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Abstract. Using suspended structures in construction is one of the methods to improve the
earthquake buildings resistance. This subject became very popular in the 60-70s of the 20th century.
However, at that time there were no available methods to provide full studies devoted to the buildings of
this type. Soon, however, the opportunity appeared due to the development of computer engineering.
This caused further analysis and disclosure of the full potential of suspension systems. This article
discusses five different structural layouts including using suspended structures. SOFiSTiK computer
system was used to calculate them. The time of oscillations was the main criterion to evaluate the
schemes. It is well-known that earthquake exposure on the building decreases if the time of oscillations
increases. It was found that the time of oscillations of the buildings with suspended structures is greater
by several times in comparison with the buildings with traditional structural system. Taken into
consideration the given fact, we can suggest that the efficiency of suspension systems in seismic
conditions is provided.

AHHOTauuA. Vicnonb3oBaHne NOOBECHbIX KOHCTPYKUMI B CTPOUTENbLCTBE, SBNSIETCA OAHUM U3
€cnoco6oB NOBbILLEHNST CEMCMOCTONKOCTU 3a4aHni. [laHHasa Tema nony4duna HanbonbLUylo NONynspHOCTL B
60-70x rogax 20 Beka. OgHako B TO BPEMS HE CYLLLECTBOBANoO AOCTYMHbIX METOAO0B ANSA MOSTHOLEHHOro
nccnepoBaHus 34aHWA Takoro Tuna. B pesynbrarte pasBUTUSA BbIMUCIIUTENBHOM TEXHWKW, Takasi
BO3MOXHOCTb MOsiBUNAcb. OTO MOCAYXWUNO MNPUYMHON [anbHENWero aHanmMsa M packpbiTUs BCEro
noteHuMana nodBecHbIX cucteM. B craTtbe paccMOTpeHO NATb PasfiMYHbIX KOHCTPYKTUBHBIX CXEM
34aHWiA, B TOM YUCIe C UCMOSb30BaHMEM MOABECHbIX KOHCTPYKUMA. [ns ux pacdéta mcnonb3oBarcs
nporpaMmHo BblunciMTeNbHbIA Komnneke SOFiSTiIK. OCHOBHbIM KpUTEPUEM OLIEHKM CXEM CTan nepuoa
COBCTBEHHbIX hopM konebaHus. Kak n3BecTHo, Npu yBENMYEHUN NEPUOAA, yMEHbLLIAeTCH cencmmyeckast
Harpyska, AencTByloLlas Ha 3gaHve. bbino BbisiBNeHO, 4To nepuog konebaHus y 3gaHni ¢ NogBeCHbIMM
KOHCTPYKUMSIMX B HECKOJTbKO pa3 bonblie, YeM y 34aHui ¢ TPagULMOHHOW KOHCTPYKTMBHOW CUCTEMON.
OTOT (hakT NO3BOMSAET rOBOPUTL O TOM, YTO 3PPEKTUBHOCTL NMOABECHBIX CUCTEM B YCIOBUSAX CENCMUKU
obecneumnBaeTcs.

Introduction

Increased seismic stability of buildings can be achieved in various ways. There are many
approaches designed to handle this challenging task in Russian and global practice. One of them is the
search for the most efficient and reliable structural systems among which buildings with suspended
structures form a separate group. Suspended systems of buildings are characterized by a variety of
geometric shapes that depends on installation methods, cost, the duration of erection, and space and
layout requirements. The s]solutions put forward by Russian experts to increase seismic stability through
the use of suspended structures have been previously reflected in the works by I.L. Korchinsky,
N.N. Skladnev, G.Sh. Chanukvadze, P.l. Ostromensky, I.I. Grigorieva [1-6].

Most of the research in this area was conducted in the 60-70s of the 20th century. During the
same period some suspended-type buildings were erected both in earthquake-prone and in safe areas of
the globe — in Antwerp, Mexico City, Vancouver, London, Munich, Madrid, Minneapolis (USA), Kota
Kinabalu (Malaysia) [7—14]. In 1979, American expert Wolfgang Schuller was the first who codified the
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classification of suspended systems [15]. The rigid shaft principle is applied in the design of most
suspended buildings.

Although experts from Russia and the former USSR were also conducting some research and
searching for solutions of buildings with suspended structures, none of them was built. One of such
solutions was a suspended building proposed and patented by I.L. Korchinsky in 1971. In this model,
loads are transferred from floors to the foundation entirely through trusses located at the top of the shaft.
Seismic stability increased due to the fact that the structure design was fitted out with extra dampers
placed at the points where suspensions were attached to trusses and at the points where trusses were
supported by the shaft (Fig. 1) [1].
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Figure 1. Suspended building: 1 — reinforced concrete shaft;
2 — double-cantilever trusses; 3 — suspensions; 4 — suspended floors;
5 — dampers in the form of elastic links; 6 — extra dampers

In 1976, G.Sh. Chanukvadze developed another model of an earthquake-proof building with
suspended structures. The complicated damper system was considered to be the main drawback of the
building option proposed by I.L. Korchinsky.

