
Научно-технические ведомости СПбГПУ 5' (229) 2015
Информатика. Телекоммуникации. Управление

88

DOI: 10.5862/JCSTCS.229.9

UDC 004.627

E.M. Khassina, A.A. Lomov

Audio Files Compression with the STLS-ESM Method*

Е.М. Хасина, А.А. Ломов

Сжатие аудиофайлов методом STLS-ESM

In the paper an audio compression algorithm based on modeling an audio signal by a partial solution of a 
certain difference equation in the time domain is investigated. The signal is modeled as a sum of exponentially 
damped sinusoids. Such an approach is thought to be efficient in modeling the transient segments that are 
present in speech audio signals and audio signals generated by conventional musical instruments. In order 
to approximate an audio signal frame with a solution of a difference equation, a variational (STLS) problem 
is solved using the inverse iteration algorithm with an updating inverse matrix. The α-version of the audio 
codec based on the STLS-ESM scheme was created and tested in comparison with LAME MP3 codec.

audio signals modeling; audio codec; exponential sinusoidal model; 
parametric identification; difference equations; variational identifica-
tion method; structured total least squares.

Рассмотрен алгоритм сжатия аудиосигнала путем его аппроксимации во временной области 
частным решением некоторого разностного уравнения. Аудиосигнал представлен в виде суммы 
экспоненциально затухающих/растущих синусоид. Такой подход эффективен для моделирования 
переходных процессов в речевых сигналах и сигналах традиционных музыкальных инструментов. 
Для построения аппроксимации решена вариационная задача идентификации с использованием 
итераций с обновляемой обратной матрицей. Представлена α-версия аудиокодека и приведены ре-
зультаты тестирования в сравнении с аудиокодеком LAME MP3.

моделирование аудиосигналов; аудиокодек; exponential sinusoidal 
model; параметрическая идентификация; разностные уравнения; метод 
вариационной идентификации.

1.  INTRODUCTION

Lossless audio codecs, e. g. FLAC, Monkey’s 
Audio APE, TTA can achieve compression 
ratios of 2-3 times.

Lossy audio codecs such as MPEG-1 
codecs (MP1, MP2 and MP3) and OGG 

Vorbis reduce the sound quality of music files, 
without, however, degrading it radically. Hence, 
for the human ear, the distortions made by such 
codecs are not actually noticeable. A music file 
compressed to a fifth of its original size still has 
the sound quality of radio broadcasting.

In their work, lossy codecs tend to 
decompose an audio signal into harmonics. 
However, the method often does not correspond 
to the physical nature of sounds produced by 
conventional musical instruments, for which 
the presence of a considerable quantity of 
transients (high-amplitude, short-duration 
sound segments followed by an exponential 
decay) is common. If a piece of a signal 
contains transients it cannot be considered 
as a quasi-stationary episode. This is why the 
MP3 audio codec, for instance, has to use the 

* This article is an extended post-conference revision 
of the paper «Audio Files Compression with the 
Variational Method of Identification of Modeling 
Difference Equations» by Eugenia M. Khassina and 
Andrei A. Lomov published in Pyshkin, E., and  
Klyuev, V. (Eds). Proceedings of the International 
Workshop on Applications in Information Technology 
(IWAIT-2015), The University of Aizu Press, 
2015. Available at <http://kspt.ftk.spbstu.ru/media/
files/2015/iwait-2015/proceedings/iwait-2015-e-
proceedings-release.pdf>
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Modified Discrete Cosine Transform (MDCT) 
with windows of varied length while processing 
a signal. A long window (1024-subband 
MDCT) is used for quasi-stationary episodes 
of a signal while a short window (128-subband 
MDCT) is used for episodes with transient 
attacks. Providing a better time resolution, 
the short-block mode of the encoding scheme 
also helps to avoid what is commonly referred 
to as a pre-echo artifact: frequently annoying 
audible quantization noise that occurs before a 
transient [1].

In Fig. 1 a transient can be seen. Even 
though it is more natural to decompose such 
signals into a sum of exponentially damped 
sinusoids, rather than to represent them as a 
Fourier series, such an approach requires a 
considerable amount of CPU resources. This 
is the reason why the creation and the usage 
of codecs based on the principle have only 
recently become justified.

