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functions (FCFs) based on the classical Chebyshev polynomials of the first kind have 
been introduced, that can be used to obtain the solution of these equations. Also, 
the operational matrices of fractional derivative and product for the FCFs have been 
constructed. The obtained results illustrated demonstrate that the suggested approaches 
are applicable and valid. 

Key words: fractional order of the Chebyshev functions; operational matrix; Riccati differential equations; 
Galerkin method; differential equation of arbitrary order.

Citation: �. Parand, M. Delkhosh, Operational matrices to solve nonlinear Riccati differential equations 
of an arbitrary order, St. Petersburg Polytechnical State University Journal. Physics and Mathematics. 10 (3) 
(2017) 100–115. DOI: 10.18721/JPM.10310

ОПЕРАЦИОННЫЕ МАТРИЦЫ ДЛЯ РЕШЕНИЯ НЕЛИНЕЙНЫх  
ДИФФЕРЕНЦИАЛьНЫх уРАВНЕНИЙ РИККАТИ  
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В статье предложен эффективный численный метод численного решения 
нелинейных дифференциальных уравнений Риккати произвольного порядка 
(как целого, так и дробного). Для этого вводится дробный порядок функций 
Чебышёва на основе классических полиномов Чебышёва первого рода. Такая 
мера позволяет получать решение этих уравнений Риккати. Построены также 
операционная матрица дробных производных от функций и операционная ма-
трица произведений ортогональных функций Чебышёва дробного порядка. Ре-
зультаты применения метода на ряде примеров доказывают, что предлагаемый 
подход справедлив и достоин применения.
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1. Introduction

The Chebyshev polynomials have frequently 
been used in the numerical analysis including 
polynomial approximation, Gauss-quadrature 
integration, integral and differential equations 
and spectral methods. Chebyshev polynomials 

have many properties, for example, orthogonal, 
recursive, simple real roots, complete in the 
space of polynomials. For these reasons, many 
researchers have employed these polynomials 
in their studies [1 – 3]. One of the attractive 
concepts in the initial and boundary value 
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problems is the differentiation and integration 
of a fractional order [4, 5]. Many researchers 
extend classical methods in the studies of 
differential and integral equations of an integer 
order to fractional type of these problems  
[6, 7].

Using some transformations, a number of 
researchers extended Chebyshev polynomials 
to a semi-infinite or an infinite domain, for 
example, by taking 

, 0,
t L

x L
t L
−

= >
+

the rational Chebyshev functions on the semi-
infinite domain [8 – 11], by taking

2
, 0,

t
x L

t L
= >

+
the rational Chebyshev functions on the infinite 
domain [12] being introduced. 

In this study, by transformation 

,1 2x tα= −  0α > ,

on the Chebyshev polynomials of the first 
kind, the fractional order of the Chebyshev 
orthogonal functions in the interval [0, 1] has 
been introduced. This can be used to solve 
differential equations of an arbitrary order.

Fractional calculus has a long mathematical 
history (since 1695 by Hopital [13]), but, for 
many reasons, it was not used in sciences for 
many years, for example, the various definitions 
of the fractional derivative have existed [14] and 
they have no exact geometrical interpretation 
[15]. A review of some definition and 
applications of fractional derivatives are given 
in Refs. [16] and [17]. In recent years, many 
physicists and mathematicians have undertaken 
studies on this subject, and fractional calculus 
has been employed in various investigations [18, 
19]. During the last decades, several methods 
have been used to solve fractional ordinary/
partial differential equations, and fractional 
integral/integro-differential equations, such 
as Adomian’s decomposition method [20], a 
fractional order of Legendre functions [21], a 
fractional order of the Chebyshev functions of 
the second kind [22], homotopy analysis method 
[23], the Bessel functions and spectral methods 
[24], the Legendre and Bernstein polynomials 
[25], and other methods [26, 27].

One of the most popular differential 
equations that has been considered mostly in 
the literature is the Riccati differential equation. 
There are several applications of this equation 
in algebraic geometry, theory of conformal 
mapping, physics and applied problems (see, 
for example, Ref. [28]). Some researchers have 
used different methods to solve this type of 
equations, for examples, Abbasbandy [29] by 
using homotopy perturbation method, Ranjbar 
et al. [30] by using enhanced homotopy 
perturbation method, Cang et al. [31] by using 
homotopy analysis method, Balaji [32] by using 
the Legendre wavelet operational matrix method, 
Parand et al. [33] by using operational matrices 
method based on the Bernstein polynomials, Li 
et al. [34] by using the Haar wavelet operational 
matrix method, Ghomanjani and �horram 
[35] by using the Bezier curves method, and 
Merdan [36] by using the fractional variational 
iteration method.

