-
tation experiments also allow numerical modelling to be simpli�ed to a 2D formulation.
There are di�erent, sometimes contradicting hypotheses about the deformation mecha-
nisms of BMGs at microscale. Hence, further studies are required to understand initiation
and propagation of shear bands in the volume and at the surface of metallic glasses. In
this study, a Zr-Cu-based metallic glass is characterised using nano- and micro-indentation
techniques. A thorough structural characterisation of shear bands around the indented
region was carried out to understand the nature of shear banding in BMGs.

2 Experimental procedure

For our studies, a beam-shaped alloy with nominal composition of Zr48Cu36Al8Ag8 was
prepared at IFW Dresden, Institute for Complex Materials, , Germany by arc-melting
the pure elements (99.9% Zr, 99.99% Cu). BMG specimens were cut and polished to
mirror-like �nish with the roughness of some 5 nm. Indentation tests were conducted to
characterise the shear bands with a nano indentation test system (Micro Materials Ltd.)
using a spherical and Vickers indenters. A series of nano- and micro-indentations were
conducted on the polished surface of the samples with a loading rate of 2 mN/s. A wedge
indenter made of high-speed steel, with a nominal angle of 60Âº and an edge radius of 19.5
Î¼m was designed and manufactured in-house (Figure 1). The indentation tests reported
here were conducted at ambient temperature. XRD analysis of as-cast samples was carried
out to study formation of crystalline phases. In order to recon�rm the crystallography, the
samples were thinned to electron transparency and observed using transmission electron
microscopy (TEM). Scanning electron microscopy (SEM) was used to observe evolution of
shear bands on the deformed surfaces.

3 Results and Discussion

The amorphous nature of the supplied samples of BMG was initially investigated using
X-ray di�raction (Figure 2); their microstructure was further characterised with TEM.

270



Indentation study of mechanical behaviour of Zr-Cu-based metallic glass

Figure 1: Experimental set-up for wedge indentation and its dimension

The TEM results con�rmed the amorphous nature of the alloy, as the �rst halo ring of a
Selected Area Electron Di�raction (SAED) pattern did not show any presence of nanocrys-
tals.

Figure 2: (a) XRD pattern of as cast Zr48Cu36Al8Ag8, (b) corresponding SAED
patterns.

3.1. Microindentation
Multiple unloading-reloading experiments were conducted using a spherical indenter with
diameter of 50 Âµm at loading rate of 2 mN/s to investigate the variation of elastic modulus
with depth in BMG specimens. The maximum indentation depth ranged from 6 Âµm to
18 Âµm, and three partial unloads down to 20% of the peak load at each step were applied
in these steps. Shear bands formed at loads in excess of 10 N. As shown in Fig. 3, shear
bands moving from various initiation points crossed each other; however, shear bands
nucleated later were arrested by already nucleated ones. Instability of shear bands was
observed in the form of nucleation of several secondary shear bands from the primary
ones in the course of deformation. A large plastic zone was formed under the indenter tip
during indentation [12, 13]. It contained a high density of shear bands; this is ideal for
investigation of deformation-induced hardening and softening e�ects [14]. The obtained
results showed a dependence of elastic modulus on penetration depth, indicating a work-
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softening phenomenon in the studied metallic glass, especially at microscale. The values
of reduced (Er) and elastic (E) moduli obtained from the curve using the Oliver-Pharr
method are given in Table 1. The reduced and elastic moduli decreased from 48 GPa to 38
GPa and 41 GPa to 33 GPa, respectively. This phenomenon is often referred as indentation
size e�ect (ISE) [12, 15], manifested by a decrease in the elastic modulus with an increase
in the indentation depth. A large number of shear bands were activated by indentation;
this reduced the reaction force on the indenter, leading to a reduction in material sti�ness.

Figure 3: SEM images of micro-indentation in Zr48Cu36Al8Ag8.

Table 10: Reduced modulus (Er) and elastic modulus (E) of Zr48Cu36Al8Ag8 at
various depth.

Cycle Indentation depth (µm) Reduced modulus (GPa) Youngâ��s modulus (GPa)
1 6.2 48 41.7
2 12.1 40 34.8
3 18.2 38 33.06

3.2 Shear-band initiation
The aim of this experiment was to characterise initiation of the �rst plastic event in order to
calculate the required stress for shear bands initiation of the metallic glass investigated in
this study. Based on the nano-indentation experiments [1], the �rst pop-in event occurred
at applied force of 4 mN resulted in indentation depth of 0.060 Âµm. The corresponding
total area of contact and stress required for the �rst pop-in were 1.88 Âµm2 and 2.12Ã�109
N/m2, respectively. It is necessary to determine the contact area Ac in wedge-indentation
experiments in order to predict the approximate force necessary for initiation of shear
bands. This force can be obtained using the following equation:

F = σAc Eq.1

It was found that the required load would be around 500 N; hence, testing was carried out
using the beam-shaped samples in a compression mode with a constant displacement rate
of 0.05 mm/min using the wedge indentation technique and the load levels between 200
N and 500 N. To avoid contact problem at low loads, surfaces of the wedge indenter were
prepared with the use of a surface grinder in an attempt to make the surface uniform while
maintaining the 60Âº angle.
The wedge indenter has an edge radius of 8 Î¼m and height of 5 Î¼m. Evolution of
deformation pattern on the front surface of the specimen is presented in Fig. 4. The
plastic depth increased from 5 Âµm to 13 Âµm by increasing the load from 200 N to 500
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Figure 4: Evolution of shear bands pattern with load under wedge indentation: (a)
400 N, (b) 300 N, (c) 200 N.

N, and serrated semi-circular slip-steps formed by shear bands were observed. The results
show that the nucleation and initial propagation of shear bands occurred at loads below
200 N; there were no shear bands at 100 N load. For 200 N, the indentation depth was
22.17 Âµm before unloading obtained from F-D curve. The calculated stress was :

σ =
F

Ac
= 0.886GPa

At 100 N, the shear band initiation stress was approximately 0.7 GPa, therefore, it can
be estimated that, in wedge indentation the stress level required to initiate shear-band
formation is between 0.7-0.9 GPa. Due to di�erent shear bands morphology in wedge
indentation, this value is not similar to the calculated stress required for shear bands ini-
tiation in nanoindentation with spherical indenter.

273



Proceedings of XLIII International Summer School�Conference APM 2015

3.3 Comparison between glass and metallic glass
The purpose of this study was to compare fracture surfaces of soda-lime-silica glass and
the studied Zr-Cu-based metallic glass using the wedge indentation technique at room
temperature. The relationship established between mechanical behaviour and fracture
feature can assist in elucidating the fracture mechanism. Wedge indentation was applied
to both glass and metallic-glass specimens with dimensions of 40 mm x 4 mm x 2mm using
loads of 500 N, 1 kN and 1.3 kN. Fractography studies showed that fracture surfaces of
materials that fail in a brittle manner from surface cracks are characterized by a sequence of
three distinct fracture features including mirror, mist and hackle regions, depending on the
loading mode. For instance, there was no mist region observed on fracture surfaces formed
in the mixed-mode failure [17]. A side view of wedge indentation for a glass specimen is
presented in Fig. 5; here, classical concentric cone cracks were observed. The contact radius
at maximum pressure was just within the outermost surface ring in Fig. 5, con�rming that
the cone fractures formed in the region of weak tension outside the subsurface compression
zone. In addition, there was no detectable deformation observed beneath the contact circle;
essentially, the material behaved as an ideally homogeneous solid. As shown in micrographs
of subsurface damage at higher magni�cation in Fig. 5(c), hackle marking on the fracture
surfaces of soda glass appeared as lances. Observation of fracture surfaces indicated that
the propagating crack did not experience any energy-dissipation process such as plasticity
or crack bridging, which could result in retarding the crack growth in a substantial manner.

Figure 5: Optical micrographs of indented soda-lime-silica glass after applying 1.3
kN showing cone fracture form (a)and hackle fracture (b and c).

As shown in Fig. 6, signi�cant di�erences were found in the appearance of the fracture
surfaces of specimens of the traditional and metallic glasses at microscale. In contrast
to the former, shear bands in BMGs were not brittle and provided the ability to deform
plastically, with many semi-circular shear bands created beneath the indenter. Shear bands
bifurcate with increasing distance from the indenter tip, indicating branching and healing
mechanisms contributing to energy-dissipation processes, which led to plastic deformation
at microscale.
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Figure 6: Optical micrograph of 1 kN wedge indentation on as-cast Zr48Cu36Al8Ag8

metallic glass (a) and soda-lime-silica glass (b).

4 Conclusions

The microhardness study perfomed on Zr48Cu36Al8Ag8 clearly indicated the dependence
of its elastic modulus on penetration depth at microscale due to activation of a large
number of shear bands. A relatively new technique â�� wedge indentation â�� was
employed to calculate the required stress for shear bands initiation of the metallic glass. It
was estimated that the level of stress required to initiate shear bands was between 0.7-0.9
GPa in wedge indentation. The wedge indentation technique was also applied to compare
fracture surfaces of the soda-lime-silica glass and the studied Zr-Cu-based metallic glass at
microscale. Observation of fracture surfaces indicated that the propagating cracks did not
experience any energy dissipation in the traditional glass; on the contrary, the shear-band
evolution in the metallic glass showed branching and healing mechanisms contributing to
the plastic deformation at microscale.
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Abstract

The stationary patterns of energy partition between waves in a one-
dimensional carbyne chain at ambient temperatures are investigated, taking
into account central and noncentral interactions between carbon atoms. The
study is carried out by standard asymptotic methods of nonlinear dynamics in
the framework of classical mechanics, based on a simple mathematical model.
Within the �rst-order nonlinear approximation analysis the triple-phonon res-
onant ensembles of quasi-harmonic waves are revealed. Each resonant triad
consists of a single primary high-frequency longitudinal mode and a pair of
secondary low-frequency transverse modes of oscillations. In general, the car-
byne chain is described as a superposition of resonant triads of various spec-
tral scales. It is found that the stationary energy distribution in a carbyne is
obeyed to the classical Rayleigh-Jeans law, with the allowances for the propor-
tional amplitude dispersion, which in�uences upon the results of theoretical
estimations in several percents, comparing to the linear theory prediction.

1 Introduction
Carbyne, a one-dimensional carbon allotrope, has been �rst found and studied in the early
sixties of the last century [1]. This is a natural material, since its presence had been
detected in meteorites [2]. Carbyne is of particular interest for nanotechnology, being the
most hard of all known materials [3] up today, strongly than a diamond. At the same time,
the speci�c heat capacity of carbyne is larger than the heat capacity of graphite, and the
latter is higher than a diamond. This ordering is due to the spatial framework of these
carbon allotropes [1]. The �exibility of carbyne has approximately the same order as most
polymers, though this can be e�ciently controlled by attaching to the ends of a chain some
chemicals [3]. In this case, the carbyne chain can be turned from a random coil, with the
persistent length of order 14 [nm], into a strong string of extremely small diameter and
extremely large value of the Young's modulus. The bending of carbyne chains is resulted in
an additional voltage between the carbon atoms to exhibit the semiconducting properties.
This feature can be utilized in NEMS as a precision sensor. In addition to the strength
properties, carbyne displays a number of other unique properties, opening prospects for the
using in hydrogen storage technologies to produce ecologically friendly batteries. These
unique properties stimulate an intensive discussion over the synthesizing a carbyne from a
liquid carbon [4, 5, 6].
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Based on a most simple mathematical model of a carbyne chain, the three-wave resonances
are investigated, which arise due to the nonlinear coupling between central and noncen-
tral bonds of nearest neighborhood carbon atoms. It is shown that the low-frequency
longitudinal waves are almost always unstable. These break up into pairs of secondary
low-frequency transverse waves, unless the frequency of the primary longitudinal mode
does not exceed a certain critical value. Otherwise, the three-wave resonant processes are
forbidden, and the standard Rayleigh�Jeans law holds true, prescribing an equal energy
partition among degrees of freedom. Thus, for the short-wave processes, the stationary
pattern of energy distribution between waves is highly simpli�ed. It is found that the law
of stationary energy partition in a carbyne chain at room temperature is close, within the
high-frequency spectral band, to the Rayleigh�Jeans law. Some di�erences arise due to the
presence of triple-wave resonant processes at low-frequency vibrations. This can a�ect the
speci�c heat, thermal conductivity and other phenomenological parameters of the system,
especially at low temperatures.

2 Mathematical model
We consider mechanical vibrations of a simple one-dimensional chain consisting of particles
of equal masses m, at equal distances a. Each particle has two degrees of freedom on the
plane of oscillation. The forces between the particles are both central and noncentral.
Accounting for noncentral forces leads to appearance of the so-called bending oscillatory
modes. An absolute elongation of a segment in the chain λn, and the curvature of the
median line κn, in the vicinity of the atom number n can be expressed as it follows:

λn =

√
(a+ (un − un−1))2 + (wn − wn−1)2 − a;

κn = arctan

(
wn − wn−1

a+ un − un−1

)
− arctan

(
wn+1 − wn

a+ un+1 − un

)
,

where un and wn are the longitudinal and transverse components of the displacement,
respectively. The Lagrangian of the system, within a harmonic approximation, has the
following form

L =
m

2

Z∑
n=−Z

(
u̇2
n + ẇ2

n

)
− 1

2

Z∑
n=−Z

(
αλ2

n + βκ2
n

)
, (1)

where α and β are the force constants; the dot denotes derivative with respect to the time t.
The number of elemental cells Z in the chain is supposed to be large enough, i.e. Z →∞.
Equations governing the dynamics of the chain of particles are derived with the help of the
Euler-Lagrange principle of variations. For the convenience of asymptotic procedures we
introduce a small parameter µ � 1, using the following similarity transform: un → µun,
wn → µwn. In the linear limit, as µ→ 0, equations become linear. Spectral parameters of
the linearized set are completely characterized by the following dispersion relations

ωl (k) =

√
2

m
α (1− cos ka); ωb (k) = 2

√
β

m

(1− cos ka)

a
, (2)

where ωl (k) and ωb (k) stand for the natural frequencies of the normal harmonic waves,
depending upon the wave number k.
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3 Average Hamiltonian. Resonance
Let the small parameter of the problem µ be non-zero. The solution to the linearized set
can be adopted to have some useful information on the nonlinear system characterized by
the Lagrangian (1), by varying the complex amplitudes of quasi-harmonic waves at the
time:

Un (t) =
∞∫
−∞

(
Al (k, τ1, τ2, ...) e

iφl(k,t) + c.c.
)
dk +

∞∑
m=1

µmu
(m)
n (t) ;

Wn (t) =
∞∫
−∞

(
Ab (k, τ1, τ2, ...) e

iφl(k,t) + c.c.
)
dk +

∞∑
m=1

µmw
(m)
n (t) .

(3)

Here Al and Ab are the complex amplitudes ( c.c. are the corresponding complex conjugates
of the preceding terms); φl (k, t) = ωl (k) t+ kan and φb (k, t) = ωb (k) t+ kan denote fast-
rotating phases of the transverse and longitudinal waves, respectively; τn → µnt are the
slow temporal time scales; u(m)

n (t) and w(m)
n (t) are small nonresonant corrections to the

basic solution. The Lagrange function, with the help of anzats (3), being averaged over
the fast rotating phases, appears in the form of so-called average Lagrangian 〈L〉. In turn,
the arguments are of this function are proportional to the canonically conjugate variables.
If one enters by a standard way the generalized momenta, pAl and pAb , then the average
Lagrangian 〈L〉 can be rewritten as the average Hamiltonian 〈H〉 = ȦlpAl+Ȧ

∗
l pA∗l +ȦbpAb+

Ȧ∗bpA∗b − 〈L〉. The advantage of the Hamiltonian description is obvious: at least the one
integral of energy is already known a priori, 〈H〉 = H0, where H0 is a of integration. The
average Hamiltonian, as a power series in µ, has a simple structure:

〈H〉 = µ2 〈H2〉+ µ3 〈H3〉+ ...

The �rst term 〈H2〉 is identically zero by virtue of the dispersion relations (3). The term
〈H3〉 is a cubic polynomial dependent upon the new generalized coordinates, namely, the
complex conjugate amplitudes of longitudinal and transverse waves. This term carries all
the information about the dynamic properties of the system within the �rst-order nonlinear
approximation. Let 〈H3〉 be not identically zero. Then the system experiences the �rst-
order resonance, due to the nonlinear coupling between triads of modes being in phase,
known as the resonant triplets.

4 Triple-mode resonant ensembles
For the bene�t of nonlinear triple-mode resonant interaction between waves, any dynamical
system requires an appropriate type of quadratic nonlinearity in the equations of motion,
together with ful�lling the following phase-matching conditions

ω1 = ω2 + ω3; k1 = k2 + k3. (4)

Here ωn are the natural frequencies and kn are the corresponding wave numbers of waves,
satisfying the dispersion relations (2). The frequencies are numbered following the natural
order: ω1 ≥ ω2 ≥ ω3. Based on the analysis of the dispersion and the structure of
nonlinearity, one can establish that the triple-mode resonance in a carbyne chain can be
of the one single type: each triple can consist of the primary high-frequency longitudinal
mode with a pair of transverse low-frequency satellites, being in phase.
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Real solutions to the dispersion equation (2), satisfying the phase-matching conditions (4),
can be determined graphically. These solutions do exist in the wide permissible range of
wave numbers, though the wave number of the longitudinal mode k1 should not belong to
the following "forbidden" interval:

k1 /∈ [k∗, 2π − k∗], where k∗ = arctan

(
8
√
αβ(αa2−4β)a

α2a4−24βαa2+16β2

)
/a.

5 Evolution equations of a single triad

Let the high-frequency mode of the resonant triad be a longitudinal wave. Then, after
substituting the following representation of the solution:

un (t) = A1 (τ) exp i (ω1t+ k1an) + c.c.;
wn (t) = A2 (τ) exp i (ω2t+ k2an) +A3 (τ) exp i (ω3t+ k3an) + c.c.,

(5)

into the Lagrangian (1), where ωm and km are the spectral parameters of waves entering
the resonant triple; Am (τ) are the complex amplitudes of quasi-harmonic waves that slowly
varying in the time τ = µt; c.c. denotes the complex conjugate of the preceding terms, the
evolution equations describing the evolution of the �rst-type triad take the following form:

2imωj
dAj
dτ

=
∂H

∂A∗j
; −2imωj

dA∗j
dτ

=
∂H

∂Aj
. (6)

Here H = ic (A∗1A2A3 −A1A
∗
2A
∗
3) is the average potential of the triplet; c is the coe�cient

of the nonlinear coupling.

6 Conservation laws for isolated triads

The evolution equations (6) possess the �rst integrals. Obviously, one of them, is the
average Hamiltonian: H = constant, while the others are known as the Manley-Rowe
relations [7]:

ω1 |A1 (τ)|2 + ω2 |A2 (τ)|2 = c1,2;

ω2 |A2 (τ)|2 − ω3 |A3 (τ)|2 = c2,3,
(7)

where c1,2, c2,3 are arbitrary integration constants determined from the initial conditions
to the Cauchy problem.

7 The superposition of triads

The average Hamiltonian, related to N resonant triads in a carbyne chain, can be written
as it follows

H = i

N∑
n=1

cn
(
A∗3n−2A3n−1A3n −A3n−2A

∗
3n−1A

∗
3n

)
,
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where cn are the nonlinearity coe�cients related to the n-th resonant triplet; Am
(
m = 1, 3N

)
are the complex amplitudes of waves, slowly varying in the time τ . The evolution equations
of the triad chain are derived from the Hamiltonian formalism of mechanics:

2imωn
dAn
dτ

=
∂H

∂A∗n
; −2imωn

dA∗n
dτ

=
∂H

∂An
.
(
n = 1, 3N

)
(8)

These equations can be rewritten in polar coordinates:
An (τ) = an (τ) exp iϕn (τ)

(
n = 1, 2N + 1

)
.

8 Stationary energy partition in a carbyne chain
The �rst-principle estimates of the carbyne chain parameters are the following [3]: E =
32.71 [TPa]; a = 32.71 × 10−10 [m]; r = 0.366 × 10−10 [m]; m = 1.994 × 10−26 [kg].
These parameters are su�cient for calculating the speci�c values of the coe�cients:
F = πr2 = 0.149 × 10−20

[
m2
]
; J = πr4/4 = 0.017 × 10−40

[
m4
]
; α = EF/a =

5.969 × 10−10 [TPa×m]; β = JF/a = 0.222 × 10−30
[
TPa×m3

]
. Here F and J de-

note the e�ective cross-section square and moment of inertia, respectively. The �exural
rigidity of carbyne at ambient temperatures corresponds to the persistence length about
110 carbon atoms along the chain [3]. The ratio of the de Broglie wavelength to the distance
between the nearest neighborhood carbon atoms is about 10−1. This indicates the possibil-
ity of studying the wave dynamics of carbyne in the framework of the classical mechanics.
Carbyne chain has a small �exural rigidity that satis�es the inequality β/αa2 � 1. This
indicates that the complex cascades of energy exchange between the modes of oscillations
are absent in the system. Within the �rst-order nonlinear approximation analysis, only
the three-wave resonant interactions between high-frequency longitudinal and pairs of low-
frequency transverse waves are involved in the formation of steady states. The stationary
solution for a single resonant triplet is following

$1ω1a
2
1 = $2ω2a

2
2 = $3ω3a

2
3 = $1$2$3ω1ω2ω3/c

2,

where $i are the nonlinear Stokes corrections to the natural frequencies ωi. In the �rst-
order approximation, the nonlinear triple wave resonant ensembles represent closed and
isolated dynamical objects. Therefore, the principle of linear superposition for any set
of triplets should be valid. Therefore, there are in�nitely many di�erent patterns of the
stationary energy distribution between the individual modes of oscillations of the system,
from a formal point of view. Among all these possible stationary distributions, one should
choose the single steady state that is implemented in practice. A selection rule provides
the Boltzmann theorem on the energy equipartition between degrees of freedom from the
statistical mechanics, declaring the proportionality of the average kinetic energy of a par-
ticle to the temperature of the system. At the thermal equilibrium, the energy is divided
equally between all the modes. In the context of the problem of the stationary energy
partition in a carbyne, the following sequence of constructions is evident. At the �rst step,
it is reasonable to assume that nonlinear interactions between the modes are negligible, i.e.,
the system represents an ideal gas of quasi-particles without collisions. Then the stationary
distribution of energy in the chain will be exactly described by the classical Rayleigh�Jeans
law, since the total kinetic energy of the system is equal to

K =

3N∑
n=1

Kn =

3N∑
n=1

ω2
na

2
n = 3NkBT

(
a2α

)−1
,
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where kB and T are the Boltzmann constant and the temperature, respectively; 3N is the
total number of modes entering N di�erent resonant triads. Every oscillatory mode, by
virtue of the equipartition theorem, has the energy portion Kn = ω2

na
2
n = kBT

(
a2α

)−1.
Let us assumed now an essential nonlinearity of the system under consideration. The total
kinetic energy is also conserved:

K =
3N∑
n=1

Kn = constant.

The portions of the binding energy are represented by the Hamiltonians of N individual
resonant triplets: Hn = −2cna3n−2a3n−1a3n. Using the Lagrange method, we introduce
the following function

ΛK =
N∑
n=1

Hn +
3N∑
n=1

λn
(
ω2
na

2
n −Kn

)
,

where λn are the Lagrange multipliers, which should be determined together with the am-
plitudes of oscillations an. A minimization of this function leads to the standard Rayleigh�
Jeans law:

a3n−i =

√
kBT

(
αa2ω2

3n−i
)−1 (

i = 0, 2; n = 1, N
)
.

This expression manifests on the proportional amplitude dispersion: the frequency cor-
rections of nonlinear stationary waves, Ωn, are directly proportional to the natural
frequencies of the linear oscillators, ωn. The coe�cients of proportionality is σn =
cn
√
kBT/ (2a

√
αω3n−2ω3n−1ω3n). As one can see, the generalization of the Rayleigh�Jeans

law for nonlinear stationary processes is reduced to a frequency shift of linear harmonics,
characterized by the ratio: 1 + µσn, where the small parameter is de�ned by the maximal
amplitude of the given triad: µ = max (an).
For example, let us consider a resonant triad with the following spectral parameters, almost
at the boundary of the "forbidden" zone: ω1 = 0.297; ω2 = 0.560; ω3 = 0.261; c1 = 0.298.
Let the temperature be T = 300 [K]. The minimum of the functional ΛK = −0.987×10−4

is achieved at the point $2 = 0.061. The proportionality coe�cient is σ1 = 0.234. The
maximal amplitude of the stationary process equals to µ = a3 = 0.039. One can see that the
frequency ratio, caused by the proportional amplitude dispersion at room temperature, can
be clearly distinguished experimentally: µσ1 = 0.009, i.e., being about a percents higher,
compared to that of the linear theory. At the temperature T = 600 [K], this frequency
ratio arises almost up to two percents: µσ1 = 0.018, and so on.
The problem formulation for any arbitrary set of resonant triads in a carbyne chain is
reduced to the linear superposition of all waves entering these ensembles, being the closed
and isolated dynamical systems, at least within the �rst-order nonlinear approximation.

9 Conclusion
Central and noncentral interactions between carbon atoms in a carbyne chain are taken
into account to investigate the stationary energy partition between waves at ambient
temperatures. The study used standard asymptotic methods of nonlinear dynamics, in
the framework of classical mechanics, based on most simple mathematical model. The
�rst-order nonlinear approximation analysis revealed the triple-wave resonant ensembles

282



REFERENCES

of quasi-harmonic waves. These ensembles are formed due to a quadratic nonlinearity of
the system, provided that the triple-mode phase-matching conditions are satis�ed. Each
resonant triad consists of a single primary high-frequency longitudinal mode and a pair of
secondary low-frequency transverse modes of oscillations. It was shown that low-frequency
quasi-harmonic longitudinal waves, caused by the central forces, are almost always unsta-
ble. These break up into pairs of secondary low-frequency transverse waves, unless the
frequency of the primary longitudinal mode does not exceed some critical limit, de�ned by
some "forbidden" zone. In general, the carbyne chain is described as a superposition of
resonant triads of di�erent spectral scales. We found that the stationary energy distribu-
tion in carbyne chains is described by the standard Rayleigh�Jeans law. This describes an
equal energy distribution over the degrees of freedom. Some di�erences arise due to the
e�ect of the proportional amplitude dispersion, leading to a temperature-dependent shift
of wave frequencies in several percents, that can be clearly distinguished in experiments.
These dispersion e�ect gets higher the theoretical value of the speci�c heat, and, in turn,
can in�uence upon the thermal conductivity and other phenomenological parameters of
the carbyne chain, especially at low temperatures, at which the tools of classical mechan-
ics cannot be applied jet. The present study may be of interest for some applications of
nanotechnology, dealing with NEMS or delicate water puri�cation sets.
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Abstract

In the paper simulation of the deformation of copper single crystal under
high-speed axisymmetric loading was carried out using the method of molec-
ular dynamics. Sample in the form of a hollow thick-walled cylinder was sim-
ulated. It is found that the compressive deformation when reaching a certain
value leads to the formation of stacking fault in the inner surface of the cylin-
der. It is shown that depending on the orientation of a single crystal lattice
stacking fault formation comes in various planes. It was found that the order
of the plane of motion of dislocations depends on the angle between the plane
and the direction of loading. Agreement of the results with the experimental
data allows the use of modeling techniques to the study of the basic laws of
plastic deformation in single crystals. The observed regularities of formation
of localized deformation bands can be used to understand the processes of
deformation of pure single crystals.

1 Introduction
Despite some progress, associated with using, both modern experimental research methods
and new theoretical approaches, It is attending to the issue of studying the characteris-
tics of localization of plastic deformation in crystalline materials [1, 2]. Increased interest
caused by the fact that an understanding of the basic mechanisms of plastic deforma-
tion of crystalline materials is directly related to the ability to control their strength and
deformation characteristics.
It should be noted that the most common strain localization phenomenon is seen in the
cases of high degrees, high speeds and temperatures of deformation. This is manifested as
the forming of stationary bands, also known as the term Â«shear bandsÂ» and represents
an area of the material in which the strain rate is much higher deformation rates in the
other volumes [3, 4]. The formation of Â«shear bandsÂ» plays a crucial role in the further
deformation, because in most cases they are the harbinger of destruction of the material. At
the same time it is known that with increasing of the deformation the scale of manifestations
of its localization varies from block to grain from grain to grain complex and further to the
sample as a whole. Thus, this process is multi-layered. Therefore, the initial stage of the
origin and development of the process of localization of deformation is inextricably linked
with the features of material response to the load on the microscale [5, 6]. In the transition
to microscale research conducted on single crystals become important.

284



Molecular dynamics simulations of the collapse of a hollow thick-walled cylinder

In [7], devoted to high-speed axisymmetric loading of copper single crystals noted that the
spatial position of the centers of localization of deformation is determined by crystallog-
raphy of active slip systems. Thus, the order of connection of a close-packed direction of
sliding is determined by the corresponding factor Schmid. Note that in the cited paper the
method of explosive loading of a hollow thick-walled cylinder was used. The advantage of
this approach is the possibility of combining in one experiment all possible orientations of
the single crystal relative to the applied load in the plane de�ned by the base plane of the
sample. Since for the experimental solution of the problem requires laborious preparation
of the corresponding single-crystal samples, taking into account their small spatial scales
the issue can be e�ectively studied using modern methods of computer simulation [8].
Thus, the aim of this work is a theoretical study of the origin and development of the
process of deformation localization on the scale of individual atoms depending on the
crystallographic orientation of the plane of the base of the hollow cylindrical sample under
high speed axisymmetric loading.

