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GEOMETRIC MODELING OF MIDI-FULLERENES GROWTH  
FROM C24 TO C48

Axonometric projections together with corresponding graphs for fullerenes are 
constructed in the range from 24 to 48. The growth of fullerenes is studied on the 
basis of the mechanism, according to which a carbon dimer embeds in a hexagon of 
an initial fullerene. This leads to stretching and breaking the covalent bonds which 
are parallel to arising tensile forces. In this case, instead of the hexagon adjoining 
two pentagons, one obtains two adjacent pentagons adjoining two hexagons. As a 
result, there arises a new atomic configuration and there is a mass increase of two 
carbon atoms. We considered direct descendents of fullerene C24; namely, C2n, where  
n = 13 – 24. 
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Introduction

In Ref. [1], we have extended the term 
“fullerene” to include any convex shape 
inscribed into a spherical surface which can be 
composed of atoms, each atom having three 
nearest neighbours, as in usual fullerenes, 
whenever discussing hollow carbon clusters. 
This new approach allowed us to obtain 
possible forms of mini-fullerenes, from C4 to 
C20 which, in its turn, allowed filling up a gap 
by including in the list of fullerenes such broad-
sense fullerenes.

The next step was done in Ref. [2], where 
the diagrams showing the forming of mini-
fullerenes from single carbon atoms and carbon 
dimers were suggested. The diagrams have much 
in common for different fullerenes. In addition 
to the diagrams, here for the fist time the graph 
theory was used for analysis of the fullerene 
structures obtained. The graph analysis provides 
a deep insight into both a fullerene structure and 
its way of forming. The graphs, similar to the 
formation diagrams, have also much in common 
for different fullerenes. Besides the graph analysis 
allows also solving an inverse problem, i. e., 

how to predict the ways of producing possible 
fullerenes, if their graphs are known [3]. It 
turned out to be possible to distinguish different 
families of mini-fullerenes on the graph basis 
and therefore to make a classification of these 
unusual carbon structures. 

In Ref. [4], we considered the problem of 
fullerene growth more elaborately, namely, 
how to design new fullerenes and their graphs 
if given a basic elementary graph of a mini-
fullerene playing the role of progenitor. We 
have developed a way of designing different 
families of fullerenes using such approach. 
As a result, we have found the family of bi-
polyfoils: C14, C18, C24, C30, C36; the family of 
truncated bipyramids: C14, C18, C24 C30, C36; 
the family of cupola half-fullerenes: C10, C12, 
C16, C20, C24; and the family of tetra-hexa-cell 
equator fullerenes: C20, C24, C32, C40, C48. This 
classification gives not only fullerene symmetry 
but also connects it with its relatives. 

It is worth noting that we have obtained a 
medium size fullerene C36 with D6h symmetry. It 
was synthesized and separated from arc derived 
carbon soot at UC, Berkeley [5]. In literature, 
it is referred to as a 36-atom-carbon cage, but 
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this name is of little value because 15 different 
isomers are possible [6]. Contrary to this name, 
our classification determines this fullerene 
uniquely [4]. However, some midi-fullerenes, 
e.g., C26, C28 [7], were not constructed in Ref. 
[4], so their graphs were not known. This 
drawback was excluded in [8] using the graph 
approach developed in Refs. [2 – 4]. 

In Ref. [9], we have suggested a unified 
approach to drawing axonometric projections 
for both small and large fullerenes. In the 
long run, we came to the conclusion that the 
best way is the dimetric representation whose 
symmetry coincides with that of a corresponding 
graph. Then we have carefully studied a dimer 
mechanism of growing fullerenes, according 
to which a carbon dimer embeds either into a 
hexagon or a pentagon of an initial fullerene. 
This leads to stretching and breaking the 
covalent bonds which are parallel to the arising 
tensile forces. In the first case, instead of the 
hexagon adjoining two pentagons, when the 
dimer embeds in this hexagon, one obtains two 
adjacent pentagons adjoining two hexagons. In 
the second case, when the dimer embeds in 
the pentagon, two pentagons separated by a 
square are obtained. In both cases there arises 
a new atomic configuration and there is a mass 
increase of two carbon atoms. This process can 
continue until a new stable configuration is 
reached. In doing so, we modeled the growth 
of the first branch of the family of tetra-hexa-
cell equator fullerenes beginning with C20 in the 
range from 20 to 36 together with some of their 
isomers. We have constructed the axonometric 
projections and the corresponding graphs for 
these fullerenes. 