The goal of this paper is to present a 
numerical method (FCF Galerkin method; FCF 
is the Chebyshev function of a fractional order) 
to approximate the solution of the nonlinear 
Riccati differential equation of an arbitrary 
(integer and fractional) order as follows: 

2
1 2( ) ( ) ( ) ( ) ( ) ( ),D y t p t y t p t y t g tα + + =

with n initial conditions: 
( )

0 , 0,1, ( ) ..., 1,i
iy t y i n= = −

where ;nα =  2
1 2( ),   ( ),   ( ) ([ ))0,1p t p t g t L∈  are 

known functions; y(t) is the unknown function, 
and Dα  is the Caputo fractional differentiation 
operator.

The organization of our paper is as follows: in 
section 2, some basic definitions and theorems 
of fractional calculus are presented. In section 3,  
the FCFs and their properties are obtained. 
Section 4 is devoted to applying the FCFs 
operational matrices of fractional derivative 
and product for obtaining the solution of a 
fractional differential equation. In section 5, 
the method of the work is explained. Examples 
of the applications of the proposed method 
are given in section 6. Finally, a conclusion is 
provided.

2. Basic definitions

In this section, some basic definitions and 

(1)

(2)
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(4)

(6)

(7)

(8)

theorems which are useful for our method have 
been introduced.

Definition 1. For any real function ( ),f t  
0,t >  if there exists a real number ,p > µ  such 

that 1( ) ( ),pf t t f t=  where 1( ) (0, ),f t C∈ ∞  is 
said to be in space ,Cµ  ,µ ∈R  and it is in the 
space nCµ  if and only if ( ) , .nf C n Nµ∈ ∈

Definition 2. The fractional derivative of ( )f t  
in the Caputo sense by the Riemann – Liouville 
fractional integral operator of an order 0α >  is 
defined as follows [37]: 

1

0

1
( ) ( ) ( ) ,

( )

t
m mD f t t s D f s ds

m
α −α−= −

Γ − α ∫
for 1 , , 0m m m N t− α ≤ ∈  and 1.

mf C−∈
Some properties of the operator Da  are as 

follows. For 

,f Cµ∈  1,µ ≥ −  , 0,α β ≥  1,γ ≥ −

 0 {0,1,2,...},N =  ,ic R∈  and constant C:

( ) 0,i D Cα =

( ) ( ) ( ),ii D D f t D f tα β α+β=

00,    and  ;

( )

( 1)
,  Otherwise.

( 1)

N

iii D t

t

α γ

γ−α


 γ ∈ γ < α= 
 Γ γ +
Γ γ − α +

1 1

( )( ) ).(
n n

i i i i
i i

iv D c f c D ft tα α

= =

 
=  

 
∑ ∑

Definition 3. Suppose that , (0,1]f g C∈  and 
( )w t  is a weight function, then 

1
2 2

0

( ) ( ) ( ) ,
w

f t f t w t dt= ∫
1

0

( ), ( ) ( ) ( ) ( ) .wf t g t f t g t w t dt〈 〉 = ∫
Theorem 1. (Generalized Taylor’s formula) 

Suppose that ( ) [0,1]f t C∈  and ( ) [0,1],kD f t Cα ∈  
where 0,1, ..., ,k m=  0 1.< α ≤  Then we have 

1

0

( ) (0 )
( 1)

( ),
( 1)

m i
i

i

m
m

t
f t D f

i

t
D f

m

− α
α +

=
α

α

= +
Γ α +

+ ξ
Γ α +

∑

with 0 ,   [0,1].t t< ξ ≤ ∀ ∈  
And thus 

1

0

( ) (0 )
( 1)

,
( 1)

m i
i

i

m

t
f t D f

i

t
M

m

− α
α +

=

α

α

− ≤
Γ α +

≤
Γ α +

∑

where ( ) .mM D fα
α ≥ ξ

Proo f : See Ref. [38].
In the case of 1,α =  the generalized Taylor’s 

formula (6) is reduced to the classical Taylor’s 
formula.

3. Fractional order of the Chebyshev functions 
(FCFs)

In this section, first, the fractional order of 
the Chebyshev functions has been defined, and 
then some properties and convergence of them 
for our method have been introduced.