2 The results of computer simulation

2.1 The results of sample loading with the base plane (001)
and (111)

For research of high-speed loading of single-crystal sample of copper on the scale of in-
dividual atoms the method of molecular dynamics using the software package LAMMPS
was chosen. The interaction between the particles is described by means of the embedded
atom method [? 9]. Simulated sample was a defect-free hollow copper cylinder whose axis
of symmetry was directed along the Z-axis of the laboratory system of coordinates. The
inner and outer radii of the cylinders is 36, 15 �A and 144, 6 �A. The height of the cylinder
was set equal to 108, 45 �A. Initially two samples were considered. Orientation of their
crystal lattice has been chosen so that the axis of the laboratory coordinate system X,
Y and Z correspond to the crystallographic directions [100], [010] and [001] and [112],
[110] and [111]. Axisymmetric loading was simulated by specifying an atom located on
the outer surface of a cylinder of constant velocities. Velocities were directed toward the
center of the cylinder in a plane parallel to the base sample, and velocity magnitudes are
equal to 10 m/s. The thickness of the loaded layer was 5 �A. Periodic boundary conditions
was modelling along the cylinder axis Z. The initial kinetic temperature of the simulated
sample was 140 K. High-speed algorithm Werle was used for integrating the equations of
motion. Total number of atoms exceeded 500000.
In this paper the evolution of the structure of the sample as a result of the applied axisym-
metric compression was analyzed using a search algorithm of changes of the local topology
of the atomic bonds [10]. It is found that the compressive deformation when reaching a
certain value leads to the formation of defects in the inner surface of the cylinder structure.
Fig. 1 shows the evolution of the structure of two simulated crystallites, which shows only
the atoms with the local topology of atomic bonds di�ers from the original fcc lattice.
On Figure 1 gray color mark atoms that locate on the inner and outer free surfaces. Red
color indicates atoms with hcp a local topology of atomic bonds. It is clearly seen that the
bands of localized atomic displacements that are formed on the inner surface of a hollow
cylinder, formed mainly by atoms with a local topology of the atomic bonds are close to
the hcp lattice. Thus, the obtained structural defects correspond to the stacking fault.
With further loading of the simulated sample the number of stacking faults increases, and
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they extend from the inner free surface where the strain reaches a maximum value in the
volume of the material.

a) b)

c) d)

Figure 1: A three-dimensional image of the structure of the simulated crystallites at
the stage of strain localization at di�erent times. For a cylinder with the orientation
of the base (001): a) t = 39 ps, b) t = 45 ps. For a cylinder with the orientation of
the base (111): c) t = 39 ps, d) t = 45 ps.

Note that the generation of defects in the structure of the sample with orientation of the
base (001) begins at time t = 38 ps, whereas for the sample with orientation (111), this
process occurs at t = 27 ps. The di�erence between the behaviour of both of loaded
crystallites is also the angle between the slip planes and the axis of the cylinder. Thus,
for the sample with the crystallographic orientation of the base plane (001), the angle
φ ≈ 54, 74◦, a sample with a base (111) φ ≈ 70, 53◦. This leads to di�erence in the
start time of defect formation. Thus, the order of priority activity of slip systems in the
considered samples are not observed, and the bands of localized atomic displacements are
formed simultaneously on all possible slip planes.

2.2 The loading of the sample with the base plane (134)

To study the e�ect of crystallographic orientation of the base plane of cylindrical sample
at its deformation properties, we modelled the axisymmetric high-speed loading of copper
single crystal, the shape and dimensions of which were similar to the cases described above.
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The crystallographic orientation of the lattice in the sample was as follows: along the
cylinder axis (axis Z) direction [134] along the X and Y axes � [111] and [752], respectively.
As before, the formation of stacking faults was observed near its inner free surface at certain
degree of deformation of sample. Fig. 2 shows the structure at consecutive sample instant
of time. It is possible to select a sequence in the formation of bands of localized atomic
displacements in the sample under loading. Initially bands arise in a plane , which extends
at an angle 90◦ to the axis of the cylinder (Fig. 2a). Then, stacking fault begin to form in
the plane (φ = 76, 9◦ to the cylinder axis) (Fig. 2b). The plane with a misorientation angle
φ = 47, 2◦ becomes the third slip plane (Figure 2c). The latter stacking faults appear in
the (111) plane (misorientation angle φ = 25, 1◦) (Figure 2d). Thus, in sequence of formed
atomic displacements localized bands order was observed and associated with a decrease
of the misorientation angle between the cylinder axis and corresponding slip plane. This
result is fully consistent with the physics of the phenomenon under study and is in good
agreement with data of experimental studies [7].

a) b)

c) d)

Figure 2: A three-dimensional image of the structure of the simulated crystallite at
the stage of strain localization at di�erent times: a) 26 ps, b) 28 ps, c) 33 ps, d)
47 ps.
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2.3 In�uence of crystallographic orientation on the magni-
tude of deformation.

In this study we evaluated the strain under which the localized atomic displacements appear
in the crystallites. The deformation amount was calculated by the following formula:

ε = ln(r0/r) (1)

where r and r0 â�� the current and the initial distance from the center of the cylinder
to the selected atoms. The calculation results of deformation depending on the time of
loading in case of the cylinder with the orientation of the base (001) was shown in Fig.
3. The position of selected atoms in the sample for which the value of the deformation
calculated, observed in Fig. 3 in the upper left corner. Along the Z-axis atoms were
selected in the atomic plane situated in the middle of the sample.

Figure 3: The time dependence of the calculated amount of deformation for selected
atoms.

According to these results, the deformation of di�erent parts of the cylinder before the
inception of the bands of concerted atomic displacements is predominantly homogeneous
character. The small di�erence to the velocity of the atoms 1 and 2 caused by their
proximity to the free surface. Beginning at time ≈ 40 ps a sharp increase of the deformation
rate observed in crystallite areas located on the inner surface.
The observed di�erence in the magnitude of the displacement of various groups of atoms
caused by formation of structural defects near the inner free surface of the crystallite. Fig.
4 shows the trajectories of motion of atoms in the central layer of the cylinder at successive
times. The time of formation of localized bands displacements of atoms is clearly seen in
the time interval from 37 ps to 39 ps (Fig. 4b), despite the fact that at the previous time
interval inhomogeneous distribution of the displacement is not observed (Fig. 4a).
A comparison of the localization zones of atomic displacements with the local topology of
atomic bonds showed that the atomic displacements are realized in the areas of formed
structural defects - stacking faults. This is evident from a comparison of the trajectories
of the atoms shown in Figure 4b with Figure 5, which shows the local topology of atomic
bonds to atoms of the same dedicated central layer of the crystallite. Figure 5 atoms with
an fcc topology atomic bonds (defect-free part of the crystallite) was marked by greem
color and red represents the atoms with the local topology of the gpu interatomic bonds.
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a) b)

Figure 4: Displacements of the atoms of the central layer of the cylinder in the
intervals: a) from t = 34 ps to t = 36 ps and b) from t = 37 ps to t = 39 ps.

Figure 5: The central layer of the modeled cylinder at time t = 39 ps.

According to the results the behavior of the crystallite regions near the inner free surface
is largely determined by the peculiarities of the restructuring of the crystal lattice due to
the axisymmetric compression. Thus, further reduction of magnitude of the strain rate for
the atoms 1 and 2 at time ≈ 80 ps (see. Fig. 3) caused by the collapse of the inner cavity
of the cylinder. Character of displacement of atoms 3 and 4 also di�ers from the other
groups of selected atoms. So, areas of cylinder remote from its axis by an amount not less
than the half of the wall can be considered for evaluate the deformation properties of the
simulated single crystal.
For comparison of deformation properties of cylindrical samples with di�erent crystallo-
graphic orientation of their base in the paper average value of strain in 8 atoms in the layer
lying remote from the cylinder axis by the same distance as the atoms 5 and 6 in Figure 3
was calculated. The position of the atoms used to estimate the value of the average strain
di�ers by 45◦ with respect to the axis of the cylinder. The resulting time dependence of
the average strain for the three considered crystallites with di�erent crystallographic ori-
entations of base shown in Fig. 6. Schematic representation of the positions of the atoms
used for averaging the strain is shown in the upper left corner.
The simulation results showed that the elastic deformation stage for all considered variants
identical to the strain 0.03. Further loading causes the deformation rate of the samples
that the base (111) and (134) increases as compared with the sample orientation with the
base (001) for which this stage of deformation continues until 0.04. At high degrees of
loading the rate of deformation of the sample with a base (111) slows down and becomes
the minimum of all the considered variants. This dependence, apparently due to the
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Figure 6: Averaged value of strain for copper samples with di�erent crystallographic
orientations their base.

relatively early formation of large number of stacking faults at the simultaneous activation
of all possible slip planes. The presence of numerous structural defects leads to a further
hardening of the sample. As for the samples with the orientations of a base (001) and (134),
then over the entire active phase of loading the calculated average value of deformation for
the variant (134) is located above a similar magnitude to case (001).

3 Conclusion

� A computer model of axisymmetric dynamic loading of copper crystallite on the scale of
individual atoms showed good agreement between the simulation results and experimental
data of explosive loading of copper single crystals. Both in the experiment and in the
computer model the order of the activation of slip systems, which is determined by the
corresponding value of Schmid factor, was noted. Thus, the proposed numerical model
may be used for research of features of origin and development of plastic deformation in
crystalline materials.

� It is shown using a computer model the in�uence of the chosen crystallographic plane
of the base of the cylindrical sample on order of connection slip systems and the resulting
deformation properties of the simulated object. Thus in a sample with the base parallel to
the crystallographic plane (111) slip system activation sequence is not observed, and the
generated localized band of atomic displacements formed simultaneously in all possible slip
planes. This nature of the response to external loading crystallite leads to the fact that its
speed of deformation is maximum of the three modelled variants of sample in the initial
stages of the plastic behaviour. During the further loading a relatively early activation of
all possible slip planes leads to a slowing of the rate of deformation of the sample and in
the �nal stages of loading, it becomes the minimum of all the considered con�gurations.
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Abstract

The general approach to the application of the LS-STAG method for the
numerical solution of LES and DES equations is suggested. According to the
concept of the LS-STAG method normal Reynolds or subgrid stress compo-
nents are sampled on the base mesh (similar to pressure discretization) and
shear ones are sampled in the upper right corners of the base mesh cells. Thus,
for the shear Reynolds or subgrid stresses an additional mesh (xy-mesh) is
introduced. In case of Reynolds Stress (RSM) LES and DES models, these
meshes are used for transport equation solving for Reynolds or subgrid stresses.
The result then is taken into account in the Helmholtz equation for the ve-
locity. In case of Eddy Viscosity (EVM) LES or DES models eddy viscosity
is sampled on the xy-mesh. In this research it is shown how to obtain the
LS-STAG discretization of LES / DES equations and LES / DES turbulence
models using the LS-STAG discretization developed for RANS equations and
RANS-based turbulence models. To validate this approach the �ow past circu-
lar airfoil at the Reynolds numbers Re = 1000 and Re = 3900 was simulated.

1 Introduction

The LS-STAG method [1] for viscous incompressible �ows simulation combines the ad-
vantages of the MAC method, immersed boundary methods and level-set method. This
method allows to solve on the Cartesian meshes problems when domain shape is irregular
or it changes in the simulation process due to hydroelastic body motion. For these reasons,
the LS-STAG method is very useful for solving such complicated problems of computa-
tional mechanics as coupled hydroelastic problems, biomechanic problems, problems of
solid mechanics with deformable bodies.
However, the LS-STAG method, as all mesh methods, has a signi�cant limitation when
simulating �ows with high Reynolds number: it requires extremely small space and time
steps. It leads to signi�cant increase in computational cost. The traditional method of
solving this problem is RANS, LES, DES etc. turbulence models usage. Generalization of
the LS-STAG method for LES and DES is presented in this research.

292



On generalization of the LS-STAG immersed boundary method for Large Eddy
Simulation and Detached Eddy Simulation

2 Governing equations
The problem is considered for 2D unsteady case when the �ow around an airfoil assumed
to be viscous and incompressible within the framework of LES and DES approaches. In
contrast to direct numerical simulation (DNS) based on solution of Navier�Stokes equa-
tions and resolution of all turbulent movement scales, turbulence models usage involves a
simulation of a turbulence scales contribution to the averaged motion (in case of RANS
approach) or a simulation of scales that do not exceed the �lter width ∆ (in case of LES
approach). In case of RANS approach one speaks of the Reynolds stress simulation and in
case of LES approach one speaks of the subgrid stress simulation.
The Reynolds-averaged Navier�Stokes equations are solved in RANS approach, and the
�ltered Navier�Stokes equations are solved in LES approach instead of the Navier�Stokes
equations. Usage of DES approash is means that RANS equations are solved in one part of
the computational domain, and LES equations are solved in the other part. It is possible
to write down the uni�ed problem statement in dimensionless variables for all approaches,
because the form of LES equations is similar to the form of RANS equations. So, the �ow
is described by the following LES / DES equations:

∇ · v = 0,
∂v

∂t
+ (v · ∇)v = −∇p+ ν∆v +∇ · τ̂ t. (1)

Here v is the dimensionless Reynolds averaged of �ltrated velocity, p is dimensionless
Reynolds averaged of �ltrated pressure, t is the dimensionless time, ν is the dimensionless
viscosity coe�cient, τ̂ t is the Reynolds or subgrid stresses tensor. The boundary conditions
are the following:

v
∣∣
inlet

= v∞,
∂v

∂n

∣∣∣
outlet

= 0, v
∣∣
airfoil

= 0,
∂p

∂n

∣∣∣
inlet & outlet & airfoil

= 0. (2)

The relationship between τ̂ t and Reynolds averaged or �ltrated �ow variables is given
by the turbulence model. In case of Reynolds Stress (RSM) RANS models, for example
DRSM, ARSM, EARSM, the Reynolds stress transport equation is solved for simulating
of τ̂ t. In case of Eddy Viscosity (EVM) RANS models the eddy viscosity νt (and the
turbulent kinetic energy k in case of two-equation models) is simulated and Reynolds or
subgrid stresses are evaluated using the Boussinesq eddy viscosity assumption [2]:

τ txx = 2νt
∂u

∂x
+

2

3
k, τ tyy = 2νt

∂v

∂y
+

2

3
k, (3)

τ txy = νt

(
∂u

∂y
+
∂v

∂x

)
. (4)

Here τ txx and τ
t
yy are the normal Reynolds or subgrid stresses, τ txy are the shear Reynolds

or subgrid stresses. The equations for νt and k, as well as initial and boundary conditions
for them are is determined by the turbulence model.

3 Transition from RANS-based turbulence models
to subgrid (LES and DES) models

It is possible to distinguish the linear turbulence scale lturb = lturb(r) in all turbulence
models. With RANS approach is used this scale lturb is equal to scale lRANS = lRANS(r),
which is determined by the turbulence model (table 11).
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Table 11: Turbulence scale lRANS for some turbulence models [2]

Turbulence model lRANS Comments
Spallart�Allmaras dw dw is the distance from the �eld point to the

nearest wall
k − ε k3/2ε−1 ε is the dissipation rate of the k

k − ω, k − ω SST k1/2(β∗ω)−1 ω is the speci�c dissipation rate of the k,
β∗ = 0.09

In the case of the turbulence model usage within the LES framework the scale lturb is equal
to subgrid scale:

lLES = CLES∆. (5)

Here ∆ = ∆(r) is the characteristic �lter size at the point of computational domain with
the radius vector r, and CLES is the empirical constant, which choice depends on the
turbulence model and numerical method used to solve the problem (1), (2). Within the
DES approach the linear turbulence scale lturb is equal to hybrid linear scale

lDES = min{lRANS , CDES∆}. (6)

Here CDES is the empirical constant similar to CLES , and the maximum of the mesh steps
at the point of computational domain with the radius vector r is used as the characteristic
�lter size ∆ = ∆(r). Thus, DES operates as RANS in the domains where the mesh is
too coarse and not suitable for resolving turbulent structures, i.e. at CDES∆ > lRANS ,
and DES operates as subgrid model for LES in the domains where the grid is su�ciently
�ne [2].

4 Generalization of the LS-STAG method for LES
and DES

The Cartesian mesh with cells Ωi,j = (xi−1, xi)×(yj−1, yj) is introduced in the rectangular
computational domain. It is denoted that Γi,j is the face of Ωi,j and xci,j = (xci , y

c
j) is the

center of this cell. Unknown components ui,j and vi,j of velocity vector v are computed in
the middle of �uid parts of the cell faces. These points are the centers of control volumes
Ωu
i,j = (xci , x

c
i+1) × (yj−1, yj) and Ωv

i,j = (xi−1, xi) × (ycj , y
c
j+1) with faces Γui,j and Γvi,j

respectively (�g. 1).
Cells which the immersed boundary intersects are the so-called `cut-cells' [1]. These cells
contain the solid part together with the liquid one. The level-set function ϕ [3] is used for
immersed boundary Γib description. The boundary Γib is represented by a line segment on
the cut-cell Ωi,j . Locations of this segment endpoints are de�ned by a linear interpolation
of the variable ϕi,j = ϕ(xi, yj). The cell-face fraction ratios ϑui,j and ϑ

v
i,j are introduced.

They take values in interval [0, 1] and represent the �uid parts of the east and north faces
of Γi,j respectively.
To preserve the �ve-point structure of the MAC method stencil we need to make distinction
between the discretization of the normal and shear stresses (�g. 1). It is proposed to sample
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Figure 1: Staggered arrangement of the variables on the LS-STAG mesh

the normal and shear Reynolds or subgrid stresses similarly. It is conveniently to sample
the eddy viscosity νt and turbulence kinetic energy k at the same points as the shear
stresses. Thus, in case of the LS-STAG method usage within LES and DES approaches
the fourth mesh with cells Ωxy

i,j = (xci , x
c
i+1) × (ycj , y

c
j+1) is needed. The faces of these

cells are Γxyi,j (�g. 1) and their areas are Mxy
i,j . If i = 1, N , j = 1,M , xy-mesh contains

Exy = (N − 1) · (M − 1) cells.
It is posible to assign a weight αi,j to each cell Ωi,j of the base mesh:

αi,j =


0, if Ωi,j is the solid cell,

1/3, if Ωi,j is the triangular cell,
1/4, otherwise.

Then Mxy
i,j can be expressed through the area of base mesh cells:

Mxy
i,j = αi,j−1Vi,j−1 + αi−1,jVi−1,j + αi,jVi,j + αi,j+1Vi,j+1.

Here Vi,j is the area of the Ωi,j .
Since νt and shear Reynolds or subgrid stresses (4) are sampled at the same points, it
follows that

τ txy|i,j = νti,j

(∂u
∂y

∣∣∣
i,j

+
∂v

∂x

∣∣∣
i,j

)
,

whereas averaged values of turbulent viscosity νti,j and the turbulent kinetic energy ki,j
should be used for the computation of the normal Reynolds or subgrid stresses (3):

τ txx|i,j =2νti,j
∂u

∂x

∣∣∣
i,j

+
2

3
ki,j , τ

t
yy|i,j =2νti,j

∂v

∂y

∣∣∣
i,j

+
2

3
ki,j ,

νti,j =αi,j(ν
t
i,j + νti,j−1 + νti−1,j + νti−1,j−1), ki,j =αi,j(ki,j + ki,j−1 + ki−1,j + ki−1,j−1).
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It is conveniently to sample the linear turbulence scale lturb and the characteristic �lter
size ∆ for LES and DES at the same points as the νt and k. We recall that the maximum
mesh step at the given point of the computational domain is used as a �lter size ∆ for
DES approach. Since we deal with xy-mesh, the characteristic �lter size is de�ned as a
following:

∆i,j = ∆max
i,j = max{∆yxyi−1,j ,∆y

xy
i,j ,∆y

xy
i+1,j ,∆x

xy
i,j−1,∆x

xy
i,j ,∆x

xy
i,j+1},

∆yxyi,j =
1

2
(ϑui,j∆yj + ϑui,j+1∆yj+1), ∆xxyi,j =

1

2
(ϑvi,j∆xi + ϑvi+1,j∆xi+1).

The following �lter can also be used on the LS-STAG mesh within LES approach:

∆i,j = ∆vol
i,j =

√
Mxy
i,j .

Thus, the LS-STAG discretization of LES / DES equations and turbulence LES / DES
models can be easily obtained from the LS-STAG discretization of RANS equations and
RANS-based turbulence models developed in [4] by using formulae (5), (6). The develop-
ment of the LS-STAG discretization for the Spalart�Allmaras (S-A) turbulence model [5]
is described in [4] as an example.

5 Numerical experiments

The �ow past circular airfoil was simulated using the developed modi�cation of the LS-
STAG method at the Reynolds numbers Re = 1000 (on non-uniform meshes 120 × 148
with ∆t = 5 ·10−3 and 240×296 with ∆t = 10−3) and Re = 3900 (on non-uniform meshes
120× 148 with ∆t = 10−3 and 240× 296 with ∆t = 5 · 10−4); CLES = 0.20, CDES = 0.65.
The time averaged drag coe�cient Cxa and the Strouhal number Sh were computed. The
coe�cient Cxa is obtained by averaging over a large period of time the unsteady load

Cxa(t) =
2Fxa(t)

ρV 2
∞

. Computational results are shown in table 12. These results are in good

agreement with experimental data and results of numerical simulations.

6 Conclusion

The key points of the LS-STAG method generalization for LES and DES are described. For
the shear Reynolds or subgrid stresses and for the eddy viscosity an additional mesh (xy-
mesh) is introduced. It is shown how to obtain the LS-STAG discretization of LES / DES
equations and LES / DES turbulence models using the LS-STAG discretization developed
for RANS equations and RANS-based turbulence models. To validate this approach the
�ows past a circular airfoil at the Reynolds numbers Re = 1000 and Re = 3900 were
simulated. Computational results are in good agreement with established results from the
literature.
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Table 12: Comparison of Cxa and Sh with established results from the literature

Turbulence Number Re = 1000 Re = 3900
model of cells Cxa Sh Cxa Sh

Experiment [6] 0.98 0.21 0.93 0.22
Experiment [7] 1.12 � 1.01 �

LES [8] 1 103 520 � � 1.08 �
SV LES [9] 30 720 � � 1.01 0.22
FV LES [9] 855 040 � � 1.07 0.24
k − ε [10] 46 304 0.995 0.15 1.00 0.15

Real k − ε [10] 46 304 � 0.17 � 0.20
SST k − ω [10] 46 304 � 0.23 � 0.25

k − ε [11], ANSYS 388 550 1.17 � 0.74 �
SST k − ω [11], ANSYS 388 550 0.99 � 0.62 �

LES [11], ANSYS 388 550 1.15 0.21 1.07 �

S-A LES (∆vol), present study 17 760 1.13 0.26 0.82 0.26
S-A LES (∆vol), present study 71 040 1.04 0.24 1.09 0.25
S-A LES (∆max), present study 17 760 1.13 0.26 0.82 0.17
S-A LES (∆max), present study 71 040 1.03 0.24 1.08 0.25

S-A DES, present study 17 760 1.13 0.26 0.81 0.23
S-A DES, present study 71 040 1.00 0.23 1.01 0.23
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Abstract

Micropolar thin shallow shells are considered, the elastic de�ections are
comparable to their thickness and at the same time are small in relation to
the basic size, at the same time as the small angles of relation of the normal
to the middle surface before deformation, and their free rotations. Thus,
in the deformation tensor and bending-torsion tensor takes into account not
only linear but also the nonlinear terms in the gradients of displacements.
The hypothesis method is developed and on this base static applied theory
of micropolar elastic �exible shallow shells are constructed. Some practical
problems are solved.

1 Introduction
In the monographs [1],[2] the geometrically nonlinear static and dynamic general theories
of thin plates and shells are constructed on the basis of the classical elasticity theory.
In the works [3],[4] the applied static and dynamic general theories of micropolar thin
plates with �nite de�ections are constructed on the basis of three-dimensional micropolar
theory of elasticity.
In the given work as initial, the general variational principle of geometrically nonlinear
three-dimensional static theory of micropolar elasticity shallow shells are developed (all
basic equations and natural boundary conditions of the speci�ed theory are followed from
this principle). The kinematic and static hypotheses of the works [3],[4] are accepted in
the basis of construction of the adequate general variational principle of geometrically non-
linear micropolar applied theory of elastic thin shallow shells. By verifying the resulting
functional of applied theory of micropolar �exible shallow shells to it's all functional ar-
guments balance equations, physical relations of elasticity, geometrical relations, and also
natural boundary conditions are obtained.

2 The geometrically nonlinear model of three-
dimensional micropolar elastic shallow shells with
independent �eld of displacements and rotations

The shallow shell with the constant thickness 2h is considered as three-dimensional elastic
micropolar isotropic body. The shell is attributed to the system of coordinate x1, x2, z.
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The coordinate surface x1, x2 is combined with the median surface of the shell. The axes
Oz is directed along the normal of the median surface.
The variational functional of three-dimensional theory of micropolar elasticity with the
�nite displacements are resulted and looks like:

I =

∫ h

−h

∫ ∫
S

〈
W −

{
σ11

[
γ11 −

(
∂V1

∂x1
+
V3

R1
+

1

2

(
∂V3

∂x1

)2
)]

+

+σ22

[
γ22 −

(
∂V2

∂x2
+
V3

R2
+

1

2

(
∂V3

∂x2

)2
)]

+ σ33

[
γ33 −

∂V3

∂z

]
+

+σ12

[
γ12 −

(
∂V2

∂x1
+

1

2

∂V3

∂x1

∂V3

∂x2
− ω3

)]
+ σ21

[
γ21 −

(
∂V1

∂x2
+

1

2

∂V3

∂x1

∂V3

∂x2
+ ω3

)]
+

+σ13

[
γ13 −

(
∂V3

∂x1
+ ω2

)]
+ σ31

[
γ31 −

(
∂V1

∂z
− ω2

)]
+

+σ23

[
γ23 −

(
∂V3

∂x2
− ω1

)]
+ σ32

[
γ32 −

(
∂V2

∂z
+ ω1

)]
+

+µ11

[
χ11 −

∂ω1

∂x1

]
+ µ22

[
χ22 −

∂ω2

∂x2

]
+ µ33

[
χ33 −

∂ω3

∂z

]
+

+µ12

[
χ12 −

∂ω2

∂x1

]
+ µ21

[
χ21 −

∂ω1

∂x2

]
+ µ13

[
χ13 −

∂ω3

∂x1

]
+

+µ31

[
χ31 −

∂ω1

∂z

]
+ µ23

[
χ23 −

∂ω3

∂x2

]
+ µ32

[
χ32 −

∂ω2

∂z

]}〉
dx1dx2dz−

−
∫ ∫

S+

[
q+

1 V1 + q+
2 V2 + q+

3 V3 +m+
1 ω1 +m+

2 ω2 +m+
3 ω3

]
z=h

dx1dx2+

+

∫ ∫
S−

[
q−1 V1 + q−2 V2 + q−3 V3 +m−1 ω1 +m−2 ω2 +m−3 ω3

]
z=−h dx1dx2+

+

∫ h

−h
dz

∫
l′1

(
σ0

21V1 + σ0
22V2 + σ0

23V3 + µ0
21ω1 + µ0

22ω2 + µ0
23ω3

)
dx1+

+

∫ h

−h
dz

∫
l′′1

[
σ21

(
V1 − V 0

1

)
+ σ22

(
V2 − V 0

2

)
+ σ23

(
V3 − V 0

3

)
+

+µ21

(
ω1 − ω0

1

)
+ µ22

(
ω2 − ω0

2

)
+ µ23

(
ω3 − ω0

3

) ]
dx1+

+

∫ h

−h
dz

∫
l′2

(
σ0

21V1 + σ0
22V2 + σ0

23V3 + µ0
21ω1 + µ0

22ω2 + µ0
23ω3

)
dx2+

+

∫ h

−h
dz

∫
l′′2

[
σ21

(
V1 − V 0

1

)
+ σ22

(
V2 − V 0

2

)
+ σ23

(
V3 − V 0

3

)
+

+µ21

(
ω1 − ω0

1

)
+ µ22

(
ω2 − ω0

2

)
+ µ23

(
ω3 − ω0

3

) ]
dx2 (1)

Here surface integrals are extended on the face surfaces S+, S−(z = ±h) and on the lateral
surface of the shell, where on one part the external strains and moments are set, and on
the other part displacements and rotations are set; quantities with the top indexes zero
are the set external force stresses and couple stresses on the certain part l1 of the contour
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of the median surface of the shell and displacements and rotations on the other part l2 of
the same contour, and also l1 = l′1

⋃
l′′1 , l2 = l′2

⋃
l′′2 . W is the density of potential energy

of deformations:

W =
1

2

(
σ11γ11 + σ22γ22 + σ12γ12 + σ21γ21 + σ13γ13 + σ23γ23 + σ32γ32+

+µ11χ11 +µ22χ22 +µ33χ33 +µ12χ12 +µ21χ21 +µ13χ13 +µ31χ31 +µ23χ23 +µ32χ32

)
(2)

Here Vi, V3 are components of the displacement vector; ωi, ω3 are components of the
independent rotation vector; σii, σij , σi3, σ3i, σ33 are components of the force stresses
tensor; µii, µij , µi3, µ3i, µ33 are components of the couple stresses tensor; γii, γij , γi3, γ3i

are components of the deformations tensor; χii, χij , χi3, χ3i are components of the bends-
torsions tensor.
It is naturally, the functional (1) to call the full functional of three-dimensional micropolar
theory of elasticity of shallow shells at �nite de�ections. On its basis the variational
equation (δI = 0) can be obtained. All general equations and natural boundary conditions
of the micropolar elasticity problem at �nite displacements are obtained from this equation.

