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Abstract. The paper describes the special features of the calculation based on the load-bearing
capacity of soil loaded with strip-shell foundations which offer high efficiency in construction of medium
and high-rise buildings on strongly compressible soils. The necessity of this calculation is caused by the
requirements of Building Regulations. Problem solution of load-bearing capacity of subsoil with a bent
cylindric surface based on the known Prandtl Solution was considered. The new static solution to the
Coulomb's wedge theory of load-bearing capacity of soil loaded with strip-shell foundations (SSF)
indicating that taking into account a bent surface of the soil under the shell and the counterweight from
strip foundations make it possible to reasonably increase the load-bearing capacity of sail.

AHHOTaumMAa. B cratbe paccmoTpeHbl OCOBEHHOCTM pacdeTa MO Hecywen CcnocobHOCTM
OCHOBaHUS, HarpyXeHHOro JNEeHTOYHO-000MoYeYHbIMN (DyHOAMEHTaMK, KOTopble 00nagatoT BbICOKOW
3PPEKTUBHOCTBIO NpPU  CTPOUTENbCTBE  30aHWA  CpedHelm M NOBbIWEHHOW  3TaXHOCTM  Ha
CUIMbHOCXKMMAEMbIX TPYHTOBbIX OCHOBaHWsIX. HeobxoauMmocTb pa3paboTkm JaHHOro  pac4yeta
obycrnosneHa TpeboBaHUAMU [ENCTBYHOLIMX HOPM. PaccmMoTpeHo pelleHvMe 3agadm O Hecyluewn
CMOCOOHOCTM TPYHTOBOrO OCHOBaHWS (PyHAAMEHTa C KPUBOMWHEWHOW LMMAMHAPUYECKON MOBEPXHOCTBIO
Ha oOCHOBe Wu3BecTHOro peweHus [lpaHaTnsa. [lonyyeHO HOBOe CTaTM4eckoe peLleHne Teopun
npegenbHoOro paBHOBECUSA [PYHTOB Afs 3adadyM O Hecylleh CrnoCOBHOCTU TPYHTOBOrO OCHOBaHMWS
NEHTOYHO-060M04eYHOro yHAaMeHTama, nokasblBawLllee, YTO Y4eT KPUBOMMHENHOW MOBEPXHOCTU
OCHOBaHus nod o60MoYKkon, C y4eToOM NpUrpysa oT NEHTOYHbIX PYHOAMEHTOB, NO3BOMSIT 06OCHOBaHHO
yBENUYMBATbL HECYLLYHO CNOCOBHOCTbL OCHOBaHUS.

Introduction

Strip-shell foundations (SSF) are widely used in construction of medium and high-rise buildings on
strongly compressible soils; these are shallow foundations composed of cross sectional strip foundations
joined by gently sloping shells formed on natural or artificial soils. These foundations are applicable due
to their efficiency and lower calculations compared to traditional slab foundations. Earlier the authors
described the analysis techniques for interaction of SSF and soil using the Winkler model [1]. The paper
aims at setting forth the results on the soil-bed load-bearing capacity loaded across the curvilinear
convex upwards surface and comparing them with load-bearing capacity of subsoil loaded with a flat
footing — this is the main "core" solution presented in the Building Regulation 22.13330.2011 [2]. It is
necessary to underline that as a special case, SSF composed of one shell may be used as a foundation
for a single-aisle building.

Yet, it is necessary to complete the given techniques with analysis of the load-bearing capacity of
soil loaded with SSF. This is due to the fact that the Building Regulation 22.13330.2011 [2] for soil
analysis on both groups of ultimate limit states gives solutions for a single strip foundation. In case of
other schematic views new solutions to the Coulomb's wedge theory (CWT) — the main theoretical basis
for analysis of the load-bearing capacity should be found. For instance, many authors [3, 4, 5] including
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the foreign ones [6, 7, 8] formulated the problem on the load-bearing capacity of soil for foundations
placed closely to each other taking into account their mutual influence on ultimate pressure magnitude.

In addition, in accordance with the Building Regulation 22.13330.2011 [2] the analysis based on
the load-bearing capacity is required for strongly compressible soils, e.g. the soils composed of slowly
compacting water-saturated clays and therefore, the new solution of CWT is a necessary requirement of
the Building Regulations [9, 10].