3.1. The FCFs definition. By transfo-
rmation 

,1 2z tα= −  0α > ,

on the classical Chebyshev polynomials, the 
FCFs in the interval [0, 1] are defined, that 
will be denoted by

(1 .( )2)n nFT t T tα α= −

By this definition, the singular Sturm – 
Liouville differential equation of the classical 
Chebyshev polynomials becomes: 

1 1
2 2

2 2

( )
1 1

 0) ,(

n

n

t
t d t d

FT
dt dt

t t

n T tF

α α
α

α α
− −

α

 
− −  + 

  

+ α =

where [0,1]t ∈  and the FCFs are the eigen-
functions of Eq. (8).

The ( )nFT tα  can be obtained using the 
recursive relation, as follows ( 1) :n ≥  

0 11, 1 2 ,( ) ( )FT FTt t tα α α= = −

1 1(2 4 ) .( ) ( ) ( )n n nFT t FT FTt t tα α α α
+ −= − −

Fig. 1 shows graphs of FCFs for various 
values of n and .α

The analytical form of ( )nFT tα  of the de-
gree nα  is given by 

(3)

(5)
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where the coefficients an are obtained by the 
inner product: 

0

, ,( ) ( ) ( ) ( ) ,n w n n n w
n

y t FT t a FT t FT t
∞

α α α

=

〈 〉 = 〈 〉∑
and using the property of orthogonality of the 
FCFs we have 

1

0

( ) ( ) (
2

, 0.)n n
n

a FT t y t w t dt n
c

αα
= ≥
π ∫

In practice, we have to use the first m terms 
of FCFs and approximate ( ) :y t  

1

0

( ) ( ,) ( ) ( ) ş
m

T
m n n

n

y t y t a FT t A t
−

α

=

≈ = = Φ∑
with 

0 1 1[ , , ..., ] ,T
mA a a a −=

0 1 1( ) ( ) ( )[ , ,  ...,  ]) .( T
mt FT t FT t FT tα α α
−Φ =

3.3. Convergence of method. The following 
theorem shows that by increasing m, the 
approximation solution ( )mf t  is convergent to 

( )f t  exponentially.
Theorem 2. Suppose that 

[ ,1]( 0)∈kD f t Ca  for 0,1, ..., ,k m=

and mE α  is the subspace being generated by 

0 1 1{ , , ..., }( ) ( ) ( ) .mFT t FT t FT tα α α
−

If T
mf A= Φ  is the best approximation to f 

(9)

(10)

(11)

(12)

(13)

2

0

,
0

2 1 !
( 1)

( ) !(2
(

) !

 

)
( )

,

n k
k k

n
k

n
k

n k
k

n n k
FT t t

n k k

t

α α

=

α

=

+ −
= − =

−

= β

∑

∑
where 

2

, 0,
( )2 1 !

( 1)   and   1.
( ) !(2 ) !

k
k

n k k
n n k

n k k
+ −

β = − β =
−

Note that (0) 1nFT α =  and ( ) .1 ( 1)n
nFT α = −

The weight function for the FCFs is 
1

2
( ) ,

1

t
w t

t

α
−

α
=

−
and the FCFs with this weight function are 
orthogonal in the interval [0, 1] that are satisfied 
in a following relation: 

1

0

( ) ( ) ( ) ,
2n m n mnFT t FT t w t dt cα α π

= δ
α∫

where mnδ  is the �ronecker delta, 0 2,c =  and 
1nc =  for 1.n ≥  

Eq. (10) is provable using the property of 
orthogonality in the Chebyshev polynomials.

3.2. Approximation of functions. Any 
function ( ) [0,1]∈y t C  can be expanded as 
follows: 

0

( ) ( ),n n
n

y t a FT t
∞

α

=

= ∑

Fig. 1. Graphs of the FCFs with 0.40α =  and various values of n (a), and with n = 4  
and various values of α (b)

a) b)

t t
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from ,mE α  then the error bound is presented as 
follows: 

( ) ( ) ,
  !2 ( 1)

m w m

M
f t f t

mm
α π

− ≤
αΓ α +

 

where ( ) , [0,1].mM D f t tα
α ≥ ∈

Proo f . By Theorem 1, we have 
1

0

(0 )
( 1)

m i
i

i

t
y D f

i

− α
α +

=

=
Γ α +∑  

and

( ) ( ) .
( 1)

mt
f t y t M

m

α

α− ≤
Γ α +

Since the best approximation to f from mE α  
is ( ),TA tΦ  and ,my E α∈  thus 

2 2
( ) ( ) ( ) ( )m w w

f t f t f t y t≤− − ≤

2 112 2

2
0

( 1) 1

m
M t

dt
m t

α
+ α−

α

α
≤ =
Γ α + −

∫
2

2 2
.