3 The geometrically nonlinear theory of micropolar
elastic thin shallow shells with big de�ections

Hypothesis of works [3], [4] are accepted in the base of the o�ered theory of micropolar
elastic geometrically nonlinear thin shallow shells for the purpose of reduction the geomet-
rically nonlinear three-dimensional theory of micropolar elasticity to the corresponding
tow-dimensional theory. Also, instead of the components of stresses and couple stresses
tensors there are entered integrated characteristics, that are statically equivalent to them:
strains (Tii, Sij , Ni3, N3i), moments (Mii, Mij , Lii, Lij , Li3, L33) and hypermoments
(Λi3):

Tii =

∫ h

−h
σiidz, Sij =

∫ h

−h
σijdz, Ni3 =

∫ h

−h
σi3dz(i↔ 3), Mii =

∫ h

−h
σiizdz

Mij =

∫ h

−h
σijzdz, Lmn =

∫ h

−h
µmndz(m,n = 1, 2, 3), Λi3 =

∫ h

−h
µi3zdz (3)

The formula of the averaged functional I0 of micropolar thin shallow shells are obtained
from the formula (1) of the three-dimensional theory according to the accepted hypothesis:

I0 =

∫ ∫
S

〈
W0 −

{
T11

[
Γ11 −

(
∂u1

∂x1
+

w

R1
+

1

2

(
∂w

∂x1

)2
)]

+M11

[
K11 −

∂ψ1

∂x1

]
+

+T22

[
Γ22 −

(
∂u2

∂x2
+

w

R2
+

1

2

(
∂w

∂x2

)2
)]

+M22

[
K22 −

∂ψ2

∂x2

]
+

+S12

[
Γ12 −

(
∂u2

∂x1
+

1

2

∂w

∂x1

∂w

∂x2
− Ω3

)]
+M12

[
K12 −

(
∂ψ2

∂x1
− ι
)]

+

+S21

[
Γ21 −

(
∂u1

∂x2
+

1

2

∂w

∂x1

∂w

∂x2
+ Ω3

)]
+M21

[
K21 −

(
∂ψ1

∂x2
+ ι

)]
+
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+N13

[
Γ13 −

(
∂w

∂x1
+ Ω2

)]
+N31 [Γ31 − (ψ1 − Ω2)] +

+N23

[
Γ23 −

(
∂w

∂x2
− Ω1

)]
+N32 [Γ32 − (ψ2 + Ω1)] +

+L11

[
κ11 −

∂Ω1

∂x1

]
+ L22

[
κ22 −

∂Ω2

∂x2

]
+ L33 [κ33 − ι] +

+L12

[
κ12 −

∂Ω2

∂x1

]
+ L21

[
κ21 −

∂Ω1

∂x2

]
+ L13

[
κ13 −

∂Ω3

∂x1

]
+

+L23

[
κ23 −

∂Ω3

∂x2

]
+ Λ13

[
l13 −

∂ι

∂x1

]
+ Λ13

[
l13 −

∂ι

∂x1

]}〉
dx1dx2−

−
∫ ∫

S+

[
q+

1 u1 + q+
1 hψ1 + q+

2 u2 + q+
2 hψ2 + +q+

3 w+

+m+
1 Ω1 +m+

2 Ω2 +m+
3 Ω3 +m+

3 hι
]
dx1dx2+

+

∫ ∫
S−

[
q−1 u1 − q−1 hψ1 + q−2 u2 − q−2 hψ2 + +q+

3 w+

+m−1 Ω1 +m−2 Ω2 +m−3 Ω3 −m−3 hι
]
dx1dx2+

+

∫
l′1

(
S0

21u1 + T 0
22u2 +M0

21ψ1 +M0
22ψ2 +N0

23w + L0
21Ω1 + L0

22Ω2 + L0
23Ω3 + Λ0

23ι
)
dx1+

+

∫
l′′1

[
S21

(
u1 − u0

1

)
+ T22

(
u2 − u0

2

)
+M21

(
ψ1 − ψ0

1

)
+M22

(
ψ2 − ψ0

2

)
+N23

(
w − w0

)
+

+L21

(
Ω1 − ω0

1

)
+ L22

(
Ω2 − Ω0

2

)
+ L23

(
Ω3 − Ω0

3

)
+ Λ23

(
ι− ι0

) ]
dx1+

+

∫
l′2

(
T 0

11u1 + S0
12u2 +M0

11ψ1 +M0
12ψ2 +N0

13w + L0
11Ω1 + L0

12Ω2 + L0
13Ω3 + Λ0

13ι
)
dx2+

+

∫
l′′2

[
T11

(
u1 − u0

1

)
+ S12

(
u2 − u0

2

)
+M11

(
ψ1 − ψ0

1

)
+M12

(
ψ2 − ψ0

2

)
+N13

(
w − w0

)
+

+L11

(
Ω1 − ω0

1

)
+ L12

(
Ω2 − Ω0

2

)
+ L13

(
Ω3 − Ω0

3

)
+ Λ13

(
ι− ι0

) ]
dx2+ (4)

W0 is the average density of potential energy of deformation of micropolar shallow shell:

W0 =
1

2

(
T11Γ11 + T22Γ22 + S12Γ12 + S21Γ21 +M11K11 +M22K22 +M12K12+

M21K21 +N13Γ13 +N31Γ31 +N23Γ23 +N32Γ32 + L11κ11 + L22κ22+

+L33κ33 + L12κ12 + L21κ21 + L13κ13 + L23κ23 + Λ13l13 + Λ23

)
(5)

Let us notice, that in the speci�ed theory the displacements, independent rotations, com-
ponents of deformation and bend-torsion tensors are expressed by formulas:

γii = Γii (x1, x2) + zKii (x1, x2) , γij = Γij (x1, x2) + zKij

γi3 = Γi3 (x1, x2) , γ3i = Γ3i (x1, x2)

χii = κii (x1, x2) , χ33 = ι (x1, x2) , χij = κij (x1, x2) , χi3 = κi3 (x1, x2) + zli3 (x1, x2)
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Vi = ui (x1, x2) + zψi (x1, x2) , V3 = w (x1, x2)

ωi = Ωi (x1, x2) , ω3 = Ω3 (x1, x2) + zι (x1, x2) (6)

u1, u2, w are displacements of the points of the shallow shell's median surface along the
axes x1, x2, z; ψ1, ψ2 are full angels of the rotation; Ω1, Ω2, Ω3 are free rotations of the
initially normal element of the shallow shell's median surface round the lines x1, x2, z;
ι is intensity of the full rotation along the z; Γii are elongation deformations along the
x1, x2; Γij , Γi3, Γ3i are shears in the corresponding planes; Kii are �exures of the shallow
shell's median surface caused by the stresses; Kij are torsions of the shallow shell's median
surface caused by the stresses; κii, κ33 are �exures of the shallow shell's median surface
caused by the couple stresses; κij are torsions of the shallow shell's median surface caused
by the couple stresses; li3 are hyper shears of the shallow shell's median surface caused by
the couple stresses.
By the verifying I0 to it's all functional arguments, the general equations and the natural
boundary conditions of the micropolar elastic geometrically nonlinear thin shallow shells
with the independent �elds of displacements and rotations are obtained from the variational
equation δI0 = 0. These equations and boundary conditions are follows as:
Balance equations

∂Tii
∂xi

+
∂Sji
∂xj

= −
(
p+
i − p

−
i

)
,
∂Mii

∂xi
+
∂Mji

∂xj
−N3i = −h

(
p+
i + p−i

)
∂N13

∂x1
+
∂N23

∂x2
+

∂

∂x1

[
T11

∂w

∂x1
+

1

2
(S12 + S21)

∂w

∂x2

]
+

+
∂

∂x2

[
1

2
(S12 + S21)

∂w

∂x1
+ T22

∂w

∂x2

]
− T11

R1
− T22

R2
= −

(
p+
i − p

−
i

)
∂Lii
∂xi

+
∂Lji
∂xj

+ (−1)j (Nj3 −N3j) = −
(
m+
i −m

−
i

)
L33 −

∂Λ13

∂x1
− ∂Λ13

∂x1
− (M12 −M21) = h

(
m+

3 +m−3
)

∂L13

∂x1
+
∂L23

∂x2
+ (S12 − S21)− L11

R1
− L22

R2
= −

(
m+

3 −m
−
3

)
(7)

Elasticity relations

Tii =
2Eh

1− ν2
[Γii + νΓjj ] , Mii =

2Eh3

3 (1− ν2)
[Kii + νKjj ]

Sij = 2h [(µ+ α)Γij + (µ− α)Γji] , Mij =
2h3

3
[(µ+ α)Kij + (µ− α)Kji]

Ni3 = 2h [(µ+ α)Γi3 + (µ− α)Γ3i] , N3i = 2h [(µ+ α)Γ3i + (µ− α)Γi3]

Lii = 2h [(β + 2γ)κii + β (κjj + ι)] , L33 = 2h [(β + 2γ)ι+ β (κ11 + κ22)]

Lij = 2h [(γ + ε)κij + (γ − ε)κji] , Li3 = 2h
4γε

γ + ε
κi3, Λi3 =

2h3

3

4γε

γ + ε
li3 (8)

Geometrically relations

Γii =
∂ui
∂xi

+
w

Ri
+

1

2

(
∂w

∂xi

)2

, Γij =
∂uj
∂xi
− (−1)jΩ3 +

1

2

(
∂w

∂x1

)(
∂w

∂x2

)
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Γi3 =
∂w

∂xi
+ (−1)jΩj , Γ3i = ψi − (−1)jΩj , Kii =

∂ψi
∂xi
− (−1)jι

κii =
∂Ωi

∂xi
, κ33 = ι, κij =

∂Ωj

∂xi
, κi3 =

∂Ω3

∂xi
, li3 =

∂ι

∂xi
(9)

Boundary conditions (on xi = const)

T11 = T 0
11, S12 = S0

12, M11 = M0
11, M12 = M0

12

T11
∂w

∂x1
+

1

2
(S12 + S21)

∂w

∂x2
+N13 = N0

13, L11 = L0
11, L12 = L0

12, Λ13 = Λ0
13 (10)

The obtained system of the equations (7)-(9) and boundary conditions (10) are the math-
ematical static model of the geometrically nonlinear micropolar elasticity thin shallow
shells with independent �elds of displacements and rotations with the full account of shear
deformations.
Let us notice, that from constructed model the geometrically linear model of micropolar
shallow shells are obtained, if the nonlinear members to ignore, and the geometrically
nonlinear Timoshenko type classical model are also obtained, if to put α = 0.
It is necessary to have in view, that the mathematical dynamic model of geo-
metrically nonlinear micropolar elastic thin shallow shells with independent �elds
of displacements and rotations are obtained, if the corresponding inertial members
2ρh∂

2ui
∂t2

, 2ρh∂
2w
∂t2

, 2ρh3

3
∂2ψi
∂t2

, 2Jh∂
2Ωi
∂t2

, 2Jh∂
2Ω3
∂t2

, 2Jh3

3
∂2ι
∂t2

to add.
Let us notice, that the formulated above variational problem corresponds to the most
general variational principle of the micropolar elastic thin shallow shells. Therefore, from
the last result the Lagrange and Kastiliano type principles of micropolar elastic thin shallow
shells will follow as special cases. The direct methods of their approach decision can be
made to each of obtained variational equations (in particular Ritz and Galerkin methods).
Using these methods, the boundary problem of the theory of �exible micropolar elastic thin
shallow shells can be reduce to the decision of the nonlinear algebraic equations system.
As special case, the variational principle of geometrically nonlinear classical theory of
elastic thin shallow shells [3],[4] will follow from the variational principle of geometrically
nonlinear micropolar theory of elastic thin shallow shells.
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Abstract

In this paper, �nite element simulation of stent deployment was carried
out using an anisotropic model for the artery, consisting of three individual
tissue layers, i.e., intima, media and adventitia. Each layer was modelled as
a hyperelastic anisotropic material described by the Holzapfel-Gasser-Ogden
(HGO) model. The model parameters were calibrated against the experimen-
tal stress-stretch responses in both circumferential and longitudinal directions.
The results showed that, at the peak pressure, stent expansion obtained us-
ing the anisotropic model was much reduced when compared to that obtained
using the isotropic model. However, after de�ation, the �nally achieved diam-
eter for the anisotropic model is comparable to that for the isotropic model,
due to the signi�cant reduction in recoiling for the anisotropic model. Also,
the anisotropic model generated slightly higher levels of stress in the artery-
plaque system than the isotropic model. For the isotropic model, the high-level
stresses were found mainly on the plaque, while, for the anisotropic model,
both the intima layer and the plaque experienced high-level stresses. The me-
dia and adventitia layers had lower stress levels due to their relatively softer
stress-strain response in the circumferential direction as well as limited defor-
mation. Following deployment, deformation of the stent was also modelled
by applying relevant biomechanical forces, such as bending and radial com-
pression, to the stent-artery system. The results were utilised to interpret the
mechanical performance of stent after deployment.

Key words: Stent deployment; Vessel anisotropy; Finite element; Artery
stenosis; Biomechanical forces.

1 Introduction
Coronary stents are essentially sca�olds, made of metallic alloys or biopolymers, used to
sustain the blood vessels once expanded inside the obstructed arteries. Stents are generally
deployed inside the diseased artery by means of an angioplasty balloon (except for self-
expandable stents). The sca�old is placed over the balloon and expands with the balloon

306



Modelling of Stent Deployment and Deformation in Diseased Arteries by
Considering Vessel Anisotropy

when this is in�ated by internal pressure. This surgery procedure has minimal invasive
nature and provides fast and e�ective solutions to patients su�ering from coronary stenosis,
a major cause of heart attack.

Finite element is an e�ective tool to simulate the process of stent expansion inside stenotic
arteries, which helps to understand the insight of the biomechanical behaviour of the whole
stent-artery system during the procedure. The simulations provide essential information
regarding stent expansion, recoiling, dogboning and residual stresses, which can be further
utilised to guide stent design and surgery procedures [1, 2, 3, 4, 5]. The artery constitutive
model is an important factor for simulation of stent deployment. [6] reviewed the state
of the art of development of constitutive models in the last ten years to describe the
mechanical behaviour of artery tissue. It highlighted the highly nonlinear and anisotropic
behaviour of the blood vessel tissue. This work also suggested that in many cases the artery
behaves purely elastically and can be characterized by hyperelastic strain energy functions,
including the layer speci�c constitutive models used to describe mechanical behaviour of
arteries. However, anisotropic hyperelastic models have seldom been used to simulate
expansion and deformation of stent-artery system, and existing studies are dominantly
limited to the use of isotropic models.

In this paper, �nite element simulation of stent deployment was carried out using an
anisotropic model for the artery. In particular, the artery wall was considered to consist of
three individual tissue layers, i.e., intima, media and adventitia, which are all described by
the Holzapfel-Gasser-Ogden (HGO) hyperelastic anisotropic model [7, 8]. To understand
the mechanical performance of stent after deployment, deformation of the stent-artery
system was also modelled under relevant biomechanical forces, such as bending and radial
compression, focusing on the re-distribution of local stresses and strains in the stent.

Figure 1: Finite element mesh for the Xience stent, the balloon and the stenotic
artery.
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2 Finite Element Model

The �nite element model for the balloon-stent-artery system is shown in Figure 1. The stent
used for this analysis resembles the geometry of Xience stent, one of the latest commercial
stents. The stent has a crimped diameter of 1.5mm, a length of 10mm and a strut thickness
of 80µm. The artery has a total length of 20mm, an inner diameter of 4mm (healthy region)
and a wall thickness of 1mm. The artery wall is considered to have three layers, namely
intima (0.27mm), media (0.35mm) and adventitia (0.38mm). The plaque has a length of
10mm and a stenosis of 40%. The balloon has a folded geometry, with a length of 12mm.
The artery and plaque were meshed into hexahedral elements with reduced integration,
which are mostly used to increase the computing e�ciency and numerical convergence
associated with large deformation, especially for soft tissues [9, 10]. The stent was meshed
into incompatible hexahedral elements (with full integration) in order to accommodate
large bending deformation of the stent strut during expansion [11]. The folded balloon was
meshed using 4-node shell elements with reduced integration based on the consideration
of computational e�ciency.
Contacts between the stent, the artery and the balloon were de�ned as hard contact with a
friction coe�cient of 0.25 [12]. The ends of the artery and the balloon were fully constrained
to remove rigid body motion. All analyses were carried out using Abaqus explicit solver
[11]. The deployment simulations consisted of two steps: the in�ation step (0.1s) in which
the applied pressure increased linearly to the peak value and the de�ation step (0.1s)
in which the pressure dropped linearly to zero to allow the recoil of the artery and the
stent. The pressure was applied on the inner surface of the balloon, with a peak pressure
of 1.4MPa. Following the de�ation step, a third step was introduced to continue the
simulations by applying bending and radial compression to the system. For bending, a
displacement of 5mm was applied to all the nodes on the cross section at the middle of
the artery, while for compression, a pressure of 0.2MPa was applied to the outer surface
of the artery over the section where the stent was implanted.

3 Material Constitutive Behaviour

3.1. Models for stent, balloon and plaque
The Xience stent is made of Co-Cr L605 which is modelled as an elastic-plastic material
with multilinear hardening segments based on the tensile stress-strain curve of the alloy
given in [13]. The folded balloon was modelled as a linear elastic material with Youngâ��s
modulus of 900MPa and Poisson ratio of 0.3 [14]. The hypocellular plaque is described
by the Ogden hyperelastic model with model parameters given in [15].

3.2. The Holzapfel-Gasser-Ogden model for artery
Experimental tests on human arteries highlighted the anisotropic behaviour of such bio-
logical tissues [7, 16]. The Holzapfel-Gasser-Ogden (HGO) anisotropic hyperelastic model
[7, 8] was used, with a strain energy potential given as [11]:

U = C10

(
Ī1 − 3

)
+

k1

2k2

N∑
α=1

{
exp

[
k2

〈
Ēα
〉2
]
− 1
}

+
1

D

(
(Jel)2 − 1

2
− lnJel

)
(1)

with
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Ī1 − 3

)
+ (1− 3κ)
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)
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Figure 2: Anisotropic stress-stretch response of the three arterial layers, experimen-
tal results [16] versus simulations.

where Ī1 and Ī2 are the �rst and second stretch invariants, J is the volumetric stretch
(or third stretch invariant), C10, D, k1, k2 and κ are material parameters, and Ī4 is the
invariant of Cauchy-Green deformation tensor. The strain-like quantity Ē characterizes
the deformation of the �bre family and the operator 〈 〉 stands for the Macauley bracket.
The parameters of the model were calibrated to �t the experimental data given in [16].
Fitted model parameters are given in Table 1 for all three vessel layers, which give the
stress-stretch responses that are in good agreement with the experimental data in both
circumferential and longitudinal directions (Figure 2).

4 Results and Discussion

4.1. Stent expansion
The result of stent expansion is shown in Figure 3, in a comparison with those obtained
from isotropic arterial model. Expansion was shown to have three stages. At the initial
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stage, stent deforms elastically and has a lower rate of expansion. At the second stage,
plastic deformation occurs and stent seems to expand steadily, together with the artery,
at a fairly constant rate. At the �nal stage, the rate of stent expansion starts to decrease
drastically, indicating that the deformation of the stent/artery system seems to reach a
saturation stage, i.e., further increase of pressure only results in very limited expansion.
This is mainly due to the intrinsic deformation behaviour of the artery which reached
a saturation stage of stretch, especially the intima layer (see Fig.2). Consequently, the
system becomes considerably resistant to further expansion, resulting in a drastic decrease
of expansion rate.
For isotropic model, stent expanded from 1.5mm to 4.8mm at the maximum pressure
(1.4MPa), with an increase in diameter by more than three folds. At the peak pressure
(1.4MPa), the maximum diameter achieved using the anisotropic model was only 4.1mm,
which is much reduced when compared to that, i.e. 4.7mm, achieved using the isotropic
model for the layers.
During de�ation, recovered elastic deformation and radial pressure from the viscoelastic
artery system lead to the recoil of the stent. After recoiling, the diameter was settled
at 3.8mm for the anisotropic model, which is larger than that (3.7mm) computed from
the isotropic model. This is due to the signi�cant reduction in recoiling, only 8% for the
anisotropic model compared to 22% for isotropic model. The achieved expansion is close
to the diameter of a healthy artery.

Figure 3: Comparison of diameter change against pressure for stent expansion simu-
lated using isotropic Ogden and anisotropic HGO constitutive models for the artery.

4.2. Stress on the stent
Figure 4 compares the von Mises stress distribution on the stent for the two models fol-
lowing stent deployment. The stent has severe stress concentrations at the U-bends of the
cell struts due to highly localised stretch. These are residual stresses which were developed
due to the sustained plastic deformation. From the computed results, it appears that the
anisotropic artery model increased the magnitude of the von Mises stress on the stent. For
isotropic model, the magnitude of residual stress was shown to be around 778MPa, as
opposed to 1384MPa for anisotropic model (Figure 4). The stress level is very signi�cant
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and implies the potential risk of failure during stent employment. Consequently, optimal
design of cell strut U-bends appears to be important for modern stents, which can lead
to stress reduction and failure resistance. However, it should be noted that in reality,
the stresses on the stents might not reach such high magnitude if the residual stresses
developed during stent crimping [17, 18] are considered which shall mitigate the stresses
developed during stent expansion.

Figure 4: Stress distribution on the stent after deployment simulated using (a)
isotropic Ogden and (b) anisotropic HGO constitutive models for the artery.

4.3. Stress on the artery-plaque system
The stress distribution on the artery-plaque system, after stent deployment, is compared
in Figure 5, and the anisotropic model generated slightly higher levels of stress than the
isotropic model, with a maximum value of 0.70MPa (0.65MPa for isotropic model). High
stress levels were mainly obtained in the intima layer as well as on the stenotic plaque
surface. The media has the lowest stress level due to its soft stress-strain response in the
circumferential direction. It was also noticed from our simulation, at the peak in�ation
pressure, the maximum von Mises stresses on the plaque-artery system were located in
the intima layer of the artery with a magnitude of 7.30MPa, due to the relatively high
sti�ness of the intima layer as well as the severe constraint on the intima layer imposed by
surrounding tissues. After de�ation, the maximum stress shifted to the plaque, especially
at locations where the stent and the plaque are in full contact.

4.4. Stent deformation under biomechanical forces
For the applied bending, there is hardly any change of stresses on the stent compared to
the stress state after deployment. This might be because the metallic material reached a
steady-state of stress-strain response in the plastic region and the stress becomes insensitive
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Figure 5: Stress distribution on the artery-plaque system after stent deployment
simulated using (a) isotropic Ogden and (b) anisotropic HGOmodels for the artery.

to further deformation. For radial compression, stent collapse started to occur at a pressure
of about 0.1MPa, and also the right end of stent collapsed earlier than the left end due to
asymmetry of the stent structure (Figure 6).
We also carried out simulations by excluding the residual stresses generated out of stent
deployment. For bending, the maximum stress on the stent was found on one of the bottom
longitudinal connective struts in the middle region where the system has the most severe
bending deformation. The maximum stress has a value of 651MPa which is signi�cantly
less than that obtained from simulations by considering the residual stresses. Also stent
collapse under compression tended to be delayed when the residual stresses are excluded.

Figure 6: Stress distribution on the deformed stent-artery system at a compressive
pressure of 0.2MPa.

5 Conclusions

The anisotropy of blood vessels needs to be considered in order to produce reliable and
conclusive results in stent deployment simulations. It is also strongly recommended to
take into account the residual stress state, generated out of stent deployment, for further
mechanical performance analyses.
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Abstract

We present the results of an experimental study of the behavior of carbon
black �lled rubber and rubber with carbon nano�bers. Tests were carried out
using a 4-vector test stand Zwick (biaxial testing machine), a uniaxial test-
ing machine Testometric FS100kN CT and a dynamic mechanical analyzer
DMA/SDTA861e. Our investigations revealed the induced anisotropy of me-
chanical properties in the material with grain �ller � stretching along one axis
does not, in any way, a�ect mechanical properties along the other axis. It is
shown that uniaxial stretching of an elastomer with nano�bers changes the
structure and mechanical properties of the material in all directions.

Cyclic tests where tensile forces acted in two mutually perpendicular directions were per-
formed to determine the in�uence of the type of �ller on the mechanical properties of
�lled vulcanizates subjected to external forces. One vulcanizate was prepared by mixing
methylstyrene and divinyl rubbers (85 parts by weight of rubber SKMS-30 ARK + 15 parts
by weight of rubber SKD), and the other using butadiene-styrene rubber SBR1502. Elas-
tomers were reinforced with di�erent �llers. Carbon black was added to rubber mixture
SKMS+SKD: 60 parts by weight of carbon black Π514 and 5 parts by weight of carbon
black Π234 per 100 parts by weight of rubber. Rubber SBR1502 was reinforced by 30 parts
by weight of carbon black N220 and 5 parts by weight of carbon nano�bers (CNFs).
The behavior of vulcanizates subjected to complex biaxial loading was investigated using a
4-vector test stand Zwick (biaxial testing machine), a uniaxial testing machine Testomet-
ric FS100kN CT and a dynamic mechanical analyzer DMA/SDTA861e. Preliminary tests
on rubbers stretched in two mutually perpendicular directions showed only slight di�erence
in their properties.
Cross-shaped samples were manufactured for tests with a biaxial testing machine (Fig. 1).
The working zone of the sample showed in Fig. 1 is a square with a side of 3 cm. The
applied load is transferred through a loading tube of length 4.5 cm. To achieve loading
uniformity in the central part and, as a consequence, heterogeneity of stress and strain
�elds, loading tubes are cut into stripes � strands. Hence, the area of uniform stress-
strain state distribution covers 73% of the working zone [1].
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Figure 1: Shape of the cross-shaped sample subjected to cyclic loading along each axis
using the biaxial test stand Zwick. The initial state of the sample (a); the sample

extended along the 0X-axis (b)

It is known that in cyclic tests on �lled elastomers the pronounced Mullins softening
e�ect is observed immediately after the �rst loading cycle. In addition, elastomers exhibit
a viscoelastic behavior that depends on the molecular and structural interfacial layers
formed at the �ller-matrix boundary [2]. Such a feature can be attributed, in our opinion,
to the formation of strands in the case when long molecules are drawn from the polymer
surface [3]. Experimental observations support this hypothesis. For example, it was shown
that the softening of rubbers is mainly attributable to viscoelastic processes [4, 4]. At a
50% deformation of the sample no internal damages are accumulated in the material, and
on unloading the inverse process (polymer molecules return back to their original state)
takes place. At temperature of 60◦C and over a 24-hour thermostatting period the sample
recovers its original structure and properties completely. This process develops much more
slowly than the slippage of these molecules o� the surface of inclusions under stretching
and is temperature dependent. At large deformations, simultaneously with the viscoelastic
process, the damage accumulation process begins in rubber, and the stress-strain curve lies
below the curve of the undamaged material [4].
Our tests on carbon black �lled vulcanizate were performed according to the following
scheme. Cross-shaped samples were stretched alternately along the two mutually perpen-
dicular directions 0X and 0Y to elongate by a factor of two. The value of sample elongation
was determined utilizing the grid lines given in white color (Fig. 1). Initially, the samples
were stretched along the 0Y-axis, and the 0X-axis remained loading-free. To do this, we
have developed a special program, where the load is applied along one of the axes, and
the grips move along the other axis so that the load remains zero. Then the samples are
aged for 7 minutes to achieve complete relaxation, unloaded to the primary position, and
aged again for 7 minutes to complete the fast recovery of the material structure. Note that
the structure recovery rate is temperature dependent, and therefore at room temperature
the structure may not recover its original structure even in a year [4]. Such a sequence of
loading-unloading along the 0Y-axis is repeated twice until the softening of the material
was stabilized and the repeatability of its cyclic loading curves is achieved.
The same program has been realized along the 0X-axis. In this case, the 0Y-axis remains
free of loading. Figure 2 presents the biaxial loading curves: the solid lines denote the
behavior of the material in the 0Y-direction, and the dashed lines in the orthogonal 0X-
direction.
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Figure 2: Loading curves for cross-shaped carbon black-�lled vulcanizate samples
obtained using the biaxial testing machine. Solid line � loading along the 0Y-axis, dashed
line � loading along the orthogonal 0X-axis. The arrows show the direction of loading

Typically, during cyclic stretching of rubbers (beginning with the second cycle, the curves
for loading along the 0Y-axis are, in fact, repeated), the sample becomes softer, and the
hysteresis loss reduces. So, after the second cycle the properties of the sample in this
direction are practically stabilized. The analysis of the curves for loading in the orthogonal
0X-direction indicates that the material behaves like it has never been loaded at all � no
softening and changes associated with loading along the 0Y axis have been observed. A
slight discrepancy between the curves for loading along the 0X- and 0Y-axes can be related
to some initial anisotropy of the material caused by the production technique.
We performed analogous tests with the rest of cross-shaped carbon black-�lled vulcanizate
samples and obtained qualitatively similar results. This evidence led to the conclusion
that the loading of the sample in one direction causes the orientation rearrangement of
its structure in this direction only. In the orthogonal direction the sample continues to
retain its original properties until it is subjected to loading in this direction. That is, being
loaded along one direction, the material is solely softened along this direction. In the case
of induced anisotropy, the material is softened because of its loading in one direction, which
is referred to as the Mullins e�ect, but its mechanical properties do not change in any way
in the perpendicular direction.
A number of experiments have been carried out to study the behavior of the polymer
reinforced by 30 parts by weight of carbon black and 5 parts by weight of carbon nano�bers.
Firstly, a cyclic load was applied to a sample having the form of a rectangular plate of length
50.6 mm, thickness 2.18 mm and width 28 mm using the uniaxial Testometric FS100kN CT
machine. After every loading cycle the sample was returned to its initial position and then
aged for 10 minutes to complete rapid recovery of the structure (Fig. 4). As one can
see, softening takes place along the loading axis. The material under study possesses
some initial anisotropy of mechanical properties that is associated with the production
technique (Fig. 3). This circumstance should be taken into account when analyzing the
data obtained during the testing along two orthogonal axes. Secondly, samples in the form
of rectangular strips of thickness 4 mm and length 28 mm were cut from the plate in two
mutually perpendicular directions. The samples cut in the direction of initial stretching of
the plate and after its ageing were called "longitudinal", and those cut in the orthogonal
direction � "transverse". Tests on these samples were performed 24 hours after they were
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stretched in the longitudinal direction.
Some samples were subjected to cyclic loading using the uniaxial machine (Fig. 5), and
the remaining ones were tested with the dynamic mechanical analyzer DMA/SDTA861e

(Fig. 6).

Figure 3: Initial anisotropy of the mechanical properties of the �lled elastomeric material.
The solid and dashed lines show stretching along two orthogonal directions

The experiments performed with the uniaxial machine indicate that the behavior of the
�ber-�lled rubber is di�erent from that of the rubber with grain �ller. Figure 5 shows
that the preliminary ageing in the longitudinal direction causes the material to soften in
all directions � longitudinal and transverse. When the initial anisotropy of the material is
considered (Fig. 3), softening in the transverse direction corresponds to the same softening
in the longitudinal, preliminary aged direction.

