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The functional of additional energy
for stability analysis of spatial rod systems
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Abstract. The problem solutions of stability of spatial rod systems by finite elements method in
stresses were considered. The proposed method is based on a combination of functional additional
energy and the principle of virtual displacements, used for the construction of the equilibrium equations.
After discrediting of the subject field, solution of the problem is reduced to the search of the minimum of
additional strain energy functional with constraints in the form of the system of linear algebraic equilibrium
equations of the nodes. The equilibrium equations are included in the functional with the help of Lagrange
multipliers, which are displacements of the nodes. Equations are derived for the static analysis based on
approximations of internal forces (stresses) for the spatial rod systems. To solve the stability problems, in
the functional of additional energy there are added additional energy the longitudinal deformations,
arising due to the bending of rods. Form of the rod buckling is approximated by a linear function on finite
element field. Two variants of the internal forces approximations on the finite element field: linear and
piecewise constant were considered. Calculations of critical forces (loads) have been performed by the
proposed method for the straight rods with different variants of the ends support and the spatial
frameworks. The calculation results were compared with the analytical solutions and the solutions
obtained by the method of finite elements in displacements. Analysis of the results shows that the use of
piecewise constant approximations of internal forces leads to convergence to the exact values of the
critical forces (loads) is strictly from below and provides solution with the reserve of stability.

AHHoTauuA. PaccmaTtpuBaeTcs pelueHvne 3agad yCTOMYMBOCTU NMPOCTPAHCTBEHHbLIX CTEPXHEBbIX
CMCTEM METOAOM KOHEYHbIX 3NIeMEHTOB B HanpsbkeHusix. [Mpegnaraemas meToaMka OCHOBbIBAETCA Ha
codeTaHuM yHKUMOHana [AOMOSIHUTENbHOM SHEpPrMuM U MNpUHUUNE BO3MOXHbBIX NepeMeLleHun,
MCMNOMb3yemMoro AN MoCTPOEHWs ypaBHEHMI paBHOBECUS Y3MNOB KOHEYHO-3fieMeHTHou ceTku. [locne
AvcKpeTnsaumm npeaMeTHon obnactu, pelleHne 3agayn CBOAUTCS K MOWCKY MUHUMYMa dyHKUMOHana
OOMNONHUTENBHON 3Heprun AedopMauum Npu Hanuinuu orpaHnyYeHnin B BUAE CUCTEMbI JIMHENHbIX
anrebpanyecknx ypaBHEHW paBHOBECUSA Y3NOB. YPaBHEHWS paBHOBECWSI BKIOYAKOTCA B (hyHKUMOHAnN
npuM nomowmn MHoXuTenen JlarpaHxa, KOTOpbIMU SABASIOTCA MepemelleHns ysnos. [lonyyeHsl
paspeluatolme ypaBHEHUS AN CTaTUYECKOro pacdeTa NPOCTPaHCTBEHHbLIX CTEPXHEBbLIX CUCTEM Ha
OCHOBE annpokcumauuu ycunuin (HanpsbkeHnuid). [na peleHus 3agady yCTOMYMBOCTUM B PYHKUMOHanNe
YYUTbIBAETCA AOMNOMHUTENbHAA 3HEPrnst OT MPOAONbHbIX Aedopmaunii, BO3HMKaOLWMX 3a cyeT m3rnba
cTepxkHen. dopma noTepu YCTOMYMBOCTM NO OOMACTM KOHEYHOro 3feMeHTa annpoKCUMMpyeTcs
nuHenHon dyHKuuen. PaccmaTtpusaloTca [Ba BapvaHTa annpokCMMauun BHYTPEHHUX YCUNUW no
0bnacTn KOHEYHOro 3fieMeHTa: JNIMHEWHasi U KYCOYHO-MOCTOsIHHAA. 1o npegnoxeHHoONn meToauke Gbinu
BbIMOMHEHbl pacyeTbl KPUTUYECKMX CUI (Harpy3ok) Ans NpsMbIX CTEPXKHEW MpU pasfvyHbIX BapuaHTax
3aKpenneHns KOHLOB U MPOCTPAHCTBEHHbLIX paM. BbiNoNHeHO cpaBHeEHWE pe3ynbTaToB C aHaNMTUYECKUM
PEeLEHNAMN U peLLIeHNsIMU, NOMYyYeHHbIMU MO MEeTOdY KOHEYHbIX 3NIEMEHTOB B NepeMeLleHnsax. AHanms
NOMy4YeHHbIX pes3ynbTaToB MOKa3blBAET, YTO WCMNOMb30BaHWE KYCOYHO-MOCTOSIHHBIX annpokcnumaummn
BHYTPEHHUX YCUMUIA NPUBOAUT K CXOOAMMOCTU K TOYHOMY 3HAYEHWMIO KPUTUYECKUX CUI (Harpy3oK) CTporo
CHU3Y 1 NO3BONSAET NOMYy4YnTb peLleHne B 3anac yCTOMYNBOCTH.
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Introduction