In formula (1) below, audio signal s(n) is 
represented as a superposition of slowly time-
varying exponentially weighted sinusoids and 
quasi-stationary noise η(n). The signal model is 
called the Exponential Sinusoidal Model (ESM). 
The frequencies ωi, phases ϕi, amplitudes αi and 
damping parameters γi can be obtained without 
switching to the frequency domain.
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In Ref. [2] a Total Least Squares (TLS) 
problem of order 2K is solved to estimate ωi 
and γi, where K is the number of available 
exponentially damped sinusoids predefined by 
a user [3, 4]. On the basis of the TLS-ESM 
scheme an experimental audio codec was 
created and tested [2]. 

TLS searches for the parameters of the 
damped sinusoids maximizing the signal-
to-noise ratio (SNR), that is, the algorithm 
tries to make the original and the modeled 
signals as close to each other as possible in 
the time domain on each set of 2K samples. 
TLS considers the sets independent even if 
they contain common samples, and if the sets 
are dependent in reality. The problem is an 
essential disadvantage of TLS.

It also should be noted that the SNR quality 
measure is a formal criterion. It effectively 
allows to achieve a high degree of time 
resemblance between the original signal and 
the modeled one on separate sets of samples 
while ignoring the perceptual quality of the 
modeled audio that is much more important 
for an audio codec.

Experiments showed [2] that TLS spends 
all the modeling sinusoids for low frequencies 
with high amplitudes. An explanation for this 
fact is that adding a high-amplitude sinusoid 
to the modeled signal reduces the difference 
between the original and the modeled signals 
more than adding a high-frequency low-
amplitude sinusoid does. As a result, there are 
few available sinusoids left for modeling the 
high frequencies and this is quite noticeable for 
the human ear. 

Thus, the initial fullband TLS algorithm had 
to be improved with additional signal processing 
in the frequency domain. The modified version 
of the algorithm is called Subband TLS-ESM 
[2]. The original signal is decomposed into 
32 frequency subbands with a fully decimated 
uniform QMF analysis filter bank (32 channels) 
used in the MPEG-1 Layer I codec. For each 
of the subband signals an independent TLS 
problem is solved with the same number of 
sinusoids employed for the modeling.

Fig. 1. Transient [1]

(1)
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The goal of the work is to research an audio 
compression algorithm which decomposes 
a signal into exponentially damped sinusoids 
in the time domain without switching to the 
frequency domain. We use an approximation of 
an audio signal on the whole audio frame using 
the variational identification method [4–6], 
close to the Structured Total Least Squares 
(STLS) [7] and the Global Total Least Squares 
(GTLS) [8] methods.

In [9] a vocoder based on the ESM-STLS 
scheme was proposed. The testing of the vocoder 
was performed in comparison to Code-excited 
linear prediction (CELP), a standard speech 
coding algorithm. The results of the testing 
showed that, providing a similar compression 
ratio, the new vocoder has a substantially 
higher signal-to-noise ratio (SNR). However, 
the speech spectrum is rather simple, which 
makes speech signals easily compressible. Our 
experiments showed that Newton’s iterative 
algorithms, to which STLS1 and STLS2 used 
in [9] belong, have bad convergence when 
solving the STLS problem for music audio files 
with wider spectra.

2. THEORETICAL ASPECTS

Coding an audio frame. Our algorithm di-
vides the whole signal of an audio file into 
frames of N samples each, processing the frames 
one by one. In section 3 we will consider how 
N value and other parameters are chosen. Con-
ventionally, N equals 100. A frame of samples 
is denoted by [ ], 1, .s k k N=

We will treat the vector ( [1];   ;  [ ])s s s N   
as a perturbed observation of a solution process 

( [1];   ;  [ ])z z z N   of a certain homogeneous 
linear difference equation with real coefficients. 
We will solve the inverse problem of identifying 
the unknown coefficients of the equation. Let 
us take as an example a difference equation of 
order p = 3: 