This solution gives a certain ultimate pressure magnitude allowing the settlements to be analyzed
using the finite element analysis (FEA) not only in the stage of linearly deformable soil, but also beyond it
using the nonlinear soil models [11, 12]. Numerical solutions to this class of problems using FEA are
given in [13, 14, 15].

There is also a considerable amount of foreign works dealing with the problems of the soil load-
bearing capacity in terms of the static method of CWT [16, 17]. The papers of C.M. Martin and E.C.J.
Hazell [18, 19] where the classical solutions of CWT obtained earlier are adapted to water-saturated soils
should be highlighted.

Methods

Earlier the authors [20] considered the problem solution of the soil bed load-bearing capacity with a
bent cylindric surface. Let us reproduce the basic calculation of the solution in terms of the strict static
method of CWT:

doy +aTXZ -0, 0ty +80'Z

x | oz x oz

\/(O'X—O'Z)2+4rfz =(oy+0,+2C-Ctge)sing, (1)

where y, ¢ and c — specific gravity, internal friction angle and specific cohesion.

The system of equations (1) was transformed to an accepted form — the equations drawn up by the
characteristic lines being in agreement with the slide curves (Figure 1):

dx=dz-tg(at p),
do+20tge-da =y(dz ¥ dx-tge), )

o,+0o
where G:%+C-Ctg(p — average reduced stress; a — angle between the direction of the first

main stress o1 and axis Oz; y=7x/4—@/2 —angle between the direction o1 and slide curves.
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Figure 1. Relative orientation of the slide curves and direction o
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The solution for the specific schematic views was obtained by numerical integration of the
accepted equations (2) by the method of finite differences using certain boundary value problems
according to the algorithm given, e.g., in [21]. Components of the ultimate limit stresses were evaluated
by the formulas:

(o} . .
X}=G(1¢SingoC082a)—C-Ctggo, 7,, = o Sin@sin2a (3)
0y

The schematic view of the given problem is shown in Figure 2.
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Figure 2. Schematic view (d — foundation depth)
The shell is of width b and height h. The equation of the bed is accepted as:

z=ax’—h,
where a — geometric parameter, 4h/b — for the given diagram.

Taking the contact pressure equal to the value of natural pressure at the level of the foundation
depth is some simplification which on the one hand takes into account the counterweight from strip
foundations though ill-defined, on the other hand makes it possible to reveal the significance of the
principal factors affecting the bearing capacity of soil bed loaded across the bent surface against the
"basic" solution given in the Building Regulation under identical operating conditions.

Let us solve the problem using the strict static method of the Coulomb's wedge theory. The basic
equations for the static method and the necessary explanations are given above. The order of boundary
value problems is shown in Figure 3.

Figure 3. Grouping of boundary value problems (right half of the symmetrical schematic view)

In general, the solution agrees with the known Prandtl Solution [22, 23]. So let us describe the main
details of the solution in short and the new features of it.

The ABD area is evaluated by the known integrals of the accepted equations of the static method (I
boundary value problem):
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Let us remind that o-=%+c-ctggo — average reduced stress, o — angle between the

direction o1 and axis Oz.

In the ABC radial sheaf one can solve the Il boundary value problem with the known parameters of

the accepted system of equations x, z, o, a with AB characteristic line and conditions at the singular point
A

Uzwe(ﬁ_za)tggo, zZaZaF

1-sing 2

The boundary condition ar and the length of the AD segment are sorted out on the assumption of
meeting the conditions of symmetry at point C:

a=0, x=0,
i.e. the first main stress must be vertically oriented.

Here the value can’t be lower than

a = ﬁ+,u arctg(dzj
F.min =7 5 - o :
2 X ) x=bi2

The value armin Mmeans that the leftmost characteristic line (from the side of the foundation) can
appear at the singular point A at a tangent to the bent surface (here dz/dx =2ax=4h/b) or appear
“inside” the surface, i.e. below the level of the bed.

When the ABC area is completed, two ways to analyze the ultimate load can be chosen. Firstly,
knowing all the parameters of the accepted system of equations on the AC characteristic line, the area
limited by the AC line below and the shell at the top can be seen; taking the balance of the area, the
vertical component of the ultimate press force can be analyzed. The soil located in this area may be both
in the compressed state from a theoretical point of view (the so-called rigid core) and in the ultimate state.
Secondly, it is possible to build up the ACC area on the AC characteristic line and the axis of symmetry
Oz by solving the Ill boundary value problem (Figure 4). In this case, the soil under the shell formally
"becomes" ultimately stressed, but this fact doesn’t affect the value of the load-bearing capacity.