The finite element method in displacements is successfully used to solve the widest range of
structural mechanic problems, including stability problems [1-27]. In recent years, for rod systems the
greatest attention was given to the build functional for solving the problems of stability of thin-walled rods
[4, 6,9, 13, 17, 20, 26] and given the effect of shear and longitudinal deformations [3, 4, 9, 13]. Also, in
some articles the methods of solving rods stability problems [15] with considering the physical non-
linearity [12, 16] and the torsion of the cross sections were introduce. A series of articles are devoted to
the calculations the stability of rods based on direct solution of differential equations for compressed-bent
rods [18—25], including rods with variable cross-section [20, 21, 23-25].

In [3, 4, 28-36] the solutions of problems by mixed finite elements methods and in stresses are
considered. In [4], in order to solve the problems of constructions stability the mixed Reissner’s functional
is used. For this purpose, the functional is complemented by summand that considers the additional
energy of longitudinal deformation occurring by the bending. Also, it is considered functional for solving
stability problems of the open profiles rods and flexural-torsional forms of buckling spatial rods systems.

In [38] two variants of extreme energy principles to solve static problems of structural mechanics
are considered. It includes the Castilian principle which involves the static equations (equilibrium) as
constraints. The equations of statics were based on differential dependencies which bind forces and
external loads. The equilibrium equations of the longitudinal and transverse forces are prepared for
separate nodes. There were introduced different types of rod elements, the equilibrium equations are
constructed using a special algorithm. Stability problems are not considered.

In [32—36] solutions of static and dynamic problems of structural mechanics by finite elements
method in stresses were constructed. The equilibrium equations, formed on virtual displacement’s
principle, are included in the functional by the Lagrange’s multipliers or using penalty functions method. It
is shown that, if for approximation of the stress (forces) in the field of finite element constant or piecewise
constant functions were used, then displacements of nodes seek to exact values from above by crushing
the finite elements mesh. Thus, it is possible to receive the opposite, compared to the traditional finite
element method in displacements, border exact solutions.

It is known [1-3] that the solution, obtained by the method of finite elements in displacements,
under certain conditions, converges to the lower border of the exact values of displacements. Solutions,
obtained by the minimum principle of additional energy, also under certain conditions, allow getting
opposite bound of the exact values of displacements.

The purpose of this work is the construction of solution algorithm of stability problems of spatial rod
systems on the basis the functional of additional energy and the principle of virtual displacements, which
allow determine the lower limit of the critical loads.