Figure 4: Curves for three cycles of loading of the rectangular plate tested on the
uniaxial Testometric FS100kN CT machine. The arrows show the direction of loading
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Figure 5: Cyclic testing of longitudinal and transverse samples using the uniaxial
Testometric FS100kN CT testing machine. The solid lines show the behavior of
longitudinal samples, and the dashed lines the behavior of transverse samples

A comparison of the curves of loading of the longitudinal and transverse samples (solid
and dashed lines in Fig. 5) gives evidence that structural changes in the nano�ber �lled
elastomer under uniaxial deformation take place in all directions. Hence, the suggestion
can be made that �ller �bers subjected to stretching take a turn, and the long elastomeric
molecules slide not only along the axis of elongation, but in the orthogonal direction as
well.

Tests with the dynamic mechanical analyzer DMA/SDTA861e were performed at oscilla-
tion frequency of 5, 10, 15, 20 and 30 Hz. This can be seen graphically in Fig. 6, where
solid lines indicate the behavior of longitudinal samples, and dashed lines the behavior of
transverse samples.

a
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b
Figure 6: Dynamic characteristics of longitudinal and transverse samples obtained in

tests with the dynamic mechanical analyzer DMA/SDTA861e at oscillation frequencies of
5, 10, 15, 20 and 30 Hz; storage modulus E ′ (a), loss modulus E ′′ (b). The solid lines
show the behavior of longitudinal samples, and the dashed lines � the behavior of

transverse samples

During the uniaxial stretching tests it has been found that under small deformations (defor-
mations measured by the DMA/SDTA861e did not exceed 10%) the �ber �lled elastomer
exhibits strong softening. The storage modulus E ′ in the transverse direction turns out to
be lower than that in the longitudinal direction (Fig. 6a). The softening of the material
in the transverse direction appears to be stronger than in the longitudinal direction, and
therefore the loss modulus E ′′ of the transverse sample is less than that of the longitudinal
sample (Fig. 6b). Such a strong softening in the transverse direction can be attributed
to the initial orientation of carbon �bers in the elastomeric material, i.e. to the initial
anisotropy of the material observed at the stage of its production (Fig. 3). Examination of
the properties of elastomers �lled with carbon �bers should be extended to elucidate the
physical mechanisms underlying structural rearrangements driven by stretching.

Conclusions

We have found that stretching of the elastomer with grain �ller in one direction causes the
induced anisotropy to appear in the material. The material softens along the extension
axis, yet this softening does not, in any way, in�uence the structural rearrangement along
the orthogonal elongation axis and change the mechanical properties of the material along
the transverse axis.
When the elastomer with carbon nano�bers is loaded along one of its axis, the structural
rearrangement and changes in mechanical properties occur in all directions. Additional
studies need to be performed in order to investigate further the behavior of such materials.
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Abstract

In this activity, we systematize the results on the study of the equations
of motion of dynamically symmetric multidimensional rigid bodies in noncon-
servative force �elds. The form of these equations is taken from the dynamics
of real lower-dimensional rigid bodies interacting with resisting medium by
laws of jet �ows where a body is in�uenced by a nonconservative tracing force;
under action of this force, the velocity of some characteristic point of the body
remains constant, which means that the system possesses a nonintegrable servo
constraint.

1 Introduction

In the earlier activities, the author has already proved the complete integrability of the
equations of a plane-parallel motion of a body in a resisting medium under the jet �ow
conditions when the system of dynamical equations possesses a �rst integral, which is a
transcendental (in the sense of the theory of functions of a complex variable) function of
quasi-velocities having essential singularities. It was assumed that the interaction of the
medium with the body is concentrated on a part of the surface of the body that has the
form of a (one-dimensional) plate. In the sequel, the planar problem was generalized to
the spatial (three-dimensional) case, where the system of dynamical equations possesses
a complete set of transcendental �rst integrals. In this case, it was assumed that the
interaction of the medium with the body is concentrated on the part of the surface of the
body that has the form of a planar (two-dimensional) disk.
Moreover, we study the dynamic part of equations of motion of a di�erent four-dimensional
dynamically symmetric rigid body where a nonconservative force �eld is concentrated
on a part of the surface of the body, which has the form of a two-dimensional (three-
dimensional) disk, and the action of the force is concentrated in the two-dimensional plane
(one-dimensional line) perpendicular to this disk.
In this work, we discuss results, both new and obtained earlier, concerning the case where
the interaction of the medium with the body is concentrated on the part of the surface
of the body that has the form of a (n − 1)-dimensional disk and the force acts in the
direction perpendicular to the disk. We systematize these results and formulate them in
the invariant form.
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2 Certain General Discourse
First of all for n-dimensional rigid body, we will be interested the case (1�(n− 1)), i. e.,
when in some coordinate system Dx1 . . . xn attached to the body, the operator of inertia
has the form

diag{I1, I2, . . . , I2}, (1)

i. e., the body is dynamically symmetric in the hyperplane Dx2 . . . xn (Dx1 is the axe of
dynamical symmetry).
The con�guration space of a free, n-dimensional rigid body is the direct product

Rn × SO(n) (2)

of the space Rn, which de�nes the coordinates of the center of mass of the body, and the
rotation group SO(n), which de�ned rotations of the body about its center of mass and
has dimension n(n+ 1)/2.
Therefore, the dynamical part of equations of motion has the same dimension, whereas the
dimension of the phase space is equal to n(n+ 1).
In particular, if Ω is the tensor of angular velocity of a n-dimensional rigid body (it is
a second-rank tensor, see [1, 2, 3]), Ω ∈ so(n), then the part of dynamical equations of
motion corresponding to the Lie algebra so(n) has the following form (see [2, 3, 4]):

Ω̇Λ + ΛΩ̇ + [Ω, ΩΛ + ΛΩ] = M, (3)

Λ = diag{λ1, . . . , λn}, (4)

λ1 =
−I1 + I2 + . . .+ In

2
, λ2 =

I1 − I2 + I3 + . . .+ In
2

, . . . ,

λn−1 =
I1 + . . .+ In−2 − In−1 + In

2
, λn =

I1 + . . .+ In−1 − In
2

,

M = MF is the natural projection of the moment of external forces F acting to the body
in Rn on the natural coordinates of the Lie algebra so(n) and [., .] is the commutator in
so(n).
Obviously, the following relations hold: λi − λj = Ij − Ii for any i, j = 1, . . . , n.
For the calculation of the moment of an external force acting to the body, we need to
construct the mapping Rn×Rn −→ so(n), that maps a pair of vectors (DN,F) ∈ Rn×Rn

from Rn ×Rn to an element of the Lie algebra so(n), where DN = {δ1, δ2, . . . , δn}, F =
{F1, F2, . . . , Fn}, and F is an external force acting to the body. Here DN is the vector
directing from the point D of the coordinate system Dx1 . . . xn to the point N of force
acting). For this end, we construct the following auxiliary matrix(

δ1 δ2 . . . δn
F1 F2 . . . Fn

)
. (5)

Dynamical systems studied in this activity, are dynamical systems with variable dissipation
with zero mean (see [4, 5]). We need to examine by direct methods a part of the main
system of dynamical equations, namely, the Newton equation, which plays the role of
the equation of motion of the center of mass, i.e., the part of the dynamical equations
corresponding to the space Rn:

mwC = F, (6)
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where wC is the acceleration of the center of mass C of the body and m is its mass.
Moreover, due to the higher-dimensional Rivals formula (it can be obtained by the operator
method) we have the following relations:

wC = wD + Ω2DC+ EDC, wD = v̇D + ΩvD, E = Ω̇, (7)

where wD is the acceleration of the point D, F is the external force acting on the body
(in our case, F = S), and E is the tensor of angular acceleration (second-rank tensor).
Let the position of the body Θ in Euclidean space En is de�ned by the functions which
are the cyclic in the following sense: the generalized force F and its moment (DN,F)
depend on generalized velocities only (quasi-velocities), and do not depend on the position
of the body in the space. Then, the system of equations (3) and (6) on the manifold
Rn× so(n) is a closed system of dynamical equations of the motion of a free n-dimensional
rigid body under the action of an external force F. This system have been separated from
the kinematic part of the equations of motion on the manifold (2) and can be examined
independently.

3 General Problem on the Motion Under a Tracing
Force

Consider a motion of a homogeneous, dynamically symmetric (case (1)), rigid body with
�front end face� (a (n − 1)-dimensional disk interacting with a medium that �lls the n-
dimensional space) in the �eld of a resistance force S under the quasi-stationarity conditions
(see [6, 7]).
Let (v, α, β1, . . . , βn−2) be the (generalized) spherical coordinates of the velocity vector of
the center of the (n− 1)-dimensional disk lying on the axis of symmetry of the body, Ω be
the tensor of angular velocity of the body, Dx1 . . . xn be the coordinate system attached
to the body such that the axis of symmetry CD coincides with the axis Dx1 (recall that C
is the center of mass), and the axes Dx2, Dx3, . . . , Dxn lie in the hyperplane of the disk,
and I1, I2, I3 = I2, . . . , In = I2, m are characteristics of inertia and mass.
We adopt the following expansions in the projections to the axes of the coordinate system
Dx1 . . . xn: DC = {−σ, 0, . . . , 0}, vD = viv (α, β1, . . . , βn−2) , where

iv (α, β1, . . . , βn−2) =



cosα
sinα cosβ1

sinα sinβ1 cosβ2

. . .
sinα sinβ1 . . . sinβn−3 cosβn−2

sinα sinβ1 . . . sinβn−2

 (8)

is the single vector on the axe of vector v.
In the case (1) we additionally have the expansion for the function of the in�uence of the
medium on the n-dimensional body: S = {−S, 0, . . . , 0}, i.e., in this case F = S. Further,
the auxiliary matrix (5) for the calculation of the moment of the resistance force has the
form (

0 x2N . . . xnN
−S 0 . . . 0

)
, (9)

then the part of the dynamical equations of motion that describes the motion of the body
about the center of mass and corresponds to the Lie algebra so(n), can be obtained. We
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note that system (3), due to the existing dynamical symmetry

I2 = . . . = In, (10)

possesses cyclic �rst integrals

ωk1 ≡ ω0
k1

= const, . . . , ωks ≡ ω0
ks = const, s =

(n− 1)(n− 2)

2
. (11)

Here k1 = 1, . . . , ks are the certain s nonrecurrent numbers from the set W1 =
{1, 2, . . . , n(n− 1)/2}.
In the sequel, we consider the �rst integrals (11) of the system on its zero levels:

ω0
k1

= . . . = ω0
ks = 0. (12)

The choice of nonzero components ωr1 , . . . , ωrp of tensor Ω consists of p = n(n − 1)/2 −
(n− 1)(n− 2)/2 = n− 1 ones (here r1, . . . , rp are the rest p of numbers from the set W1,
not equal to k1, . . . , ks).
If one considers a more general problem on the motion of a body under a tracing force T
that lies on the straight line CD = Dx1 and provides the ful�llment of the relation

v ≡ const, (13)

throughout the motion, then instead of F1 system (3), (6) contains T − s(α)v2, σ = DC.
Choosing the value T of the tracing force appropriately, one can achieve the equality
(13) throughout the motion. Indeed, expressing T due to system (3), (6), we obtain for
cosα 6= 0, n > 2 the relation

T = Tv(α, β1, . . . , βn−2,Ω) = mσ(ω2
r1 + . . .+ ω2

rp)+

+s(α)v2

[
1− mσ

(n− 2)I2

sinα

cosα
Γv

(
α, β1, . . . , βn−2,

Ω

v

)]
, (14)

Γv

(
α, β1, . . . , βn−2,

Ω

v

)
= |rN | = (rN , iN (β1, . . . , βn−2)) =

= 0 · cos
π

2
+

n∑
s=2

xsN

(
α, β1, . . . , βn−2,

Ω

v

)
isN (β1, . . . , βn−2). (15)

Here isN (β1, . . . , βn−2), s = 1, . . . , n, (i1N (β1, . . . , βn−2) ≡ 0) are the components of sin-
gle vector on the axe of vector rN = {0, x2N , . . . , xnN} on (n − 2)-dimensional sphere
Sn−2{β1, . . . , βn−2}, de�nied by the equality α = π/2 as equatorial section of correspond-
ing (n − 1)-dimensional sphere Sn−1{α, β1, . . . , βn−2} (de�ned by the equality (13)), i.
e.,

iN (β1, . . . , βn−2) =

=



0
cosβ1

sinβ1 cosβ2

. . .
sinβ1 . . . sinβn−3 cosβn−2

sinβ1 . . . sinβn−2

 = iv

(π
2
, β1, . . . , βn−2

)
(16)

(see Eq. (8)). This procedure can be interpreted in two ways. First, we have transformed
the system using the tracing force (control) that provides the consideration of the class (13)

325



Proceedings of XLIII International Summer School�Conference APM 2015

of motions interesting for us. Second, we can treat this as an order-reduction procedure.
Indeed, system (3), (6) generates the following independent system of following order (due
to Eqs. (13), (11), (12)): n(n+ 1)/2− (n− 1)(n− 2)/2− 1 = 2(n− 1).
Let introduce the new quasi-velocities in system (3), (6). For this, we transform the values
ωr1 , . . . , ωrn−1 by the composition of following (n− 2) rotations:

z1

z2

. . .
zn−1

 = Tn−2,n−1(−β1) ◦ Tn−3,n−2(−β2) ◦ . . . ◦ T1,2(−βn−2)


ωr1
ωr2
. . .
ωrn−1

 , (17)

where the matrix Tk,k+1(β), k = 1, . . . , n−2, is obtained from the unit one by the presence
of second order minor Mk,k+1:

Tk,k+1 =


1 0 0 0 0

0
. . . 0 0 0

0 0 Mk,k+1 0 0

0 0 0
. . . 0

0 0 0 0 1

 , Mk,k+1 =

(
mk,k mk,k+1

mk+1,k mk+1,k+1

)
, (18)

mk,k = mk+1,k+1 = cosβ, mk+1,k = −mk,k+1 = sinβ.

As we see, we cannot solve the system with respect to α̇, β̇1, . . . , ˙βn−2 on the manifold

O′1 = {(α, β1, . . . , βn−2, ωr1 , . . . , ωrn−1) ∈ R2(n−1) :

α =
π

2
k, β1 = πl1, . . . , βn−3 = πln−3, k, l1, . . . , ln−3 ∈ Z}. (19)

Therefore, on the manifold (19) the uniqueness theorem formally is violated. Moreover, for
even k and any l1, . . . , ln−3, an indeterminate form appears due to the degeneration of the
spherical coordinates (v, α, β1, . . . , βn−2). For odd k, the uniqueness theorem is obviously
violated since one of the equation degenerates.
This implies that system (3), (6) outside (and only outside) the manifold (19) can be
reduced to the following form (n > 2):

α̇ = −zn−1 +
σv

(n− 2)I2

s(α)

cosα
Γv

(
α, β1, . . . , βn−2,

Ω

v

)
, (20)

żn−1 =
v2

(n− 2)I2
s(α)Γv

(
α, β1, . . . , βn−2,

Ω

v

)
− (z2

1 + . . .+ z2
n−2)

cosα

sinα
+

+
σv

(n− 2)I2

s(α)

sinα

{
n−2∑
s=1

(−1)szn−1−s∆v,s

(
α, β1, . . . , βn−2,

Ω

v

)}
, (21)

żn−2 = zn−2zn−1
cosα

sinα
+ (z2

1 + . . .+ z2
n−3)

cosα

sinα

cosβ1

sinβ1
+

+
σv

(n− 2)I2

s(α)

sinα
{zn−1∆v,1

(
α, β1, . . . , βn−2,

Ω

v

)
+

+

n−2∑
s=2

(−1)s+1zn−1−s∆v,s

(
α, β1, . . . , βn−2,

Ω

v

)
cosβ1

sinβ1
}−
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− v2

(n− 2)I2
s(α)∆v,1

(
α, β1, . . . , βn−2,

Ω

v

)
, (22)

żn−3 = zn−3zn−1
cosα

sinα
− zn−3zn−2

cosα

sinα

cosβ1

sinβ1
−

−(z2
1 + . . .+ z2

n−4)
cosα

sinα

1

sinβ1

cosβ2

sinβ2
+

+
σv

(n− 2)I2

s(α)

sinα
{∆v,2

(
α, β1, . . . , βn−2,

Ω

v

)[
−zn−1 + zn−2

cosβ1

sinβ1

]
+

+

n−2∑
s=3

(−1)szn−1−s∆v,s

(
α, β1, . . . , βn−2,

Ω

v

)
1

sinβ1

cosβ2

sinβ2
}+

+
v2

(n− 2)I2
s(α)∆v,2

(
α, β1, . . . , βn−2,

Ω

v

)
, (23)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ż1 = β̇n−2(−ωr1 sinβn−2 + ωr2 cosβn−2)+

+(−1)n
v2

(n− 2)I2
s(α)∆v,n−2

(
α, β1, . . . , βn−2,

Ω

v

)
=

= z1
cosα

sinα

{
n−2∑
s=1

(−1)s+1zn−s
cosβs−1

sinβ1 . . . sinβs−1

}
+

+
σv

(n− 2)I2

s(α)

sinα
(−1)n+1∆v,n−2

(
α, β1, . . . , βn−2,

Ω

v

)
×

×

{
n−1∑
s=2

(−1)szn+1−s
cosβs−1

sinβ1 . . . sinβs−1

}
+

+(−1)n
v2

(n− 2)I2
s(α)∆v,n−2

(
α, β1, . . . , βn−2,

Ω

v

)
, (24)

β̇1 = zn−2
cosα

sinα
+

σv

(n− 2)I2

s(α)

sinα
∆v,1

(
α, β1, . . . , βn−2,

Ω

v

)
, (25)

β̇2 = −zn−3
cosα

sinα sinβ1
+

σv

(n− 2)I2

s(α)

sinα sinβ1
∆v,2

(
α, β1, β2, β3,

Ω

v

)
, (26)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

β̇n−2 = (−1)n+1z1
cosα

sinα sinβ1 . . . sinβn−3
+

+
σv

(n− 2)I2

s(α)

sinα sinβ1 . . . sinβn−2
∆v,n−2

(
α, β1, . . . , βn−2,

Ω

v

)
, (27)

∆v,1

(
α, β1, . . . , βn−2,

Ω

v

)
= (rN , iN

(
β1 +

π

2
, β2, . . . , βn−2

)
),

∆v,2

(
α, β1, . . . , βn−2,

Ω

v

)
= (rN , iN

(π
2
, β2 +

π

2
, β3, . . . , βn−2

)
),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (28)

∆v,n−3

(
α, β1, . . . , βn−2,

Ω

v

)
= (rN , iN

(π
2
, . . . ,

π

2
, βn−3 +

π

2
, βn−2

)
),
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∆v,n−2

(
α, β1, . . . , βn−2,

Ω

v

)
= (rN , iN

(π
2
, . . . ,

π

2
, βn−2 +

π

2

)
),

and function Γv (α, β1, . . . , βn−2,Ω/v) can be represented in the form (15).
In right-hand side of the system (20)�(27) after common multiplier

σv

(n− 2)I2

s(α)

cosα
,

the values ∆v,s (α, β1, . . . , βn−2,Ω/v) , s = 1, . . . , n−2, are represented in linear form (and
always (n− 2) coe�cients precisely). For instance, in Eq. (21) (with left-hand side żn−1),
the functions (28) are represented with all indices s from 1 to n− 2 (every index per one
time), i. e.,

1 2 3 4 . . . n− 2. (29)

But furthermore, in Eqs. (22)�(24), the set of functions (28) is formed in another way.
For instance, in equation with left-hand side żn−2, the set of functions (28) is formed with
corresponding indices (29). But in equation with left-hand side żn−3, it is already formed
with the following indices:

2 2 3 4 . . . n− 2 (30)

i. e., the function ∆v,2 (α, β1, . . . , βn−2,Ω/v) is already repeated twice.
What is the general distribution of indices? It can be represented by table 13.

Table 13: General Distribution of Indices in Set of Functions (28)

Left-hand Side of (20)�(27) Distribution of Indices s in Set of Functions (28)

żn−2 1 2 3 4 . . . n− 2

żn−3 2 2 3 4 . . . n− 2

żn−4 3 3 3 4 . . . n− 2

żn−5 4 4 4 4 . . . n− 2

. . . . . . . . . . . . . . . . . . . . .

ż1 n− 2 n− 2 n− 2 n− 2 . . . n− 2

4 Case Where the Moment of a Nonconservative
Force Is Independent of the Angular Velocity

Similarly to the choice of Chaplygin analytic functions, we take the dynamical functions
s, x2N , . . . , xnN in the following form (using (16)):

s(α) = B cosα, rN = R(α)iN , R(α) = A sinα, A,B > 0. (31)
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Herewith, the functions Γv (α, β1, . . . , βn−2,Ω/v) ,∆v,s (α, β1, . . . , βn−2,Ω/v) , s = 1, . . . , n−
2, in system (20)�(27), take the following form:

Γv

(
α, β1, . . . , βn−2,

Ω

v

)
= R(α) = A sinα, ∆v,s

(
α, β1, . . . , βn−2,

Ω

v

)
≡ 0. (32)

Then, due to the nonintegrable constraint (13), outside and only outside the manifold (19),
system (20)�(27)) has the analytic form

α′ = −zn−1 + b sinα, (33)

z′n−1 = sinα cosα− (z2
1 + . . .+ z2

n−2)
cosα

sinα
, (34)

z′n−2 = zn−2zn−1
cosα

sinα
+ (z2

1 + . . .+ z2
n−3)

cosα

sinα

cosβ1

sinβ1
, (35)

z′n−3 = zn−3zn−1
cosα

sinα
− zn−3zn−2

cosα

sinα

cosβ1

sinβ1
−

−(z2
1 + . . .+ z2

n−4)
cosα

sinα

1

sinβ1

cosβ2

sinβ2
, (36)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

z′1 = z1
cosα

sinα

{
n−2∑
s=1

(−1)s+1zn−s
cosβs−1

sinβ1 . . . sinβs−1

}
, (37)

β′1 = zn−2
cosα

sinα
, (38)

β′2 = −zn−3
cosα

sinα sinβ1
, (39)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

β′n−3 = (−1)nz2
cosα

sinα sinβ1 . . . sinβn−4
, (40)

β′n−2 = (−1)n+1z1
cosα

sinα sinβ1 . . . sinβn−3
, (41)

introducing the dimensionless variables, parameters, and the di�erentiation as follows:

zk 7→ n0vzk, k = 1, . . . , n− 1, n2
0 =

AB

(n− 2)I2
(n > 2),

b = σn0, < · >= n0v <
′> .

(42)

We see that the 2(n−1)th-order system (33)�(41) (which can be considered as a system on
the tangent bundle T∗Sn−1{zn−1, . . . , z1;α, β1, . . . , βn−2} of the (n−1)-dimensional sphere
Sn−1{α, β1, . . . , βn−2}, see below) contains the independent (2n− 3)th-order system (33)�
(40) on its own (2n− 3)-dimensional manifold.
Theorem 1. The system (3), (6) under conditions (13), (11), (12), is reduced to dynamic
system (20)�(27) on the tangent bundle T∗Sn−1{zn−1, . . . , z1;α, β1, . . . , βn−2} of (n − 1)-
dimensional sphere Sn−1{α, β1, . . . , βn−2}.
For the complete integration of 2(n − 1)th-order system (33)�(41), in general, we need
2n− 3 independent �rst integrals. However, after the change of variables

wn−1 = zn−1, wn−2 =
√
z2

1 + . . .+ z2
n−2, wn−3 =

z2

z1
,

wn−4 =
z3√
z2

1 + z2
2

, . . . , w2 =
zn−3√

z2
1 + . . .+ z2

n−4

, w1 =
zn−2√

z2
1 + . . .+ z2

n−3

,
(43)
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system (33)�(41) splits as follows:

α′ = −wn−1 + b sinα, (44)

w′n−1 = sinα cosα− w2
n−2

cosα

sinα
, (45)

w′n−2 = wn−2wn−1
cosα

sinα
, (46)

w′s = ds(wn−1, . . . , w1;α, β1, . . . , βn−2)
1 + w2

s

ws

cosβs
sinβs

,

β′s = ds(wn−1, . . . , w1;α, β1, . . . , βn−2), s = 1, . . . , n− 3,

(47)

β′n−2 = dn−2(wn−1, . . . , w1;α, β1, . . . , βn−2), (48)

d1 = Zn−2(wn−1, . . . , w1)
cosα

sinα
,

d2 = −Zn−3(wn−1, . . . , w1)
cosα

sinα sinβ1
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dn−2 = (−1)n+1Z1(wn−1, . . . , w1)
cosα

sinα sinβ1 . . . sinβn−3
,

(49)

herewith, zk = Zk(wn−1, . . . , w1), k = 1, . . . , n − 2, are the functions due to the change
(43).
We see that for the complete integration of system (44)�(48) it su�ces to specify two
independent �rst integrals of system (44)�(46), on one �rst integral of systems (47), and
an additional �rst integral that �attaches� Eq. (48) (i. e., n in all).
We have the following transcendental �rst integral:

Θ1(wn−1, wn−2;α) =
w2
n−1 + w2

n−2 − bwn−1 sinα+ sin2 α

wn−2 sinα
= C1 = const. (50)

Then the additional �rst integral obtained has the following structural form:

Θ2(wn−1, wn−2;α) = G
(

sinα,
wn−1

sinα
,
wn−2

sinα

)
= C2 = const. (51)

For the complete integration, as was mentioned above, it su�ces to �nd on one �rst integral
for (potentially separated) systems (47), and an additional �rst integral that �attaches�
Eq. (48).
Indeed, we have the desired �rst integrals as follows:

Θs+2(ws;βs) =

√
1 + w2

s

sinβs
= C ′′s+2 = const, s = 1, . . . , n− 3, (52)

Θn(wn−3, . . . , w1;α, β1, . . . , βn−2) = C ′′n = const, (53)

herewith, we must substitute the left-hand sides of the �rst integrals (52) for s = n−4, n−3,
in the expressions of �rst integral (53) instead Cn−2, Cn−1.
Theorem 2. The 2(n− 1)th-order system (44)�(48) possesses the su�cient quantity (n)
of independent �rst integrals (50), (51), (52), and (53).
Thus, in the case considered, the system of dynamical equations (3), (6) under condition
(31) has (n2 − n + 4)/2, n > 2, invariant relations: the nonintegrable analytic constraint
of the form (13), the cyclic �rst integrals of the form (11), (12), the �rst integral of the
form (50), the �rst integral (51), which is a transcendental function of the phase variables
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(in the sense of complex analysis) expressed through a �nite combination of elementary
functions, and, �nally, the transcendental �rst integrals of the form (52), (53).
Theorem 3. System (3), (6) under conditions (13), (31), (11), (12) possesses (n2 − n +
4)/2, n > 2, invariant relations (complete set), n of which transcendental functions from
the point of view of complex analysis. Herewith, all relations are expressed through �nite
combinations of elementary functions.
Consider the following (2n− 3)th-order system:

ξ̈ + b∗ξ̇ cos ξ + sin ξ cos ξ−

−
[
η̇1

2 + η̇2
2 sin2 η1 + η̇3

2 sin2 η1 sin2 η2 + . . .+ η̇2
n−2 sin2 η1 . . . sin

2 ηn−3

] sin ξ

cos ξ
= 0,

η̈1 + b∗η̇1 cos ξ + ξ̇η̇1
1 + cos2 ξ

cos ξ sin ξ
−

−
[
η̇2

2 + η̇3
2 sin2 η2 + η̇4

2 sin2 η2 sin2 η3 + . . .+ η̇2
n−2 sin2 η2 . . . sin

2 ηn−3

]
×

× sin η1 cos η1 = 0,

η̈2 + b∗η̇2 cos ξ + ξ̇η̇2
1 + cos2 ξ

cos ξ sin ξ
+

+ 2η̇1η̇2
cos η1

sin η1
−

−
[
η̇3

2 + η̇4
2 sin2 η3 + η̇5

2 sin2 η3 sin2 η4 + . . .+ η̇2
n−2 sin2 η3 . . . sin

2 ηn−3

]
×

× sin η2 cos η2 = 0,

η̈3 + b∗η̇3 cos ξ + ξ̇η̇3
1 + cos2 ξ

cos ξ sin ξ
+

+ 2η̇1η̇3
cos η1

sin η1
+ 2η̇2η̇3

cos η2

sin η2
−

−
[
η̇4

2 + η̇5
2 sin2 η4 + η̇6

2 sin2 η4 sin2 η5 + . . .+ η̇2
n−2 sin2 η4 . . . sin

2 ηn−3

]
×

× sin η3 cos η3 = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

η̈n−4 + b∗η̇n−4 cos ξ + ξ̇η̇n−4
1 + cos2 ξ

cos ξ sin ξ
+

+ 2η̇1η̇n−4
cos η1

sin η1
+ . . .+ 2η̇n−5η̇n−4

cos ηn−5

sin ηn−5
−

−
[
η̇2
n−3 + η̇2

n−2 sin2 ηn−3

]
sin ηn−4 cos ηn−4 = 0,

η̈n−3 + b∗η̇n−3 cos ξ + ξ̇η̇n−3
1 + cos2 ξ

cos ξ sin ξ
+

+ 2η̇1η̇n−3
cos η1

sin η1
+ . . .+ 2η̇n−4η̇n−3

cos ηn−4

sin ηn−4
−

− η̇2
n−2 sin ηn−3 cos ηn−3 = 0,

η̈n−2 + b∗η̇n−2 cos ξ + ξ̇η̇n−2
1 + cos2 ξ

cos ξ sin ξ
+

+ 2η̇1η̇n−2
cos η1

sin η1
+ . . .+ 2η̇n−3η̇n−2

cos ηn−3

sin ηn−3
= 0, b∗ > 0,

(54)

which describes a �xed n-dimensional pendulum in a �ow of a running medium for which
the moment of forces is independent of the angular velocity, i.e., a mechanical system in
a nonconservative �eld (see [1, 2]). In general, the order of such a system is equal to
2(n− 1), but the phase variable ηn−2 is a cyclic variable, which leads to the strati�cation
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of the phase space and reduces the order of the system.
The phase space of this system is the tangent bundle

TSn−1{ξ̇, η̇1, . . . , η̇n−2, ξ, η1, . . . , ηn−2} (55)

of the (n − 1)-dimensional sphere Sn−1{ξ, η1, . . . , ηn−2}. The equations that transform
system (54) into the system on the tangent bundle of the two-dimensional sphere η̇2 ≡
η̇3 ≡ . . . ≡ η̇n−2 ≡ 0, and the equations of great circles η̇1 ≡ 0, η̇2 ≡ 0, . . . , η̇n−2 ≡ 0
de�ne families of integral manifolds.
It is easy to verify that system (54) is equivalent to the dynamical system with variable
dissipation with zero mean on the tangent bundle (55) of the (n− 1)-dimensional sphere.
Moreover, the following theorem holds.
Theorem 4. System (3), (6) under conditions (13), (31), (11), and (12), is equivalent to
the dynamical system (54).
Indeed, it su�ces to set α = ξ, β1 = η1, . . . , βn−2 = ηn−2, b = −b∗.
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Abstract

A model of erosion wear of blades at threshold velocities of incidence of
abrasive particles is presented. In the model the Hertzs classical impact theory
is used for modeling the contact interaction of a particle with an elastic half-
space. The incubation time fracture criterion is applied for predicting surface
fracture.