Figure 4. On building up the solution in the soil under the foundation bed

Naumkina J.V., Pronozin Y.A., Epifantseva L.R. Load-bearing capacity of soil loaded with strip-shell foundations.
Magazine of Civil Engineering. 2016. No. 6. Pp. 23-34. doi: 10.5862/MCE.66.3



NH:keHepHO-CTPOUTENbHBII KypHaa, Ne 6, 2016 PACYETbI

Soil conditions in the core under the foundation bed — conditionally “elastic” or ultimate — have
been traditionally a matter of debate. When considering the strip-shell foundations there are more
arguments for the "elastic" state. However, in this case it is much more difficult to obtain pressure
diagram along the bed. In fact, this approach — ultimate limit state in the prism of a bulging area, radial
sheaf and “elastic” state in the core under the foundation — was implemented by M.I. Gorbunov-Posadov.
Due to considerable technical difficulties, this approach hasn’'t widespread use, although in view of the
availability of software systems that implement FEA, it seems possible to be implemented. The formal
parameter of “elasticity” in the core can lead to the zones of destruction occurring in the stresses
analyzed by the linear-deformable model, and hence it will lead to a new complication of the problem and
new issues on compliance with the experimental data.

On the other part, ultimate limit stresses under the stamp make it possible to determine stress
distribution diagrams along the bed; according to the numerous comparisons they agree with the
experiments as to quality and quantity. Therefore, taking into account the conditionality of the ultimate
limit state under the shell, let us integrate the accepted equations. Let us emphasize once again that the
final result — the resultant ultimate limit pressure — is not affected, but allows determining the stresses
along the bed.

Solution of the Il boundary value problem, as discussed, will give the ACC’' area which falls
outside the limits of the soil surface (Figure 4). Let us do the following. The AQ’ line coinciding with the
curvilinear foundation bed cuts off the “excess” part of AO'C'. The whole of the parameters of the
accepted equations — X, z, o, a are determined on this line, totally included in the ACC ' area. Thus, the
contact vertical and horizontal stresses acting on the curvilinear shell can be analyzed using the known
formulas:

o, =o(l+sinpcos2a)—c-ctge, 7,, =osingsin2a

This is the final problem solution.

Results

The results may be analyzed in relative variables: b — width unit, b — stress unit. For added
convenience, let us use the relative reduced stresses in the arguments. Thus, the relative counterweight
and average ultimate limit pressure along the bed are as follows:

' q+C'Ctg(0 ' pu+C'Ctg¢
Q= Ph=—
yb 7b

Figures 5 and 6 illustrate examples of the slide curves mesh (characteristic lines), vertical and
horizontal stress distribution diagrams along the bed and the lateral counterweight. An interesting feature
is needed to be pointed out: if the shell height increases, the diagram of vertical stresses (convex for a
flat stamp) progressively flattens and in certain values it can even take a convex shape with low
curvature.

Tables 1-4 show the values of the relative reduced forces N, ultimate limit pressure for internal
friction angles ¢ =10°, 20°, 30°, 40°, reduced values of lateral counterweights g’ =1, 2, 3, 5 and 10 and

relative shell heights N =0, ..., 5 with spacing of 0.05. The main conclusion is obvious — the ultimate

load significantly increases if the shell height h increases.

Attention is drawn to some reduction in N, values in low-level heights h and small values of the
lateral counterweight q'. It is easily understandable, since in the absence of the counterweight the convex
surface, of course, will carry loading less than the horizontal one until considerable horizontal forces
perform, which, are formed due to the curvilinear surface of loading and in turn, further compress the soil;

this is manifested in some values of h .