Methods

In [32-36], founding by the functional of additional energy and principle of virtual displacements,
solving the building structures problems by finite element analysis in stresses were built. Using constant
or piecewise constant functions for the approximations of stresses (forces) in the field of finite element we
will get the upper border of displacements. In general, the solution of the problem reduces to finding the
minimum of the additional energy functional (1) in the presence of limitations in the form of equilibrium
equations of nodes (2).
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U™ — additional energy of the strains, V*— potential boundary forces corresponding to the specified
displacements [1]; {G;} — vector of unknown node stresses (forces) of finite elements adjacent to the
node i; Zy, %), =, — sets of nodes that have free displacements along the axes X, Y n Z respectively;

{Z} — vector given displacements of nodes; {T'} — vector boundary forces; S — boundary surface, on
which the displacement nodes are given; {Ci,x}, {Ci,x}, {Ci‘z} — vectors, which elements are the
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coefficients (multipliers) of the unknown node stresses (forces) of finite elements adjacent to the node i;
Pix, Piy P, — external loads potential corresponding to the virtual unit displacements of the node i
along axes x, Y, z respectively. The equations of equilibrium (2) are formed using the principle of virtual
displacements for all admissible displacements of nodes along the coordinate axes.

In order to go on to unconstrained minimization problem, we use the method of Lagrange’s
multipliers. Then advanced functional of additional energy takes the following form:

* * T — = .
Mg =U"+ V" + Xjoxy,z Dies; Ui ({Ci,j} {o.} + Pi,j) - min. ®)
u;; — the actual displacement of the node i towards j, which is the Lagrange’s multiplier for the

corresponding equilibrium equation. When using the functional (3) there is not necessary to use a stress
field that satisfies the differential equations of equilibrium, as required by the principle of minimum
additional energy. The equilibrium equations will be carried out in discrete sense — in the form of the
equilibrium equations of the finite element mesh nodes.

Let us consider the application of the proposed approach to solve static problems of the spatial rod
systems. Using the notations for rods systems, the functional (1) without the given displacements of
nodes will be as follows:

1 (1 My (x)? I My(x)2 le(x) lN(x) .
e = ?=1(5f027dx+2f0 —Z—dx + = fO dx f dx ) - min. 4)
El,, EI, — bending stiffness, G} — torsional stlffness; My(x), M,(x) —the bendlng moments directed
around axes Y1 and Z1 respectively (fig. 1b), M (x) — torque (directed around the axis X1); EA —

longitudinal stiffness; N(x) — longitudinal force; [ — length of the finite element; n — number of finite
elements.

b)

Figure 1. Positive directions of nodal displacements: a) global XYZ coordinate system and local

coordinate system X,Y1Z at the beginning of finite element; b) positive directions of the nodal
internal forces at the beginning of finite element

The approximations of internal forces (longitudinal forces and moments) will take linear (5) or
piecewise constant (6).

S(x) =S, (1 - %) +5,5, ®)

(S, x€[0,1/2]
5(")‘{52, x € [l/z,z]}'

In (5) and (6) under the symbol S any of the internal forces — N, My, M,, M, is meant. The
positive directions for the beginning finite element are shown in Figure 1b.

(6)

Substituting (5) or (6) into (4) we obtain the expression of the finite element additional energy in
matrix form:

€= %{Se}T[De]{Se}: {Se}T = (My,1 Mylz MZ:1 MZ:2 Mk'l Mk.z Ny NZ)- (7
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{S.} — vector of unknown nodal forces for finite element. Flexibility matrix [D,] of finite element for the
case of linear — [D, ], (8), and piecewise constant approximations — [D, ] (9), will be as follows:
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Note, that the unknown nodal forces are accepted independently for each finite element.
Therefore, the size of the global vector of unknown nodal forces {S} will be equal to 8n. Global flexibility
matrix [D] to the whole system, and its inverse[D] ™2, will have a block-diagonal (or diagonal) form:

| 0 0 0 0 0 0

D] 0 D7 -0
[D]=| ¢ - i |,[D]t = : : (10)
0 [Dn] 0 [Dn]—l
Using (10), the functional (4) can be written as follows:
¢ = 2{SY'[D]{S} » min. (11)

2

To form the equilibrium equations nodes of finite element we consider displacements of nodes in
the local coordinate system (Figs. 2—3) and obtain corresponding expressions the strain energy of finite
element.
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Figure 2. Possible displacements finite element nodes along the local axes: a) along the Z1 — éw;
b) along the Y1 — 8V, c) along the X1 — 6u