In this contribution,  we consider the direct 
descendents of the second branch of the family 
of tetra-hexa-cell equator fullerenes beginning 
with C24, namely, C2n, where n = 12 – 24. 
Our aim is to study their growth constructing 
at first their graphs, what is simpler, and then 
to develop their structure on the basis of the 
graphs obtained. 

Tri2-tetra3-hexa9 polyhedral fullerene C24

Its atomic configuration consists of three 
equilateral triangles, three squares, and nine 
hexagons (Fig. 1) so it could be termed a 
tri2-tetra3-hexa9 polyhedron. This structure 

together with its consistent electronic structure 
was obtained in Ref. [1] on the basis of a new 
mathematic concept of fullerenes. According 
to the concept, a fullerene is any shape 
composed of atoms, each atom having three 
nearest neighbours, which can be inscribed into 
a spherical, ellipsoidal, or similar surface close 
to a sphere. But what is more important, it was 
suggested that not only the atoms but also the 
shared electron pairs forming covalent bonds, 
were located on one and the same sphere, 
ellipsoid or similar surface.

Branch of tri2-tetra3-hexa9 polyhedral  
fullerene C24

First stage. Starting with fullerene C24, 
one can obtain the direct descendants of this 
fullerene with the help of the mechanism of 
dimer embedding into a hexagon. Taking as a 
basis the structure and the graph of the fullerene 
we have obtained the first four fullerenes and 
their graphs (see Fig. 1). Here fullerenes C24 and 
C30 are perfect (D3h symmetry), and fullerenes 
C26 and C28 are imperfect (C1 symmetry). In 
many respects, they are similar to those of the 
branch generated by fullerene C20 [3]. To gain 
a better understanding of the mechanism of 
dimer embedding, its main features are given in 
the form of schematic representation (Fig. 2).

Let us analyze this figure. From the 
configurations shown it follows that the first 
embedding, which transforms fullerene C24 into 
fullerene C26, deeply influences only one of the 
hexagons and two of its square neighbours. The 
hexagon transforms into two adjacent pentagons 
and its square neighbours become pentagons. 
As a result, a cluster containing four pentagons 

Fig. 1. Atomic structure and graphs of fullerenes 
C24, C26, C28, and C30



54

Научно-технические ведомости СПбГПУ. Физико-математические науки № 3(248) 2016

is obtained. The second imbedding transforms 
fullerene C26 into fullerene C28. Similar to the 
previous case, one of the two remaining hexagons 
transforms into two adjacent pentagons, its 
square neighbour into a pentagon, and its 
pentagon neighbour into a hexagon. At last, the 
third embedding which leads from fullerene C28 
to fullerene C30, eliminates the last remaining 
hexagon and two its neighbouring pentagons, 
but, in return, creates two adjacent pentagons 
and two hexagons of another local orientation, 
so the hexa-octa-cell equator fullerene finally 
becomes a bow-tie-cell equator fullerene C32 
(see Fig. 2), each bow tie having two bow-tie 
neighbors normal to it. It could be named a 
hexa-octa-cell equator fullerene where every 
two adjacent pentagons have the form of a bow 
tie. At the same time, in the pole areas there 
appear clusters composed of three adjacent 
hexagons with a trigon in their centers.