2

1 0
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Let us denote the characteristic roots of the 
system (2) by ξi. The characteristic polynomial 
of the system is real, hence all the roots that are 
complex should occur in complex-conjugate 
pairs. For the present example, let us suppose 

that the single real root of the characteristic 
polynomial is ξ2. Then we have the general 
solution of (2) as follows:

0 1 1 1 2 2[ ] .
kk kz k C C C= ξ + ξ + ξ

We are interested only in real solutions of 
the difference equation, as audio samples of 
observation s are real. Therefore, we can switch 
to the real form of the general solution (3), as-
suming C0 and C1 to be complex conjugates, 
and convert it to a sum of exponentials and 
exponentially damped sinusoids:
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We introduce the following notation for 
the vector of the coefficients of the difference 
equation:

0 1 2( 1) .γ α α α



Let us define the objective function for the 
identification of vector γ:

2

2
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This variational problem was first 
formulated and solved by A.O. Egorshin  
[4, 5]. For its numerical solution we apply the 
iterative algorithm with an updating inverse 
matrix proposed by A.O. Egorshin and, 
independently, by M.R. Osborne [10]. We use 
the least-squares estimate γLS [11, 12] as the 
initial γ for the iterative algorithm w. Now we 
define special matrices in order to derive the 
formula for γLS and to describe the iterative 
algorithm solving problem (5).

First, let us transform the difference 
equation (2) to a matrix form:
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We denote the vector of the identified coef-
ficients by θ and rewrite the expression for the 
residual eγ:

0 1 2( ) ,   ,
1

θ 
θ = α α α γ =  

 


1 2( ) · ( ) · ( ).e V s V s V sγ = γ = θ +

Solving the linear least-squares problem we 
get the values of the coefficients θ: 

1
LS 1 1 1 2( ) .V V V V−θ = −  

Now, the iterations with an updating inverse 
matrix which solve the variational identification 
problem (5) are:

1. The initial value: γ = γ (0) = γLS.
2. For k ≥ 0

1 1
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The last equation means the division of 
the whole auxiliary vector θ by its last element 
in order to make the last element of vector  
γ(k + 1) equal to unity. The main difference 
of the Egorshin–Osborne iterations from the 
computational TLS algorithm consists in the 
presence of the inverse matrix 1

( ) ( )( )k kG G −
γ γ

  
which is updated at each iteration.

Using the calculated estimate for γ, we 
find the modeling process z(γ) nearest to the 
observation s as the linear projection [4, 5]:

п

1

 

( ) ( ( ) )  · ,
I

z I G G G G s−
γ γ γ γ

−

γ = −


 

where I is an identity matrix.
Matrix I − П is a projection matrix to the 

subspace of solutions of the equation Gγz = 0. 

We search for vector γ by adjusting the 
residual e Gγ γ

s to approach zero. Now the 
objective function for the least-squares problem 
is as follows:

The obtained coefficient vector γ and the cor-
responding process z(γ) that fit the observation 
s are used further, as we will show below.

Note also that in this section the order p of 
the difference equation is considered known. A 
way of choosing p and the problems encoun-
tered when using the iterations (11) at the im-
plementation stage will be conveyed in the next 
section.

Decoding an audio frame. From (4) we can 
see that, in order to restore process z, for each 
complex-conjugate pair of roots of the charac-
teristic polynomial of the difference equation 
we need to know the real argument and the 
real modulus of the polar form of that root of 
the pair that lies above the real axis and we also 
need to know the set of real coefficients Ai. 
Thus, we should keep 2p float numbers to re-
store one audio frame. Besides, we should also 
keep one byte (or two/three for the last frame 
of an audio file) of service information for each 
audio frame such as the order of a difference 
equation and the frame size type. We will not 
describe in detail the structure of the frame ser-
vice information byte in this paper.