We assume that the possible displacements are changed along length of finite element according
to linear law. The displacements dw and 6V will give the rotations of finite element, as rigid body
rotations. The displacement of node dw; causes the angle of finite element rotation:

Sw.
Q= Tl (12)

When the element is rotated at an angle ¢, the nodal moments will perform the work 6ZW,1 as the
external forces:

— — (—M,+M
6AW'1 = _My,lﬁo + My‘z(p = 6W1 (%y,z) (13)
The internal moments are opposite in sign, so the energy of deformations:
— — — (My,—M
6UW,1 = _5AW,1 = 6W1 (—y'll y,Z). (14)
Similarly, we obtain
— — (—M,,+M — — (My,—M — — [(—Myi+M
Uy, = 6w, (—y'll y'z) , 0U51 =6 (—Z'll Z'z), 60Uz, = 6v, (—z'll+ Z’z)- (15)
At possible displacement du; along the axis X;:
— d -éu
u(x) = 6u, (1 - f), e(x) = ulw) _ Zou (16)
l dx l
Then, the energy of deformations
— —6u, L
SUz, = l f N(x)dx. 17)
0
If we substitute in (16) the expression for N (x) from (5) or (6) the result is the same:
5Ty, = 611, —th2) (18)
The similar expression can be obtained for a possible displacement of node 2
65&[2 = 5ﬂ2 (N1+N2) (19)

Next, let us consider possible displacements, as nodes rotation (Fig. 3a) and as element rotation
(Fig. 3b), around axes of the local coordinate system

Tyukalov Yu.Ya. The functional of additional energy for stability analysis of spatial rod systems. Magazine of Civil
Engineering. 2017. No. 2. Pp. 18-32. doi: 10.18720/MCE.70.3

22



NH:KeHepHO-CTPOUTEIBHBIN KypHaJ, Ne 2, 2017

Zia My, 1 My, 0®y,2 6@1AZ1
(S@y,{z % Mk15”’/ﬂMkY2
1 ‘> ( 5 TN R
Y, LA D
) ’ 0Py
6(pz.1jﬁ MZ,1 MZ,2 652,2 Mk1 - Mk2
14 (A;/'X’ s S
a) o

Figure 3. The possible turns: a) 6(py, 8¢ —around Y1 and Z1 axes; b) 6@, —around the axis X1
For rotations around the axes Y1 and Z1, expressions of strain energy will be written simply:
6U¢y‘1 = _My,15(py‘1, 5U¢y,2 == My;26(py,2’

— . — . (20)
6Uaz‘1 = —szl(s(pz‘l, 6U¢Z.2 = MZ;Z(S(pZ,Z'

For rotations around the axis X1 (Fig. 3b) strain energy expressions are like equations (17) and
(18) with substitution longitudinal forces by torques:

77 o= —(Mp1+Mg>) 77 _ o—  (Mp1+Mg»)
6Uax’1—6(px‘1—2 , 6U¢x‘2—6(px’2—2 . (21)

The possible nodal displacements in the global and the local coordinate systems are connected by
a matrix of the direction cosines [t]:

Suy 51, (60x1 00x1) (Su, 51,) (60x2 0,
{6vl}=[t] 8V 0,100y = [t]{09,, .{5v2}=[t] 8V ,160y2 ¢ =[t]1{60y, ¢ (22)
Sw, ow1) 8¢z §p,,) \Ow: owz) 8¢z, 59,,
t11 bz U3 (23)
[t] = [t21 ta2 t23]-
t31 3z t33

The energies of strains in the global and the local coordinate systems are connected also.
Formation of the matrix of direction cosines [t] is executed as in the calculation of spatial rod systems by
finite elements method in displacements [1-5]. The deformation energy values for possible
displacements of finite element nodes in the global coordinate system are placed into the vector {6Ue}
as follows:

(8UY" = {8Uys 68Uy 8Uyy 8U,,, 8U, . 8U

T
oy1 OUp,, 86Uy, 6U,, 6Uy, 6U,,, 6U 5U¢z,z} ) (24)