( 1) 2     !m

M

m m
α π

=
Γ α + α

 

The theorem is proved.

4. Operational matrices of FCFs

In this section, operational matrices of 
fractional derivatives and the product for the 
FCFs are constructed. These matrices can be 
used to solve the linear and nonlinear differential 
equations of an arbitrary order.

4.1. The fractional derivative operational 
matrix of FCFs. The Caputo fractional derivative 
operator of an order 0α >  of the vector ( )tΦ  
in the Eq. (13) can be expressed by 

( )( ) ( ).D t D tα αΦ = Φ

In the following theorem, the operational 
matrix of fractional derivatives of the FCFs is 
generalized.

Theorem 3. Let ( )tΦ  be FCFs vector in the 
Eq. (13), and ( )D α  be an m m×  operational 
matrix of Caputo fractional derivatives of an 
order 0,α >  then: 

( )
, , ,

1 0

2

1
( 1)

2
, 0,

( 1) ( )

ji

i j i k j s
j k s

D
c

k s k
i

k s k

α

= =

= β β
π

 Γ α + Γ + − 
  ≠

Γ α − α Γ +

×

×
+

∑∑

( )
, , ,

1 0

2

1
( 1)

2
, 0,

( 1) ( )

ji

i j i k j s
j k s

D
c

k s k
i

k s k

α

= =

= β β
π

 Γ α + Γ + − 
  ≠

Γ α − α Γ +

×

×
+

∑∑

( )
0, 0,jD α =

for , 0,1, ..., 1.i j m= −
Proo f . Using Eq. (14), by orthogonality 

property of FCFs, for 1,2, ..., 1i m= −  and 
0,1, ..., 1j m= − , we have 

1
( )
,

0

1

,
10

1
2

,
0

, ,
1 0

1
11 2

0

2
( ) ( ) ( )

2 ( 1)
( 1)

1

2 ( 1)
( 1)

.
1

i j i j
j

i k

i k
j k

j
s

j s
s

ji

i k j s
j k s

k s

D D FT t FT t w t dt
c

k t
c k

t
t dt

t

k
c k

t
dt

t

α α α α

α −α

=

α
−

α

α
=

= =

 α + − − 
 

α

α
= =
π

α Γ α +
= β ×
π Γ α − α +

× β =
−

α Γ α +
= β β ×
π Γ α − α +

×
−

∫

∑∫

∑

∑∑

∫
Now, by integration of the above equation, 

Eq. (15) can be proved.
And since 0 ( ) 0,D FT tα α =  therefore

1

0

0

( ) ( ) ( ) 0,jD FT t FT t w t dtα α α =∫
and Eq. (16) can be proved. 

The theorem is proved.
Remark 1. The fractional derivative 

operational matrix of FCFs for 1α =  is the 
same functions as the shifted Chebyshev 
polynomials [39].

4.2. The product operational matrix of FCFs. 
The following property of the product of two 
FCFs vectors will also be applied. 

( ) ( ) ( ),Tt t A A tΦ Φ ≈ Φ

where A  is an m m×  product operational 
matrix for the vector 1

0 .{ }mi iA a −
==

Theorem 4. Let ( )tΦ  be FCFs vector in Eq. 
(13) and A  be a vector, then the elements of A  
are obtained as 

 

1

0

,
m

ij k jk
k

iA a g
−

=

= ∑

(16)

(14)

(15)

(17)

(18)

(19)

(15)
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where 



 ,   0    0, 
2

 (     );

 ( 0    ) 

 ( 0    );

0,   .

k

j

k

jijk

c
i and j

c

and k i j or k i j

c
j and k i

cg

or i and k j

otherwise





≠ ≠

= + = −

= =
=

= =














Proo f . Using Eq. (18), by the orthogonal 
property Eq. (10) the elements  1

, 0{ }mij i jA −
=  can be 

calculated from 



1

0

2
,

m

ij k ijk
j k

A a g
c

−

=

α
=
π ∑

where ijkg  is given by 
1

0

( ) ( ) ( ) ( ) .ijk i j kg FT t FT t FT t w t dtα α α= ∫
To simplify the ,ijkg  the following property 

is used: 
1

( ) ( ) ( ( ) ( )).
2i j i j i jFT t FT t FT t FT tα α α α

+ −= +

By substituting Eq. (21) in ,ijkg  we have 

,   0     0, 
4

 (     );

 ( 0    ) 
2

 ( 0  );

0,   .

k

k

ijk

c
i and j

and k i j or k i j

c
j and k i

g
or i and k j

otherwise

π
≠ ≠ α
= + = −


π = == α

 = =






Now by using Eq. (20), the theorem can 
be proved.