The only thing left for us to understand 
is how to get coefficients , 1, .iA i p=  Let us 
transform the expression (4) to a matrix form:
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Then we use the identity Gγ s ≡ V(s)γ, where 
V is a Hankel matrix:
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Using the iterations (11) we have found the 
model G and the process z, corresponding to 
the original observation s, such that G z = 0. 
Knowing G (the coefficients of the difference 
equation), we can find the characteristic roots 
of the equation and, thus, the matrix H. Note 
that the next expression is true:

 0, 0 .G z GHd d G H= = ≠ ⇒ ⊥

The needed vector d containing coefficients 
Ai can be found with the least squares method: 

1( ) ,d H H H z−=  

where H  is a submatrix composed of ≥p rows 
of matrix H and z  is a subvector composed of 
the corresponding elements of vector z. Also 
the following equations take place:
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3. CODEC IMPLEMENTATION

We have implemented an audio codec 
(consisting of the coder and decoder modules), 
based on the theory described above, in the 

Scilab cross-platform environment (http://www.
scilab.org) supplying a high-level programming 
language resembling MATLAB, the language 
interpreter and an ample set of mathematical 
functions. The codec implementation and 
testing were performed in the Debian  
GNU/Linux operating system. As input the 
codec accepts a mono WAV audio file with 
a sample rate of 44.1 KHz and a bit depth 
of 16 bits. As output the codec produces a 
compressed file, whose special structure we had 
to define with a new extension .cod. In Fig. 2 
you can see the general scheme of the codec 
operation.

An original audio signal to be compressed 
is divided into frames of N samples with a shift 
of (N − M) samples. That is to say, each pair of 
consequent frames overlap by M samples to be 
glued smoothly after their decompression. After 
the decoding procedure two neighboring frames 
are summed on the gluing area preliminarily 
weighted. The weighting coefficients vary from 
0 to 1. The weighting functions we use are 
sin2(ck) and 1 − sin2(ck) where the time index k 
runs from 0 to M – 1 and c(M − 1) = π/2. In 
Fig. 3 you can see the gluing scheme.

The values of N and M can be predefined by 
a user. It was discovered that for frames longer 
than 150 samples the coding procedure often 
fails because the iterations (11) do not converge, 
and if we take M value < 5, an audible noise ap-
pears on joints of neighboring frames. We chose 
the average values: N = 100 and M = 10.

Fig. 2. General scheme of the codec operation:  
A. Original frames. B. Decompressed frames

(14)

(13)
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As an example, let us have an initial au-
dio signal s consisting of 280 samples. We 
will model it with three frames that consist of  
N = 100 samples each and overlap by M = 10 
samples.

Let us denote the first frame we are to ap-
proximate by 1 ;   ; ( [1] [100]).s s s=   We find 
2p float numbers needed to restore s1. We de-
note the restored version of the frame by z1 and 
we will call its endings A and C as it is shown 
in Fig. 3.

Now we take the following frame 

2 ( [91];  ; [100];  ; [190])s s s s=    and model 
it. The result of the frame modeling is z2 whose 
endings are B and E.

The two modeled frames overlap in the 
area [B, C]. We multiply the overlapping part 

1 1;  ( [91]; [100])z z  of z1 by a decreasing square 
sinusoid 

2 2

2 2

2
sin ; sin · ;

2 2 1

1
sin · ; sin (

;  

0)
2 1

M
M

M

 π π −   
   −   

π 
 − 










 

component-wise. The dimensions of the mul-
tiplied vectors are both equal to M. At the 
same time we multiply the overlapping part 

2 2( [1];  ; [10])z z  of z2 by the vector of an in-
creasing square sinusoid 

2 2

2 2

1
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2 1

2
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
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 



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The dimensions of the vectors multiplied 
are equal again.

The result of gluing z1 and z2 is a consequence 
of the samples of [A, B] part of z1, the samples 
of a component-wise sum of the overlapping 
parts [B, C] of z1 and z2 and the samples of 
[C, E] part of z2. The resulting vector [A, E] 
consists of 190 samples.

Now we model the last frame s3. The result 
of the modeling is frame z3 with the endings D 
and F. We glue the resulting vector [A, E] with 
z3 in the same way. Now the overlapping area 
is [D, E]. 

The described approach was implemented 
in our codec and all the tests showed that 
the gluing is performed smoothly. However, 
we should note that the overlaps decrease the 
resulting compression ratio because the quantity 
of samples that we can code using n frames 
declines from n ∙ N to n ∙ (N − M) + M when 
the frames overlap.