In the proposed solution, suspensions were made prestressed and junctions of floors and the
central core — rigid and swivel with floor-by-floor alternation (Fig. 2). Thus, loads were transferred to the
foundation partly through the shaft truss and partly through cantilevered supports on the shaft itself.
According to the author, this design was to reduce arising forces affecting the building and caused by
wind and seismic effects [3].

Afterwards, the model was further refined by its authors in order to avoid possible resonance in the
event of heavy earthquakes. For this purpose, suspensions anchored in the foundation were equipped
with shutoff links (Fig. 3) [4].
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Figure 2. Suspended building: 1 — core; Figure 3. Suspended building: 1 — core;
2 — truss; 3 — suspensions; 4 — floors; 2 — truss; 3 — suspensions; 4 — foundation;
5 — foundation 5 — floors; 6 — pivots; 7 — shutoff links

N.N. Skladnev, an expert of the Central Research Institute of Construction Structures named after
Kucherenko [2], made a great contribution to the study of the operation of suspended systems in seismic
conditions.
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Currently, the development and construction of buildings with suspended structures are almost
abandoned. The reason for this may be the fact that the solutions proposed previously have proved to be
difficult to implement on the engineering side. In addition, calculation methods that existed before the 90s
could not fully reflect the nature of effects of the seismic impact. Consequently, the study of these
systems was suspended.

However, along with increasingly sophisticated computer technologies and increased capacities of
electronic computers, methods to calculate mathematical models are being elaborated as well.
Computing complexes are continuously emerging and they are being updated. They are capable to
perform the most complicated tasks in the field of dynamic linear and nonlinear oscillations.

SOFiSTiK is one of such complexes. There is a wide range of design and load simulation
capabilities among the features of SOFiSTiK. Another advantage of this complex is a possibility to work
with macros that allow you to make adjustments to any computation module by using programming
language CADINP [16].

State-of-the-art capabilities of this computation complex enable us to proceed with research into
the system of buildings with suspended structures that is somewhat abandoned, but not very explored.

Research objective was carrying out the comparative analysis of dynamic parameters (the period
and the frequency of natural oscillations) buildings with suspended constructions.

Methods

One of the most common building configurations in the form of a cantilevered cap on a single shaft
in the shape of a cylinder as per the classification by Wolfgang Schuller was taken to pursue the research
[15]. The chosen shape corresponds to several basic theses of the efficient configuration of buildings in
seismic areas [17]. Then, five options of computational schemes were selected. Eeach of them was
distinguished by different structural solutions affecting dynamic characteristics of a building. The work
took into consideration the experience of Russian experts in the field of automated computation [18, 19].
The standard module “Natural modes and frequencies” of SCC SOFiSTiK was used to determine the
frequency.

As is well-known, in current standards the value of seismic load for the i-th mode of natural
oscillations of buildings or facilities — Séik —is conventionally calculated by the following formula:
i _ J ]
. Soi = M AKLB Ky,
where m,]{ — the mass of the building or the moment of inertia of the corresponding mass of the building;

g — acceleration due to gravity; A — the factor which values should be taken on the basis of the estimated
seismicity; Ky — the factor which value should be taken depending on combinations of the estimated
seismic intensity; f§; — the dynamic factor corresponding to the ith mode of natural oscillations of
buildings or facilities; Kw — the damping factor; 771']k — the factor depending on the mode of building or
facility deformation under its natural oscillations by the i-th mode.

The value of the dynamic factor [5; should be taken as per the graph (Fig. 4) depending on the
estimated period of natural oscillations T; of a building or facility by the i-th mode.
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Figure 4. Dependence of the dynamic factor on the period of natural oscillations:
1 - curve for soils of Category | and Il; 2 — curve for soils of Category Il

The graph shown above clearly illustrates that the dynamic factor decreases along with an
increase in the natural oscillation period that ultimately reduces the seismic load. This fact is a stimulus
for low-frequency adjustment of a building, which can be implemented in particular due to the introduction
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of suspended structures. Therefore, at the first stage of the research, the period of natural oscillations
was the key parameter that determined efficiency of the considered schemes.

