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RECENT DEVELOPMENTS IN UNDERSTANDING THE CREEP OF 

ALUMINUM 
M.E. Kassner 
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Abstract. This paper summarizes the recent creep research by the author on pure aluminum 
including classic five power-law creep, Harper-Dorn creep, ambient-temperature creep and an 
investigations of long-range internal stresses in creep-deformed aluminum. Many of the 
models and theories for these phenomena persisted for a relatively long period of time. More 
recent developments in these phenomena are discussed that may lead to new interpretations of 
creep in aluminum, as well as creep in other crystalline materials. 
Keywords: creep, Harper-Dorn, five-power law creep, dislocation hardening, long-range 
internal stress, low-temperature creep 
 
 
1. Introduction 
This paper reviews recent advances in the basic understanding of creep in pure aluminum 
over a very large temperature range. It updates the general thinking of the creep community 
over the past ten to twenty years with particular attention directed toward the two years since 
the publication of reviews by this author [1, 2]. The topics discussed are: Harper-Dorn creep 
(highest temperature) followed by five-power law creep (down to about 0.6T) and low 
temperature creep, (less than about 0.3Tm).  Internal stresses are discussed in a separate 
section as they may impact creep at all temperatures. 
 
2. Harper-Dorn Creep 
Harper-Dorn creep has been described by the equation 

,
n

sd
HDss GkT

GbD
A 













=

sε  (1) 

where AHD is the Harper-Dorn coefficient, Dsd the lattice self-diffusion coefficient (with Qsd 
being the activation energy for lattice self-diffusion), G is the shear modulus, b is the Burger's 
vector, and s is the stress. 

Classic Harper-Dorn creep has been observed at higher temperatures, very near the 
melting temperature [1, 3, 8, 12]. Harper-Dorn creep has been generally suggested at high 
temperatures for a wide variety of crystalline materials. The generally accepted characteristics 
of Harper-Dorn creep include n=1, Qc approximately equal to the activation energy for lattice 
self-diffusion, Qsd, but many have suggested that unlike five power-law creep, the steady-state 
dislocation density is independent of the (modulus-compensated) stress.   
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Fig. 1. Steady-state creep of high-purity aluminum at high temperatures [3-9] Dark symbols 
are from the authors earlier work [3]. Interestingly, both five-power-law creep and Harper-

Dorn Creep have been observed at the same low stresses 
 

Interestingly, subgrains are generally not observed in the Harper-Dorn regime, and the 
Frank dislocation network would, by default, be the microstructural feature associated with 
the rate-controlling process for creep, as often suggested for five power-law creep. More 
recent [3] works suggest that Harper-Dorn may not be observed in Al at these very high 
temperatures, but rather five-power-law creep extends into this temperature/stress range 
uninterrupted by Harper-Dorn creep. Fig. 1 shows classic five-power law (n = 4.5) behavior at 
higher stress, but at lower stresses, such as below s/G = 10-6, either n = 1 (Harper-Dorn) or 
n= 3-4.5 (five-power law) behavior is observed. Recent work by the author [10] demonstrated 
that if the initial dislocation density is high (e.g. above) then the Frank dislocation network 
may frustrate at lower stresses, as suggested by Ardell and coworkers [11], and the dislocation 
density is stable at these values within the so-called Harper-Dorn regime. Thus, the 
dislocation density is constant and n = 1 is observed. It can be shown that if the dislocation 
density is constant, the creep rate would be expected to be proportional to the stress since the 
climb rate is proportional to the stress.  

On the other hand, if the initial dislocation density is low, such as at values below those 
suggested in Fig. 2 by extrapolation of the dislocation density versus stress at low stresses into 
the so-called Harper-Dorn regime, then normal five-power law creep behavior may be 
observed. The dislocation density can increase to values expected by on the trends of Fig. 2 
extended into the Harper-Dorn regime. Typical starting dislocation densities are indicated by 
the large vertical bracket in Fig. 2. The figure illustrates that the observed starting dislocation 
densities can either be below or above the "transition value" of 108 m/m3. It has been observed 
that initial high dislocation density values (e.g. > 108 m/m3) are stable at temperatures near 
Tm, for periods over one year. Thus, dislocation frustration appears to be a genuine 
phenomenon.  Analysis of the Orowan bowing stress (i.e τ = Gb/l, where l = average network 
link-length) suggests that at dislocation densities of 108 m/m3, the bowing stress for 
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multiplication (s/G) is about 4 x 10-6. Interesting, this is the stress at the transition point to 
Harper-Dorn Creep in Fig. 2. If the stress is below this value, then multiplication (e.g. Frank-
Read) may not occur for this initial dislocation density since the stresses are insufficient for 
multiplication since the average link-length is too small for the corresponding stress. 
However, if the dislocation density is relatively low at 106 m/m3, the stresses are sufficient 
within the Harper-Dorn regime to cause dislocation multiplication and yield five-power law 
behavior; the dislocation density can change with the applied stress. 
 