1 Introduction

Foreign object damage (FOD) is a signi�cant threat on aero engine components. Sources
of FOD can be sand particles of various size [1]. However, this particles are small and
their impacts will not lead to immediate failure, but may reduce the service life of the
component.
The impact speed of dust particles to the surface of the blade greatly a�ects the magnitude
of wear. Obviously, the greater speed of the particle and/or the greater particle size lead
to greater wear of the blade. However, the theoretical dependences of blade erosion on a
velocity of impact and a particle size are undetermined.
In this work we consider erosion damage of blades by combination of the Hertz problem
solution and the incubation time criterion [2]. The aim of the work is to construct a model
to predict the threshold erosive wear of blades at di�erent speeds and sizes of abrasive
particles.

2 Problem Formulation

Assume that the aircraft is on the ground with running engines. Sand and dust particles
are sucked into the engine and falling to the turbine blades. Assume that the particles are
identical and have a spherical shape and fall perpendicularly to the blade surface.
The interaction of the particle and the blade can be modeled by solving the contact problem
of an impact of a spherical particle of radius R and initial velocity V with a half-space
(Hertz problem) [2, 3] . According to the second law of Newton, the equation of particle
displacement is as follow:

mẍ = F (1)
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where m is particle mass; F is determined by the elastic response of the blade. Let us use
the Hertzian theory to �nd it:

F = −kx3/2, k =
4

3

√
RE

(1− ν2)
(2)

where E and ν are the Young modulus and the Poisson ratio of the blade.
Assume the initial conditions are the following:

x(0) = 0; ẋ(0) = V. (3)

Hertz solution for the contact problem give the following expression for radial stress:

σ(t, V,R) =
1− 2ν

2π

k

R

√
x0 sin

πt

t0
(4)

where x0 is the maximum depth and t0 is impact duration.
To assess the possibility of fracture in conditions of an erosion process we use the incubation
time criterion:

max
t

∫ t

t−τ
σ(s)ds ≤ σcτ (5)

where σ(t) is the current tearing stress; σc is the material static strength, and τ is the
brittle fracture incubation time. The incubation time is considered as a physical constant
of the material describing the duration of preparation of the medium to fracture or a phase
transition, which can be determined experimental or theoretically.
The application of the criterion (5) allow to analyze the behavior of threshold (the minimal
external e�ects causing fracture) characteristics of fracture, such as threshold speed V ∗ of
particle impact.
The determining criteria relation has the form of following equality:

f(V,R, τ) = max
t

∫ t

t−τ
σr(V,R, s)ds− σcτ (6)

where σr is the maximal (radial) tearing stress at the surface points adjoining the contact
area.
After simpli�cation (6) takes the form

1− 2ν

2π

k

R

√
x0

∫ λ+1
2

λ−1
2

√
sin

π

λ
[H(t̃)−H(t̃− λ)]dt̃ = σc (7)

where λ is dimensionless parameter, and it can be expressed through V and R:

λ =
t0
τ

=

(
5π(1− ν2)

4

) 2
5 ρ

2
5R

τE
2
5V

1
5
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and

1− 2ν

2π

k

R

√
x0 =

1− 2ν

2π

(
5

3
π

) 1
5
(

4

3(1− ν2)

) 4
5

V
2
5 ρ

1
5E

4
5

The incubation time of fracture for a material can be found by solving (7) for τ if threshold
impact speed V ∗ of the particle with the radius R is known. Thus, having determined τ ,
we can predict the impact threshold speeds for particles of an arbitrary size.

3 Results

Figure 1 shows the dependence of the threshold speed of erosion fracture for martensitic
steel EI736 [4] on the diameter of erodent particles. This dependence has static and
dynamic branches. The static (horizontal) branch has a weak dependence of the threshold
speed on the particles diameter. The dynamic branch shows a rapid growth of the threshold
speed upon a decrease in the particle size.

Figure 1: Dependence of the threshold particle (turbine) speed on the particle radius.
The speed calculated for points in the centre of the 50 mm blade. The calculated
parameters are σc = 932 MPa, τ = 10 µs.

4 Conclusions

This work deals with the problem of erosion damage of engine blades when a blade surface
is impacted with abrasive sand particles at the right angle. The Hertzs classical impact
theory is used for modeling the contact interaction of a particle with an elastic half-space.
To determine the threshold velocity of the particles at which the blade surface does not
incur erosive fracture, the incubation time dynamic fracture criterion is applied. The
constructed model allows to predict the threshold erosive wear of blades at di�erent speeds
and sizes of abrasive particles.
For the development of this work it is expected to consider the in�uence of di�erent angles
of impact and temperature on the threshold velocity of erosion damage of aero engine
blades.
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Abstract

The paper explores the necessity of taking into account the e�ect of soft-
ening encountered in rubbers (Mullins e�ect) during physical and numerical
modeling of industrial rubber articles. For more precise computations, the
Ogden-Roxburgh model is modi�ed by changing constants to functions found
from the analysis of experimental data. The modi�ed model implemented in
commercial package ANSYS allows us to perform a comparative analysis of
changes in the stress-strain state of a car tyre with and without taking into
account the e�ect of softening in rubbers.

The e�ect of softening encountered in rubbers was �rst observed by Bouasse and Car-
riere (1903) for un�lled polymers [1]. Despite this fact, the in�uence of this e�ect on
the stress-strain state of real products is frequently ignored when modeling and designing
rubber articles. It is commonly recognized that incorporation of super�ne �ller particles
into rubbers leads to a remarkable improvement in the strength and fatigue properties of
the material. However, this also gives rise to an increased softening [2, 3]. In the present
paper, we discuss the necessity of taking into account the e�ect of softening encountered in
rubbers during physical and numerical modeling of industrial rubber articles and consider
a suitable way to modify the Ogden-Roxburgh model for use in numerical simulations
properties.

Experimental data concerning the mechanical properties of �lled rubbers were obtained
from cyclic tension tests with increasing amplitude. Experiments showed a signi�cant
change in the mechanical properties of rubber already in the region of moderate elongations
(up to 1.5) (Fig. 1) [4].
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Figure 1: Experimental data obtained for rubber softening under uniaxial loading
conditions. The dashed curve indicates the �rst cycle of loading, and the solid curves
show unloading and subsequent loading of the softened material when the value of

maximum elongation does not exceed that of elongation achieved during the previous
deformation history of the material; F/S0 � reduced stress; λ � elongation

In our investigation, we have used the Ogden-Roxburgh model describing rubber softening
[5]. The strain energy density is split into deviatoric and volumetric parts and can be
expressed as

U = ηUdev + Uvol + φ(η),

where φ(η) is the function used to assess the amount of lost energy; η is the damage
parameter. The function φ(η) has the form:

∂φ(η)

∂η
=
(
m+ βUmdev

)
erf−1

(
r(1− η)

)
− Umdev.

The damage of the material η ∈ (0, 1] (at η=1, the material is assumed to be undeformed)
is calculated by the formula [3]:

η =


1,

[
Udev > Umdev

]
,

1− 1
rerf

(
Umdev−Udev
m+βUmdev

)
,
[
Udev < Umdev

]
where Umdev = max(Udev), erf(x) = 2√

π

x∫
0

e−ω
2
dω.

The parameters r, m, β can be determined using the experimental recession curves (Fig. 1):
r, β are dimensionless; m characterizes the values of strain energy and has the dimension-
ality of energy; r is related to the degree of softening; β speci�es the slope of the softening
curve vs. the initial loading curve. When the strain energy reaches the value of the pa-
rameter m, the material begins to return to the initial loading curve. The case m = 0 is
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unrealistic, because complete softening occurs in this case at inde�nitely small deforma-
tions.
The in�uence of these parameters on the loading curve obtained for softened material was
studied in a series of numerical experiments with MATLAB. The analysis indicates that
the Ogden-Roxburgh model used in such commercial packages as ANSYS and ABAQUS
is not nearly adequate enough for describing speci�c features associated with a softening
e�ect encountered in rubbers. In particular, this model cannot be applied to describe the
anisotropy of the softening e�ect. What is more, in the case of high strain data scattering
a single set of parameters describes the Mullins e�ect with signi�cant error. In order to
obtain softening curves needed for precise computations, the Ogden-Roxburgh model was
modi�ed by changing parameters to special functions �tted to particular loading curves
for a wide range of deformations.
The method proposed todescribe the Mullis e�ect (including changes produced in the
Ogden-Roxburgh model) was implemented in the package ANSYS. The developed algo-
rithms made it possible to perform computational experiments devoted to virtual modeling
of the motion of a car tyre on a road with and without taking into account rubber soft-
ening. The experiments demonstrated that the degree of softening was di�erent in these
two cases. Therefore, the stress-strain state of the tyre should be evaluated at each point
of its diameter with account for di�erent degree of softening (Fig. 2). The mechanical
properties of the tyre were assumed on condition that the car tyre was manufactured from
the composite material.

a b

Figure 2: Distribution of the left stretch tensor �elds found with (a) and without (b)
taking into account the Mullins e�ect

Conclusions

Computational experiments show that the softening e�ect in real rubber materials has a
profound in�uence on the stress-strain state of a car tyre and therefore it should be taken
into account when developing the design of a car tyre.
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Abstract

During the hardening period, materials based on cement experience defor-
mation due to heat generation and moisture movement or internal consump-
tion of water by cement. All these processes in�uence the change of material
volume. As a result, these factors can lead to water tightness problems, dura-
bility problems and damage due to frost, which means that numerical simula-
tion of its properties is important problem. So, in order to predict and prevent
these problems, a numerical model should be developed in a proper way. For
example, accurate consideration of heat generation and heat loss should be in-
corporated to calculate the temperature distribution gradients. The �rst goal
of the research is to present numerical model of temperature calculation and
then using this data to estimate thermal dilation and autogenous shrinkage
during the contraction phase. As is well known, creep also in�uences on stress
state for hardening materials and is a relaxation factor during the cooling
period. Finally, the aim is to model a creep e�ect.

1 Introdiction
As is well known early age concrete behaviour may lead to crack initiation within struc-
tures. Scientists have explained it by happening of the high thermal stresses within massive
concrete elements. Such measure as using the cooling of the structure has resulted, in some
cases, in the surface cracks due to the internal restraints. All these processes happen due to
the volumetric deformation within casting concrete structure. and can result in deteriora-
tion and damage in structure or degradation of the serviceability. Meanwhile, the presence
of cracks and their propagation should be controlled in the details. Generally, to predict
and prevent deterioration mechanisms it is signi�cant to model early age deformation in
casting concrete and understand the mechanism of deformation occurrence.
The total deformation in young concrete consists of stress-dependent and stress indepen-
dent deformations. Two driving forces such as thermal dilation and shrinkage are included
in the stress-independent deformation and creep e�ect makes a contribution in stress inde-
pendent deformation. These deformations depend on the temperature history. There are
two methods of determination of the temperature distribution in a structure. One of them
is to solve the heat transfer equation, another is applying the heat balance. The describing
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of these methods for young concrete could be �nd in references literature [1] � [3]. In this
paper the heat balance is used for �nding of the temperature �eld.
The empirical equations for estimation of the concrete shrinkage have been developed
in many theses. E.Holt [4] has described the understanding of the mechanisms due to
shrinkage under no moisture movement from or to surroundings (autogenous shrinkage).
H.Hedlund [5] has shown the evaluation of shrinkage in three di�erent ways. For example,
as a function of relative humidity, based on degree of reaction and combining these methods.
In the article, modelling of shrinkage was made by maturity function without moisture
transfer through a structure.
The investigation of creep could be carried out by di�erent methods, such as Rate of �ow
method (RF), E�ective modulus method (EM) , Method of superposition, Rate of Creep
method (RC), Improved Dischinger method (ID), Trost-Bazant method (TB), Rheological
models (RM) and Double power law (DPL) model. In the paper, the calculations of creep
e�ect are made by DPL-model.
The main task here is to develop the model for accurate calculations of stress-dependent
and stress-independent deformations.

2 Model for temperature pro�le

As was mentioned in the introduction the distribution of the temperature is determined by
the heat balance between the heat development due to the hydration reactions and heat
loss with surroundings.
The factors a�ect the temperature distribution in the young concrete are:

1. thermal properties (heat of hydration, conductivity and heat capacity);

2. geometry and size of structure;

3. boundary conditions (air temperature, formwork, insulation, and etc);

4. initial conditions (fresh casting temperature).

Hydration process could be presented through the hydration degree which is determined
as the ratio of the hydration heat to the ultimate hydration heat.

α(t) = Q(t)
Qu(t)

where α(t) is the degree of hydration at time t, Q(t) is the heat of hydration at time t,
Qu(t) is the ultimate heat of hydration.
Heat of hydration is presented as exponential function in the form [6]

Q(t) = Q∞ · e
[
−
(

τ
M(t)

)α]

where Q∞ is the total value of the heat generation, τ and α are the model parameters,
M(t) is the maturity function describing the e�ect of the temperature on the rate of the
heat reactions.
Maturity function based on Arrhenius equation is written as [7]

M(t) =
∫ t

0 e
−E(T )

R
·
(

1
T (τ)
− 1
Tref

)
· dτ
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where E(T) is the activation energy and equal to

A+B · (T − 20) for T > 20◦C or A for T < 20◦C,

Tref is the reference temperature, T(τ) is the function of the temperature, R is the universal
gas constant.
In this paper, it is proposed that the heat loss from structure to surroundings takes place
due to convection. Newton's law de�nes the heat transmission to surroundings as

q = hc · (TS − TA)

where q is the convective heat �ux per unit area A, hc is the convective coe�cient, TS
and TA are the surface temperature against environmental temperature. Regarding the
di�erent temporary covers the equivalent convective coe�cient h′c is found as [8]

h′c = 1
h·A +

∑n
i=1

Li
ki·A

where Li is the thickness of i-curing cover and ki is the conduction coe�cient of i-material.
Regarding the initial conditions, next conditions are used

T (x, y, t0) = T0

Finding the temperature pro�le with regarding the a�ects described early are made by the
next equation

T = Tinit +
∫
dTdev −

∫
dTloss

where Tinit is the casting temperature,
∫
dTdev expresses the increase of the temperature

due to the chemical reactions,
∫
dTloss expresses the decrease of the temperature due to

the heat loss.

3 Model for stress-independent deformation

In the hardening concrete, there are two driving forces involves the time-dependent defor-
mation that in�uence the crack initiation. If we consider isothermal conditions (T=const),
autogenous shrinkage e�ects alone, under normal conditions, where temperature changes
occasionally, thermal dilation and autogenous shrinkage operate to produce stresses [3]

εtot = εT + εas,

where εtot� total deformation, εT � thermal deformation and εas� autogenous shrinkage.
Larson's method can be used to describe the thermal deformation in the details. This
method applies only for contraction phase and does not consider the warm period. Tensile
stress occurs from �second zero stress time t2� and after �second zero stress temperature
T2� .
Time t2 is more than time t1 when structure starts cooling (see Fig. 1) and could be ex-
pressed as [9]

T2 − Ts = k2 · (T1 − Ts)

343



Proceedings of XLIII International Summer School�Conference APM 2015

Figure 1: Temperature distribution in hardening period. Tensile stress occurs after
time t2 .

where Ts is the temperature corresponding to time ts, T1 is the maximum temperature on
the surface of the structure and k2 = 1.41− 1.36 · (w/b).
k2 - factor as we could notice depends on the cement type and has been developed in
Sweden. After calculation T2, at a given point of time t3 (t3 > t2), thermal dilation is
found as [3]

εT = αT · (T3 − T2)

where αT is the thermal expansion coe�cient.
The thermal expansion coe�cient αT depends on the type of aggregate and as a literature
indicates is in range of (5.6− 13) · 10−6 1/◦C, but if αT is unknown, in this case, standard
value 10 · 10−6 1/◦C is used for calculations.
In the hydration process, in spite of the thermal deformation the changes in volume may
exist due to shrinkage which occurs because of the moisture transfer through a structure
or internal consumption of water by cement. Process of a concrete volume change when
moisture �ow is negligible is called autogenous shrinkage. It is only a result of internal
chemical and structural reaction of the concrete composition.
The evaluation of the autogenous shrinkage is determined, in this paper, as a time function
based on the hydration rate. The autogenous shrinkage starts to develop is in the interval
from 9 to 24 hours. As a rule, starting time for autogenous shrinkage development is
usually chosen to be 24 maturity hours after casting. The autogenous shrinkage εsh(t) as
a function of time may be written as [5]

εsh(t) = εsu · βs0(t) · βST (T )

where εsu is the �nal value (ultimate) of autogenous shrinkage,
βs0(t) is the relative time of autogenous shrinkage development,
t is the age of concrete.
Distribution of the autogenous shrinkage as a function of time is expressed [5]

βs0(t) = e
−
(

ts0
t−tstart

)ηsh
where tstart is the starting time of autogenous shrinkage development (arbitrary time, but
not before t0),
ts0, ηsh are the empirical constants. For di�erent concrete composition, these values could
be taken from paper [5].
The temperature e�ects on the autogenous shrinkage may be de�ned by [5]
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βST (T ) = a0 + a1 · (1− exp(−(T/T1)b1)) + a2 · (1− exp(−(T/T2)b2))

The total deformation from time t2 to t3 is �gure out in the next form [3]

ε(t2, t3) = εT + ε(t2, t3)

4 Model for stress-dependent deformation
When concrete is subjected to constant loads, further deformations will develop after the
instantaneous deformation. This phenomenon, of the viscoelastic behaviour, is well known
as a creep. Fig.2 shows that the creep is partly reversible deformation. Reversible defor-
mation is relatively small, but it is signi�cant to consider the viscoelastic behaviour of the
immature concrete in order for accurate calculations.

Figure 2: Compressive creep and creep recovery of a HPC specimen.

In this investigation, Double power law (DPL) is used and the basic creep of concrete is
determined by the creep function as [3]

J(t, t′) = 1+φ(t,t′)
E(t′e)

and φ(t, t′) = φ0 · t′−d · (t− t′)p

where te is the maturity function (or equivalent time), t′e is the maturity time at loading.
t is the actual time, t' is the actual time when the stress increment is applied, and φ0, d
and p are the DPL model parameters.
Deformation re�ects the creep could be written in the next way

ε =
∫ t

0 J(t, t′) · dσ(t′)

5 Simulation results
In this research the in�nite wall is considered. It means that only the wall thickness is
considered in calculations. Calculations are made for 28 days. Input data are used for
concrete B65. The wall thickness is equal to 4m, the insulation thickness is equal to
0.012m (see �g.3). Thermal conductivity of wood and for hardening concrete are equal to
0.67 kJ/(m·h·◦C) against 5.9 kJ/(m·h·◦C). The heat capacity is equal to 0.84 kJ/(kg·◦C).
The analyzed concrete wall consists of cement density - 450 kg/m3, water density -
160 kg/m3 and the total density of the concrete mix is equal to 2610 kg/m3. It is supposed
that in 28 days after casting the wooden insulation is removed . In accordance with the
hydration model next parameters are used: α = 2.45, τ = 10.99 h and Q∞ = 314 kJ/kg
cem. For calculations of the activation energy A=33.5 kJ/mol and B=1.47 kJ/mol·◦C.
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Figure 3: The scheme of the concrete wall.

The total strain involves in the stress independent deformation is calculated by using the
next coe�cients:ts0=120 h, tstart=24h, ηsh=0.3, a0=0.4, a1=0.6, a2=0.1, b1=2.9, b2=7,
T1=9◦C, T2=55◦C. Calculations of the creep e�ect based on the next parameters:φ0=0.33,
d=0.27, p=0.56.
The modelling of the temperature and deformations are carried out under di�erent envi-
ronmental temperatures T1 and T2 (see.Fig. 3) where T1=12◦C and T2=16◦C. The initial
temperature of the concrete wall is equal to 15◦C.

Figure 4: Surface of the temperature distribution through a wall .

Fig. 4 represents the changes in temperature in a wall over the time. Various temperatures
in massive concrete occur because hydration, i.e. exotic reactions generated huge amount
of heat. The core of the massive concrete elements become hot due to concrete has low
thermal conductivity and then it cools down due to dominate of heat loss under heat of
hydration. In 28 days the the temperature pro�le is a linear function.
Graph 5 shows the autogenous shrinkage against thermal deformation. The total strain,
in accordance with the equation - ε(t2, t3) = (T3 − T2) · αT + ε(t2, t3) is a little bit more
than the thermal strain.
According to DPL-model creep function is calculated and shown on the Fig. 6
Proposed model for the calculations of the thermal strain and viscous deformation as a
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Figure 5: Parts of time-independent deformation.

Figure 6: Creep function.

creep in the concrete wall allows to make thermal-stress analysis for concrete wall more
accurately.
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Abstract

The Russian space program lunar exploration involves automatic soft land-
ing on the moon surface of the spacecraft (SC) "Luna-Glob". On-board control
system of motion SC is created to implement this task. Integrated on-board
computer system is processed measurements of two sets of inertial units, ve-
locity and range Doppler devices. The output parameters of computer system
are using for control of SC jet engines: correction and brake, two engines soft
landing, four engines correction and stabilization and eight engines stabiliza-
tion. The HILM system of �ight control enabled to begin debug stage of the
automatic landing software prior to the creation and assembly of complete sets
of equipment SC "Luna-Glob".

Introduction

According to Russian Lunar space program â��Luna-Globâ�� spacecraft should perform
automatic soft landing on Moon surface. Onboard propulsion control software (OMCS)
is developed for this purpose. Onboard propulsion control software should function as a
part of integrated onboard computer (BIVK) in real-time mode. BIVK performs trajectory
measurementsâ�� processing and then generates commands for engine control system. De-
velopment and debugging of complex algorithms for onboard devicesâ�� control is needed
to perform onboard software veri�cation. Usually this problem is handled after spacecraft
had been constructed and tested. This research suggests parallel software veri�cation and
onboard hardware development.

1 Structure of propulsion control system

Propulsion control system is on of onboard control complexâ��s (OCC) subsystems.
Where:
1 - Electronic unit of drive control,
2 - Pyrotechnics explosion and automatics unit,
3 - Onboard Radio Complex.,
4 - Control Assembly,
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Figure 1: Luna-Glob spacecraft onboard systemsâ�� scheme

5 - Antenna attitude control unit (operates after landing),
6 - Correcting and braking engine thrust control unit,
7 - Jet engines,
8 - Controller,
9 - Relay command matrix,
10 - Remote terminal,
11 - Thermal regimes maintenance facilities,
12 - The TV shooting,
13 - Power supply system,

Spacecraft propulsion control system includes:
- Integrated onboard computer (incorporating two subsets) includes,
- Measuring equipment:
+ Two subsets of solar sensors;
+ Two subsets of unit positioning BOKZ stars;
+ Two subsets of strapdown inertial unit BIB;
+ Doppler velocity and distance meter DISD;
- BIVK software performing measuring toolâ��s information �ltering and processing, cal-
culation of spacecraftâ��s orientation in inertial space and various reference frames, cal-
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culation of algorithm controlling parameters, elaboration of controlling criterions or com-
mands;
- Executing tools:
+ 1 correction and engine brake (KTD);
+ 8 stabilizing engines;
+ 4 correcting and stabilizing engines ;
+ 2 soft landing engines;
- Surface contact detectors mounted on 4 landing legs.
Information from measuring tools goes to IOC via MIL-STP-1553 multiplex data bus
system where IOC is bus controller and all measuring tools are remote terminals. All
controlling criterions and commands made in IOC go via MIL-STP to Control Assembly
which forms real-time commands for electric automatic units performing direct control of
drive and electric pneumatic valves of engine unit. Spacecraft onboard systemsâ�� block
scheme is depicted in Fig 1.

To provide propulsion control systemâ��s functioning onboard computer has to work
within 50 Î¼s time cycle. In one cycle onboard computer must receive information from
measuring tools, perform its �ltering and processing, complete calculations for controlling
algorithms, form controlling criterions and commands and send it to Control Assembly [1].

2 â��Landingâ�� propulsion control mode

â��Landingâ�� session moves spacecraft from Lunar orbit to its surface. The session
includes preparatory operations and some speci�c parts of propulsion control. That is why
landing session includes three sequential stages: 3-axis stabilization, main braking mode
and precise braking mode. Landing scheme is depicted on Fig. 2.
Expected landing sites are located in the Southern lunar hemisphere in Boguslavskyâ��s
crater. Several conditions should be met at the moment when landing legs touch lunar
surface:
- Vertical speed must be in the range of 1 ... 3 m/s,
- Horizontal velocity should not exceed 1 m/s,
- Angle between spacecraft OX axis and gravitational normal vector should not overcome
7Â°,
- The direction of the spacecraft center to the earth should be located near the plane of
the spacecraft XY plane.
Propulsion control in this session is performed with the help of onboard computer BIVK
(two subsets), two astronavigation instruments BOKZ (on preparation stage), two subsets
of strapdown attitude reference system (BIB) and Doppler velocity and distance meter
during the terminal part. Spacecraft orientation at every part of landing session is de�ned
by controlling algorithms with the help of information obtained from measuring tools [2].

3 Experimental testing of software and hardware
models

Planning, organization and realization of every test at every stage of spacecraft â��Luna-
Globâ�� unitsâ�� experimental testing should take in account peculiarity of every single
test in order to obtain maximum volume of information to comply with requirements
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Figure 2: Landiing scheme

speci�cation. A hardware and software modelling stand has been built at Keldysh Institute
of Applied Mathematics in order to meet this objective.

Figure 3: Testing stand structure

Stand structure depicted in �g. 3 includes hardware model of general MIL-STP-1553
data bus, general Ethernet bus and two technological RS232 channels. All engineering
and simulation models are plugged to MIL-STP-1553 bus. Usage of spacecraft unitsâ��
engineering models is limited due to limitations of their usage on Earth surface instead of
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Figure 4: Engineering models of BOKZ astronavigation instrument and strapdown
attitude reference system (BIB).

open space. That is why some unitsâ�� engineering models are substituted by software
simulation models.

Every software simulation model is a single PC with software simulating results that should
be produced by unitâ��s engineering model. Information tra�c between engineering mod-
els and software simulation models goes via MIL-STP-1553 data bus in real-time mode.
General Ethernet bus and RS232 channels are used to load onboard software and for in-
formation transfer in order to synchronize calculation processes.

Stand depicted in �g. 5 is controlled by a separate PC working as a server. Modelling
results visualization is performed on the other PC â�� it creates 3D graphics depicting
landing process in real-time mode (see �g. 6).

Measuring tools mounting and orientation errors as well as functioning errors within re-
quirements speci�cations for each tool have been variated during modelling process [3].

Conclusion

Hardware and software modelling allowed to perform propulsion control system software
debugging before building whole Luna-Glob spacecraft which signi�cantly shortens onboard
software testing period. Hardware and software modelling stand developed in Keldysh
Institute of Applied Mathematics has been used for assembled onboard software debugging
in real-time mode with concurrent usage of spacecraft unitsâ�� engineering models and
their software simulation models.
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Figure 5: General view of the testing stand
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Figure 6: 3D visualization of Lunar landing session modelled by hardware and
software modelling stand.
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Abstract

The motivation for this work stems from the o�shore wind industry, where
designers are faced with a discrepancy between the available design methods
and the typical dimensions of the o�shore wind foundations that call for other
design approaches. Throughout the years, much valuable work has been per-
formed in the prediction of long, slender, �exible piles which are most often
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applied in the �eld. For the large-diameter rigidly behaving `caisson' founda-
tions, less methods are available. These two types of piles (�exible and rigid)
interact in a fundamentally di�erent way with the soil. The fact that the ob-
served fundamental frequencies of installed o�shore wind structures are higher
than designed for, is believed to con�rm the underestimation of sti�ness asso-
ciated with the often used `p-y' design method.

For the damping related part, being it a more complex mechanism, there
is even more uncertainty. As a result, conservative low damping ratios are as-
sumed during design. Though it is less straightforward to measure the damp-
ing ratios of installed turbines, the published values range from a factor of 1
to 4 with respect to the value used in design. Like for sti�ness, empirical re-
lations were derived to estimate damping in the 1970s and 80s based on more
advanced 2D and 3D models in combination with �eld tests and the previously
mentioned p-y curves. Again, these relations are restricted to �exible piles,
where the pile tip is assumed to be �xed.

To capture the interaction for the currently applied pile dimensions, it is neces-
sary to simulate the 3D interaction between the pile and the soil, and perform
full scale tests. The latter are not yet available, but results of a few campaigns
are expected in the near future. Advanced 3D numerical models are avail-
able, and for the purpose of physical insight and for engineering applications,
it is useful to extract a 1D equivalent model that can mimic the 3D simulation.

In this work, a linear elastic dynamic 3D FE model of a pile-soil system is
used to extract the static and the frequency dependent displacements. The
FE domain is surrounded with perfectly matched layers (PMLs) that absorb
the propagating waves at the boundaries for the relevant frequencies of ex-
citation. The soil properties of a design location are used, which have been
identi�ed using seismic measurements. A method for the derivation of a 1D
equivalent dynamic sti�ness (i.e., a Winkler model with distributed springs
and dashpots) is derived thereafter. The results obtained with the 1D model
for the static response and for a dynamic case are compared to the response
of the 3D FE analysis.