The theorem is proved.
Remark 2. The product operational matrix 

of FCFs is the same function as the  shifted 
Chebyshev polynomials [39]. As a whole, it can 
be said that the components of A  are indepen-
dent of α values.

5. Application of the method

We expand unknown functions ( ),y t  

( )D y tα  and known functions 1 2( ), ( ), ( )p t p t g t  
as follows: 

1

0

( ) ( ) ( ) ( ),
m

T
m n n

n

y t y t a FT t A t
−

α

=

≈ = = Φ∑
1

( )

0

( ) ( ) ( ),
m

T
n n

n

D y t a D FT t A D t
−

α α α α

=

≈ = Φ∑
1

1 1 1
0

( ) ( ) ( ),
m

T
n n

n

p t p FT t B t
−

α

=

≈ = Φ∑
1

2 2 2
0

( ) ( ) ( ),
m

T
n n

n

p t p FT t B t
−

α

=

≈ = Φ∑
1

0

( ) ( ) ( ),
m

T
n n

n

g t g FT t G t
−

α

=

≈ = Φ∑
and 



2( ) ( ),Ty t A A t≈ Φ


2
1 1 1( ) ( ) ( ),Tp t y t B A t≈ Φ



2 2( ) ( ) ( ),Tp t y t B A t≈ Φ

where 1A  is the product operational matrix of 

vector  .
T

A A
By substituting the approximations presented 

above into Eq. (1) we obtain: 





( )
1

2

1( ) ( )

 ( ) ( ).

T T

T T

A D t B t

B A G t

A

t

α Φ + Φ +

+ Φ = Φ

Now, by multiplying the two sides of Eq. 
(24) in ( ),T tΦ  then integrating in the interval 
[0, 1], according to orthogonality of FCFs, we 
get (the Galerkin method): 

 

( )
11 2 ,T T T TA D B A B A Gα + + =

which is a linear or a nonlinear system of 
algebraic equations. 

Now, for satisfying the initial conditions, 
we replace n equations of these equations (25) 
with n initial conditions (2), and obtain a 
linear or a nonlinear system with m equations 
and m unknowns. By solving this system, the 
approximate solution of Eq. (1) according to 
Eq. (22) is obtained.

The residual error function has been 
defined according to Eqs. (1), (22), and (23) 
as follows: 

( ) 2
1

2

Res( ) ( ) ( ) ( )

 ( ) ( ) ( ).

T
m

m

t A D t p t y t

p t y t g t

α= Φ + +

+ −

(20)

(21)

(22)

(23)

(24)

(25)

(26)
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Fig. 2. Obtained graphs of the absolute (a)  
and the residual (b) error functions with m = 12 

and α = 1 (for Example 1)

a)

b)

6. Illustrative examples

In this section, by using the proposed 
method, several nonlinear fractional Riccati 
differential equations are solved to show the 
efficiency and applicability of the FCFs method 
based on the spectral method.

Example 1. Consider the following nonlinear 
Riccati differential equation [21, 40, 41]: 

2( ) ( ) 1,  0 , 1,D y t y t tα + = < α ≤

with the initial condition 

(0) 0.y =

The exact solution, when 1,α =  is 

2

2

1
( ) .

1

t

t

e
y t

e

−
=

+
By applying the technique described in the 

last section, the problem can be converted to 
the following:



( )( ) ( ) ( ),T T TA D A A t G tα + Φ = Φ

where A  is obtained from Eq. (19) and 
[1, 0, 0, ..., 0].TG =

Now, with the replacement of the m-th 
equation of these equations with the initial 
condition (28), a set of m nonlinear algebraic 
equations can be generated, as follows: 



( )( ,)T TA D A Gα + =

(0) 0.TA Φ =

Fig. 2 shows the absolute error of the 
approximate solution with the exact solution 
and the residual error for 1α =  and m = 12.

Fig. 3 shows the approximate solutions for 
various values α  and m = 10. Definitely, in 
Fig. 3, a, when α  tends to 1, the approximate 
solutions of ( )y t  will converge to the exact 
solution in Eq. (29), and, in Fig. 3, b, when α  
tends to 0, the approximate solutions of ( )y t  
will converge to the exact solution

1 5
( )

2
y t

− +
= .

Table 1 shows the residual errors and the 
obtained values of ( )y t  by the present method 
for various values α  and m = 12.

