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C)XXATUE AYOUODAWUIOB METO4OM STLS-ESM

In the paper an audio compression algorithm based on modeling an audio signal by a partial solution of a
certain difference equation in the time domain is investigated. The signal is modeled as a sum of exponentially
damped sinusoids. Such an approach is thought to be efficient in modeling the transient segments that are
present in speech audio signals and audio signals generated by conventional musical instruments. In order
to approximate an audio signal frame with a solution of a difference equation, a variational (STLS) problem
is solved using the inverse iteration algorithm with an updating inverse matrix. The a-version of the audio
codec based on the STLS-ESM scheme was created and tested in comparison with LAME MP3 codec.

AUDIO SIGNALS MODELING; AUDIO CODEC; EXPONENTIAL SINUSOIDAL MODEL;
PARAMETRIC IDENTIFICATION; DIFFERENCE EQUATIONS; VARIATIONAL IDENTIFICA-
TION METHOD; STRUCTURED TOTAL LEAST SQUARES.

PaccmoTpeH anroputm cxkaTusi ayquOCUTHalIa IyTEM €ro ammpoKCUMalluM BO BPEMEHHOU o0iactu
YaCTHBIM PEIIEHUEM HEKOTOPOTO PAa3HOCTHOTO YpPAaBHEHWS. AYAMOCUTHA TIPENCTABIEH B BUIE CYMMBI
9KCIOHEHIIUABHO 3aTyXaloluX,/pacTyiiux cuHycoun. Takoi moaxon 3(pdexTrBeH M MOACIUPOBAHUS
TIEPEXONHBIX MPOLECCOB B PEYEBBIX CUTHAJIAX M CUTHAIAX TPAAULIMOHHBIX MY3BIKATbHBIX WHCTPYMEHTOB.
J1st mocTpoeHus amnmpoKCMMAIMY pellieHa BapuallMOHHAs 3afadya WISHTU(MUKAIIMU C UCIOIb30BaHUEM
WTEepalnii ¢ oOHOBIsIEMOl 00paTHOI Matpuleil. [IpencraBneHa a-Bepcys aymMOKoIeKa U TIPUBEACHBI pe-
3yJIbTaThl TECTUPOBAHMS B CpaBHEHUHU ¢ ayauokomekom LAME MP3.

MOAEINPOBAHUE AYINMOCUTHAJIOB; AYAMOKOIEK; EXPONENTIAL SINUSOIDAL
MODEL; IMMTAPAMETPUYECKAA UAEHTU®UKALINA; PABHOCTHBIE YPABHEHWA; METO/
BAPUALIMOHHOM UJEHTU®UKALINU.

1. INTRODUCTION Vorbis reduce the sound quality of music files,

without, however, degrading it radically. Hence,

Lossless audio codecs, e. g. FLAC, Monkey’s
Audio APE, TTA can achieve compression
ratios of 2-3 times.

Lossy audio codecs such as MPEG-1
codecs (MP1, MP2 and MP3) and OGG

*This article is an extended post-conference revision
of the paper «Audio Files Compression with the
Variational Method of Identification of Modeling
Difference Equations» by Eugenia M. Khassina and
Andrei A. Lomov published in Pyshkin, E., and
Klyuev, V. (Eds). Proceedings of the International
Workshop on Applications in Information Technology
(IWAIT-2015), The University of Aizu Press,
2015. Available at <http://kspt.ftk.spbstu.ru/media/
files/2015/iwait-2015/proceedings/iwait-2015-e-
proceedings-release.pdf>
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for the human ear, the distortions made by such
codecs are not actually noticeable. A music file
compressed to a fifth of its original size still has
the sound quality of radio broadcasting.

In their work, lossy codecs tend to
decompose an audio signal into harmonics.
However, the method often does not correspond
to the physical nature of sounds produced by
conventional musical instruments, for which
the presence of a considerable quantity of
transients  (high-amplitude, short-duration
sound segments followed by an exponential
decay) is common. If a piece of a signal
contains transients it cannot be considered
as a quasi-stationary episode. This is why the
MP3 audio codec, for instance, has to use the
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Fig. 1. Transient [1]

Modified Discrete Cosine Transform (MDCT)
with windows of varied length while processing
a signal. A long window (1024-subband
MDCT) is used for quasi-stationary episodes
of a signal while a short window (128-subband
MDCT) is used for episodes with transient
attacks. Providing a better time resolution,
the short-block mode of the encoding scheme
also helps to avoid what is commonly referred
to as a pre-echo artifact: frequently annoying
audible quantization noise that occurs before a
transient [1].