Second stage. The further growth of fullerene 
C30 differs from that of fullerene C24. Fullerene 
C30 cannot grow in a manner similar to that of 
fullerene C24, i.e., normal to the equator because 
now the equator hexagons have no neighbouring 
pentagons oriented normal to it. However, any 
equator hexagon can use, for its growth, two 
neighbouring pentagons of the equator, which 
are mutually antithetic. So fullerene C30 can 
continue the growth, only changing the growth 
direction. As a result, one obtains two imperfect 
fullerenes C32 and C34 with C1 symmetry, and 

one perfect C36 with D3h symmetry (Fig. 3). To 
gain a better understanding of the mechanism of 
dimer embedding, its main features are given in 
the form of schematic representation (Fig. 4).

The structure of fullerene C36 is rather 
interesting. For studying this fullerene it is 

Fig. 4. Scheme reflecting the main local changes 
during the growth of fullerene C30

Fig. 2. Scheme reflecting the main local changes 
during the growth of fullerene C24.

Dimer embedding into a hexagon (a) which transforms 
into two adjacent pentagons (b)

Fig. 3. Atomic structure and graphs of fullerenes 
C32, C34, and C36

а) b)
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Fig. 5. Atomic structure and graphs of fullerenes C38 and C40

Fig. 6. Atomic structure and graphs of fullerenes 
C42, C44, and C46

Fig. 7. Atomic structure and graphs  
of fullerene C48. 

Clusters of eighteen atoms in the polar areas;  
each cluster containing six pentagons around a hexagon

convenient to use the system of coordinates 
where the axis z, or the main axis of symmetry, 
passes through the centers of two triangles. Each 
triangle surrounded by three hexagons forms a 
cluster. The clusters are separated by a zigzag 
ring of twelve atoms which create an equator. 
It is worth noting that all equator atoms are 
former dimer atoms. The fullerene is perfect, 

and we have the group of perfect fullerenes 
including C24, C30, and C36. 

Third stage. Essentially, any hexagon of 
fullerene C36 of such configuration is capable 
of embedding a dimer, but  it will more 
likely embed a hexagon with not only two 
neighbouring mutually antithetic pentagons, 
but one pentagon and a mutually antithetic 
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trigon. It is connected with the well-known 
fact: the less is the fullerene surface, the less 
is its energy. A local curvature is defined by 
the sum of adjacent angles having a common 
vertex. The less is the sum, the larger is the 
curvature, and therefore the more is the local 
stress concentration. Even the first embedding 
of a dimer into such a hexagon increases the sum 
from 300 to 330°, and thus the configuration 
becomes more stable. 

The growth of fullerene C36 is shown in  
Figs. 5 – 7. Among the descendants there 
are imperfect fullerenes C38, C42, and C46 
with C1 symmetry, semi-perfect fullerenes C40  
(C1h symmetry), C44 (S2 symmetry), and the 
perfect fullerene C48 (D6h symmetry). The 
imperfect fullerenes have an odd number 
of dimers, the semi-perfect and the perfect 
fullerenes have an even number. The final high-
symmetry fullerene C48 has the same structure 
as the fullerene C48 which was grown out earlier 
[6] from the fullerene C20 (Fig. 7, below). It 
contains clusters of eighteen atoms in the polar 
areas; each cluster is composed of six pentagons 
around a hexagon. This means that the problem 
of equifinality can arise here. This problem is 
well known in economic geography: a nucleus 
of towns can be different, but the final structure 
is the same; it has a center and outskirts.

Conclusion  

Any calculations of fullerene energy need 
input data. For mini-fullerenes (up to C20) the 
number of possible configurations is not very 
large, but with  midi-fullerenes (C20 – C60) a 
monstrous size of isomers can be obtained. It is 
clear that there is no big sense in studying all of 
them, so it is desirable to restrict their number 
to the most stable. In this respect, geometric 
modeling is very useful as a first step of computer 
simulation for further theoretical analysis [10]. 
As for fullerenes, the geometric modeling is 
based on the principle “the minimum surface at 
the maximum volume”. It means that a forming 
fullerene tends to take the form of a perfect 
spheroid with equal covalent bonds. We suppose 
that geometric modeling allows imagining from 
the very beginning a possible way of growing 
carbon clusters and thereby to decrease the 
number of configurations worth for studying. 
With the help of geometrical modeling, we 

have considered here the growth of fullerenes 
through a series of dimer imbedding reactions 
with initial fullerenes. 