1 Introduction
The fundamentally di�erent behaviour between long, slender piles and those with a small
ratio of embedded length L over diameter D is widely recognized. Many parametric stud-
ies have indicated that this L/D ratio, together with the ratio of the pile sti�ness over
the soil sti�ness is what determines the characteristic response. Pile �exibility factors [1]
and characteristic lengths [2] can be calculated to predict the typical response (whether
rigid or �exible behaviour is to be expected). In general, piles with a small L/D ratio
(L/D < 7 for most soil-steel sti�ness combinations) bend in a rigid way, interacting on
a more global scale with the soil, whereas the displacement and moment distribution of
�exible piles can be attributed to local soil reactions. The motivation for the here pre-
sented work stems from the o�shore wind industry, where rigid behaving foundations (with
4 < L/D < 7) are designed based on design methods that were developed for �exible long
piles with L/D ≈ 30. In general it holds that many more thoroughly tested methods
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have been developed for �exible piles (the most often applied type of pile) than for rigid
behaving piles. Not much full-scale testing has so far been performed on rigid behaving
piles; however, current numerical (Finite Element Methods (FEM)) competences are more
and more capable of capturing the complex 3D nature that characterizes the global soil
reaction [8]. This is not only the case for the static reaction; due to successful mitigation of
re�ections at the boundaries, also dynamic analyses can be performed with higher levels of
con�dence. Also complicated poro-elastic mechanisms (contributing to both the sti�ness
and damping characteristics of the soil-structure interaction (SSI)) have been modeled in
3D numerical models [3]. However, as previously mentioned the full-scale testing database
needs to become available to fully validate the developed models.

The 3D models are well �t to capture a more realistic response for a certain load case.
Nevertheless, their high computational cost makes them incompatible with engineering
design. For instance, in the o�shore wind industry up to 10.000 simulations of 10min-time
responses are run for a single design location and iteration. Despite e�cient upcoming nu-
merical substructering techniques [4], it is for many designers not yet feasible to incorporate
full 3D numerical models in these kind of design simulations. This is one of the reasons
that a more simple and fast equivalent `engineering' model is desired. The second reason
would be the fact that due to the simpli�cation, often more physical insight is gained in
capturing the complex 3D nature in a 1D model. In this work, we choose to match the
response with a 1D model (and not for instance, a lumped parameter model with discrete
springs at the mudline) as this allows to assess the stress distribution in the embedded
pile, which is also often assessed in design. Besides these advantages, the coupling terms
between the translation and rotation are automatically incorporated.

Before we can build a 3D model, we need to �nd the continuum (soil) input parameters.
This is shortly discussed in Section 2, where we advocate the use of seismic measurements
(besides the usual geotechnical in-situ testing) to capture the dynamic properties of the
soil. Section 3 gives a brief description of the linear elastic 3D model that incorporates
material and radiation damping, and e�ciently deals with the re�ective boundary problem.
Then, being the emphasis of this contribution, the translation method of both the static
and the complex (dynamic) 3D modeled response into an equivalent 1D model is given in
Section 4. Then, Section 5 closes the paper with a discussion on the presented results.

2 Soil characterization
In this paper we focus on the linear reaction regime of the soil, as it is this regime that
de�nes the modal response of the support structure. To extract the linear elastic properties
of a certain site, we suggest to perform in-situ seismic measurements along with the usual
geotechnical testing procedures (i.e. Cone Penetration Tests (CPT) and laboratory test on
borehole samples). The latter are useful for (local) strength parameters, strati�cation and
density estimation, whereas the seismic measurements capture the true dynamic, small-
strain characteristics of the soil.

We emphasize the advantage of in-situ seismic measurements because of two reasons:
�rstly, the in-situ characteristics are always disturbed when retrieving soil samples. Sec-
ondly, depending on the frequency of interest, it might be challenging to test soil samples
in a laboratory without including sample-boundary e�ects. It is favorable to be able to
capture at least one wave length within a sample, but for the low frequencies (< 1 Hz),
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shear-wave lengths are typically in the order of several hundreds of meters (λ = Vs
f , with

λ the shear wave length, Vs the shear wave velocity and f the frequency of interest).

Multiple seismic measurement set-ups exist, among which are Multi-Channel Analyses
of Surface Waves (MASW), P&S logging, cross/down/up-hole measurements and the Seis-
mic Cone Penetration Test (SCPT). All these tests have their own inversion techniques.
In [5] an inversion method for SCPT data is given.

For this paper, we use a soil pro�le which was identi�ed using SCPT data (to be pub-
lished in the near-future). The elastic parameters of this pro�le are given in Figure 1.
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Figure 1: Pro�les of the elastic parameters used in the 3D model; density ρ (left
panel), Young's modulus E (middle panel) and Poisson's ratio ν (right panel).

With these elastic continuum parameters (Young's modulus E, density ρ and Poisson's
ratio ν) at hand, we are ready to construct a 3D elastic model.

3 3D model
For the large diameter rigidly behaving foundations, we need to incorporate 3D e�ects; the
interaction between soil and the large foundation mobilizes more global reactions of the
soil instead of local (as is the case for slender piles). This more rigorous model consists of
a 2D axisymmetric domain, in which both the soil as the pile are modeled with solid �nite
elements [6]. To avoid re�ections at the edges of the domain, Perfectly Matched Layers
(PMLs) (as de�ned in [7]) are added to the outer boundary of the domain. For very low
frequencies, the PMLs are replaced by elastic layers whose dimensions are large enough so
that the �ctitious boundaries do not in�uence the results. In order to keep the calculation
times small, the size of the elements composing these bu�er layers are made successively
larger as the distance to the pile increases. The loading scenario of interest is a horizontal
load F at the free end of the pile and a bending moment m at the same end. In the more
realistic scenario, these loads can be expressed in terms of radial FR, tangential FT and
vertical FV forces as

F = R

2π∫
0

(FR (θ) cos θ − FT (θ) sin θ) dθ, (1)
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m = R2

2π∫
0

FV (θ) cos θ dθ, (2)

where θ is the angle with respect to the horizontal direction of the load F , and R is the
radius of the pile. Assuming that the horizontal force F is equally distributed along the
perimeter of the pile, then the radial and tangential forces are of the form

FR (θ) =
FH
2πR

cos θ, (3)

FT (θ) =
FH
2πR

sin θ. (4)

Likewise, the force FV can be described with the cosine of θ as

FV (θ) =
m

πR2
cos θ. (5)

The Fourier expansion of FR, FT and FV leaves us only with terms of �rst order, and
therefore the axisymmetric problem needs to be solved only for the �rst Fourier term, as
explained in reference [6]. Solving this axisymmetric problem is computationally more
e�cient than solving a complete 3D problem (much smaller linear systems) and produces
as accurate results (if not better), provided that the true force distributions along the free
end of the pile are as assumed.

For this example, the material damping for both pressure as shear waves was set equal
to a ratio of 1%. The soil pro�le as given in Figure 1 was used. The embedded pile length
was set on 32m and its diameter and wall-thickness on 5m and 6cm respectively, giving
an L/D ratio of 6.4, which can be considered a rather rigid pile in typical soil conditions.
Of course, also typical steel properties were given to the pile; a density of 7850kg/m3,
a Young's modulus of 2.1 × 1011N/m2 and a Poisson's ratio of 0.3. The vertical model
boundary (horizontal plane) was set at 50m depth. Figures 2 and 3 give a qualitative
impression of the 3D pile de�ection, and soil-stress response respectively.
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4 An equivalent 1D model

In this paper, the method for �nding an equivalent beam on Winkler foundation is demon-
strated for the case that only a unit horizontal force of 1N is applied at the top of the
pile with a frequency of 0.2 Hz. As the level of the top of the pile in the 3D model is
1cm above mudline, a small bending moment is also applied at mudline. We will only
use the averaged 3D horizontal displacement (the centerline of the pile, which is found by
averaging the nodes of the cross-sections). This displacement and its derivatives are used
within the Euler-Bernoulli formulations for a beam. Though the resistance mechanisms of
the soil are quite complex in reality, we will, like often done in engineering models, limit
ourselves to only considering distributed lateral springs. To ensure an equilibrium of forces
at the boundaries, we do allow discrete lateral and rotational springs at these locations.

First, a static reaction is calculated in the 3D model, in order to �nd the static soil sti�ness
ks(z). Afterwards, a forcing at a frequency of 0.2 Hz is applied. It is then attempted to
match both the real as the imaginary part of the resulting 3D de�ection in the 1D model
by �nding an equivalent dashpot distribution c(z), assuming that the sti�ness in this case
can still be adequately described by the previously found static sti�ness ks(z). Again, we
only consider lateral dashpots, including complex discrete lateral and rotational springs at
the boundaries. A schematic view of the 1D model is given in �gure 4.

E I 

ks(z) 

z = L 

u(z) 

F 
m 

z = 0 

Ktip 

x 

c(z) 

ρA 

Ktop 

Krtip 

Krtop 

Figure 4: Schematic view of the equivalent 1D model

The material damping in the 3D model was set to a ratio of 1%, by making the Young's
modulus of the soil complex. It was implemented as a hysteretic (frequency independent)
damping, so also the damping term in the equation of motion (EOM) that will be considered
for the beam will be of the hysteretic type. The EOM, considered in the frequency domain,
thus reads

EI
∂4u(z)

∂z4
+ (ks(z) + ic(z)− ω2ρA)u(z) = 0, (6)
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in which u(z) is the complex amplitude of the displacement in the frequency domain, c(z)
the depth dependent hysteretic dashpot value, i the imaginary number (

√
−1), ω the an-

gular frequency of the applied load, E the Young's modulus of the steel of the pile, ρ the
material density of the steel of the pile and A and I respectively the area and the second
moment of area of the cross section of the pile.

The following boundary conditions (BCs) apply:

EI ∂
3u
∂z3

∣∣∣
z=0

= F −K∗topu(0), (7)

EI ∂
2u
∂z2

∣∣∣
z=0

= m+Kr∗top
∂u
∂z

∣∣∣
z=0

, (8)

EI ∂
3u
∂z3

∣∣∣
z=L

= K∗tipu(L), (9)

EI ∂
2u
∂z2

∣∣∣
z=L

= −Kr∗tip ∂u∂z
∣∣∣
z=L

, (10)

in which the `∗' in K∗top, etc. indicates that these discrete lateral and rotational springs
are complex-valued dynamic sti�nesses. The magnitude of these springs can be calculated
directly using the values of the 3D complex u(z) and its derivatives at these locations. This
ensures that the force and moment equilibria at the boundaries are satis�ed according to
the Euler-Bernoulli beam theory. The magnitude of the distributed springs and dashpots
cannot be directly computed due to the fact that u(z) often (for many soil-pile-forcing
combinations) has a zero-crossing at a certain depth, which will result in singular values
and negative sti�ness. We thus try to �nd an equivalent ks(z) and c(z) by taking integrals of
the EOM over certain parts of the pile. As mentioned previously, �rst the static distributed
sti�ness is found by considering the static displacement of the 3D model. Afterwards, it
is assumed that this ks(z) still applies for the dynamic reaction of the soil. Here, we will
describe the method for �nding c(z), but ks(z) is found in the same way, (the inertia and
damping terms are set equal to zero, and the spring constants of the discrete springs in the
BCs are real). Note that for the dynamic case only ks(z) is used from the static calculation;
the discrete springs are recalculated based on the complex de�ections (equations 7 to 10).
Then, in looking for the magnitude of c(z), we assume a `free' polynomial form:

c(z) = p0 + p1z + p2z
2 + p3z

3 + p4z
4. (11)

This expression has 5 unknowns, so we preferably need 5 equations to �nd these constants.
As indicated, we use integrals of the EOM; 2 global integrals (from pile top (z=0) to pile
tip (z = L)), and 3 local integrals with variable, yet unknown integration bounds. When
taking the integral of the EOM (equation 6) over the full length of the pile (from 0 to L)
and substituting the BC's where possible, we obtain

∫ L

0
c(z)u(z)dz =

{
− EI ∂

3u

∂z3

∣∣∣∣
L

+ EI
∂3u

∂z3

∣∣∣∣
0

−
∫ L

0
ks(z)u(z)dz + ρAω2

∫ L

0
u(z)dz

}
/i

=

{
−K∗tipu(L) + F −K∗topu(0)−

∫ L

0
ks(z)u(z)dz + ρAω2

∫ L

0
u(z)dz

}
/i,

(12)

However, when computing c(z) in this way, it will become complex due to the fact that
u(z) and its derivatives are complex. To avoid this, only the real parts of the left hand
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and right hand sides of the above equation are considered;

Re(

∫ L

0
c(z)u(z)dz) =

Re(

{
−K∗tipu(L) + F −K∗topu(0)−

∫ L

0
ks(z)u(z)dz + ρAω2

∫ L

0
u(z)dz

}
/i).

(13)

This is the case for all the integrals we take, so the `Re' indication will be omitted here
after. The second integral is equal to the �rst, but multiplied with z. By doing so, we
consider a moment equilibrium instead of a force equilibrium as in equations 6 and 12.
Integrating by parts and substituting the BC's where possible, we get∫ L

0
zc(z)u(z)dz ={
− zEI ∂

3u

∂z3

]0

L

+ EI
∂2u

∂z2

]0

L

−
∫ L

0
zks(z)u(z)dz + ρAω2

∫ L

0
zu(z)dz

}
/i ={

− LK∗tipu(L)−Kr∗tip
∂u

∂z

∣∣∣∣
L

−m−Kr∗top
∂u

∂z

∣∣∣∣
0

−
∫ L

0
zks(z)u(z)dz + ρAω2

∫ L

0
zu(z)dz

}
/i,

(14)

Now, for the other 3 equations, the same integrals are taken, but with variable integration
bounds, focusing on a local part of the pile. The third integral is similar to equation 12
with bounds that are `swept' with a stepsize ∆L focusing on the top of the pile. Hence,
the lower integration bound z(1)

f,t (`f ' for `force', `t' for top and `(1)' for lower integration
bound) will start at the top of the pile (z = 0) and the upper will sweep until just above
the tip. So,

z
(1)
f,t = 0 .. ∆L .. (L− 2∆L),

z
(2)
f,t = z

(1)
f,t + ∆L .. ∆L .. L−∆L,

(15)

Similarly, a local integral of the moment (like equation 14) is computed for the top of the
pile, and the 5th integral is also an integral of the moment, but than including the tip of
the pile, and not the top. With the 2 global and these 3 local integrals, we have 5 integrals
that give a linear set of equations in p0..p4 (equation 11) and a resulting c(z) for every
combination of the integration bounds. All combinations of the 6 integration bounds are
evaluated. Every found c(z) is veri�ed to be positive de�nite, and if so, the corresponding
complex de�ection and rotation are calculated according to equations 6 to 10, including
the previously found complex discrete springs and ks(z). For the found de�ection and
rotations of the 1D model, the quality of the �t is assessed by considering the cost of the
�t as

Costu+u′ = Costu + Costu′ =

∑i=L
i=0 |u3D,i − u1D,i|
2
∑i=L

i=0 |u3D,i|
+

∑i=L
i=0 |u′3D,i − u′1D,i|
2
∑i=L

i=0 |u′3D,i|
. (16)

This cost is calculated for both the imaginary as the real parts of the de�ection and rota-
tion separately.

When following this procedure for �nding the static sti�ness, ks(z), we get the `best'

362



Method for extracting an equivalent Winkler model of the 3D dynamic
soil-structure interaction of large-diameter o�shore monopile foundations

sti�ness pro�le as given by Figure 6. The sti�ness pro�les given in Figure 6 results in a
�t of the displacement u and the rotation (the �rst derivative of the displacement with
respect to z) u′ as given in Figure 5. This solution was found by sweeping the integration
bounds with a stepsize of ∆L = 1.92m.
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Figure 5: Static de�ection u (left panel) and rotation u′ (right panel): comparison
of the 3D and the equivalent 1D model.

Continuing the above described procedure for the dynamic de�ection, resulting from ex-
citing the 3D pile with a unit lateral force (1N, no moment) at a frequency of 0.2 Hz,
the c(z) that gives the best solution when sweeping the integral bounds with a stepsize of
∆L = 2.13m, is given in Figure 6. This Figure also includes ks(z) to be able to compare.
Please note that the values of ks(z) are an order 100 larger than c(z), and that the unit is
di�erent.
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Figure 6: Resulting ks(z) from the static comparison of the models, and the `best'
c(z) for the case of a dynamic excitation of 0.2 Hz.
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The corresponding �t between the imaginary parts of the 3D and 1D complex de�ection is
given in Figure 7, and the �t of the real parts of the complex rotations are given in Figure
8.
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Figure 7: Comparison of the imaginary parts of the de�ection (left panel) and
rotation (right panel) of the 3D and the equivalent 1D model.
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Figure 8: Comparison of the real parts of the de�ection (left panel) and rotation
(right panel) of the 3D and the equivalent 1D model.

5 Discussion & Conclusions
From the presented Figures (5 to 8) we see that a reasonable correspondence is found be-
tween the static de�ection and rotation of the 1D and 3D model in case a unit horizontal
force is applied at the top of the pile. The cost of the �t of the static displacement over
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the full length of the pile is 0.017, which can be multiplied by 2 to yield the percentage
di�erence (see equation 16); 3.4%. The static rotations show a 6.8% di�erence. Similar
matching e�orts performed by Varun et al. [8], yielded a di�erence in static displacement
at the top of the pile of 14.0%, and a di�erence in rotation at the same location of 8.7%.
If we also only consider the top of the pile, the match in static de�ection at this location
is within 1% and the rotation is �tted within 3.4% accuracy.

When the pile is harmonically excited at 0.2 Hz with the same unit horizontal force ampli-
tude, the real part of the complex response matches that of the 3D model with an overall
10.3% di�erence (10.4% for the displacement and 10.2% for the rotation over the full length
of the pile). However, the �t of the imaginary parts of both the de�ection and the rotation
leave enough room for improvement; 30.2% and 36.4% di�erence in overall displacement
and rotations respectively.

The cause of the discrepancy between the imaginary parts of the complex response will
be investigated. One of the reasons could be that we assume that the static soil sti�-
ness ks(z) (found in the �rst step where the static models are matched) also applies for
the dynamic case. Possibly, this sti�ness needs to be updated for the dynamic loading case.

Another aspect of the presented results that raises questions, is the fact that in order for
the edges of the 3D pile to match the classic Euler-Bernoulli conditions at the boundaries,
negative rotational springs are needed to meet the balance of bending moment (equations
8 and 10). This contradicts our rule of not allowing negative sti�ness in the 1D model.
The fact that the soil reaction indeed causes a bending moment at the tip of the pile (and
also distributed over its length) might not be too surprising. However, the need of the
discrete `balancing' springs at the top of the pile where the load is applied, indicates that
discrepancies exist between the 3D pile mechanisms, and the Euler-Bernoulli theory.
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Abstract

We consider a �exible plate moving across a domain, bounded by two par-
allel lines. Velocities of the plate, with which it is entering the domain and
leaving it, are kinematically prescribed and may vary in space and time. The
deformation of the plate is quasistatically analyzed using the geometrically
nonlinear model of a Kirchho� shell with a mixed Eulerian-Lagrangian kine-
matic description. In contrast to the formulations, available in the literature,
neither the in-plane nor the out-of-plane deformations are unknown a priori
and may be arbitrarily large. The particles of the plate travel across a �nite
element mesh, which remains �xed in the axial direction. The evident advan-
tage of the approach is that the boundary conditions need to be applied at
�xed edges of the �nite elements. In the paper, we present the mathematical
formulation and demonstrate its consistency by comparing the solution of a
benchmark problem against results, obtained with conventional Lagrangian
�nite elements.

1 Introduction
The problem of mathematical modeling of nonlinear deformations of axially moving struc-
tures is both challenging and practically important. Numerous papers deal with the trans-
verse vibrations of axially moving beams and strings, see a review paper by Chen, Ref. [1].
While an extension towards nonlinearly coupled in-plane and out-of-plane vibrations of a
moving plate is presented in Ref. [5], this model is incapable of representing arbitrarily
deformed con�gurations of the plate. Moreover, the use of Lagrange equations of motion
to an open system with in�ux and out�ux of the mass is not justi�ed by the authors of
the latter reference.
Large axial deformation and bending of a beam, which can move across a �xed domain,
is treated by Humer and Irschik in Ref. [6] using a suitable change of variables. We
apply a similar technique for the quasistatic modeling of �nite deformations of a plate,
which is moving across a given domain in the direction x. The velocities of the plate are
prescribed at two boundaries of the domain x = 0 and x = L, see Fig. 1. Rolling of metal
strips, paper production or motion of conveyor belt are a few examples of mechanical
engineering problems, which can make use of model at hand. Non-constant pro�les of
the velocities, with which the particles of the plate are entering the domain ventry(y) and
leaving it vexit(y), lead to the in-plane deformations. For thin plates this results in various
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Figure 1: Deformation of a plate with prescribed velocities at the boundaries
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Figure 2: Two-stage mapping from the reference con�guration to the actual one:
the intermediate con�guration is �xed in space

forms of out-of-plane buckling. Accurate simulations using conventional Lagrangian �nite
element models are di�cult because the boundaries of the domain cross the �nite element
mesh and kinematic boundary conditions need to be imposed inside the elements. The
problem is getting even more prominent as the �nite element simulations are coupled with
a closed-loop control scheme, which is important for practical applications.

2 Mathematical model

In the present study we assume the velocity ventry, with which the plate is entering the
domain, to be constant. In the future, arbitrary velocity pro�les may be incorporated into
the model by using the notion of intrinsic strains and the technique of multiplicative de-
composition of the deformation gradient, see Ref. [7]. The varying velocity pro�le vexit(y),
with which the material particles of the plate are leaving the domain at x = L, leads to
the time varying deformation. Seeking a sequence of quasistatic equilibrium states of the
elastic structure, we need to minimize the total energy of the active region of the plate,
which is currently residing in the considered domain. Not going into details concerning the
time integration, which is intended to be discussed in future publications, we focus on the
kinematic modeling of the deformation of the plate.
The plane reference con�guration 0 ≤ y

◦ ≤ w is straight (w is the undeformed width
and r◦ = x

◦
i + y

◦
j is the position vector in the reference con�guration), see Fig. 2. The

present mixed Eulerian-Lagrangian kinematic description makes use of a �xed intermediate
con�guration with the position vector r̃ such, that the mapping of the positions of particles
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from the reference con�guration to the actual one r = r(r
◦
) comprises two stages:

r̃ = r
◦

+ ux(r̃)i,

r = r̃ + uy(r̃)j + uz(r̃)k.
(1)

Simplicity of this description essentially distinguishes it from the known Arbitrary
Lagrangian-Eulerian formulation, Ref. [2]: neither re-meshing nor transport of mechan-
ical �elds between the time steps are required. All �elds are functions of the place in
the �xed intermediate con�guration, in which a �nite element discretization of the �eld of
displacements u = uxi+ uyj + uzk is performed.
We apply the classical Kirchho� model of a shell with �ve degrees of freedom of particles,
see Refs. [3, 4, 8]. Expressions for the strain measures require the gradient of deformation
of the plate from the reference con�guration to the actual one

F = ∇
◦
rT , (2)

in which

∇
◦

= i
∂

∂x
◦ + j

∂

∂y
◦ (3)

is the di�erential operator of the reference state. As the �nite element discretization is
performed in the intermediate con�guration, we need to express F using the corresponding
di�erential operator

∇̃ = i
∂

∂x̃
+ j

∂

∂ỹ
= i

∂

∂x
+ j

∂

∂y
◦ , (4)

the axial coordinate in the intermediate con�guration x̃ equals the actual one, and the
transverse coordinate ỹ equals the reference one according to (1). Now, the two di�erential
operators are related by the gradient of deformation from the reference con�guration to
the intermediate one F̃ :

∇
◦

= F̃ T · ∇̃, F̃ T = ∇
◦
r̃T . (5)

Finally, total gradient of deformation of the plate with the di�erential operator of the
intermediate con�guration ∇̃ results in the form

F = ∇
◦
rT = ∇̃rT · F̃ ,

F̃ =
(
I2 − i∇̃ux

)−1
.

(6)

Here I2 = ii+jj is the in-plane identity tensor, and the expression for the in-plane tensor
F̃ follows from

I2 = ∇
◦
r
◦

= F̃ T · ∇̃(r̃ − uxi). (7)

The strain measures of a classical shell

E =
1

2

(
F T ·F − I2

)
,

K = F T · b ·F
(8)
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feature the actual second metric tensor b = −∇n, in which n is the vector of unit normal
and ∇ = F T · ∇

◦
is the di�erential operator on the deformed surface. After mathemat-

ical transformations we express the tensor of bending strains with the operator of the
intermediate con�guration:

K = F̃ T · K̃ · F̃ , K̃ = ∇̃∇̃r ·n. (9)

Here we restrict the analysis to pure elastic material behavior. The strain energy of the
plate per unit area in the reference con�guration is computed as a quadratic form

U =
1

2

(
A1(trE)2 +A2E··E +D1(trK)2 +D2K ··K

)
(10)

with known coe�cients, see Refs. [4, 8]. The total strain energy

UΣ =

L∫
0

w/2∫
−w/2

U(det F̃ )−1dỹ dx (11)

is integrated in the intermediate con�guration using the �nite element discretization of dis-
placements u and minimized at each time step of the quasistatic simulation. As discussed
after (16), known velocities of particles ventry and vexit determine the time variations of the
axial displacements ux at the boundaries x = 0 and x = L, which means that the material
volume of the active domain is prescribed for each time step. This allows seeking static
equilibrium con�gurations by minimizing the total strain energy of this material volume,
which is changing during the simulation, but is known for each time step.

3 Time stepping scheme
In a numerical simulation, we discretize the evolution of the system in time and need to
formulate an algorithm of transformation of the solution from one time step tk to the next
one tk+1 = tk + τ . In the beginning of a time step, the �eld of displacements uk(r̃) is
known in the form of a �nite element approximation. Now, each particular material point
moves with the velocity u̇, in which the full time derivative is de�ned for a �xed material
particle as

(. . .)˙≡ ∂ . . .

∂t

∣∣∣∣
r
◦

=const

. (12)

The notion of a local time derivative with �xed r̃ is relevant for the description in the
intermediate con�guration:

∂t(. . .) ≡
∂ . . .

∂t

∣∣∣∣
r̃=const

. (13)

The transformation between the full and the local time derivatives can be easily derived by
considering a �eld u(r̃, t), which is de�ned in the intermediate con�guration. Computing
u̇, we take into account that r̃ = r̃(r

◦
, t) changes in time for r◦ = const, and arrive at

u̇ = ∂tu+ ˙̃r · ∇̃u. (14)

Using the �rst relation in (1) and taking into account that the full time derivative r◦˙ = 0,
we �nd

u̇ = ∂tu+ u̇xi · ∇̃u = ∂tu+ u̇x∂xu. (15)
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This results in

u̇x = ∂tux (1− ∂xux)−1 . (16)

The de�nitions of material and local time derivatives are used to formulate a strategy
for the time stepping. Neglecting the dynamic e�ects, we consider the time evolution of
the deformation of the plate owing to the prescribed velocities at the boundaries of the
domain. Seeking for an equilibrium state at each time step, we minimize the total strain
energy of the active domain UΣ. Although the material of the plate is �owing across the
intermediate con�guration, this approach is justi�ed as the material volume within the
active domain is �xed for the end of the time step. Indeed, according to the boundary
conditions, discussed below, the displacements at the two boundaries of the domain (19)
are known for the end of the time step t = tk+1. This means that the boundaries of the
active domain in the reference con�guration are �xed according to the �rst relation in (1),
and seeking the equilibrium of this material volume is equivalent to minimizing its total
energy.

4 Boundary conditions at a time step

In this section, we discuss the time evolution of the displacements of the plate at the
boundaries of the domain x = 0 and x = L. We interpret the velocity at the entry to
the active domain ventry as the time rate of material generation. This is relevant e.g. for
modeling rolling processes, in which the time rate of the material volume �owing across
a roll gap is known. Owing to the deformation, the particles acquire a di�erent material
velocity after entering the active domain. In contrast, vexit is the material velocity, with
which the particles of the plate leave the domain at the entry to the subsequent roll gap.
The analysis in the present paper is restricted to a particular case of constant entry velocity.
The left boundary of the intermediate con�guration moves across the reference one to the
left with ventry = const, which means that an in�nitesimally thin layer of the plate with
the length ventrydt enters the active domain during the time dt. The local time derivatives
here are known:

x = 0 : ∂tr
◦

= −ventryi, ∂tr̃ = 0; (1) ⇒ ∂tu = ventryi. (17)

We immediately conclude that ux = ventryt and vy = 0 at the left boundary.
At the right boundary we know material velocities, and the local time derivatives follow:

x = L : u̇ = vexiti; (15) ⇒ ∂tu = vexit(i− ∂xu). (18)

It is important to notice, that although the material time derivative here is always directed
along x, the line of contact would still travel in the transverse direction because ∂tu·j 6= 0
as long as the plate is inclined and ∂xuy 6= 0.
In the beginning of a time step t = tk, the local time derivatives ∂tu are available at the
boundaries x = 0 and x = L. Experience shows, that an explicit time integration scheme
for the boundary conditions with a moderately small time step size τ leads to accurate
simulation results, which rapidly converge as τ → 0:

x = 0, L : uk+1 = uk + τ ∂tu. (19)
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Figure 3: Deformation of a trapezoidal plate, seen from above (together with the
undeformed con�guration) and from the side

5 Numerical benchmark problem

While the results of numerical modeling of deformation of axially moving plates will be
reported in future publications, here we test the formulation by seeking the equilibrium
of a trapezoidal plate of the width w and side lengths L and L + ux0, see Fig. 3. The
inclined edge is rotated parallel to the right one by kinematically prescribed displacements
ux and uy such, that the actual con�guration is bounded by the lines x = 0 and x = L;
the length of the edge is preserved constant to avoid large in-plane strains. The mapping
(1) is thus possible with the intermediate con�guration 0 ≤ x ≤ L, 0 ≤ ỹ ≤ w, which is
discretized using C1 continuous �nite element approximation of displacements, presented
by the author in Refs. [8, 9].
The compressed shell buckles out of plane, and the region with uz < 0 is "shadowed" by
the gray initial con�guration in Fig. 3. The transverse edges of the �nite element mesh
remain parallel in the deformed con�guration. This corresponds to the second relation in
(1), as the mapping r(r̃) features only uy and uz.
The considered parameters of the model in SI system are L = 1, w = 0.4, thickness
of the plate 5 · 10−3, Young modulus 2.1 · 1011 and Poisson ratio 0.3. In Table 14 we
summarized the maximal and minimal values of the out-of-plane displacements, computed
for various discretizations using the present method as well as the conventional shell �nite
elements with Lagrangian description, discussed in the above references. These maximal
and minimal displacements take place at the opposite edges of the plate. We initiated out-
of-plane displacements by applying and then releasing a transverse distributed load in the
positive direction of z axis, which determined the direction of buckling in all simulations.
The current implementation of the mixed Eulerian-Lagrangian �nite element formulation
using Wolfram Mathematica is yet restricted concerning the size of the mesh, but one can
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Table 14: Mesh convergence and comparison of the mixed Eulerian-Lagrangian and
traditional Lagrangian frameworks

Discretization, Mixed E.-L. Lagrangian
nx × ny minuz maxuz minuz maxuz
4×2 -0.07270 0.18577 -0.07322 0.18138
8×4 -0.05846 0.18427 -0.05831 0.18256
16×8 -0.05542 0.18319 -0.05527 0.18259
32×16 � � -0.05490 0.18262

conclude that the results converge to the same solution.
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Abstract

The numerical calculations of the �ow�eld in a planar vortex chamber have
been performed. The model is based on conservation laws of mass, momentum
and energy for nonsteady two-dimensional compressible gas �ow in case of swirl
axial symmetry. The processes of viscosity, heat conductivity and turbulence
have been taken into account. It was found that transition of kinetic energy of
gas into heat due to processes of dissipation generates "hot spots" in boundary
layers at the chamber walls. The gas temperature at the spots may exceed the
temperature of gas ignition, while the surrounding regions remain still cold.
It may be the reason of cold gas self-ignition observed in experiments.