In Fig. 1 a transient can be seen. Even
though it is more natural to decompose such
signals into a sum of exponentially damped
sinusoids, rather than to represent them as a
Fourier series, such an approach requires a
considerable amount of CPU resources. This
is the reason why the creation and the usage
of codecs based on the principle have only
recently become justified.

In formula (1) below, audio signal s(n) is
represented as a superposition of slowly time-
varying exponentially weighted sinusoids and
quasi-stationary noise n(#n). The signal model is
called the Exponential Sinusoidal Model (ESM).
The frequencies o, phases ¢, amplitudes o, and
damping parameters y, can be obtained without
switching to the frequency domain.

K
s(n) = Y a(n)e """ sin(w,(n)n +
i=l1

(1
+ ¢;(m)) + n(n).

In Ref. [2] a Total Least Squares (TLS)
problem of order 2K is solved to estimate o,
and vy, where K is the number of available
exponentially damped sinusoids predefined by
a user [3, 4]. On the basis of the TLS-ESM
scheme an experimental audio codec was
created and tested [2].

TLS searches for the parameters of the
damped sinusoids maximizing the signal-
to-noise ratio (SNR), that is, the algorithm
tries to make the original and the modeled
signals as close to each other as possible in
the time domain on each set of 2K samples.
TLS considers the sets independent even if
they contain common samples, and if the sets
are dependent in reality. The problem is an
essential disadvantage of TLS.

It also should be noted that the SNR quality
measure is a formal criterion. It effectively
allows to achieve a high degree of time
resemblance between the original signal and
the modeled one on separate sets of samples
while ignoring the perceptual quality of the
modeled audio that is much more important
for an audio codec.

Experiments showed [2] that TLS spends
all the modeling sinusoids for low frequencies
with high amplitudes. An explanation for this
fact is that adding a high-amplitude sinusoid
to the modeled signal reduces the difference
between the original and the modeled signals
more than adding a high-frequency low-
amplitude sinusoid does. As a result, there are
few available sinusoids left for modeling the
high frequencies and this is quite noticeable for
the human ear.

Thus, the initial fullband TLS algorithm had
to be improved with additional signal processing
in the frequency domain. The modified version
of the algorithm is called Subband TLS-ESM
[2]. The original signal is decomposed into
32 frequency subbands with a fully decimated
uniform QMF analysis filter bank (32 channels)
used in the MPEG-1 Layer I codec. For each
of the subband signals an independent TLS
problem is solved with the same number of
sinusoids employed for the modeling.
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The goal of the work is to research an audio
compression algorithm which decomposes
a signal into exponentially damped sinusoids
in the time domain without switching to the
frequency domain. We use an approximation of
an audio signal on the whole audio frame using
the variational identification method [4—6],
close to the Structured Total Least Squares
(STLS) [7] and the Global Total Least Squares
(GTLS) [8] methods.

In [9] a vocoder based on the ESM-STLS
scheme was proposed. The testing of the vocoder
was performed in comparison to Code-excited
linear prediction (CELP), a standard speech
coding algorithm. The results of the testing
showed that, providing a similar compression
ratio, the new vocoder has a substantially
higher signal-to-noise ratio (SNR). However,
the speech spectrum is rather simple, which
makes speech signals easily compressible. Our
experiments showed that Newton’s iterative
algorithms, to which STLS1 and STLS2 used
in [9] belong, have bad convergence when
solving the STLS problem for music audio files
with wider spectra.

2. THEORETICAL ASPECTS

Coding an audio frame. Our algorithm di-
vides the whole signal of an audio file into
frames of N samples each, processing the frames
one by one. In section 3 we will consider how
N value and other parameters are chosen. Con-
ventionally, N equals 100. A frame of samples
is denoted by s[k],k =1, V.

We will treat the vector s = (s[1];--- ; S[N])
as a perturbed observation of a solution process
z=(zZ[1];---; zIN]) of a certain homogeneous
linear difference equation with real coefficients.
We will solve the inverse problem of identifying
the unknown coefficients of the equation. Let
us take as an example a difference equation of
order p = 3:

zlk + 3]+ o, 2[k + 2] +
+ o, z[k + 1]+ ayz[k] =0, k=1, N -3.

