A

N HAHOCTPYKTYP

DOI: 10.5862/JPM.248.6
UDC: 539.21

ATOMHAA ®UN3NKA, PUSNKA KJTACTEPOB

A.l. Melker, M.A. Krupina
Peter the Great St. Petersburg Polytechnic University

GEOMETRIC MODELING OF MIDI-FULLERENES GROWTH
FROM C,, TO C,,

Axonometric projections together with corresponding graphs for fullerenes are
constructed in the range from 24 to 48. The growth of fullerenes is studied on the
basis of the mechanism, according to which a carbon dimer embeds in a hexagon of
an initial fullerene. This leads to stretching and breaking the covalent bonds which
are parallel to arising tensile forces. In this case, instead of the hexagon adjoining
two pentagons, one obtains two adjacent pentagons adjoining two hexagons. As a
result, there arises a new atomic configuration and there is a mass increase of two

carbon atoms. We considered direct descendents of fullerene C,,; namely, C, , where

n=13—24.
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Introduction

In Ref. [1], we have extended the term
“fullerene” to include any convex shape
inscribed into a spherical surface which can be
composed of atoms, each atom having three
nearest neighbours, as in usual fullerenes,
whenever discussing hollow carbon clusters.
This new approach allowed us to obtain
possible forms of mini-fullerenes, from C, to
C,, which, in its turn, allowed filling up a gap
by including in the list of fullerenes such broad-
sense fullerenes.

The next step was done in Ref. [2], where
the diagrams showing the forming of mini-
fullerenes from single carbon atoms and carbon
dimers were suggested. The diagrams have much
in common for different fullerenes. In addition
to the diagrams, here for the fist time the graph
theory was used for analysis of the fullerene
structures obtained. The graph analysis provides
a deep insight into both a fullerene structure and
its way of forming. The graphs, similar to the
formation diagrams, have also much in common
for different fullerenes. Besides the graph analysis
allows also solving an inverse problem, i. e.,
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how to predict the ways of producing possible
fullerenes, if their graphs are known [3]. It
turned out to be possible to distinguish different
families of mini-fullerenes on the graph basis
and therefore to make a classification of these
unusual carbon structures.

In Ref. [4], we considered the problem of
fullerene growth more elaborately, namely,
how to design new fullerenes and their graphs
if given a basic elementary graph of a mini-
fullerene playing the role of progenitor. We
have developed a way of designing different
families of fullerenes using such approach.
As a result, we have found the family of bi-

polyfoils: C ,, C,, C,,, C,, C,,. the family of
truncated bipyramids: C,,, C,, C,, C,, C,;
the family of cupola half-fullerenes: C,, C,,,

C, C,, C,,; and the family of tetra-hexa-cell
equator fullerenes: C,, C,,, C,,, C,, C,.. This
classification gives not only fullerene symmetry
but also connects it with its relatives.

It is worth noting that we have obtained a
medium size fullerene C, with D,, symmetry. It
was synthesized and separated from arc derived
carbon soot at UC, Berkeley [3]. In literature,

it is referred to as a 36-atom-carbon cage, but
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this name is of little value because 15 different
isomers are possible [6]. Contrary to this name,
our classification determines this fullerene
uniquely [4]. However, some midi-fullerenes,
e.g., Cy, C,[7], were not constructed in Ref.
[4], so their graphs were not known. This
drawback was excluded in [8] using the graph
approach developed in Refs. [2 — 4].

In Ref. [9], we have suggested a unified
approach to drawing axonometric projections
for both small and large fullerenes. In the
long run, we came to the conclusion that the
best way is the dimetric representation whose
symmetry coincides with that of a corresponding
graph. Then we have carefully studied a dimer
mechanism of growing fullerenes, according
to which a carbon dimer embeds either into a
hexagon or a pentagon of an initial fullerene.
This leads to stretching and breaking the
covalent bonds which are parallel to the arising
tensile forces. In the first case, instead of the
hexagon adjoining two pentagons, when the
dimer embeds in this hexagon, one obtains two
adjacent pentagons adjoining two hexagons. In
the second case, when the dimer embeds in
the pentagon, two pentagons separated by a
square are obtained. In both cases there arises
a new atomic configuration and there is a mass
increase of two carbon atoms. This process can
continue until a new stable configuration is
reached. In doing so, we modeled the growth
of the first branch of the family of tetra-hexa-
cell equator fullerenes beginning with C,; in the
range from 20 to 36 together with some of their
isomers. We have constructed the axonometric
projections and the corresponding graphs for
these fullerenes.