When coding a frame we increment a model 
order p in a cycle from pmin = 2 to pmax = 13. 
For each p the identification of coefficients of 
the equation (2) is performed and the model 
process (12) is found. After this, the relative 
modeling error is counted as follows:	

  5 % ,
z s

s

−


where the value 5 % is the relative error 
threshold. If the relative error counted does 
not exceed the threshold then we break the 
p cycle and write the found 2p float numbers 
and a service information byte to the output 

Fig. 3. Gluing of frames after decompression

(15)
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.cod file. Obviously, the least suitable model 
order is preferable to make the compressed file 
as small as possible. If the coder fails for any 
order p with the chosen relative precision 5 % 
then it divides the frame in half and tries to 
model each of the two smaller frames again. If 
the modeling process for a smaller frame is not 
successful anyway, then the frame is written 
to .cod file directly without compression.  
The relative error threshold is predefined by a 
user and, in general, can be set to an arbitrarily 
small number but it would lead to a low 
compression ratio. 

4. TESTING

The testing was performed over 20 piano 
audio files and 20 electric guitar audio files of 
44 100 samples each (one second duration) 
for our audio codec and also for LAME MP3 
[version 3.99.5] [x86] codec with constant bit 
rates (CBR) 128 Kbps and 256 Kbps in order 
for us to be able to assess the effectiveness of 
our codec comparing to it. You can see the 
results of the testing in the Table. 

We compressed each original WAV audio 
file with a coder to a .cod or MP3 file and 
then decoded the compressed file to a WAV file 
again. After that, we counted the relative error 
between the audio signal of the original WAV 
file and the signal of the decompressed WAV 
file as shown in (15). The relative error values 
presented in the Table are average for both sets 
of 20 audio files. The relative error threshold 
in our codec is 5 %, thus, the average relative 
error values relating to our codec are less than 
0.05. 

Using a bit rate of 128 Kbps typically re-
sults in a sound quality equivalent to what we 
would hear on the radio. As you can see the 

relative error for our codec is less than the one 
for LAME MP3 codec with CBR 128 Kbps. 
However, the relative error is only an objective 
sound quality measurement. When we were 
assessing the subjective perceptual quality of 
the sound produced by our codec by listening 
to it in headphones, the sound happened to 
be distinctly worse than the sound of the au-
dio files produced by LAME MP3 codec with 
CBR 128 Kbps. 

The compression ratio values related to our 
codec are average for both sets of 20 audio files 
in the Table. The compression ratio reached 
by LAME MP3 was identical for all the audio 
files (5.15 times for 128 Kbps and 2.575 times 
for 256 Kbps) as we used it in the constant bit 
rate mode.

Considering the work of our codec, one can 
also notice that the average compression ratio 
reached by the codec for “simple” piano files 
is two times bigger than the ratio for “compli-
cated” electric guitar files. The reason for this 
is that the iterations (11) converge worse for 
the latter. Therefore, more frames of an electric 
guitar file are written fully to an output com-
pressed file .cod increasing its size.

We consider the codec as an interesting 
application of parametric identification methods 
in the time domain. The key point of its work 
is the variational (STLS) objective function (5) 
that is minimized in our modeling algorithm. 
The iterations (11) minimize the function over 
difference equation coefficients effectively for 
simple piano music files and the algorithms 
STLS1 and STLS2 used in [9] also solve the 
STLS problem well for speech signals. However, 
the STLS approach does not work properly for 
more complicated music files. We are going to 

Testing results

Files
type

Files
number

Our codec LAME MP3 128 kbps LAME MP3 256 kbps

compression
ratio

relative
error

compression
ratio

relative
error

compression
ratio

relative
error

Piano 20 3.334 0.028 5.15 0.052 2.575 0.001

Electric 
guitar

20 1.451 0.028 5.15 0.056 2.575 0.003
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handle the problem by dividing an audio signal 
into frequency subbands and coding each of them 
independently. Additionally, we are planning to 
search for more efficient ways of minimizing 
the variational objective function; one option 

is to do it over the roots of the characteristic 
polynomial of the difference equation.

The work has been supported by the 
Russian Foundation for Basic Research (project  
No. 13-01-00329).
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