 
Fig. 2. Steady-state dislocation density versus the modulus-compensated steady-state stress at 
an elevated temperature of 923 K (0.99 Tm) based on earlier work and the authors' previous 
work [1]. The data of Lin et al. [13] and that of Barrett et al. [5] suggest a lower limit of the 

dislocation density (ρ) with creep with decreasing stress at these very high temperatures. 
However, the work by Barrett et al. [5] and Kumar et al. [3] may suggest a continual decrease 

in the dislocation density with decreasing stress. Note that the initial dislocation densities 
(vertical bracket on left-hand side of the figure) are of the same order as the steady-state 
dislocations densities at low (e.g. Harper-Dorn) stresses. Other data in the figure are also 

included [8, 13-15] 
 

In summary, Harper-Dorn may be observed when the starting dislocation density is 
relatively high, but (normal) five power-law creep is observed with initial dislocation 
densities that are relatively low and frustration does not occur. 
 
3. Five-power-law 

Diffusion (dislocation climb) control. A well-accepted equation [1] for five power-law 
creep is:  

ε̇ss = A1 �
χ
Gb
�
3
�DsdGb

kT
� �σss

G
�
5

, (2) 
where χ is the stacking fault energy, A1 is a constant, Dsd is the self-diffusion coefficient, and 
G is the shear modulus. It is fairly well established that steady-state creep in pure metals and 
class M alloys is controlled by dislocation climb. Some, however, have suggested that 
dislocation cross-slip is the rate controlling mechanism [16-19]. Recent experiments on large-
strain softening in aluminum by the author add additional support for the climb 
contention [20,21]. The strain softening (roughly 17%) after large strain (generally >2) 
deformation in torsion has generally been attributed to a decrease in the average Taylor factor 
associated with the texture development. That is, the Schmid factor of dislocation glide 
decreases. However, it was recently demonstrated that the texture also predicts that softening 
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will occur due to an increase in the climb stress as the torsional texture develops (roughly 
7%). This is an important finding as unless the climb stress increased with texture formation, 
leading to softening, then some question would be placed on the viability of dislocation climb 
as the rate-controlling mechanism for five-power-law creep. The climb stress increase may 
not account for all of the softening and some of the observed flow stress decrease may be 
attributed to slight microstructural changes as some (e.g. Nes and Pettersen, Myshlyaev et al. 
and Perdrix et al.) have suggested [22-24]. Interestingly, elevated-temperature compressions 
tests immediately following the elevated temperature torsion tests into the softened state 
evince an absence of softening with is perfectly consistent with the predictions of climb-
control. Glide control predicts a 10% increase in stress following compression which was not 
observed. In summary, the softening behavior appears much more likely due to a change in 
the climb stress associated with texture development rather than dislocation glide control. 

Rate-controlling process. The precise mechanism for creep in the five-power law 
regime by dislocation climb is not well-established. There are two general lines of thinking 
with respect to the details of the rate-controlling process: 1.) subgrain-based theories and 2.) 
Frank-network theories. Analysis by the author suggests that the steady-state stress in 
aluminum is predictable by the Taylor dislocation-hardening equation,  
σy�ε̇,T

= σ∘′ + αMGb�ρ . (3) 
This equation very accurately predicts the elevated-temperature flow stress independent 

of the subgrain size. αMGb�ρ is the athermal term. The associated constant, α, in the 
predictive equation is within the range of values observed at lower temperature where 
dislocation hardening is undisputed [25-26]. One important note is that even in high purity Al, 
the values of s'o (the thermally activated term) are a significant fraction of the total stress (e.g. 
roughly one-third). This implies that the small amounts of impurities have a significant 
influence on the flow stress. Thus, the solute strengthening may complicate the analysis of 
dislocation hardening in that it is not completely clear how the separate strengthening 
variables combine to contribute to the flow stress. Here, a simple linear superposition is 
assumed. In summary, there is strong evidence that elevated temperature hardening is 
completely explainable by Frank-network hardening rather that strengthening by subgrains as 
commonly suggested. 
 