In this contribution, we consider the direct
descendents of the second branch of the family
of tetra-hexa-cell equator fullerenes beginning
with C,,, namely, C,, where n = 12 — 24.
Our aim is to study their growth constructing
at first their graphs, what is simpler, and then
to develop their structure on the basis of the
graphs obtained.

Tri,-tetra,-hexa, polyhedral fullerene C,,

Its atomic configuration consists of three
equilateral triangles, three squares, and nine
hexagons (Fig. 1) so it could be termed a
tri-tetra,-hexa, polyhedron. This structure

Fig. 1. Atomic structure and graphs of fullerenes

C,.C,C

24 26° 28°

and C,;

together with its consistent electronic structure
was obtained in Ref. [1] on the basis of a new
mathematic concept of fullerenes. According
to the concept, a fullerene is any shape
composed of atoms, each atom having three
nearest neighbours, which can be inscribed into
a spherical, ellipsoidal, or similar surface close
to a sphere. But what is more important, it was
suggested that not only the atoms but also the
shared electron pairs forming covalent bonds,
were located on one and the same sphere,
ellipsoid or similar surface.

Branch of tri,-tetra,-hexa, polyhedral
fullerene C,,

First stage. Starting with fullerene C,,,
one can obtain the direct descendants of this
fullerene with the help of the mechanism of
dimer embedding into a hexagon. Taking as a
basis the structure and the graph of the fullerene
we have obtained the first four fullerenes and
their graphs (see Fig. 1). Here fullerenes C,, and
C,, are perfect (D,, symmetry), and fullerenes
C,, and C, are imperfect (C, symmetry). In
many respects, they are similar to those of the
branch generated by fullerene C,; [3]. To gain
a better understanding of the mechanism of
dimer embedding, its main features are given in
the form of schematic representation (Fig. 2).

Let us analyze this figure. From the
configurations shown it follows that the first
embedding, which transforms fullerene C,, into
fullerene C,,, deeply influences only one of the
hexagons and two of its square neighbours. The
hexagon transforms into two adjacent pentagons
and its square neighbours become pentagons.
As a result, a cluster containing four pentagons
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a) b)

Fig. 2. Scheme reflecting the main local changes
during the growth of fullerene C,,.
Dimer embedding into a hexagon (@) which transforms
into two adjacent pentagons (b)

Cso

is obtained. The second imbedding transforms
fullerene C,, into fullerene C,,. Similar to the
previous case, one of the two remaining hexagons
transforms into two adjacent pentagons, its
square neighbour into a pentagon, and its
pentagon neighbour into a hexagon. At last, the
third embedding which leads from fullerene C,,
to fullerene C,, eliminates the last remaining
hexagon and two its neighbouring pentagons,
but, in return, creates two adjacent pentagons
and two hexagons of another local orientation,
so the hexa-octa-cell equator fullerene finally
becomes a bow-tie-cell equator fullerene C,,
(see Fig. 2), each bow tie having two bow-tie
neighbors normal to it. It could be named a
hexa-octa-cell equator fullerene where every
two adjacent pentagons have the form of a bow
tie. At the same time, in the pole areas there
appear clusters composed of three adjacent
hexagons with a trigon in their centers.