()

Let us denote the characteristic roots of the
system (2) by &. The characteristic polynomial
of the system is real, hence all the roots that are
complex should occur in complex-conjugate
pairs. For the present example, let us suppose
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that the single real root of the characteristic
polynomial is &. Then we have the general
solution of (2) as follows:

20kl = el +CE +Ceb . (3)

We are interested only in real solutions of
the difference equation, as audio samples of
observation s are real. Therefore, we can switch
to the real form of the general solution (3), as-
suming C; and C, to be complex conjugates,
and convert it to a sum of exponentials and
exponentially damped sinusoids:

———k
Zlk] = Cléf + Cl & + Czég =
— Cle("ll +ioy)k + ae(‘llff")])k + Cze“lzk — (4)
= Ap! cos(kw,) + A,pf sin(ko,) +
+ Ayps, Vi A € R
We introduce the following notation for

the vector of the coefficients of the difference
equation:

y=(a, o, o, D).

Let us define the objective function for the
identification of vector y:

Jo) = sz,
2(y) = arg g}in s - z||2 ) (5)
This variational problem was first

formulated and solved by A.O. Egorshin
[4, 5]. For its numerical solution we apply the
iterative algorithm with an updating inverse
matrix proposed by A.O. Egorshin and,
independently, by M.R. Osborne [10]. We use
the least-squares estimate vy, [11, 12] as the
initial y for the iterative algorithm w. Now we
define special matrices in order to derive the
formula for y ¢ and to describe the iterative
algorithm solving problem (5).

First, let us transform the difference
equation (2) to a matrix form:
o, o o, I 0Y( z[1]
9 Gy f*l (.12 '1 ' Z[:2] = 0. (6)
0 a, o, o, 1)\z[N]
G z
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We search for vector y by adjusting the
residual e, =G, s to approach zero. Now the
objective function for the least-squares problem
is as follows:

J,=argmin e'e , e =Gzs. (7)

Then we use the identity GY s= W)y, where
V'is a Hankel matrix:

14

s[N.—3] s[N.—2] s[N'—l] | s[}V] 1

s(1] s[2] s[3] s[4} (o
s[2] s13]

M| S| | g

o,

o, o o, I 0)( s[1]
0 o o, a, 1 s[2] |
0 a, a, a, 1J{s[N]

G s

Y

We denote the vector of the identified coef-
ficients by 0 and rewrite the expression for the
residual e

e:(ao o az)T: Y:[?ja
)

e, =V(s) -y =Vi(s) - 0+ V().

Solving the linear least-squares problem we
get the values of the coefficients 0:

eLs = _(VITVI)_l VlTVz (10)

Now, the iterations with an updating inverse
matrix which solve the variational identification
problem (5) are:

1. The initial value: y =y (0) = yq.

2. For k>0

=V ()G, G,y V() (k)

VUS| ——— an
0...0D)r

The last equation means the division of
the whole auxiliary vector 6 by its last element
in order to make the last element of vector
y(k + 1) equal to unity. The main difference
of the Egorshin—Osborne iterations from the
computational TLS algorithm consists in the
presence of the inverse matrix (Gy(k)GJ(k))‘I
which is updated at each iteration.

Using the calculated estimate for y, we
find the modeling process z(y) nearest to the
observation s as the linear projection [4, 5]:

) =U-G(GG)'G) s, (12)

I1-11

where [ is an identity matrix.
Matrix [ — II is a projection matrix to the
subspace of solutions of the equation Gyz = 0.

[
4 Vy ¥

The obtained coefficient vector y and the cor-
responding process z(y) that fit the observation
s are used further, as we will show below.

Note also that in this section the order p of
the difference equation is considered known. A
way of choosing p and the problems encoun-
tered when using the iterations (11) at the im-
plementation stage will be conveyed in the next
section.

Decoding an audio frame. From (4) we can
see that, in order to restore process z, for each
complex-conjugate pair of roots of the charac-
teristic polynomial of the difference equation
we need to know the real argument and the
real modulus of the polar form of that root of
the pair that lies above the real axis and we also
need to know the set of real coefficients Ai.
Thus, we should keep 2p float numbers to re-
store one audio frame. Besides, we should also
keep one byte (or two/three for the last frame
of an audio file) of service information for each
audio frame such as the order of a difference
equation and the frame size type. We will not
describe in detail the structure of the frame ser-
vice information byte in this paper.