It should be noted that stiffness of the shell itself and primarily tensile stiffness EA affects
redistribution of the load transmitted to the soil bed through shells and strips and distribution of contact
“reactive” pressures directly under the shell. Influence of the contact pressure distribution law under the
bent surface of the shell can affect the values of horizontal forces and load-bearing capacity of the bed in
a certain manner; however, this issue is the subject-matter of further research.
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Figure 6. Examples of solution:
p=10°q'=1, h =0.1(a); p=10°g'=1, h =0.3 (b)

The coefficients k do not considerably depend on the internal friction angle, but they significantly
depend on the shell height and lateral counterweight.
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Table 1. Relative reduced ultimate pressure forces for ¢ =10°

ﬁ qg'=1 q'=2 q'=3 q'=5 q' =10

0 3.034 5.561 8.062 13.030 25.422
0.05 2.993 5.532 8.044 13.044 25.506
0.1 2.990 5.573 8.131 13.226 25.926
0.15 3.019 5.675 8.309 13.555 26.638
0.2 3.075 5.829 8.562 14.011 27.600
0.25 3.152 6.024 8.879 14.571 28.772
0.3 3.244 6.252 9.245 15.216 30.115
0.35 3.349 6.506 9.651 15.928 31.596
0.4 3.463 6.780 10.089 16.695 33.175
0.45 3.582 7.069 10.550 17.500 34.785
0.5 3.706 7.368 11.030 18.310 36.344

Table 2. Relative reduced ultimate pressure forces for ¢ =20°

ﬁ qg'=1 q'=2 q'=3 q'=5 q' =10

0 9.159 15.812 22.329 35.282 67.502
0.05 9.049 15.714 22.271 35.275 67.599
0.1 9.075 15.852 22.527 35.775 68.716
0.15 9.197 16.163 23.033 36.675 70.606
0.2 9.400 16.620 23.750 37.915 73.160
0.25 9.668 17.197 24.641 39.439 76.269
0.3 9.987 17.869 25.672 41.192 79.830
0.35 10.346 18.616 26.814 43.129 83.760
0.4 10.734 19.421 28.044 45.214 87.990
0.45 11.144 20.270 29.342 47.417 92.454
0.5 11.570 21.153 30.693 49.711 97.036

Table 3. Relative reduced ultimate pressure forces for ¢ =30°

ﬁ g =1 q'=2 q'=3 q'=5 q'=10

0 30.39 49.79 68.72 106.09 198.65
0.05 30.18 49.65 68.67 106.35 199.61
0.1 30.30 50.09 69.45 107.84 202.87
0.15 30.74 51.08 71.00 110.52 208.41
0.2 31.45 52.53 73.20 114.24 215.91
0.25 32.37 54.35 75.93 118.80 225.04
0.3 33.47 56.48 79.10 124.05 235.51
0.35 34.69 58.84 82.60 129.85 247.06
0.4 36.02 61.38 86.37 136.10 259.48
0.45 37.43 64.06 90.36 142.70 272.63
0.5 38.89 66.86 94.50 149.58 286.35
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Table 4. Relative reduced ultimate pressure forces for ¢ =40°

ﬁ qg'=1 q'=2 q'=3 qg'=5 g’'=10

0 126.94 196.61 263.95 395.86 720.51
0.05 126.20 196.41 263.55 397.23 724.94
0.1 126.76 198.12 266.45 402.58 736.50
0.15 128.64 201.96 272.26 412.40 756.32
0.2 131.63 207.59 280.54 426.02 783.22
0.25 135.51 214.70 290.85 442.79 816.03
0.3 140.10 222.99 302.78 462.10 853.64
0.35 145.25 232.19 316.01 483.46 895.17
0.4 150.82 242.11 330.26 506.45 939.85
0.45 156.71 252.59 345.30 530.73 987.09
0.5 162.83 263.48 360.96 556.05 1036.41
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Figure 7. Dependencies of coefficients k (Fl ,q") for ¢=10°, 20°
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Figure 8. Dependencies of coefficients k (ﬁ , ") for ¢=30°, 40°

Thus, the ultimate pressure force on SSF may be evaluated by the following formulas:

— by coefficients k and values of the load-bearing capacity of flat foundation, b in width according to
the Building Regulation [2]:
N, =k-b-Nycp+({-s)-c-ctge;
— by coefficients k and values given in tables 1 — 4:
N, = 7N/, —s-c-ctge

Here s — running meter area of SSF bed.

Conclusions

1. A new static solution to the Coulomb's wedge theory of load-bearing capacity of soil loaded with
SSF indicating that taking into account a bent surface of the soil under the shell and the counterweight
from strip foundations make it possible to reasonably increase the load-bearing capacity of soil.

2. It is stated that depending on the value of the bent surface height under the shell, within the
gentleness criterion, the load-bearing capacity of soil can be increased up to 10 %. It is found out that the
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load-bearing capacity of soil increases depending
pressure — q'.
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