Second stage. The further growth of fullerene
C,, differs from that of fullerene C,,. Fullerene
C,, cannot grow in a manner similar to that of
fullerene C,,, i.e., normal to the equator because
now the equator hexagons have no neighbouring
pentagons oriented normal to it. However, any
equator hexagon can use, for its growth, two
neighbouring pentagons of the equator, which
are mutually antithetic. So fullerene C,, can
continue the growth, only changing the growth
direction. As a result, one obtains two imperfect
fullerenes C,, and C,, with C, symmetry, and
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one perfect C,, with D,, symmetry (Fig. 3). To
gain a better understanding of the mechanism of
dimer embedding, its main features are given in
the form of schematic representation (Fig. 4).
The structure of fullerene C,, is rather
interesting. For studying this fullerene it is

Fig. 3. Atomic structure and graphs of fullerenes
C,,, C,,and C,

32 342

Fig. 4. Scheme reflecting the main local changes
during the growth of fullerene C,;
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Fig. 6. Atomic structure and graphs of fullerenes

C,, C

420 a4

and C,,

convenient to use the system of coordinates
where the axis z, or the main axis of symmetry,
passes through the centers of two triangles. Each
triangle surrounded by three hexagons forms a
cluster. The clusters are separated by a zigzag
ring of twelve atoms which create an equator.
It is worth noting that all equator atoms are
former dimer atoms. The fullerene is perfect,

Fig. 7. Atomic structure and graphs
of fullerene C,,.
Clusters of eighteen atoms in the polar areas;
each cluster containing six pentagons around a hexagon

and we have the group of perfect fullerenes
including C,,, C,, and C,..

Third stage. Essentially, any hexagon of
fullerene C, of such configuration is capable
of embedding a dimer, but it will more
likely embed a hexagon with not only two
neighbouring mutually antithetic pentagons,
but one pentagon and a mutually antithetic
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trigon. It is connected with the well-known
fact: the less is the fullerene surface, the less
is its energy. A local curvature is defined by
the sum of adjacent angles having a common
vertex. The less is the sum, the larger is the
curvature, and therefore the more is the local
stress concentration. Even the first embedding
of a dimer into such a hexagon increases the sum
from 300 to 330°, and thus the configuration
becomes more stable.

The growth of fullerene C,, is shown in
Figs. 5 — 7. Among the descendants there
are imperfect fullerenes C,, C,, and C,
with C, symmetry, semi-perfect fullerenes C,;
(C,, symmetry), C,, (S, symmetry), and the
perfect fullerene C, (D,, symmetry). The
imperfect fullerenes have an odd number
of dimers, the semi-perfect and the perfect
fullerenes have an even number. The final high-
symmetry fullerene C,; has the same structure
as the fullerene C,, which was grown out earlier
[6] from the fullerene C,; (Fig. 7, below). It
contains clusters of eighteen atoms in the polar
areas; each cluster is composed of six pentagons
around a hexagon. This means that the problem
of equifinality can arise here. This problem is
well known in economic geography: a nucleus
of towns can be different, but the final structure
is the same; it has a center and outskirts.

Conclusion

Any calculations of fullerene energy need
input data. For mini-fullerenes (up to C,) the
number of possible configurations is not very
large, but with midi-fullerenes (C,) — C)) a
monstrous size of isomers can be obtained. It is
clear that there is no big sense in studying all of
them, so it is desirable to restrict their number
to the most stable. In this respect, geometric
modeling is very useful as a first step of computer
simulation for further theoretical analysis [10].
As for fullerenes, the geometric modeling is
based on the principle “the minimum surface at
the maximum volume”. It means that a forming
fullerene tends to take the form of a perfect
spheroid with equal covalent bonds. We suppose
that geometric modeling allows imagining from
the very beginning a possible way of growing
carbon clusters and thereby to decrease the
number of configurations worth for studying.
With the help of geometrical modeling, we
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have considered here the growth of fullerenes
through a series of dimer imbedding reactions
with initial fullerenes.

As a result, axonometric projections
together with the corresponding graphs for
the second branch of the family of tetra-hexa-
cell equator fullerenes including some isomers
are constructed in the range from 24 to 48.
Some of the graphs were obtained earlier [4]
but the majority is given for the first time.
The process of growth of fullerenes is studied
on the basis of the mechanism, according to
which a carbon dimer embeds in a hexagon
of an initial fullerene. This leads to stretching
and breaking the covalent bonds which are
parallel to the arising tensile forces. In this
case, instead of the hexagon adjoining two
pentagons, two adjacent pentagons adjoining
two hexagons are obtained. As a result, there
arises a new atomic configuration and there
is a mass increase of two carbon atoms. We
considered direct descendents of the second
branch of the tetra-hexa-cell-equator family
beginning with C,,, namely, C where
n=13—24.