The only thing left for us to understand
is how to get coefficients A4,,i=1,p. Let us
transform the expression (4) to a matrix form:

Z[1]

N]
p, cos(w,) p,sin(®,) p,
b cos2e)  pisinQe,) p:

(13)

pr cos(Nw) p' sin(Noy) p;
H
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- Hd. (13)

Q{ N LN N

Using the iterations (11) we have found the
model G and the process z, corresponding to
the original observation s, such that G z = 0.
Knowing G (the coefficients of the difference
equation), we can find the characteristic roots
of the equation and, thus, the matrix H. Note
that the next expression is true:

Gz=GHd=0,d #0=>G 1L H.

The needed vector d containing coefficients
A, can be found with the least squares method:

d=(HH)Y'H'Z, (14)

where H is a submatrix composed of >p rows
of matrix H and Z is a subvector composed of
the corresponding elements of vector z. Also
the following equations take place:
d=(H"H)'H'z=
=(H'H)Y'H HH"H)Y'H's =
=(H"H)'H's.

3. CODEC IMPLEMENTATION

We have implemented an audio codec
(consisting of the coder and decoder modules),
based on the theory described above, in the

Scilab cross-platform environment (http://www.
scilab.org) supplying a high-level programming
language resembling MATLAB, the language
interpreter and an ample set of mathematical
functions. The codec implementation and
testing were performed in the Debian
GNU/Linux operating system. As input the
codec accepts a mono WAV audio file with
a sample rate of 44.1 KHz and a bit depth
of 16 bits. As output the codec produces a
compressed file, whose special structure we had
to define with a new extension .cod. In Fig. 2
you can see the general scheme of the codec
operation.

An original audio signal to be compressed
is divided into frames of N samples with a shift
of (N — M) samples. That is to say, each pair of
consequent frames overlap by M samples to be
glued smoothly after their decompression. After
the decoding procedure two neighboring frames
are summed on the gluing area preliminarily
weighted. The weighting coefficients vary from
0 to 1. The weighting functions we use are
sin?(ck) and 1 — sin?(ck) where the time index k
runs from 0 to M — 1 and ¢(M - 1) = /2. In
Fig. 3 you can see the gluing scheme.

The values of N and M can be predefined by
a user. It was discovered that for frames longer
than 150 samples the coding procedure often
fails because the iterations (11) do not converge,
and if we take M value < 5, an audible noise ap-
pears on joints of neighboring frames. We chose
the average values: N = 100 and M = 10.

* wav coder

* cod

* wav

“ﬁf\%\/ {\L’

Fig. 2. General scheme of the codec operation:
A. Original frames. B. Decompressed frames
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Fig. 3. Gluing of frames after decompression

As an example, let us have an initial au-
dio signal s consisting of 280 samples. We
will model it with three frames that consist of
N = 100 samples each and overlap by M = 10
samples.

Let us denote the first frame we are to ap-
proximate by s, = (s[1]; ---; s[100]). We find
2p float numbers needed to restore s,. We de-
note the restored version of the frame by z, and
we will call its endings A and C as it is shown
in Fig. 3.

Now we take the following frame
s, = (s[91]; --- ;5 s[100]; --- ; s[190]) and model
it. The result of the frame modeling is z, whose
endings are B and E.

The two modeled frames overlap in the
area [B, C]. We multiply the overlapping part
(z,[91]; -+ 5 z,[100]) of z, by a decreasing square
sinusoid

Sin2 E . Sinz EM—_z
2) 2M-1)

sin’ (E-;j; sinz(O)J
2M-1
component-wise. The dimensions of the mul-
tiplied vectors are both equal to M. At the
same time we multiply the overlapping part
(z,[1]; -+ z,[10]) of z, by the vector of an in-
creasing square sinusoid

[sin2(0); sin’ (E-—

The dimensions of the vectors multiplied
are equal again.

The result of gluing z, and z, is a consequence
of the samples of [A, B] part of z,, the samples
of a component-wise sum of the overlapping
parts [B, C] of z, and z, and the samples of
[C, E] part of z,. The resulting vector [A, E]
consists of 190 samples.