1 Introduction
It is known that mixing of a fuel and oxidizer in a cold chamber leads to self-ignition for
some particularly reactive fuel compositions, for example, for �uorine oxidizers [1]. The
most frequently used mixtures of hydrocarbon fuels and hydrogen with air and oxygen ig-
nite only as a result of additional external actions, such as rapid compression by a piston,
compression by a shock wave, a spark, or a contact with a hot body. Spontaneous ignition
of residual hydrocarbon fuels upon their contact with oxygen is known from the experience
of exploitation of oxygen and high-pressure air tanks and pipelines [2]. In these cases,
the phenomenon usually �nds satisfactory explanation in the emergence of sparks due to
accidental solid particles rubbing against the wall or by heating of some portions of the
mixture upon its compression by a high-speed unsteady gas �ow. For the �rst time spon-
taneous ignition of widely used fuel mixtures in a nonheated straight-�ow chamber of the
vortex type was obtained in paper [3]. The phenomenon had been observed accidentally
in experiments on continuous detonation combustion of mixtures, where detonation was
initiated by an electric discharge or by an explosion of a an electric microdetonator after
the mixture �lls the chamber. Examining the streak records of the processes it was found
[3] that the glow in the chambers sometimes appears earlier than the triggering pulse. In
subsequent experiments the regular self-ignition of hydrogen and kerosene was registered
upon their mixing with oxygen-enriched air in a straight-�ow vortex chamber. The nature
of the ignition observed remained unclear. The present paper devoted to numerical cal-
culations of the �ow�eld in planar vortex chamber. The determination of non-stationary
�elds of main thermodynamic parameters allows to �nd possible regions of gas self-ignition.
The geometry and main physical characteristics correspond to experimental data [3].
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2 Problem Formulation

Figure 1: The scheme of the vortex chamber

Let's consider a planar-radial circular chamber (Fig. 1). The chamber has axial symmetry
form, where line A is a symmetry axis. The inner volume has the form of a disc of diameter
d1 = 204 mm and length H = 15 mm. The central outlet in one radial wall had a length
H1 = 42 mm and served to exhaust the products into atmosphere. The outlet diameter
d2 was equal to 40 mm. Gas components were fed into the chamber through circular inlet
surface B (separating the chamber from the receiver) at an angle of 45 to the surface.
The angle ensured rotational motion of the gas mixture in the chamber. The form and
parameters of the chamber correspond to the experimental facility [3]. At the instant t =
0, the entire chamber is �lled by air of density ρ0 and pressure p0. At t > 0, the tangential
injection of air begins from the cylindrical wall r = r1 (the inlet surface B). It is required
to �nd the values of velocity, pressure, density and temperature of the gas as functions of
time. Unsteady motion of viscid compressible turbulent �uid was described by Reynolds
equations [4]:

∂ ~Q

∂t
+
∂~U

∂r
+
∂ ~F

∂z
= ~G (1)

where r, z - radial and axial (along symmetry axis) cylindrical coordinates. The vectors
~Q, ~U, ~F, ~G are de�ned by the equations

~Q =


rρ
rρur
rρuθ
rρuz
rE

 , ~U =



rρur
r(ρu2

r + p− τ11)
r(ρuruθ − τ12)
r(ρuruz − τ13)

r(E + p)ur − r(urτ11+
uθτ12 + uzτ13 + qr)

 , ~F =



rρuz
r(ρuruz − τ13)
r(ρuθuz − τ23)
r(ρu2

z + p− τ33)
r(E + p)uz − r(urτ13+
uθτ23 + uzτ33 + qz)

 ,

~G = (0, ρu2
θ + p− τ22,−ρuruθ + τ12, 0, 0)

here the components of the shear stress tensor have the form

τ11 = (2/3)µe(3e11 − div~V ), τ12 = µee12, τ22 = (2/3)µe(3e22 − div~V ), τ13 = µee13,
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τ33 = (2/3)µe(3e33 − div~V ), τ23 = µee23.

The components of heat �ux vector are

qr = −λe
∂T

∂r
, qz = −λe

∂T

∂z
.

Here

e11 = ∂ur/∂r, e22 = ur/r, e33 = ∂uz/∂z, div~V = e11 + e22 + e33, e12 = ∂uθ/∂r− uθ/r,

e13 = ∂ur/∂z + ∂uz/∂r, e23 = ∂uθ/∂z,

E = ρ(e+ q2/2), e = p/((γ − 1)ρ), q = u2
r/2 + u2

θ/2 + u2
z/2

.
the velocity vector has radial ur, circumferential uθ and axial uz components; p, ρ, T and
γ = cp/cv are the pressure, density, temperature and the ratio of speci�c heats, respectively;
µe and λe are the e�ective viscosity and e�ective thermal conductivity of the gas. µe is a
sum of molecular µ and turbulent µt viscosities, , Pr and Prt are molecular and turbulent
Prandtl numbers.
The law of Sazerland is used for the values of molecular viscosity

µ

µ∗
=

(
T

T∗

)3/2 T∗ + S0

T + S0
(2)

where µ∗ = 1.68 · 10−5kg/(m · s), T ∗ = 273, S0 = 110 for air. The processes of turbulence
were described according to k − ε model:

∂ρk

∂t
+ (ρ~V · 5)k = 5

((
µ+

µt
σk

)
5 k

)
+ P ∗ − ρε, (3)

∂ρε

∂t
+ (ρ~V · 5)ε = 5

((
µ+

µt
σε

)
5 ε

)
+
ε

k
(Cε1P

∗ − Cε2ρε) . (4)

with values σk = 1.0, σε = 1.3, Cε1 = 1.44, Cε2 = 1.92. Here k is turbulence kinetic energy,
ε is its rate of dissipation, term P ∗ represents the production of turbulence kinetic energy,
P ∗ = µtS

2, S =
√
eijeij . Turbulent viscosity was de�ned according to Kolmogorov-Prandtl

formula:

µt =
Cµρk

2

ε
, Cµ = 0.09.

The following boundary conditions are imposed: on the planar radial walls of the chamber
(z = 0, 0 < r < r1 , and z = H, r2 < r < r1, r1 = d1/2, r2 = d2/2) the condition
of gas adhesion ur = uz = uθ = 0 and constant gas temperature on it: T = T0; on
the inlet surface B (r = r1, 0 < z < H), p = p∗(r1, z, t), ρ = ρ∗(r1, z, t), uz = 0, uθ =
u∗θ(r1, z, t), ur = u∗r(r1, z, t). Functions p∗, ρ∗, u∗θ, u

∗
r depend on the dynamics of air over�ow

from the collector to the chamber and are de�ned according to [3]; at the exit (z =
H + H1, 0 < r < r2) the conditions of equality to zero of the �rst derivatives of the
thermodynamic parameters with respect to z, are valid.
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Figure 2: Flow �eld of the main thermodynamic parameters in the chamber at initial
stage of the processes, t = 1.0 · 10−4 s.
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3 Numerical solution of the problem
The calculations were performed for the following initial values of air: p0 = 1bar, ρ0 =
0.1225kg/m3, γ = 1.4, ur0 = uz0 = uθ0 = 0; initial values of air pressure pr and density ρr
in the receiver : pr/p0 = 10, ρr/ρ0 = 10. The problem stated above, was solved numerically
with the help of the method of large particles [5].

The initial stage of numerical simulations is presented in Fig. 2. Here u =
√
u2
r + u2

θ + u2
z

. It could be seen that a compression wave starts to propagate from the inlet surface B
to the symmetry axis A. The pressure amplitude in the wave is up to 5.92 bar. The �ow
friction at the chamber walls results in mass growing of gas at the walls due to processes
of dissipation, and subsequent transition of gas kinetic energy into heat starts. The values
of temperature in generated boundary layers is growing up to 770 K (z = 0), while in the
center of the channel it is equal to 520 K (at the same r and z = H/2). The subsequent

Figure 3: The maps of the main thermodynamic parameters in the chamber at
t = 5.0 · 10−4 s.

stage of the processes is presented in Fig. 3. The compression wave continues to propagate
nearly at the same amplitude. The sizes of hot boundary layers are growing along with
temperature values in them. The giant vortex is generated in the chamber at the walls.
Its axes is the axes of symmetry A. The vortex is gradually coming down to the axes A.
In recent simulations the initial pressure in the receiver pr = 10 bar. In the experiments
[3] it may be up to 100 bar. Then the temperature in the boundary layers (in the vortex)
exceeds the ignition temperature Tig = 1200 K. That results in self-ignition of gas in a
whole volume observed in the experiments [3]. When the vortex comes down to the axes
A, and gas masses collide (Fig. 4), the temperature amplitude reaches the value of 1480
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Figure 4: The maps of the main thermodynamic parameters in the chamber at
t = 9.0 · 10−4 s.

K, that initiates the processes of gas self-ignition even at present pr = 10 bar. But the
maximum of temperature takes place not at the axes of symmetry A but in the heated
spot at the chamber corner (r = r2, z = H), where the boundary layer tearing o� from the
chamber walls occurs.
Interaction of the heated spot with re�ected shock waves (from the symmetry axes A)
and gas acceleration in the spot (due to rarefaction wave) from the outlet surface result in
subsequent temperature growth. At the course of time the temperature values in the spot
exceed 2000 K (Fig. 5).
Dynamics of the maximum values of gas temperature we can see in Fig. 6. The dotted
line in the �gure corresponds to the value of ignition temperature Tig. We can determine
six stages of the processes. The initial stage 1 is a temperature growth from 300 K to
800 K, when the shock wave starts to propagate from the receiver to the chamber through
the inlet surface B. The stagnation period 2 corresponds to the shock wave propagation to
the center of the chamber (the symmetry axes A). The temperature growth at the stage
3 is a result of shock waves collision at the symmetry axes A. Here the gas temperature
at the axes is increased up to 1500 K and exceeds the value of Tig. That may result in
gas self-ignition in the region. The interval 4 is the processes discharge in the direction
of the outlet surface. The stage 5 is a temperature growth in the tearing o� boundary
layer at the chamber corner at its interaction with re�ected shock wave. The temperature
here exceeds here the value of 2100 K. The stage 6 lasts till rarefaction wave from the
outlet surface appearance at the corner. To appreciate the in�uence of turbulence on the
gas self-ignition, the numerical simulations of laminar �ow were performed on the base of
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Figure 5: The maps of the main thermodynamic parameters in the chamber at
t = 1.4 · 10−3 s

Navier-Stokes equations (Fig. 7) at the same initial values of the problem parameters. It
could be seen from the �gure that for laminar �ows the mixture self-ignition may occur
as well. Although the maximum value of temperature in laminar hot spot T = 1370 K is
signi�cantly less than turbulent T = 2110 K at the same instant.

4 Conclusion

The numerical calculations of the �ow�eld in a planar vortex chamber on the base of
Reynolds equations have been performed. The model is based on conservation laws of
mass, momentum and energy for nonsteady two-dimensional compressible gas �ow in case
of swirl axial symmetry. The processes of viscosity, heat conductivity and turbulence have
been taken into account. It was found that transition of kinetic energy of gas into heat
due to processes of dissipation generates "hot spots" in boundary layers at the chamber
walls. The gas temperature at the spots may exceed the temperature of gas ignition, while
the surrounding regions remain still cold. It may be the reason of cold gas self-ignition
observed in experiments. The �ow turbulence may play decisive role in possibility of gas
self-ignition.
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Figure 6: Dynamics of the temperature maximum in the chamber.

Figure 7: The temperature maps in the chamber for laminar �ow at various
instants:t1 = 1.0 · 10−4 s, t2 = 5.0 · 10−4 s,t3 = 9.0 · 10−4 s,t4 = 1.4 · 10−3 s.
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Abstract

A problem of metal particles movement in a tube under action of a pulse
gas �ow was numerically and experimentally solved. Comparison of compu-
tational and experimental data was carried out. On the basis of researches
the optimum characteristics of the work of pulse pneumatic transportation of
metal radioactive waste materials are determined. Modeling was performed
within the framework of model of non-stationary two-dimensional motion of
ideal compressible media on the basis of laws of conservation of mass, pulse
and energy in case of axial symmetry. The thermodynamic �ow �eld has been
computed both in gas and solid phases. Processes of particles mutual inter-
actions, coalescence, fragmentation, interaction with a tube walls and motion
have been investigated in detail. Interface borders have been considered as
contact discontinuity surfaces, where a condition of a continuity of normal to
the surface component of a �ow velocity vector and the continuity of normal
component of tension tensor were satis�ed. Modeling was performed numer-
ically on the basis of the method of individual particles. The comparison of
the computational and experimental data con�rms the reliability of numerical
algorithm. The optimum pipeline parameters (optimum nozzle diameter is 37
mm, pressure of gas in receiver chamber is about 8 MPa) are determined, at
which the e�ective pulse cleaning of pipelines from metal wastes with the least
expenses is possible. It was found that series of pulses is more e�ective mode
of transportation than a single pulse, having similar total power.

1 Introduction
Signi�cant share in high radioactive waste materials, formed in factories on regeneration of
worked o� nuclear fuels in nuclear electric power stations, make metal wastes as fragments
of constructional materials from processing nuclear reactors. One of labor-consuming and
dangerous operations in technological process of processing reactors is the operation on
transportation of �rm wastes, as it is necessary to take into account the danger of ma-
terials to an environment and their harmful in�uence on health of the attendants and
population. The various devices for transportation of high radioactive waste materials are
known [1, 2, 3]. Now most widespread is their delivery to a burial place in containers by the
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Figure 1: The scheme of experimental installation of pulse pneumatic transportation:
1 - receiver; 2 - valve; 3 - nozzle; 4 - cover; 5 - bunker; 6 - metal pieces; 7 - pipeline;
8 - accumulating chamber.

specially equipped automobiles or railway transportation. Such approach alongside with
advantages has essential lacks: in places of loading and the unloadings there are inevitable
losses, that can result in jamming the container, and the repair thus is necessary in view of
a radioactivity. The best transport of �rm radioactive wastes represents pipeline, based on
pneumatic transportation and allowing sharply to locate a zone of distribution of radioac-
tive particles, to improve sanitary - hygienic conditions. Such transport has a high degree
of automatisation and provides moving a material in a complex line. Here occurrence of
emergency conditions is possible as well, in case of a stop of work of the device for pneu-
matic transportation at blocking, owing to fall of operating pressure values. Especially it
is essential for materials with high speci�c density. However, the latter lack is possible to
avoid, using pulsed pneumatic transport [4]. The recent paper is devoted to theoretical and
experimental determination of various modes of operations of pulsed pneumatic transport
devices, which combines the advantages of usual pneumatic transport and is deprived of
the mentioned above lacks. This system is applied now at industrial facilities of "Mayak"
groop. The gas was used as an in�ator in the pipeline, as the clearing of a liquid is more
di�cult problem. The scheme of experimental installation for research of parameters of
pulse pneumatic transportation is submitted in Fig. 1. A portion of metal pieces was
loaded into the bunker and closed by a cover. The gas (air) was pumped into receiver
chamber, and after opening of the special valve it penetrates in the pipeline (where the
pieces are transported to the accumulating chamber) through a nozzle. In the experiments
the simulators of metal pieces of �rm wastes with granular structure were used, which were
obtained at their mechanical crushing in cutting devices. The size of basic groop of pieces
(particles) is about 30-40 mm. A diameter of the pipeline is 250 mm. The purpose of
the paper is a calculation of the various characteristics of the process with the subsequent
determination of optimum parameters values, ensuring fast and e�ective clearing o� the
pipeline: a nozzle diameter, pressure of gas in the receiver chamber and total gas charge.

2 Modeling

Basing on experimental data (obtained with pneumatic transportation device) and knowing
its characteristics, we describe the statement of a model problem. The scheme of simulated
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Figure 2: Isolines of gas velocity in the installation.

�ow is submitted in Fig. 2. Initially motionless steel particle or conglomerate of particles
with diameter d0 (region 2) is placed within a pipeline having diameter D0 (region 1).
Regions 3 and 4 are the receiver (diameter 2D0) and the nozzle correspondingly. The
nozzle and the pipeline are initially separated by a diaphragm. All the regions, except for
2, are �lled with air. The gas is pumped in regions 3 and 4 for obtaining increased values
of initial pressure there. The initial pressure of gas in region 1 is p0 = 1 bar. The whole
system is under condition of dynamic balance and has zero value of gas initial velocity in
all the regions u0 = 0. At the instant t = 0 the diaphragm is removed and propagation of
gas pulse from the nozzle within the pipeline starts at constant values of pressure p and gas
velocity (equal to sound velocity C0) at the nozzle. The mathematical model of �ow is based
on the laws of conservation of mass, pulse and energy for two dimensional non-stationary
motion of two-phase compressible medium with obvious allocation of borders between the
phases in case of axial symmetry . The basic equations and numerical method are stated
in paper [5]. The meanings of characteristic constants correspond to the experimental
data described above and are chosen according to [6]. For the �rm phase in system of
units gram - centimeter-microsecond the following values of characteristic constants have
been used: a1 = 7, 78, a2 = 31, 18, b0 = 9, 591, b1 = 15, 676, b2 = 4, 634, c0 = 0, 3984, c1 =
0, 5306, φ0 = 9, 0, ρ0 = 7, 86; for gas ρ0 = 0, 00122, γ = 1, 4. A diameter of the pipeline is
D0 = 250 mm, diameter of a particle or their conglomerate is d0 = 40 mm. Let's note,
that the problem was solved numerically in dimensionless mode. One of dimensionless
combinations of the basic parameters of the problem (determining the �ow process) was
the ratio d = D0

dn
, where dn is the nozzle diameter. Therefore proportional change of the

geometrical characteristics of the problem (at the �xed value of the ratio dn/d0) did not
change a �ow�eld of the basic thermodynamic parameters. Due to technological features
of pneumatic transportation device [4] the distance l between the particles and the nozzle
could not be less than 20 cm. According to computation results, at l > 20 cm the main
characteristics of the process poorly depend on this parameter, since the losses of a pulse
and energy owing to friction of gas at the wall of the pipeline are not taken into account in
the model. Therefore the results stated below are obtained at �xed l = 35 cm. One of the
important technological constants determining characteristic of pipeline transportation, is
the velocity of particles starting o� UT . Usually it is considered as lower value of average
gas velocity in a cross section of the pipe, at which a particle of de�nite size is not soared
in the �ow any more. This hydraulic characteristic of carrying ability of the �ow can be
considered [3], as the characteristic of some limiting condition, when the frontal in�uence
of a �ow on a particle causes its sliding along the wall of the pipe, and the elevating force
tries to lift it on some height. According to [3] we have
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Figure 3: Map of velocity u at the centre of the pipe at t = 22, 8µs.

UT =
√
agd0/Fr, (1)

a =
ρ2

ρ
− 1, F r = ψ1 + ψ2δ

2 (2)

Here, ρ, ρ2 are density of gas and particles accordingly, g is acceleration of force of gravity,
d0 is a diameter of particles, Fr is Froude number , δ is the ratio of the diameter of a
particle to the diameter of a pipe; ψ1, ψ2 are experimental constants. For the characteristic
geometrical sizes of the problem (as the change of the particle form in course of time from
just splintered to smoothed ones was taken into account and ψ1 = 0, 7÷ 1, 35 according to
[3]) the value of UT varies from 14,4 m/s up to 24,8 m/s. The maximal value of the velocity
of particles starting o� UT = 25 m/s was taken in the numerical calculations stated below.
To minimize the time of obtaining UT , it is necessary to pick up the optimum size of a
nozzle. The necessity of such a nozzle for submission of gas into the pipeline is caused by
two main reasons. First, the velocity of a gas �ow for steady motion of particles in the
pipeline should be 2 − 3 times more than the velocity of particles starting o�. Secondly,
used in experiments the receiver has limited volume.
The �ow-�eld of gas velocities in the pipeline at instant t = 2 ms from a beginning of
diaphragm breaking at the initial pressure value in the receiver P = 7 MPa is submitted in
Fig. 2. Twenty ranges of velocities in an interval from 0 up to 750 m/s are represented here.
The length of receiver is 70 cm. In experiments the duration of a gas pulse τ , acting from
the nozzle into the pipeline, is sometimes adjusted with the help of a latch in the nozzle.
The results of such a numerical modeling in the pipeline are submitted in Fig. 3 at τ = 0, 8
ms for longitudinal velocity u at the instant 1,1 ms from the moment of diaphragm break
( P = 8 MPa). Here region 1 is gas at initial pressure p0 = 1 bar (ρ0 = 0, 001225g/cm3),
region 2 is for particles of steel, 3 is a pulse, moving to the left hand side from the nozzle
into the pipeline, with compressed air at P = 8 MPa (ρ = 0, 098g/cm3). We name an
interval between the beginning of interaction of a particle with the pulse and moment of
reaching the meaning of UT as the time of obtaining of the velocity of particles starting
o�. Its meaning was determined from the generated slides with a step of 0,2 ms, showing
the further stages of the process. For the recent variant such time is equal to 22, 8µs. Here
readout of z coordinate is conducted from the nozzle. The required velocity of particles
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Figure 4: Time dependence of achievement of Uò from initial pressure of gas

starting o� was determined from a structure of longitudinal velocity at the centre of the
pipe. As it is visible from the �gure, by this moment the particle velocity begins to exceed
the meaning of the velocity of particles starting o�.

Table 1. Time dependence of achievement UT from pressure of working gas.
number of calculation initial pressure of gas, MPa time for achievement UT
1 1 -
2 3 46,00
3 4 34,00
4 5 26,00
5 6 23,60
6 7 23,20
7 8 22,80
8 9 22,40
9 10 21,80

Variations of time of reaching UT meanings are represented in Tab. 1. As it is visible
from the table, at the �xed nozzle diameter dn ∈ [10, 200] mm and P > 6 MPa the
time of reaching the velocity of particles starting o� begins poorly to depend on growth
of initial pressure values. As is clear from numerical simulations, at the �xed pressure
of gas in the receiver for meanings presented in Tab. 1, the least time of achievement
of the velocity of particles starting o� corresponds there the meaning d = 6, 8 . With
the reduction of d , the gas in the pipeline has the velocity insu�cient for steady motion
of particles, and at the very large diameter of nozzle, the pulse of gas is short, i.e. the
time of its in�uence on the particles is insigni�cant. If d0 = 40 mm, then the optimum
diameter of nozzle is 37 mm, that is close to experimental data [4], where it is equal to
35 mm. In Fig. 4 we can see the time diagram of reaching the value of the velocity of
particles starting o� UT from the initial pressure of gas. It is visible from the diagram,
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Figure 5: In�uence of the receiver volume and initial pressure of gas on the distance
of particles motion.

that the time has radical changes at pressure values diapason from 3 MPa up to 6 MPa,
but at the further increase of pressure its change are insigni�cant. Optimum parameter
value for the present scheme is pressure P = 8 MPa, the further increase is inexpedient,
since it will result in the over-expenditure of energy. In subsequent simulations we use this
meaning of pressure. Now we must determine the optimum charge of gas that is necessary
for the pipeline cleaning. The distance of particles motion (at �xed nozzle diameter and
variating pressure and the receiver volume) is important factor here. Let's note, that as
the distance of transportation we consider one from initial place up to the position of
the inertia centre for the conglomerate of particles after their motion under action of the
pulse of gas. In technological installations that distance is about tens meters. Such range
is achieved, if average gas velocity in cross section is 2-3 times higher than the velocity
of particles starting o�. For the comparison with experimental data it was assumed in
numerical simulations, that the value of gas velocity u = 2, 5UT provides such a distance.
The comparison of experimental and numerical (continuous lines) data is presented in Fig.
5. The deviations of numerical curves from experimental data do not exceed 7 percents. It
is visible from the �gure, that with growth of the receiver volume at �xed initial pressure
of gas in it, the distance of particle motion initially grows linearly and at achievement of
some critical volume remains practically constant. At the increase of initial pressure of
gas in the receiver this curve moves above. Thus, there exists an optimum technological
volume of the receiver (about 0, 078m3), and its further increase becomes inexpedient. In
Tab. 2 the computation of the charge of gas is presented at the �xed initial pressure P = 8
MPa. It is visible from the table, that there is an optimum technological volume here as
well, that at its further increase the time of achievement of the velocity of particles starting
o� varies poorly. As well as in the previous problem we determine the time of achievement
of the velocity of particles starting o� UT . In experiments for breadboard models of
pulse pneumatic device [4] not a single pulse was used, but alternation of pulses. For the
checking of e�ciency of such an approach, the simulations with two pulses were performed,
when the total duration is equal to one submitted in Fig. 3. All other values of a �ow
parameters of these problems are similar. As numerical study reveals, the alternation of
the phases of compression and rarefaction, that is usual for the complex of two pulses,
results in strong distortion of the form of the conglomerate of particles owing to instability
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of interface border that promotes the development of the splitting phenomena. Therefore
alternation of pulses is more e�ective means of clearing of the pipeline, than having pulse
at �xed velocity and pressure that proves to be true by the experimental data [4]. The
numerical simulations con�rm that with increase of gas volume its duration of action is
increased as well, but the meaning Vopt = 0, 095m3 is optimal, since at smaller volume
the object exposed to in�uence of a wave of compression, has not necessary velocity for
steady motion. The results of modeling on revealing of parameters for the optimum mode
of transportation, well coincide with parameters obtained by experimental way.

Table 2. Determination of the optimum charge of gas.
number of cal-
culation

time of
achievement
UT , µs

time of action,
µs

volume of gas
in a pulse, m3

the charge of
gas, kg

10 - 26,0 0,088 8,624
11 30,0 32,4 0,095 9,31
12 26,4 36,8 0,106 10,388
13 22,8 38,2 0,15 14,7
14 22,4 42,2 0,176 17,248
7 22,0 46,0 0,196 19,208

3 Conclusions

The problem of metal particles motion in a pipe under action of a pulsed gas �ow is
numerically solved in the paper. The comparison of the numerical data with experimental
ones testi�es about reliability of the numerical algorithm. The optimum value of device
parameters are determined (optimal nozzle diameter is about 37 mm, pressure of gas in
the receiver is about 8 MPa and appropriate gas charge corresponds to the values), at
which the e�ective pulse clearing of pipelines from metal wastes with the least expenses is
possible.
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Abstract

In this work the crack propagation analysis of the compressor blade of aero
engine was performed. During investigations the blade with mechanical defect
(notch) was considered. In experimental analysis the blade was subjected
to resonant vibration. During transverse vibrations, a high stress occurs in
the blade. Pulsation of stress causes the fatigue of material. In results of
proposed investigations both the number of load cycles to initiation and also
the crack growth dynamics was obtained for the blade working in resonance
condition. In second part of work the maximum principal stress distributions
in the vibrated blade were determined using �nite element method.

1 Introduction
High-cycle fatigue (HCF) is often concerned with vibration of aero engine components.
Compressor blades have a small bending sti�ness and are particularly susceptible to HCF.
During work of engine, blades are excited by an unbalanced rotor. The worst case is when
the frequency of excitation overlaps with the resonant frequency of the blade. During
resonance, large amplitude of stress causes that the blade can be damaged in relatively
short time. The fatigue process is often accelerated by mechanical defects (notches) created
during collision of rotated blade with hard objects suctioned from a ground. If aÂ problem
arises in the compressor section it will signi�cantly a�ect the whole engine function and
safety of the aircraft.
The broken blade could cause the puncture of the engine casing. Failures of any high
speed rotating components (jet engine rotors, centrifuges, high speed fans, etc.) can be
very dangerous to passengers, personnel and surrounding equipment and must always be
avoided. The failure analysis of the compressor blade has received the attention of several
investigations. The problem of fatigue fracture of the aero engine blades was described in
works [1-10].
The objective of presented investigation is to determine both the number of load cycles
to crack initiation and also the crack growth dynamic for the compressor blade of aero
engine (including arti�cially created mechanical defects), subjected to resonant vibrations.
Created defects (notches) simulate the foreign object damage (FOD) of the blade. An
additional aim of work is numerical determination of maximum principal stress values in
the blade with the notch subjected to resonant vibration.

392



Crack propagation analysis of compressor blade subjected to resonant vibrations

Figure 1: View of blade damaged by foreign object (a), dimension of the investigated
blade with v-noth (b).