Table 2 shows a comparison of obtained 
values of ( )y t  by the present method and HPM 
(see Ref. [41]) for 1α =  and m = 12.

In the case with 0.50α =  and m = 12 
in the Riccati differential equation (27), the 
approximate solution in a series expansion is 
obtained as: 

3/2 2

5/2 3

7/2 4

9/2 5

11/2

( ) 1.1283789766 0.0000436003

 0.9595868217 0.0298952318

 1.0378491665 1.3663547362

 6.3882854589 8.7043955759

 6.1900399882 2.3468978237

 0.377163613 .2

y t t t

t t

t t

t t

t t

t

= + −

− +

+ +

− + −

− −+

−

+

−

(27)

(28)

(29)
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a) b)

Fig. 3. Obtained graphs of the approximate solutions with m = 10 and the various values of α:  
when α tends to 1 (a) and to 0 (b) (for Example 1) 

Tab l e  1

Values of y(t) obtained by the present method with m = 12 (for Example 1)

t
α = 0.50 α = 0.90 α = 1.00

Approximate 
solution

Residual 
error

Approximate 
solution

Residual 
error

Approximate 
solution

Absolute 
error

Residual 
error

0.0 0.00000000 0.00e–0 0.00000000  0.00e–0 0.00000000 0.00e–00 0.00e–0
0.1 0.33010841 4.52e–8 0.13003745 2.44e–9 0.09966799 1.11e–10 5.60e–9
0.2 0.43683875 5.94e–8 0.23878913 2.77e–9 0.19737532 2.04e–10 6.16e–9
0.3 0.50488936 4.06e–8 0.33596217 1.72e–8 0.29131261 2.10e–12 7.85e–9
0.4 0.55378188 1.30e–7 0.42258308 3.40e–8 0.37994896 2.23e–10  5.59e–9
0.5 0.59119411 6.50e–8 0.49913519 2.39e–8 0.46211715 4.03e–10 1.34e–9
0.6 0.62101362 8.59e–8 0.56617156 8.20e–9 0.53704956 1.79e–10 7.61e–9
0.7 0.64548540 1.07e–7 0.62439622 3.18e–8 0.60436777 8.59e–11  8.46e–9
0.8 0.66601875 7.7e–10 0.67462699 3.34e–8 0.66403677 2.70e–10 5.82e–9
0.9 0.68355221 7.44e–8 0.71773475 3.13e–8 0.71629787 1.89e–10 5.96e–9
1.0 0.69873922 1.11e–7 0.75458880 3.44e–8 0.76159415 2.66e–11 9.21e– 9

Tab l e  2

Comparison of obtained values of y(t) with α = 1(for Example 1)

t HPM [41] Present method Exact solution Absolute error Residual error
0.1 0.099668 0.0996679945 0.0996679946 1.11e–10 5.60e–9
0.2 0.197375 0.1973753204 0.1973753202 2.04e–10 6.16e–9
0.3 0.291312 0.2913126124 0.2913126124 2.10e–12 7.85e–9
0.4 0.379944 0.3799489620 0.3799489622 2.23e–10 5.59e–9
0.5 0.462078 0.4621171576 0.4621171572 4.03e–10 1.34e–9
0.6 0.536857 0.5370495668 0.5370495669 1.79e–10 7.61e–9
0.7 0.603631 0.6043677770 0.6043677771 8.59e–11 8.46e–9
0.8 0.661706 0.6640367705 0.6640367702 2.70e–10 5.82e–9
0.9 0.709919 0.7162978700 0.7162978701 1.89e–10 5.96e–9
1.0 0.746032 0.7615941559 0.7615941559 2.66e–11 9.21e–9

No t e . HPM – the Homotopy Pertubation Method.
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Example 2. Consider the following nonlinear 
Riccati differential equation [21, 40, 41] that 
has the form 

2( ) ( ) 2 ( ) 1,   0 , 1,D y t y t y t tα + − = < α ≤

with the initial condition 

(0) 0.y =

The exact solution, when 1,α =  is 

1 2 1
( ) 1 2tanh 2 log .

2 2 1
y t t

  −
= +  +    +  

By applying the technique described in the 
last section, the problem can be converted to 



( )( 2 ) ( ) ( ),T T T TA D A A A t G tα + − Φ = Φ

where A  is obtained from Eq. (19), and 

[1, 0, 0, ..., 0]TG = .