Fullerenes C,, C,, and C, can be
considered to be perfect fullerenes with a
threefold symmetry. The symmetry can be
easily discovered looking at their graphs. The
fullerenes C,, C,,, C,,, and C,, are imperfect.
By analogy with crystal physics, it can be said
that the reason for imperfection is connected
with the fact that the fullerenes have extra
‘interstitial’ dimers or ‘vacant’ dimers. The
structure of fullerene C, is rather interesting.
It has two triangles around a polar axis. Each
triangle surrounded by three hexagons forms a
cluster. The clusters are separated by a zigzag
ring of twelve atoms which create an equator.
It is worth noting that all equator atoms are
former dimer atoms. Although any hexagon of
fullerene C,; is capable of embedding a dimer,
but a hexagon with not only two neighbouring
mutually antithetic pentagons but one pentagon
and a mutually antithetic trigon is more likely
to do so. It is connected with the well-known
fact; the less is the fullerene surface, the less
is its energy. A local curvature is defined by
the sum of adjacent angles having a common
vertex. The less is the sum, the larger is the
curvature, and therefore the more is the local

2n’
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stress concentration. Even the first embedding
of a dimer into such a hexagon increases the sum
from 300 to 330°, and thus the configuration
becomes more stable.

The process of growth of fullerene C,
leads to forming imperfect fullerenes C,, C,),
and C,, semi-perfect fullerenes C,, C,,, and
perfect fullerene C,. The imperfect fullerenes
have an odd number of dimers; the semi-
perfect fullerenes, as well as the perfect one,
have an even number. The final high-symmetry

fullerene C,; has the same structure as the one of
fullerene C,; which was grown out of fullerene
C,, [6]. It contains clusters of eighteen atoms in
the polar areas; each cluster is composed of six
pentagons around a hexagon. This means that
there the principle of equifinality holds in this
case; a nucleus of fullerenes can be different,
but the final structure is the same. Therefore,
the further growth of fullerene C,, formed in
the second branch will not differ from that of
the first branch.
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Menvkep A.U., KpynuHa M.A. TEOMETPUYECKOE MOJEJ/IMUPOBAHWME POCTA

MUONDYNNEPEHOB OT C,, A0 C,, .

[TocTpoeHbl aKCOHOMETPUYECKME MTPOEKLIMU (QYUIEPEHOB BMECTE C COOTBETCTBYIOIIMMU UM rpadamMu B
MHTEpBasie cocTaBoB oT 24 10 48. PocT ¢y/iepeHOB U3yJalicsi Ha OCHOBE MEXaHM3Ma, COrJIaCHO KOTOPOMY
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JVMep yIJIepoAa BHEAPSETCS B LIECTUYTOJbHUK MCXOAHOro QysuiepeHa. DTo MPOBOIUT K PACTSKEHUIO U
pa3pbiBy KOBaJEHTHBIX CBSI3€i, KOTOPbIE MapajulejbHbl BOZHMKAIOLIMM PACTATMBAIOLIMM cuiaM. B aTom
cjlydae BMECTO IIECTUYrOJbHMKA, TPAHUYALLErO C ABYMS ISITUYTOJbHUKAMU, OOPa3yloTCs IBa CMEXHBIX
MATUYTOJbHUKA, TpaHUYalle C ABYMs IeCTUyroJbHMKaMu. Kak cieacTsue, BO3HMKAET HOBAasi aTOMHask
KOHuUTrypalusi, 1 Macca ¢yjiepeHa yBeJUIMBaeTCs Ha JBa aroMma yriepona. PaccMOTpeHbI TipsiMble TO-

ToMku ¢yiepena C,,,a umenno C, , toe n = 13 — 24,
OYJUIEPEH. POCT, IUMEP YIJTIEPOJA, T'PA®, CTPYKTYPA, MOJAEJTNPOBAHUE.
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