Py,2

Possible displacements of finite element nodes in the global coordinate system, in the same order,
are presented by square diagonal matrix [6ye].
[6111 0

[5}/9] = (25)

O vee 6(pZ’2
Using the vector of unknown nodal forces {S.}, introduced in (7), we can write the following
expression:

{6U.} = [6yel[LI{Se}- (26)

Matrix [L.], which may be called as matrix of equilibrium of finite element, considering the
expressions (14-15), (20-23) is as follows:
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From the local equilibrium matrices [L,], in accordance with the numbering of nodes and finite
elements, global matrix [L] of the system equilibrium equations of nodes will be formed. If the number of
finite elements is equal to n, number of nodes — k, and number of kinematic links — s, the matrix [L] would
be having (6k-s) lines and 8n columns. From the vector of unknown nodal forces of finite element {S,}
vector of unknown forces for the whole system {S} is formed. It consists of 8n elements.

In order to form the equilibrium equations it is also necessary to get expression of the work of
external forces from the possible displacements. At possible node displacements, the work is performed
by concentrated vertical forces and moments in the nodes and by loads, that is distributed along the

element. If evenly distributed along the finite element loads gy, gy, g, are defined in the global coordinate
system, then they should be reformed into local loads using expression (28):

Ex dx
q, ¢ =[t]" {qy}. (28)
az qz

Next, we form the vector {fe} that consists of concentrated forces and moments in the nodes:

_ _ =g o~ o~ 2 =2 - 2 =2 -7
F) =f0 ¥ el WAl w B oa el B el (29)
2 2 2 12 12 12 2 2 2 12 12 12

Vector {fe}, obtained in local coordinate system, should be transformed into the vector {F,} in
global coordinate system:

{Fe} = [te]{Fe}:
k] 0 0 0
0 (30)

0 0 0 [t

From the local vectors {F,}, according to the numbering of nodes and elements, we form the
global vector of the nodal loads {F} for all finite elements. Next, the forces and moments, that are
concentrated at the nodes, are added to elements of vector {F}. Obviously, the work of the external

forces is calculated as product of the elements of the vector {F} and the corresponding possible node
displacements. Thus, the system of equilibrium equations for the whole system can be written in the
following form:
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{F} - [LI{s} = 0. (31)

For the finite element, we introduce the notation for the vector of nodal unknowns in the local
coordinate system

_ - - — - - — - — T
{ye}T ={u1 v1 W1 @, V1 Ppy Uz V2 W2 Oy5 @5 ?,,} (32)

and the global vector of the nodal unknowns for whole system {y}, which is the vector of Lagrange’s
multipliers for the equilibrium equations of the system (30). By means of Lagrange’s multipliers, we
include the equations (30) into the functional (11) and obtain:

N = 2{S}"[D}(S} + (37 ({F} — [L}{SD > min. (33)

Equating to zero the derivatives I1¢ from vector {S}, we obtain the equations of compatibility of
strains in terms of stresses:

[DI{S} - [L]"{y} = 0. (34)

The derivatives TI¢ on elements of the vector {y} are systems of equilibrium equations of nodes
(31). Combining (31) and (34), we obtain the final system of linear algebraic equations:

[D] ~[LI"|({sh _( 0
[—[L] [0] ]{{y}} -{} (35)
Expressing vector {S} from the first matrix equation and using it in the second, we get
[LIID] L] {y} = {F}, (36)
{s} = [DI'[L]"{y}- (37)

Let us note that for getting (35) the approximation functions for the displacements are not used.
Only, there were introduced approximations for possible displacements that can be of any shape, but
must satisfy the kinematic relations. The solution was based on the introduction of approximations for the
internal forces (stresses). By using linear approximations, we will get the values of forces and
displacements of nodes that equal to the values, obtained by the method of finite elements in

displacements. Since the matrix [D] has simple structure, calculating product of the matrices in (36) does
not require extensive computational resources.