Now, with the replacement of the m-th 
equation of these equations with the initial 
condition (31), a set of m nonlinear algebraic 
equations can be generated as follows: 



( ) 2 ,( )T TA D A I Gα + − =

(0) 0.TA Φ =

Fig. 4 shows the absolute error of the 
approximate solution with respect to the 
exact one and the residual error for 1α =  and 

30.m =
Fig. 5 shows the approximate solutions for 

various values of α and m = 12. Definitely, in 
Fig. 5, a, when α tends to 1, the approximate 
solutions of ( )y t  will converge to the exact 
solution of Eq. (32), and, in Fig. 5, b, when α 
tends to 0, the approximate solutions of ( )y t  
will converge to the exact solution

1 5
( ) .

2
y t

+
=

Table 3 shows the residual errors and the 
obtained values of ( )y t  by the present method 
for various α values.

Table 4 shows a comparison of obtained 
values of ( )y t  by the present method and by 
HPM (see Ref. [41]) for 1α =  and 30.m =

Example 3. Consider the following nonlinear 
Riccati differential equation that has the form 

2( ) ( ) ( ) ,t tD y t y t e y t eα − + =

0 2,  0 1,t< α ≤ ≤ ≤

with initial conditions 

(0) 1,   (0) 1  (if   1).y y= = α >′

The exact solution, when 2α =  and 1,α =  
is 

( ) .ty t e=

By applying the technique described in the 
last section, the problem can be converted to 

 

( )
2( ) ( ) ( ),T T T TA D A A B A t G tα − + Φ = Φ

where A  is obtained from Eq. (19). 
Now, with the replacement of the two last 

Fig. 4. Obtained graphs of the absolute (a) and the 
residual (b) error functions with 30m =  and 1α =  

(for Example 2)

a)

b)

(31)

(32)

(30)

(33)

(34)

(35)
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Fig.  5. Obtained graphs of the approximate solutions (a) and the residual error functions (b) with m = 12 
and the various values of α: when α tends to 1 (a) and to 0 (b) (for Example 2) 

Tab l e  3

Values of y(t) obtained by the present method (for Example 2)

t
α = 0.75 (m = 15) α = 0.90 (m = 15) α = 1.00 (m = 30)

Approximate 
solution

Residual 
error

Approximate 
solution

Residual 
error

Approximate 
solution

Absolute 
error

Residual 
error

0.0 0.00000000 1.82e–5 0.00000000 5.95e–8 0.00000000 0.00e–00 5.07e–19
0.1 0.24543249 9.80e–6 0.15070989 5.93e–8 0.11029519 2.40e–21 4.79e–19
0.2 0.47509479 4.56e–6 0.31486440 1.74e–8 0.24197679 2.51e–21 5.36e–19
0.3 0.71002417 1.20e–5 0.49866532 1.31e–8 0.39510484 3.23e–21 5.90e–19
0.4 0.93853496 1.83e–5 0.69753897 3.40e–8 0.56781216 3.96e–21 6.14e–19
0.5 1.14906032 1.21e–5 0.90366760 6.32e–8 0.75601439 1.69e–21 6.74e–19
0.6 1.33433341 4.40e–6 1.10786162 8.52e–8 0.95356621 9.35e–21 6.95e–19
0.7 1.49192213 1.66e–5 1.30143258 9.38e–8 1.15294896 6.26e–21 7.15e–19
0.8 1.62298951 1.76e–5 1.47770301 9.52e–8 1.34636365 5.69e–21 6.15e–19
0.9 1.73060956 1.67e–5 1.63273978 6.72e–8 1.52691131 3.33e–21 6.89e–19
1.0 1.81851003 1.86e–5 1.76527518 9.64e–8 1.68949839 8.45e–21 7.38e–19

Tab l e  4

Comparison of obtained values of y(t) with α = 1 (for Example 2)

t HPM [41] Present method Exact solution
Absolute 

error
Residual 

error
0.1 0.110294 0.11029519691696228095 0.11029519691696228096 2.40e–21 4.79e–19
0.2 0.241965 0.24197679962110923224 0.24197679962110923224 2.51e–21 5.36e–19
0.3 0.395106 0.39510484866037839343 0.39510484866037839343 3.23e–21 5.90e–19
0.4 0.568115 0.56781216629293854988 0.56781216629293854987 3.96e–21 6.14e–19
0.5 0.757564 0.75601439343137566624 0.75601439343137566624 1.69e–21 6.74e–19
0.6 0.958259 0.95356621647192273865 0.95356621647192273865 9.35e–21 6.95e–19
0.7 1.163459 1.15294896697962321762 1.15294896697962321762 6.26e–21 7.15e–19
0.8 1.365240 1.34636365536837509274 1.34636365536837509274 5.69e–21 6.15e–19
0.9 1.554960 1.52691131328062418721 1.52691131328062418721 3.33e–21 6.89e–19
1.0 1.723810 1.68949839159438298686 1.68949839159438298686 8.45e–21 7.38e–19

a) b)
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Fig. 6. Obtained graphs of the absolute (a) and the residual (b) errors with m = 12, α = 1 and α = 2  
(for Example 3)