Results and Discussion

The first scheme of the building has a conventional shaft system without the use of special means
to ensure seismic protection. In this scheme, the load is transferred from floors to the foundation through
the rigid reinforced concrete shaft and metal H-columns placed along the perimeter. In the first scheme
as in the rest, the foundation is taken as a solid slab. Figure 5 shows the computational scheme of the
building and its model from the software complex SOFiSTiK.

The standard module "own forms and frequencies" was used to determine the frequency of own
forms of oscillations. The calculation was made by the ASE module with a choice of the following
parameters: the number of forms of oscillations — 6, the computation was carried by Lantsosh's method,
the attenuation factor according to Rayleigh was accepted by-5%. Columns, plates, beams — slabby, rod
and beam terminal elements were used for the bearing structural elements.

The model of the building has 13 floors, the height of the floor is accepted by 4 m, the diameter of
a trunk is equal to 8 m, the external diameter is equal to 20 m. The walls of a kernel and overlapping are
made of monolithic reinforced concrete 0.3 m thick. Sixteen metal columns which are replaced further
with guys are located on perimeter of the building. The base is executed in the form of a monalithic
reinforced concrete plate 2 m thick, with a diameter of 20 m. The console grillage at building top holding
guys is executed in the form of a reinforced concrete plate 0.6 m thick. He is supported by inclined metal
beams on trunk tops.

For reinforced concrete designs B 25 concrete and A 400 fittings is accepted. Columns are made
of steel C 245 with a profile 20K2.This model was used for comparison with other settlement schemes.

The computation of this scheme made it possible to determine its oscillation period equal to
1.08 seconds.

The second scheme is similar to the first one, but it still differs from it since it has a seismic
isolation system represented by rubber-metal supports (RMS) installed in the foundation. The principle of
this system operation consists in increasing the period of natural oscillations of structures thereby the
seismic load on the building decreases.

To consider the operation of the seismic isolation system, another foundation slab was included
into the model at the distance of 1m from the first. Point links were arranged between the slabs simulating
RMS operation, which enable us to secure the element not pivotally but movably along its axes with the
required rigidity. Lateral rigidity of rubber-metal supports is much less than longitudinal thereby they allow
the structures mounted on them to oscillate horizontally while remaining at the design elevation. This
RMS property was taken into account when setting the parameters of Point links. The oscillation period of
a building of this scheme amounted to 2.49 seconds.
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Figure 5. First computational scheme:
a) structural layout; b) computational model of SOFiSTiK program

Figure 6 shows the features of the scheme and computational model.

The third scheme was drawn up considering the operation of the system of suspended structures.
When modeling all schemes of this type, the specificity of cable-stayed structures described in various
Belash T.A., Rybakov P.L. Buildings with suspended structures in seismic areas. Magazine of Civil Engineering.
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works was taken into consideration [20-32]. For the comparative analysis of all five schemes to be
objective, the building configuration was retained and the columns were replaced with cable stays. In this
scheme, the load was transferred from floors to the foundation according to the type of suspended
building by Chanukvadze G.Sh. [3] — partly through cable stays and grillage at the shaft top, partly
through cantilevered supports on the shaft itself. Grillage means a space structure holding cable stays
and consisting of a reinforced concrete slab, sloping metal beams and continuation of the shaft walls.
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Figure 6. Second computational scheme:
a) structural layout; b) computational model of SOFiSTiK program;
c) display of Point links in SOFiPLUS preprocessor

The units where floors were supported by the shaft were made by means of an elastic link
element — Point link. The operating principle of these elements remained the same as in the previous
scheme. Each floor disc was supported at 16 link points having lateral rigidity much less than longitudinal
which enabled the floor discs to oscillate relatively freely in the horizontal direction. Figure 7 shows the
scheme of the floor support unit and its representation in SOFiPLUS. Figure 8 shows the computational
scheme and model of the third option.

The scheme parameters are dependent on the lateral rigidity of supports, which can vary
depending on the desired period of the model oscillation. As it has been said above, the seismic load
decreases along with the decrease in the dynamic factor, consequently, the maximum period of
oscillation is the most efficient [33—36].

To determine the dependencies and search for an option with the greatest period, the lateral
rigidity of each support varied from 25 kN to 175 kN in increments of 25 kN. The variation range was
taken considering the actual rigidity of support elements. The period ranged from 4.83 to 2.13 seconds.
Since a floor disc was supported by 16 supports, the total increment of rigidity variation per floor was
400 kN (25 kN x 16 = 400 kN).
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Figure 7. Floor support unit:
a) support unit scheme; b) display of the unit in SOFiPLUS
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a)

Figure 8. Third computational scheme of the building:
a) structural layout; b) computational model of SOFiSTiK program

The fourth computational scheme uses the suspended system as well. The difference between this
scheme and the previous scheme consists in the fact that floor discs are suspended by cable stays not
just along the outer contour, but also along the inner contour. In this scheme, the loads are transferred
from floors to the foundation solely through the shaft grillage as per the example of the building according
to Korchinsky I.L. [1]. Figure 9 shows the features of the structural layout and computational model.