Let us consider the problem of determining the critical load, which leads to the loss of stability in
form of the rods bulging. In this paper, more complicated flexural-torsional buckling forms are not
considered. As is well known [1-4], in solving problems of rod systems stability must be counted the
stretching deformations that are associated with bending:

2 2
1 /dv 1 /dw
=== (= 38
€ Z(dx) + Z(dx) ) (38)
After buckling, the function of the transverse displacements of axis of the finite element is
approximated by the linear function in the local coordinate system

— Xy _ X _ X\ X
v(x) =7, (1 — 7) + v, T w(x) =w; (1 - 7) +w, n (39)
Then
1 (0, -v1)? | 1 (W, —wy)?
== = 40
0= oty (40)
The additional energy of deformations
. l
Uz, = [, N(x)godx. (41)

Setting in (41), any (5) or (6), approximation for N (x) we obtain the following matrix expression for
the energy of deformations

e 1= Tr= 1=
UEO - E{ye} [Ge]{ye}’ (42)
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For getting the geometric matrix of the finite elements in the global coordinate system, the following
conversions must be done:

[Ge]lte]™. (44)

From the local matrices [G,] of the finite elements we generate geometric global matrix [G] for the
whole system. Using U*O, the functional (33), for solving buckling problems will be as follows:

¢ = Z{SYT[DI{S} + S AT 61y} — YT [L]{S} > min. (45)

In the expression (45) the parameter A, which is interpreted as the buckling safety factor, are
introduced. Minimum of functional (45) corresponds to the existence the equilibrium of the system in
deflected shape. Equating the derivatives TI¢ along the vector of forces {S} to zero, we obtain the
equations the compatibility of deformations (34). The derivatives of the (45) along the vector of
displacements {y} create the equations equilibrium of the nodes after buckling with adding the influence
of longitudinal forces to bending:

—[LI{S} + A[GH{y} = 0. (46)
Combining (34) and (46), we obtain a system of homogeneous linear algebraic equations
(D] ~[LI"]((Sh _ (0
[—[L] 1G] ]{{y}} ={o} “7)

Let us express vector of forces {S}, from the first matrix equation, and put it into the second
equation. Introducing the notation for the matrix product [K] = [L][D]*[L]T, we get:

—[Kl{y} + A[Gl{y} = 0. (48)

To determine the critical value of the parameter A.,. we apply the method of inverse iterations,

which includes the following steps. After solving (36) and (37), we obtain the vectors {y,} and {S,}.
Next, we must perform the iterations:

1—12
[]{yl 1}

(
| by
{m =, 1 tok=s)
| 1

A i = ——.,
U i T

In (49) Ymax — Maximum in modulus element of vector {y;}. The iterative procedure is finished
after achieving the necessary accuracy of calculating |/'lcm- - Acr,i—ll <e&.

(49)

Results and Discussion

As examples calculations stability of the spatial frameworks, shown in Figures 4-6, were
performed. The calculations were performed in Mathcad 14.0. The following characteristics of cross
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sections stiffness have been taken: EI, =10 kNm? EI, = 10 kNm?,GI, = 10 kNm? EA =

1000 kN. Geometric dimensions in meters are indicated in the figures. The critical loads were
calculated as functions of the finite elements number, which divide each rod, shown in the figures.

4.5

42311
3.9621
3.6921

o 3423

3 3.154[

T 2885

26151

(]
2.3461

20771
1.808[~
1.538]"
1.2691

1

1. 2 3 4. 5 6 7 8 9
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Figure 4. The critical load for rectangular framework with clamped supports

The graphs in Figures 4—6 are built on values of the critical forces, given in Tables 1-3.