Fig. 7. Obtained graphs of the approximate solutions with m = 10 (a – c)  
and the residual errors with m = 12 (d) for various values of α: 0 ≤ α ≤ 1.0 (a), 1.0 ≤ α ≤ 1.7 (b),  

1.7 ≤ α ≤ 2.0 (c), 1.00 ≤ α ≤ 1.80 (d) (for Example 3)

a)
b)

a) b)

c) d)
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equations of these equations with the initial 
conditions (34), a set of m nonlinear algebraic 
equations can be generated as follows: 

 

( )
2( ) ,T T T TA D A A B A Gα − + =

(0) 1,TA Φ =

(1) (0) 1,     1.TA D ifΦ = α >

Fig. 6 shows the absolute errors of the 
approximate solutions with respect to the exact 
solution and the residual errors for 1α =  and 

2α =  with 12.m =
Fig. 7 shows the approximate solutions for 

the various values 

0 1.0,≤ α ≤  1 1.7,≤ α ≤  and 1.7 2.0≤ α ≤  

with 10.m =
 Definitely, when α  tends to 1, from the left-

hand side (Fig. 7, a), the approximate solutions 
of y(t) will converge to the exact one in Eq. 
(35), and when α  tends to 1, from the right-
hand side (Fig. 7, b), the approximate solutions 
of y(t) will converge to the exact solution in Eq. 
(35), and when α  tends to 2, from the left-
hand side (Fig. 7, c), the approximate solutions 
of y(t) will converge to the exact solution in 
Eq. (35). As can be seen, for α  from 1.0  to 
about 1.7 , the graph of the function is moving 
from 1.0α =  to 1.7α =  (Fig. 7, b), and then 

the graph of the function is returning to α = 2.0  
(Fig. 7, c). Fig. 7, d shows the residual errors 
for various values α  with 12.m =

Table 5 shows the residual errors and the 
obtained values of y(t) by the present method 
for various values α  and 12.m =  

7. Conclusion

In this paper, we have introduced the 
fractional order of the Chebyshev functions 
of the first kind. Then the operational 
matrices of fractional derivatives and the 
product of these orthogonal functions have 
been obtained. These matrices can be used 
to solve the linear and nonlinear differential 
equations, as well as the nonlinear Riccati 
differential equations of an arbitrary (integer 
and fractional) order. As it has been shown, the 
method is converging and has an approximate 
accuracy and stability. Illustrative examples 
have shown that this method has good results 
and suitable accuracy in comparison to other 
methods. 
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T ab l e  5

 Values of y(t) with m = 12 obtained by the present method (for Example 3) 

t
α = 1.80 α = 1.50 α = 1.00 

Approximate 
solution

Residual 
error

Approximate 
solution

Residual 
error

Approximate 
solution

Residual 
error

0.0 1.0000000000 0.00e–0 1.0000000000 0.00e–0 1.0000000000 0.00e–00
0.1 1.0235085766 2.33e–8 1.0247048727 6.95e–8 1.1051709180 3.51e–12
0.2 1.0595333960 8.59e–8 1.0697960272 1.34e–7 1.2214027581 3.51e–12
0.3 1.1076128039 1.63e–7 1.1293315559 3.17e–7 1.3498588075 8.22e–12
0.4 1.1674004066 8.30e–8 1.2014933888 2.15e–7 1.4918246976 3.31e–12
0.5 1.2387187663 8.14e–8 1.2853141729 1.67e–7 1.6487212707 8.31e–12
0.6 1.3214261255 1.19e–7 1.3800725660 3.14e–7 1.8221188003 3.31e–12
0.7 1.4153208915 1.19e–8 1.4850282438 5.83e–8 2.0137527074 8.22e–12
0.8 1.5200543734 8.75e–8 1.5992421055 2.20e–7 2.2255409284 3.51e–12
0.9 1.6350374400 1.13e–7 1.7214121635 3.04e–7 2.4596031111 3.51e–12
1.0 1.7593322223 1.21e–7 1.8496977803 3.39e–7 2.7182818284 8.31e–12
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