Cables

Figure 9. Fourth computational scheme of the building: a) structural layout;
b) computational model of SOFiSTiK program;
c¢) enlarged area of the model showing the location of cable stays in it

To analyze this scheme, the parameters affecting the oscillation period that varied during the study
were determined. Firstly, the building height ranged from 4 to 18 storeys in increments of 2 storeys. In all
schemes, the storey height was equal to 4 m. As a result, it was found that within the considered range of
variation in the building height, the period of natural oscillations ranged from 7 to 14.7 seconds.

The second parameter of variation was the weight of the lower suspended floor, which varied from
300t to 1400t in increments of about 150 t. The change in this parameter allowed extending the
oscillation period of a 5-storey model from 7.1 to 7.63 seconds, but it did not virtually affect the properties
of a 15-storey model.

The evaluation of dynamic parameters of the fourth scheme shows that it is possible to
substantially extend the period of natural oscillations and achieve the maximum reduction of seismic load
on the building in a structural way. However, due to considerable yield such systems lead to swinging of

suspended elements that can cause the destruction of the entire building.
If we follow the recommendations to design buildings on seismic isolating structures of foundations
[37, 38], and for multi-storey buildings as well, the duration of the most efficient period of natural

oscillations ranges from 3 to 4 seconds. Apparently, the oscillation period falling within this range is also
the most preferable for buildings with suspended structures.

Belash T.A., Rybakov P.L. Buildings with suspended structures in seismic areas. Magazine of Civil Engineering.
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At the next stage, we considered the fifth computational scheme of a building with suspended
structures. It took into account advantages and drawbacks of the previous schemes. The main drawback
of the third scheme is high cost and complexity of cantilevered supports, as well as their difficult

maintenance. The drawback of the fourth scheme is the uncontrolled oscillation of suspended elements,
which may cause resonance in case of seismic exposure.

The fifth computational scheme combines the positive aspects of the third option — the possibility to
adjust the rigidity of supports and oscillation amplitude. The fourth option — the relative simplicity of
design and maintenance alongside with reliability.

The fifth scheme is similar to the third one, but in this case, floor discs are attached to the shaft by
means of cable suspensions. Figure 10 shows the features of the structural layout and model.
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Figure 10. Fifth computational scheme of the building: a) structural layout;
b) computational model of SOFiSTiK program;
c¢) enlarged area of the model showing the location of cable stays in it

The principle of the operation of cable suspensions is based on the properties of a mathematical
pendulum. When floors oscillate because of seismic exposure, the angle of the deviation of suspensions
is increasing and, consequently, the force tending to place the floor back is also increasing.

While studying this computational scheme, the length of suspensions, the angle of their deviation
from the vertical and the height of the building varied. The length ranged from 0.9 m to 44m in
increments of 0.5 m. The deviation angle changed from 0° to 6° with an interval of 1.5°. The height of the
building varied from 4 to 18 storeys in increments of 2 storeys.

After all the computations, it was found that the maximum period of oscillation — 4.71 seconds —
belongs to a building having the maximum length and minimum angle of deviation of suspensions, as well
as the maximum height.

It is worth noting that at the minimum angle of the deviation of cable stays there is the need to
install cantilevers thereby the storey area may be reduced. To avoid this, the maximum displacement of
suspended elements should be less than the distance between the suspended and non-suspended part
of the building.

Conclusions
Based on the results of the research conducted the following conclusions were drawn:

1. Buildings with suspended structures can be considered as earthquake-proof systems and their
use may result in a significant reduction of seismic loads.

2. Decrease in seismic loading in buildings with suspended designs is connected with the
reduction of the coefficient of dynamism due to increase in the period of own fluctuations.

3. The results of the comparative analysis of various versions of settlement schemes established
that the fifth settlement scheme with use of guy suspensions, the second scheme with the use of rubber-
metal support and the third scheme are the most effective for multi-storey buildings with suspended
designs.
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4. The fourth scheme has the greatest period of own fluctuations, but in case of this scheme the
building can receive a serious swing during an earthquake that as a result will lead to its collapse.This
scheme is unserviceable without the introduction of oscillation damping elements.

5. The first scheme with traditional barreled constructive system has the form of fluctuations
similar to the fluctuations of the console compressed core. The maximum period of own fluctuations in
this scheme did not exceed 1.08 sec.

6. The findings form the basis for further research considering actual characteristics of seismic
effects [39].
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