Table 1. Values of the critical loads for the rectangular framework (kN). (Fig. 4)

Number of finite elements

IApproximation

1 | 2] 3]l a5 ] 6] 7] 8] 9] 1w0]1a]12]1s

Linear 4.038 3.976 3.850 3.80 3.776 3.762 3.755 3.749 3.746 3.743 3.741 3.740 3.733

Fzggg;’;ﬁf 1.464 2733 3221 3.430 3534 3592 3.628 3.652 3.669 3.681 3.689 3.696 3.701
LIRA-SAPR |3.748 3.738 3.733 3.732 3.732 3.732 3.732 3.732 3.732 3.732 3.732 3.732 3.732

On figures: the number 1 (blue line) — indicate the results obtained by the linear approximations of
the internal forces; number 2 (red line) — using piecewise constant approximations forces; number 3
(green line) — the results obtained by the finite elements method in the displacements on the program

LIRA-SAPR 2013.
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Figure 5. The critical load for the triangular framework with hinged supports
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Table 2. The values of the critical loads for triangular framework with hinged supports (kN).

(Fig. 5)

Number of finite elements

Approximation

1‘2‘3‘4‘5‘6‘7

8 | o [ 10| 11 ]12] 13]14

Linear

Piecewise
constant

1.075 1.021 1.009 1.005 1.003 1.001 1.0008 1.0004 1.0001 0.9999 0.9997 0.9996 0.9995 0.9994
0593 0862 0935 0962 0975 0982 0986 0990 0.9915 0.9929 0.9940 0.9948 0.9954 0.9959

LIRA-SAPR

1.0009 0.9991 0.9990 0.9990 0.9990 0.9990 0.9990 0.9990 0.9990 0.9990 0.9990 0.9990 0.9990 0.9990

critical load

7:5 T T T T T T T T T
7.115
6.7311" 5
6.346[
5.9621
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5.192f
4.808["
4.4231
4.038[
3.6541
3.2691
2.885[
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N
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Figure 6. Critical load for the stepped framework with clamped supports

Table 3. The values of the critical load for the stepped framework with clamped supports

(kN). (Fig. 6)
L Number of finite elements
Approximation
1 | 2 | 3| a | s | & | 7] 8 ] 9 | 10
Linear 7.0531 6.9479 6.7372 6.6526 6.6118 6.5892 6.5754 6.5665 6.5603 6.5559
Pc'g‘r:l‘;"’a'rfte 26228 4.8323 56690 6.0234 6.2003 6.3000 6.3614 6.4019 6.4298 6.4499
LIRA-SAPR 6.5644 6.5465 6.5388 6.5373 6.5369 6.5368 6.5368 6.5367 6.5367 6.5366

Analysis of the results of the calculations shows that the use of piecewise constant approximations
of internal forces lead to the convergence of the calculated values of critical forces (loads) to the exact
values of strictly from bottom and allows you to get solutions to the stability reserve. At the same time,
compared to the finite element method in the displacements, it is necessary to use the finer grids. The
finite element method in displacements provides more accurate solutions with coarse grids. Necessary to
consider, that the solution in displacements is more "rigid" and converges to the exact value from above
as in the case of the use of linear approximations for the internal forces on the proposed method. It is
known, by dividing of the finite elements grid we get values of stresses, which will tend to constant
values, so for the convergence of solutions is necessary to ensure representation of the constant
stresses or deformations. If solutions are get by proposed method, then this condition is performed. In the
Fig. 7 shows graphs of the relative difference, in percentages, between the solutions, obtained for
different approximations of internal forces, for the above examples. In the figure introduced the notation:
P, 1 — linear approximations of internal forces; P, — piecewise constant approximations of forces;

P, 1. —the minimum value, obtained by the linear approximations of forces; 1 (red line) — the results for
the framework in Figure 4; 2 (blue line) — the results for the framework in Figure 5; 3 (green line) — the
results for the framework in Figure 6. Reducing the difference between two solutions by the crushing of
finite element mesh indicates to the convergence of solutions to the exact value. Note, that graphics for
the 1st and 3rd schemes are practically the same (Table 4). Per the difference of two solutions we can
assume the accuracies of calculation critical forces.