As a result, axonometric projections 
together with the corresponding graphs for 
the second branch of the family of tetra-hexa-
cell equator fullerenes including some isomers 
are constructed in the range from 24 to 48. 
Some of the graphs were obtained earlier [4] 
but the majority is given for the first time. 
The process of growth of fullerenes is studied 
on the basis of the mechanism, according to 
which a carbon dimer embeds in a hexagon 
of an initial fullerene. This leads to stretching 
and breaking the covalent bonds which are 
parallel to the arising tensile forces. In this 
case, instead of the hexagon adjoining two 
pentagons, two adjacent pentagons adjoining 
two hexagons are obtained. As a result, there 
arises a new atomic configuration and there 
is a mass increase of two carbon atoms. We 
considered direct descendents of the second 
branch of the tetra-hexa-cell-equator family 
beginning with C24, namely, C2n, where  
n = 13 – 24.  

Fullerenes C24, C30, and C36 can be 
considered to be perfect fullerenes with a 
threefold symmetry. The symmetry can be 
easily discovered looking at their graphs. The 
fullerenes C26, C28, C32, and C34 are imperfect. 
By analogy with crystal physics, it can be said 
that the reason for imperfection is connected 
with the fact that the fullerenes have extra 
‘interstitial’ dimers or ‘vacant’ dimers. The 
structure of fullerene C36 is rather interesting. 
It has two triangles around a polar axis. Each 
triangle surrounded by three hexagons forms a 
cluster. The clusters are separated by a zigzag 
ring of twelve atoms which create an equator. 
It is worth noting that all equator atoms are 
former dimer atoms. Although any hexagon of 
fullerene C36 is capable of embedding a dimer, 
but a hexagon with not only two neighbouring 
mutually antithetic pentagons but one pentagon 
and a mutually antithetic trigon is more likely 
to do so. It is connected with the well-known 
fact; the less is the fullerene surface, the less 
is its energy. A local curvature is defined by 
the sum of adjacent angles having a common 
vertex. The less is the sum, the larger is the 
curvature, and therefore the more is the local 
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stress concentration. Even the first embedding 
of a dimer into such a hexagon increases the sum 
from 300 to 330°, and thus the configuration 
becomes more stable. 

The process of growth of fullerene C36 
leads to forming imperfect fullerenes C38, C42, 
and C46, semi-perfect fullerenes C40, C44, and 
perfect fullerene C48. The imperfect fullerenes 
have an odd number of dimers; the semi-
perfect fullerenes, as well as the perfect one, 
have an even number. The final high-symmetry 

fullerene C48 has the same structure as the one of 
fullerene C48 which was grown out of fullerene 
C20 [6]. It contains clusters of eighteen atoms in 
the polar areas; each cluster is composed of six 
pentagons around a hexagon. This means that 
there the principle of equifinality holds in this 
case; a nucleus of fullerenes can be different, 
but the final structure is the same. Therefore, 
the further growth of fullerene C48 formed in 
the second branch will not differ from that of 
the first branch. 
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.

Построены аксонометрические проекции фуллеренов вместе с соответствующими им графами в 
интервале составов от 24 до 48. Рост фуллеренов изучался на основе механизма, согласно которому 
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димер углерода внедряется в шестиугольник исходного фуллерена. Это проводит к растяжению и 
разрыву ковалентных связей, которые параллельны возникающим растягивающим силам. В этом 
случае вместо шестиугольника, граничащего с двумя пятиугольниками, образуются два смежных 
пятиугольника, граничащие с двумя шестиугольниками. Как следствие, возникает новая атомная 
конфигурация, и масса фуллерена увеличивается на два атома углерода. Рассмотрены прямые по-
томки фуллерена C24,а именно C2n, где n = 13 – 24.  

ФУЛЛЕРЕН. РОСТ, ДИМЕР УГЛЕРОДА, ГРАФ, СТРУКТУРА, МОДЕЛИРОВАНИЕ.