Now we model the last frame s,. The result
of the modeling is frame z, with the endings D
and F. We glue the resulting vector [A, E] with
Z, in the same way. Now the overlapping area
is [D, E].

The described approach was implemented
in our codec and all the tests showed that
the gluing is performed smoothly. However,
we should note that the overlaps decrease the
resulting compression ratio because the quantity
of samples that we can code using »n frames
declines from n - Nto n - (N — M) + M when
the frames overlap.

When coding a frame we increment a model
order p in a cycle from p . = 2top_ = 13.
For each p the identification of coefficients of
the equation (2) is performed and the model
process (12) is found. After this, the relative
modeling error is counted as follows:

2 -5

sl

where the value 5 % is the relative error
threshold. If the relative error counted does
not exceed the threshold then we break the
p cycle and write the found 2p float numbers
and a service information byte to the output
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Testing results

Files Files Our codec LAME MP3 128 kbps | LAME MP3 256 kbps
type number | compression | relative | compression | relative | compression | relative
ratio error ratio error ratio error
Piano 20 3.334 0.028 5.15 0.052 2.575 0.001
Electric
. 20 1.451 0.028 5.15 0.056 2.575 0.003
guitar

.cod file. Obviously, the least suitable model
order is preferable to make the compressed file
as small as possible. If the coder fails for any
order p with the chosen relative precision 5 %
then it divides the frame in half and tries to
model each of the two smaller frames again. If
the modeling process for a smaller frame is not
successful anyway, then the frame is written
to .cod file directly without compression.
The relative error threshold is predefined by a
user and, in general, can be set to an arbitrarily
small number but it would lead to a low
compression ratio.

4. TESTING

The testing was performed over 20 piano
audio files and 20 electric guitar audio files of
44 100 samples each (one second duration)
for our audio codec and also for LAME MP3
[version 3.99.5] [x86] codec with constant bit
rates (CBR) 128 Kbps and 256 Kbps in order
for us to be able to assess the effectiveness of
our codec comparing to it. You can see the
results of the testing in the Table.

We compressed each original WAV audio
file with a coder to a .cod or MP3 file and
then decoded the compressed file to a WAYV file
again. After that, we counted the relative error
between the audio signal of the original WAV
file and the signal of the decompressed WAV
file as shown in (15). The relative error values
presented in the Table are average for both sets
of 20 audio files. The relative error threshold
in our codec is 5 %, thus, the average relative
error values relating to our codec are less than
0.05.

Using a bit rate of 128 Kbps typically re-
sults in a sound quality equivalent to what we
would hear on the radio. As you can see the
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relative error for our codec is less than the one
for LAME MP3 codec with CBR 128 Kbps.
However, the relative error is only an objective
sound quality measurement. When we were
assessing the subjective perceptual quality of
the sound produced by our codec by listening
to it in headphones, the sound happened to
be distinctly worse than the sound of the au-
dio files produced by LAME MP3 codec with
CBR 128 Kbps.

The compression ratio values related to our
codec are average for both sets of 20 audio files
in the Table. The compression ratio reached
by LAME MP3 was identical for all the audio
files (5.15 times for 128 Kbps and 2.575 times
for 256 Kbps) as we used it in the constant bit
rate mode.

Considering the work of our codec, one can
also notice that the average compression ratio
reached by the codec for “simple” piano files
is two times bigger than the ratio for “compli-
cated” electric guitar files. The reason for this
is that the iterations (11) converge worse for
the latter. Therefore, more frames of an electric
guitar file are written fully to an output com-
pressed file .cod increasing its size.

We consider the codec as an interesting
application of parametric identification methods
in the time domain. The key point of its work
is the variational (STLS) objective function (5)
that is minimized in our modeling algorithm.
The iterations (11) minimize the function over
difference equation coefficients effectively for
simple piano music files and the algorithms
STLS1 and STLS2 used in [9] also solve the
STLS problem well for speech signals. However,
the STLS approach does not work properly for
more complicated music files. We are going to
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handle the problem by dividing an audio signal
into frequency subbands and coding each of them
independently. Additionally, we are planning to
search for more efficient ways of minimizing
the variational objective function; one option

is to do it over the roots of the characteristic
polynomial of the difference equation.
The work has been supported by the

Russian Foundation for Basic Research (project
No. 13-01-00329).
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