Tyukalov Yu.Ya. The functional of additional energy for stability analysis of spatial rod systems. Magazine of Civil
Engineering. 2017. No. 2. Pp. 18-32. doi: 10.18720/MCE.70.3

28



NH:KeHepHO-CTPOUTEIBHBIN KypHaJ, Ne 2, 2017

3 A=100(Pcr,1-Pcr,2)/Pcr,1*

01 23 45 67 8910111213 14
number of finite elements

Figure 7. The relative difference between the values of the critical forces

Table 4. The relative difference of critical forces values in percentage (Fig. 7)

Number of the crushing elements
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Scheme

Fig.4 | 689|333 16.8 | 9.9 6.5 4.6 3.4 2.6 2.1 1.7 14 12 0.85 -

Fig.5 |482|158 | 7.4 4.3 2.7 1.9 14 11 0.9 0.7 | 057 | 048 | 041 | 0.39

Fig.6 | 67.6 | 323 | 16.3 | 9.6 6.3 4.4 3.3 2.5 2.0 1.6 - - - -

To evaluate the accuracy and convergence of the approximate solution by proposed method, the
critical forces were defined for straight rods with different types of ends fixing and for different number of
finite elements. To simplify the analysis, the bending stiffness and length of the rods have been taken
equal to unity. We considered the following variants of the rods: 1 — hinged rod; 2 — cantilever rod; 3 — rod
with hinge and with clamped end; 4 — rod with clamped ends. The calculation results are shown in
Table 5. Exact, analytically derived, values of the critical forces are taken from [37].

Table 5. Critical forces for straight rods

Variants . . Number of finite elements Exact
Approximations values
of rods
> | 4| 5 | 10 ] 20 | 4 | =80 100
Linear 12.0 10.4 10.2 9.951 9.8999 9.8746 9.87087 9.87042
1 Piecewise 9.86960
constant 8.0 9.38 955 9.789 9.8493 9.8645 9.86834 9.86879
Linear 3.0 250 2.49 2.472 2.4687 2.4677 2.46748 2.46745
2 Piecewise 2.46740
constant 20 241 2.45 2.462 2.4661 2.4671 2.46732 2.46735
Linear 274 22.4 21.6 20.53 20.275 20.212 20.1960 20.1941
3 Piecewise 20.19064
constant 120 17.8 18.6 19.79 20.089 20.165 20.1844 20.1867
Linear 48.0 48.0 449 40.79 39.804 39.560 39.4987 39.4914
4 Piecewise 39.47842
constant 16.0 32.0 346 3820 39.155 39.397 39.4581 39.4654

The calculation results of the stability of straight rods confirm, as was noted above, characteristic
features of the proposed method of calculation, which is based on the functional of additional energy.
These characteristics allow to note the following possible fields of application of the method: getting the
lower limit of the critical forces; calculation the stability of the structures such as plates, which can be
strengthen by rods; the curvilinear constructions or constructions on elastic foundation; getting the
solutions, which are alternative to the solutions on method of finite elements in displacements.
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Conclusions

1. For problems of stability the spatial rod systems there are proposed the method, which is
based on functional of the additional energy and the principle of virtual displacements. Equations for
static analysis of spatial rod systems based on the approximation of the forces (stress) were obtained.

2. The examples of the calculations the critical forces for straight rods and three-dimensional
frameworks for different finite element grids show that using of piecewise constant approximations of
internal forces provides a lower bound of the critical forces. It is necessary to use a fine grid of finite
elements. For the above examples, the required number of finite elements for achieving the same
accuracy as accuracy of the solutions by finite elements method in displacements is about 5 times more.
Accuracy solutions, lot less than 1 percent, can be obtained, if very fine grid of the finite elements
(Table 4) is used.

3. By using linear approximations of the internal forces, we get the solutions which converge to
the exact values of the critical forces from above and give an upper bound. It is possible to define
accuracies of calculation of the critical forces per the difference of two solutions with linear and piecewise
constant approximations.

4. Possible fields of application of the method are getting the lower limit of the critical forces;
calculation the stability of the structures such as plates, which can be strengthen by rods; calculation the
stability of the curvilinear constructions or constructions on an elastic foundation; getting the solutions,
which are alternative to the solutions getting on method of finite elements in displacements.
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