2 Experimental investigations

In investigated blade a V-notch presented in Fig. 2 was created. The depth of notch was
about 0.5mm whereas the apex angle 90 degrees. The notch in the blade was created
by machining. The compressor blade was made out of EI − 961 steel (0.11C; 11Cr;
1.5Ni, 1.6W ; 0.18V ; 0.35Mo; 0.025S; 0.03P ) with the following properties (measured in
temperature 20oC): Ultimate tensile strength 900−1000MPa, Yield stress 800−900MPa,
Young modulus 200GPa, Poisson ratio 0.3. The high cycle fatigue tests of the blade were
made using the Unholtz-Dickie UDCO TA-250 electrodynamic vibration system, presented
in Fig. 3 at Laboratory of Turbomachinery of Rzeszow University of Technology. The blade
with a notch was horizontally mounted on the movable head of vibrator (Fig. 4). Next the
head of shaker was entered into harmonic vibration. In �rst step of analysis the resonance
frequency was determined (for �rst mode of transverse vibration). The fatigue test was
started from frequency close to resonant. During investigations two main parameters were
periodically monitored: vibration amplitude of the blade tip and the size (or existence)
of the crack. For control of amplitude the laser scanning vibrometer POLYTEC PSV H-
400S were used. To measure the length of the crack a nondestructive �uorescent penetrant
method was utilized.

Figure 2: V-noth created on the attack edge of investigated blade.
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Figure 3: View of control systems of both laser scanning vibrometer and the shaker
used in experimental investigations.

Figure 4: Compressor blade �xed to movable head of vibrator.

The control parameters of vibration system and results obtained for compressor blade
are shown in Tab. 1. The resonant frequency (Frez) of blade was 796.6Hz. As seen
from Tab. 1, the fatigue test started from frequency 2.2Hz higher than Frez (798.8Hz).
Just for this frequency, the vibration amplitude A = 1.2mm was achieved. After 12.46 ×
106 total number of cycles (N), an amplitude of blade tip decreased from 1.20mm to
1.08mm. During fracture, the bending sti�ness of blade is not constant. This information is
important from practical point of view, because decrease of amplitude at constant intensity
of excitation is always related to start of crack initiation process. In present case 2.5mm
long crack (a dimension in Fig. 8) was detected. From N = 12.82 × 106 number of load
cycles, the excitation frequency decreased with di�erent rate. Preliminary, the rate of
change of frequency was 0.025Hz/s. It allowed to maintain the vibration amplitude on
constant level (about 1.2mm). In �rst stage of blade fracture the intensity of acceleration
of vibrator head was constant to crack length a = 6.5mm. After that the intensity of head
acceleration was increased to 12g and 14g adequately. In spite of increase of acceleration,
the blade amplitude was not constant in the �nal stage of fracture (for crack length a =
6.5− 19mm).
Obtained results (Tab. 1) showed that the blade with v-notch created by machining, needs
N = 12×106 total number of load cycles to crack initiation. The crack propagation process
was much shorter. The crack needs N = 1.87× 106 number of load cycles for propagation
from length a = 0 to �nal crack size a = 19 mm (at which the blade was broken). Thus,
in presented case the crack initiation process (N = 12× 106) is a main part of fatigue life
of the blade (N = 13.87× 106).
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Table 15: Control parameters of vibration system and results of fatigue test of
the blade.

Initial Final Rate of Intensity Partial Total Total no. Crack Amplitude
freq. freq. change of exci- no. of no. of of cycles length of crack

of freq. tation cycles cycles (crack prop.) tip

Finit Ffin dF/dt Npart N Ncp a A
[Hz] [Hz] [Hz/s] [g] ×106 ×106 ×106 [mm] [mm]
798.8 798.8 0 10 0 0 - 0 1.20
798.8 798.8 0 10 3 3 - 0 1.20
798.8 798.8 0 10 3 6 - 0 1.20
798.8 798.8 0 10 3 9 - 0 1.20
798.8 798.8 0 10 3 12 0 0 1.19
798.8 798.8 0 10 0.46 12.46 0.46 2.5 1.08
798.8 789.3 0.025 10 0.36 12.82 0.82 4.0 1.21
789.3 770.0 0.036 10 0.40 13.22 1.22 6.5 1.14
770.0 699.0 0.260 12 0.20 13.42 1.42 9.0 1.03
699.0 500.0 0.370 14 0.32 13.74 1.74 15.0 0.95
500.0 100.0 0.130 14 0.13 13.87 1.87 19.0 0.91

The assumption of work was to maintain the blade tip displacement amplitude (vibration
amplitude) on constant level. However this condition is di�cult for satisfy during all
fatigue test. The vibration amplitude in the blade was constant until about N = 12× 106

number of cycles (Fig. 6). Just after crack initiation, the blade sti�ness decreases and in
consequence of them the lower value of blade amplitude (A = 1.08mm) was observed (at
N = 12.46 × 106). To maintain the blade amplitude on level A = 1.2mm the frequency
of excitation was next decreased. In the range of N = 12.82 − 13.10 × 106 number of
load cycles, the blade amplitude was close to initial value, but after N = 13.42 × 106 the
vibration amplitude decreased more quickly. The last part of fracture is highly unstable
process. The increase of intensity of vibration (to value of 12g and 14g) in �nish part of
fatigue (Fig. 7) caused that the vibration amplitude was still not constant (Fig. 6).
Shape of crack in preliminary phase of growth is presented in Fig. 8a. As seen from this
�gure, the crack in �rst phase of growth propagates more quickly along the concave surface
of the blade pro�le. In Fig. 8a is also distinguished the crack length (a dimension) used to
description of vertical axis of plot presented in Fig. 5. The blade after �nish of the fatigue
test is visible in Fig. 8b. The crack direction is not parallel to blade lock. The crack starts
from the notch located 7mm above the lock. The crack in �nish part of fracture achieved
the trailing edge of the blade, about 5mm above the lock.

3 Numerical stress analysis of the compressor blade
subjected to vibration

For de�nition of stress state in the blade subjected to HCF, the �nite element analysis
(FEA) was performed. In this analysis the �rst mode of transverse vibration was consid-
ered. To solve this problem, the Patran program was used to both geometrical and the
�nite element model preparation. In Fig. 9a the discrete model of blade with the notch
located 7mm above the lock was shown. In the notch vicinity the �nite element mesh was
concentrated (Fig. 9b). In the next part of work Abaqus software were used for stress and
modal analysis of the compressor blade. Results of FEM analysis (Fig. 9c) showed that
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Figure 5: The crack length in function of number of load cycles Ncp (counted from
crack initiation) for blade subjected to resonant vibration (�rst mode, A = 1.2mm).

Figure 6: Amplitude of crack tip displacement (vibration amplitude) as a function
of number of load cycles N .

during �rst mode of resonant vibration the blade are subjected to cyclic bending. Dur-
ing transverse vibration the maximum value of amplitude of displacement (on blade tip)
is equal to 1.2mm. All numerical results are obtained for the same vibration amplitude
(A = 1.2mm) and for left blade de�ection at which the maximum principal stress in the
blade was observed. Figure 10a showed that value of maximum principal stress value in the
zone located near the attack edge of blade is about 225− 280MPa. The area of maximum
stress (771MPa) is located in the notch vicinity (Fig. 10b). Maximum principal stress
values in cross-section of blade (in fracture plane) showed that during left blade de�ection
the tension stress occurred in the zone near concave surface of blade (Fig. 11). Just in
this region the crack propagate more quickly than in convex pro�le area. Obtained results
showed that cyclic tension stress in blade cross section is a main reason for crack initiation
and crack propagation of the blade subjected to resonant vibration.
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Figure 7: Intensity of excitation (vibration) in function of number of load cycles N .

Figure 8: Fracture of blade with 6.5mm long crack (a = 6.5mm) (a) and the blade
after �nish of fatigue test (b).

4 Conclusions

In this study the experimental analysis were performed to investigate both the crack initi-
ation and the crack propagation process of compressor blade with preliminary defect. This
mechanical defect simulates the foreign object damage. The complex experiment was per-
formed in resonance condition. In experimental investigation a modern vibration system
and the laser scanning vibrometer were used. In results of performed work, the following
conclusions were formulated:

1. Foreign object damage is very dangerous for the compressor blades. In most cases
defects obtained in results of FOD (as V-notches) is potential crack origin. After
phase of initiation, the crack propagates from notch inside the structure in relatively
short time.

2. The crack in the blade working in resonance conditions (�rst mode of vibrations,
A = 1.2mm) initiates after about N = 12× 106 total number of load cycles.

3. The crack needs N = 1.87× 106 number of load cycles for propagation from length
a = 0 to �nal crack size a = 19mm (at which the blade was broken).
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Figure 9: View of numerical model of compressor blade (a), magni�ed notch area
(b) and values of displacement of blade during �rst mode of free vibrations, [mm]
(c).

Figure 10: Values of maximum principal stress for the blade (a) and in the vicinity
of notch (b), [MPa].

4. The crack initiation process (number of cycles for initiate of crack from a = 0 to blade
damage) is a small part (about 13.5%) of total fatigue life of blade (N = 13.87×106).

5. Maximum principal stress area in the blade is located on tip of notch. In the blade
vibrated with amplitude 1.2mm a maximum stress on the notch has a value of
771MPa. This value is close to yield stress of blade material.

6. Maximum principal stress value (for left de�ection) in the blade without defects is
about 3 times lower then the local stress in the notch.

In the case of old aircraft structures, which are operated according to the damage tolerance
method, the information about crack dynamics is very important from practical point of
view. In aerospace engineering, structure is considered to be damage tolerant if imple-
mented maintenance program can stop operation of structure with a small (safe) fatigue
crack. The operation of structures according to damage tolerance methodology can cause
a signi�cant reduction of costs because the aircraft or aero-engine can be safety operated
to the real fatigue limit.
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Figure 11: Values of maximum principal stress in cross-section of blade (at level of
notch), [MPa].
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Abstract

Expressions for vibration moments (additional dynamic loading caused by
the vibrations of bearing body) during the passage of resonant zone by vi-
bration machines with the �at vibrations of bearing body both with one ar-
bitrarily located vibration exciter and with two self-synchronization vibration
exciters for the di�erent modes of starting are got in an analytical form by
method of direct division of motions. Using approaches of vibration mechanics
of I.I. Blekhman possibilities of improvement of process of running approach
of vibration machines with unbalanced vibration exciters are demonstrated by
using of methods the "double" (in case of one vibration exciter) and "separate"
starting of electric motors (in case of two vibration exciters). It is shown that
the �rst method is based on using semislow vibrations arising in the resonant
zone. The necessary condition of the successful using of this method is motion
on the rotor of exciter in the moment of the repeated including of engine of
rotary-type vibration moment. The conditions when the separate starting is
e�ective are shown. Conclusions and practical recommendations that allow to
facilitate starting of vibration machines with an unbalanced drive are pointed.

1 Posing the problem and its connection with the
main scienti�c tasks

Solutions of problems of run-up and run-down of vibrational systems with inertial drive
is of considerable interest for vibrational technical devices. When inertial vibroexciter
passes the zone of natural frequencies an unset of resonance vibrations is possible which
cause both a su�cient rise of dynamic loads on the rotor of electric motor, on elements of
machine bearing construction and additional losses of power in the system. So, the start
of vibration machine with unbalanced drive needs the power of the drive with su�ciently
exceed the power needed for operating in stationary mode (2-5 times as large by some
data). In addition to that, in case of large machines with the drive from electric motors of
asynchronous type the striking starting current exerts negatively upon the feeding electrical
network.
In order to lower the level of vibrations when passing the resonance zone various means are
used � from vibroexciters with automatically regulated static moment of unbalance mass
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to algorithms with feedback. No doubt, to successful realization of the lasts it is important
to have more thorough conception of dynamics of the occurring processes.

2 Analysis of the latest investigations
The survey of investigations, concerning the passing of the resonance zone by inertial
vibroexciter one may �nd in [1-3]. In the last years a number of tasks are solved on the
basis of vibrational mechanics approaches, in particular, by using the method of direct
separation of motions. In [3] it is shown by the example of the simplest system with linear
vibrations of the bearing body and one unbalanced exciter that the important merit of
such approach is its comperative simplicity and physical integration of the results.
In work [2] attention is paid to the peculiarity of the motion of the system nearby the
resonance � the availability of the so called inner pendulum and its �semislow� motions,
which are physical base of the e�ciency of some methods of controlling the starting of
vibration machines with inertial exciting of vibration.
A great number of works are dedicated to the use of the phenomenon of selfsynchronization
in vibration machines and devices, they are shown in [1, 3], and the latest ones in [4-6].
However, no attention was paid to the dynamics of starting of such vibrations machines.
The presented paper is dedicated to generalization and development of the results of works
[2, 7-9].

3 Statement of the task
The majority of vibration machines with unbalanced drive may be idealized in the form
of a system, consisting with a single lifting rigid body, which may execute plane-parallel
motion and is connected with stationary base with elastic and damping elements (Fig.
1). As exciters of vibrations of lifting body mostly unbalanced vibroexciters (disbalanced
rotors) drived by the electric motors of asynchronous type are used. Motion equations of
such system may be written down in the following form (see, for instance, [1-3]):

Mẍ+ βxẋ+ cxx =
s∑
i=1

miεi(ϕ̈i sinϕi + ϕ̇2
i cosϕi),

Mÿ + βyẏ + cyy =

s∑
i=1

miεi(ϕ̈i cosϕi − ϕ̇2
i sinϕi), (1)

Jϕ̈+ βϕϕ̇+ cϕϕ =

s∑
i=1

miεiri(ϕ̈i cos(ϕi + δi)− ϕ̇2
i sin(ϕi + δi)), (s = 1...n)

Iiϕ̈i = Li(ϕ̇i)−Ri(ϕ̇i) +miεi(ẍ sinϕi + ÿ cosϕi + riϕ̈i cos(ϕi + δi) + g cosϕi), (2)

where M , J � are correspondingly, mass and moment of inertia of the lifting body as to
the axis which passes through its center of gravity; x, y, ϕ � are coordinates, determining
the position of the lifting body; ϕi � are the angles of rotation of vibroexciter; ri and δi
� are polar coordinates of axes of vibroexciters; mi, εi � are, correspondingly, mass and
accentricity of the exciter; Ii � is applied to the shaft of the vibroexciter moment of inertia
of the rotating parts of the drive; cx, cy, cϕ � are horizontal, vertical and rotational rigidity
of the elastic elements; βx, βy, βϕ � are coe�cients of viscous resistance; Li(ϕ̇i), Ri(ϕ̇i) �
is the torque of the electric motor and moment of forces of resistance to rotation; g � is a
free-fall accekeration.
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Figure 1: General diagram of vibrational system with unbalanced vibroexciters.

4 Exposition of the basic material
To solve the set of equate ions (1), (2) we use the method of direct separation of motions
[1, 3]. Set us accept as a zero-order approximation ϕi = ωt, qi = Pi sinωt + Qi cosωt
where ω = ω(t) -� are slowly and qi = x,y,ϕ � fast changing time functions. Then it is not
complicated to come from the original system of equations of vibroexciters rotors motion
(2) to the equations of their rotation in the resonance zone in the form, obtained in [3]:

Iiω̇ = Li(ω)−Ri(ω) + Vi(ω), (3)

where Vi(ω) = miεi〈ẍ sinϕi + ÿ cosϕi + riϕ̈i cos(ϕi + δi)〉.
French quotes in (3) point out at averaging for the T = 2π by fast time τ = ωt.
It should be noted that equation (3) di�ers from classic equation of machine assembly by
presence of item Vi(ω) � vibrational moment which de�nes the peculiarity of vibrational
system conduct. Presence of vibrational moment explains both Zommer�eld�s e�ect and
selfsynchronization of vibroexciters. Determination of the vibrational moment is of main
interest.
It should be noted that equation (3) keeps its form, obtained for the system with linear
vibrations of the lifting body [3] for the examined more general case as well. Only expression
for vibrational moment has more complicated structure, algorithm of its obtaining remains
previous, only computing di�culties grow up.

4.1 Vibrational systems with one vibroexciter Zommer-
�eld�s e�ect

Certain part of operating at present machines has one unbalanced vibroexciter. It is not
complicated to obtain expressions of vibrational moment in the resonance zone for the
case of vibroexciter, placed arbitrarily as to centre of masses of the lifting body in plane
vibration in the form:

V (ω) = −(mεω)2

M
[
nx
B2
x

+
ny
B2
y

+
Mr2

J

nϕ
B2
ϕ

], (4)

Bq =
√

(1− λ2
q)

2 + 4n2
q ;λq =

pq
ω

;nq =
βq

2Mqω
,

where pq � are the frequencies of the natural vibration of the system.

Here, if q = x, y, then Mq = M , if q = ϕ, then Mq = M ρ2

h2 ; in addition to that, nϕ =
βϕ

2Jω .
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One can see that all items in formula (4) are negative. Hence, vibrational moment is
always braking one, that is, it is an additional dynamic load upon the rotor of the en-
gine, its dependence from frequency is of resonance character and, therefore, an essential
braking exercion is manifested in comparatively narrow range of natural frequencies. In
addition to that, rapid growth of value V (ω) at approaching to resonance just explains
the possible �sticking� of frequency in the process of starting (Zommer�eld�s e�ect) and,
as consequence, the necessity of overrated (from starting conditions) power of the drive
of postresonance vibromachines. Such conclusion follows from diagramic presentation of
dependences L(ω) and Msum = R(ω) + V (ω) (�g. 2), abscissas of intersection points cor-
respond to possible stationary modes (curves L describe statical characteristics of electric
engines. Stability of motions is easily determined geometrically by the sign and values of
slope angles tangent to curves L(ω) and Msum. It is evident that right slopes of resonance
curve cannot be realized. According to the �gure, the presence of several resonance peaks
of the curve of vibrational moment may lead to the emergence (as compared with the sys-
tem of linear vibration of the lifting body) points of curves intersection. So, there exists a
possibility of several stationary modes of motions, having di�erent angular velocities (up
to seven, four of them may be stable). However, there are only two, di�erent in lessence
modes of motion: �sticking� (curves 1) of the system with engine of de�cient power in
the resonance zone (motor) on having come in the process of running to this mode, would
not be able to overcome the resonance peak and far postresonance mode with frequency
of electric motor. If the motor power is su�cient, then, as a rule, after some breaking in
the resonance zone, the system rapidly (upsetting) passes to far postresonance modes of
motion (curves 2).

So, to reach by the exciter the working frequency, the moment of the motor should overcome
vibrational moment V (ω) during its running. According to (4), maximal (peak) value of
moment V (ω) is as much large as a damping of nq becomes less and higher of the own
vibrations of system pq. Hence, it is important not to overrate the value of rigidity of elastic
elements; the use of elastic suspension may be e�ective; it is possible to lower resonance
peak values of vibrations as well as the power of the drive by installation of dampers of
maximal vibrations. Expression (3) may be presented in the form of the sum of �partial�
vibration movements νq, which characterize the impact of vibrations, corresponding to
each of the generalized coordinates: V (ω) =

∑
q=x,y,ϕ νq where νq = 1

2Faq sin γq; sin γq =

−2nq
Bq

; aq = mε
MqBq

; F = mεω2. It is natural that maximal breaking exertion is e�ected
by �partial� vibrational moment which corresponds to the highest natural frequency of
vibrations pq, so it is often enough to use damper of only suck vibrations.

It is clear from formula (4) that start of vibromachine at the absence of working load is
more complicated than at its presence; that to make the start easier it is advisable to
install vibroexciter in the centre of masses of the system or as close to it, as possible. So,
the breaking vibrational moment, resonance vibrations and, correspondingly, the necessary
power of the motor are su�ciently less for centre-drilled system (�g. 3, a) than, for instance,
for the diagram shown in �g. 3, b (in the �rst case the last component in formula of
vibrational moment (4) disappears). It should also be noted that �rapid� (with frequency
2ω) vibrations of vibrational moment do not take place in such system in the steady mode,
which is favorable for the durability of the system.

On the other hand, taking into account the fact that the value of the vibrational moment
depends, �rst of all, on the velocity of running of the rotor of vibroexciter, to make easier
the start, engines with higher starting moment are recommended (it facilitates, also, the
solution of the problem of lifting the unbalanced mass at �rst half-turn). At prescribed
static moment unbalance mass should be designed with minimal moment of inertia. So,

404



Starting inertially excited trans-resonant vibration machines with several degrees
of freedom of the carrier system

Figure 2: Stationary modes of rotation of vibroexciter: 1 � �sticking� in resonance
zone; 2 � far postresonance mode

Figure 3: Diagrams of vibromachines: a) with centrally installed vibroexciter;
b) with shifted vibroexciter

constructions of vibroexciters with laid on unbalanced mass are more preferable for chang-
ing the amplitude of vibrations, then those, having regulated static moment. In addition
to this, it is recommended to exclude from the construction (if they are available) synchro-
nizers, mechanical transmissions and so on, using the phenomena of selfsynchronization,
employing controlled electric drive.
Manifestation of Zommer�eld�s e�ect during the run-up of vibromachine is visually demon-
strated by the results of numerical modelling, obtained for vibrational system (�g. 3, a)
with parameter M = 330 kg; J = 8.02 kg ·m2; cy = cx = 4.5 · 105 N/m; cϕ = 2.8 · 104

N ·m; m = 10 kg; ε = 0.036 m, electric engine � asynchronous, with frequency of rota-
tion nc = 1500 rpm, of power P = 1.5 kW . According to �g. 4, at passing the natural
frequencies zone (t = 0.15 − 0.4 s) dynamic load upon the rotor of electric engine grows
su�ciently (curve 1); one can see that the value of vibrational moment is larger, than in
stationary mode several times as much and its maximal vibrations are compatible with
starting moment of the engine.
Correspondingly, the velocity of running of the rotor of exciter shows down intensively up to
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Figure 4: Changing in time: 1 � of engine moment; 2 � of vibrational moment;
3 � of vibroexciter velocity

short-term stabilization of the frequency of rotation (curve 2), in addition to that, maximal
resonance vibration of the lifting body are excited. Just after passing the resonance the
value of vibrational moment decreases su�ciently fast and its vibrations cover positive
zone, that is it becomes rotating in some moments of time. Then their damping takes
place as to small negative level (determined by resistance to the vibrations of the lifting
body); the amplitude of vibrations of lifting body decreases as fast and the value of rotating
moment of the engine changes from starting to nominal value (curve 3).
As it follows from the diagrams of velocity of rotation of vibroexciter for cases of di�erent
powers of driving electric motor (�g. 5) at replacing motor of power P = 1.5 kW with
motor of power P = 2.2 kW , slowing down of velocity of exciter in resonance zone is
practically absent (curve 3) while its steady postresonance mode of operating becomes
impossible (curve 2 � �sticking� of angular velocity in postresonance zone).

4.2 Double start of vibrational machines with unbalanced
drive

In practical use of such machines the so called method of �double starting� is applied for
lowering the level of vibrations during passing the resonance frequencies. Its technical real-
ization is rather simple. Method consists in switching-o� and next switching-on the electric
motor in the resonance zone in predetermined moment of time. Theoretical grounding of
the method with account of standpoints of vibrational mechanics facilitates its wider use.
The basis of the method lies in two existing appropriatenesses of motion of the system close
to the region of manifestation of Zommer�eld�s e�ect: the �rst one � at switching-o� the
motor in the resonance zone vibrational moment e�ecting the rotor of vibroexciter becomes
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Figure 5: Changing in time the vibroexciter velocity: 1 � P = 1.5 kW ;
2 � P = 1.1 kW (�sticking� of velocity); 3 � P = 2.2 kW

positive, that is, rotating (it follows from the basic equation of vibrational mechanics (3),
written down for the case of stationary mode); the second one � availability of so called
inner pendulum and its �semislow� motions. So, using the method of direct separation
of motions and accepting as the �rst approximation ϕ1 = ϕ

(1)
1 = ωt+ ψ, q = q(0 + q(1, for

general system (�g. 1) in case of one vibroexciter it is not complicated to obtain equation
of �semislow� vibrations of velocity of rotor in the form [2]:

Ψ̈ + 2n1Ψ̇ +B sin Ψ− P sin2 Ψ

2
= 0, (5)

for the system under consideration B =
∑

q=x,y,ϕ bq; bq = (mεω2)2

2MI

p2
q−ω2

(p2
q−ω2)2+4n2

qω
4 ; P =∑

q=x,y,ϕ ρ
2
q ; ρq = (mεω2)2

MI

p2
q−ω2

(p2
q−ω2)2+4n2

qω
4 ; 2n1 = k/I; k � is a coe�cient of damping.

The value q =
√
|B| is frequency of small free vibrations of the inner pendulum on condition

of slow changing of the frequency of rotation of rotor ω. It should be noted that at B < 0,
the stable position of the inner pendulum simply changes; it is look like it turns [2]. The
e�ect of appearance of semislow vibrations in the resonance zone may be observed in the
�g. 5-7. In addition to that, according to �g. 6, a (curve 1) semislow (with frequency 2q)
vibrations of vibrational moment take place after switching-o� of the motor with regard
to the shifted to the positive side level.
Fig. 6, b and �g.7 demonstrate the possibility of realization of running ang coming to
the mode of rotation with frequency, close to nominal of the motor of �unsu�cient�
power ( P = 1.1 kW ) with the help of method of double starting as one can see, the
necessary condition of successful use of the method is, �rst of all, e�ect upon the rotor of
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Figure 6: Changing in time: 1 � of vibrational moment; 2 � of motor moment
(P = 1.1 kW ): a) switching-o� of the motor in the resonance zone, tsw.−off = 0.3
s; b) double starting of the engine, tsw.−off = 0.3 s, trep.sw.−on = 0.48 s

vibroexciter in the moment of repeated switching-on of the motor (in �gures trep.sw.−on =
0.48 s) of rotating vibrational moment commensurable with its starting moment. The
abovementioned condition is not complicated to realize with the help of modern means of
controlling the electric motors. Applied recommendations to switch o� the motor in the
moment of growing of intensive resonance vibrations of the lifting body and at once (in a
period of time of semiperiod of semislow vibrations t = 2/q) switch it on again.

4.3 Vibrational systems with two selfsynchronizing exciters.
Separate starting

Many modern vibrational machines, in particular, screens and platforms with directed
vertical (horizontal) vibrations are realized by the diagram, shown in �g. 8. Expressions
for vibrational moments in�uencing in resonance zone upon the rotors of exciters rotating
in opposite directions are presented in the form:

Vi(ω) = −1

2

(mεω)2

M

ny
B2
y

, (6)

Vibrational machines with selfsynchronizing exciters permit the possibility of separate (in
turns) start of electric motors, however, it is not applied in practice. Using the approach
under consideration, it is possible to demonstrate possibility advantages of such start.
It is not complicated to establish that vibrational moment in case of running only one of
vibroexciters will equal Vsepar(ω) = 1

2V (ω), where V (ω) is determined by formula (4). It
follows from analysis (4) that if natural frequencies of vibrational system pq di�er su�-
ciently enough (it may always be reached by the choice of elastic elements), then with the
grows of frequency ω in the process of running each item (except the one corresponding to
ω ≈ pq) will be disregardly small. Taking into account the fact that ratio Mr2/2 is for the
dynamic system in consideration, su�ciently less than unity it is possible to come to the
following estimation of the value of vibrational moment, functioning in the resonance zone
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Figure 7: Changing in time of the velocity of vibroexciter (P = 1.1 kW ):
1� switching-on the motor in the resonance zone, tsw.−off = 0.3 s; 2 � double start
of the motor, tsw.−off = 0.3 s, trep.sw.−on = 0.48 s

in case of separate start of its electric motors: Vsepar(ω) ≈ 1
2Vi(ω). So, by corresponding

choice of the parameters of the system at separate start of motors it is possible to attain
the decrease of resonance vibrational moments and, as a result, to attain all connected
with this possible of improvement of dynamic and power characteristics of vibromachines.
In favor of decrease of vibrational moments at separate start of selfsynchronizing vibroex-
citers are the facts that, owing to the di�erences between their phases, some �collateral�
vibrations of the lifting body occur and that it is necessary at more precise determination of
vibrational moment of the exciter under consideration, to take account of the e�ect of other
exciters. That is, at calculation of vibrational moment it should be presented in the form
of the sum of two items, one of which (being determined above) represents additional load
, caused by losses of power at vibrations, and the second (noticeably less in the resonance

Figure 8: Diagram of vibrational machine with selfsynchronizing exciters
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Figure 9: Trajectories of the centre of masses of lifting body: a � synchronous
(ordinary) start of motors; b � start of one motor (separate start)

zone, as a rull) is caused by the in�uence of other vibroexciters. It should be noted, that
the second item represents redistribution of power between the vibroexciters. Formulas
for determination of its value for many of vibrational systems may be found in specialize
literature [1, 3]. The positive e�ect may be magni�ed by installation of damper of vertical
vibrations. Besides, in case of using separate start of motoes, the decrease (almost twice
as much) of starting currents is rather important.
It should be noted that somewhat excessive power of electric drive is recommended for
easing the start in case of vibromachines with two selfsynchronizing exciters. In addition
to that, e�ect of vibrational support of rotation of unbalanced exciter in steady state should
be used, working with one switched o� motor. Especially as mode of vibrational support
of rotation is the most stable for the dynamic system under consideration. It follows
from comparison (4) and (6) that dynamic load upon the rotors of electric motors and,
correspondingly, the necessary total power of electric drive in case of vertical vibrations of
the working part of vibromachine will be su�ciently less than at elliptic trajectory.
Results of simulation con�rm the advantages of separate start. Thus, for instance, accord-
ing to �g. 9 (Mr2/J = 0.52), in case of such start resonance amplitudes of vibration of
masses centre of the lifting body are su�ciently less than those at synchronous start of
the motors. In addition to that amplitudes of horizontal and turning resonance vibrations
grow. However, their amplitudes are far from maximal values of amplitudes of vertical
vibrations.

5 Findings

Thus, the majority of mechanisms of behavior of inertial vibroexciters and vibrational sys-
tem in general at passing the resonance zone may be explained on the basis of approaches
of vibrational mechanics. On this ground practical conclusions and recommendations im-
proving dynamic and power characteristics of vibromachines with unbalanced drive may
be obtained. Methods of double and separated start are e�ective for easing the start of
postresonance vibromachines with unbalanced drive.
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