4. Long Range Internal Stresses (LRIS) 
Long range internal stresses (LRIS) that are 3-20 times larger than the applied stress in 
creep [27] are often believed to exist in creep-deformed aluminum and other crystalline 
materials. These high levels of LRIS have been proposed to be associated with dislocation 
heterogeneities such as subgrain boundaries and are associated with the rate-controlling 
process for creep. Convergent-beam electron diffraction (CBED) and synchrotron x-ray 
micro-diffraction experiments suggest that LRIS values are much lower than suggested by the 
early experiments and theoretical projections by others. However, one difficulty with CBED 
is that the regions of TEM foils used for CBED are very thin and dislocations, particularly in 
metals as Al where the stacking fault energy is relatively high, may escape from the foils and 
relax any internal stresses. The foils may also bend in these thin sections and complicate the 
stress analysis.  Static recovery, including recrystallization, at ambient temperature is also 
possible [28]. Finally, the CBED analysis is performed in an unloaded specimen at ambient 
temperature. Of course, in-situ assessment (i.e. under load) would be preferred. Some in-situ 
x-ray work was performed by Blum and coworkers on a Cu alloy [29] where the details of  
x-ray peaks were analyzed from reflections by a large number of grains in the specimen.  
The x-ray peak asymmetry was related to the long-range internal stress. It was shown that on 
unloading, most (e.g. 2/3) of the LRIS remain at ambient temperature in the unloaded state. 
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This suggests some validity in assessing LRIS by us in unloaded specimens in our CBED 
work. The problem with pure Al is that the stresses are very low in creep and the lattice-
parameter change measurement (for LRIS) uncertainly with the x-ray peak asymmetry 
experiments is of the order of the applied stress. Thus, LRIS may not be detected. In fatigued 
pure single crystal Cu where the stresses are much higher than in Al, LRIS were also not 
observed by CBED [20]. At higher stresses in heavily deformed commercial-purity Al by 
equal channel angular pressing (ECAP) (impurities preclude ambient temperature 
recrystallization [28]) LRIS, of the order of the applied stress, by both CBED and by x-ray 
microbeams at a synchrotron facility [30], are observed.   

In summary, there is no evidence for significant long range internal stresses in creep 
deformed metals within the five power-law regime as investigated by convergent beam 
electron diffraction. In recent cases where LRIS are confirmed by x-ray microbeams in 
ambient temperature severely deformed aluminum [30], the CBED consistently finds the 
same magnitude of long range internal stress as the more reliable x-ray microbeams (bulk 
samples) at a synchrotron facility. Thus, the absence of significant LRIS in creep-deformed 
pure Al by CBED experiments has additional validity. 
 
5. Low Temperature Creep in Aluminum 
Analysis of low-temperature experiments of creep below 0.3Tm reveals that the activation 
energy for creep is relatively low and cannot be easily explained by a dislocation-climb 
controlled process. The observed activation energies below 0.3Tm range from about  
0.75 down to 0.1Qsd, the value of lattice self-diffusion activation energy [31, 32]. At low 
temperatures we observe primary creep at the small strains rather than steady-state creep as 
with the discussion in the above sections. Metallic primary-creep can usually be described by 
either a power-law or a logarithmic equation: 

bat=pε . (4) 

2p c+lnt = αε . (5) 
Our analysis revealed that most of the metals and alloys deformed at low temperature 

under constant stress conditions exhibit logarithmic behavior. The analysis of aluminum 
shows that at 0.32 m the creep behavior is better described by the power law equation. Our 
analysis showed that, in general, logarithmic behaving metals approached power-law behavior 
as the temperature increased into the intermediate temperature range (i.e. T > 0.3Tm). At a 
lower temperature {77K (0.08 Tm) τG, the backstress, is assumed to be approximately equal to 
zero [33, 34]}, both behaviors were evident in Al but at lower stresses, logarithmic behavior 
was observed. 

The mechanism for creep plasticity at T < 0.3Tm is unclear. While for metals such as 
copper, (lower stacking fault energy), the classic Seeger rate-equation 

( )
,exp







 −−∆−

=
kT

vH
NAb Go

o
ττ

νγ  (6) 

where  = strain-rate, N = number of dislocation segments per unit volume held up at the 
intersection points of mean spacing, , νo is an atomic frequency of the order of the Debye 
frequency, = energy required for the intersection process, (i.e. the energy for jog 

formation ≈  )] describes the creep behavior and measured creep rates of our Cu data 

fairly well, the Seeger equation fails to properly describe  the behavior of Al. 
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Abstract. Gold-free GaAs nanomembranes have proven ideal templates for further growth of 
in-plane III-V nanowires. Recently, it has been demonstrated that high quality InAs nanowires 
with a low defect density can be obtained on top of GaAs nanomembranes by molecular beam 
epitaxy in wafer-scale approach and provide an excellent platform for future investigations 
into one-dimensional transport and quantum computation. Here, we develop a model to 
explain why InAs NWs form spontaneously on the top ridges of GaAs nanomembranes and 
not elsewhere. We speculate that the driving force for this growth mechanism is the free 
energy minimization including the elastic and surface energy contributions.  
Keywords: InAs nanowires, GaAs nanomembranes, elastic stress relaxation, growth model  
 
 
1. Introduction 
Highly mismatched InAs/GaAs material system (lattice mismatch =0ε 0.07) has been used 
for a long time for epitaxial growth of the Stranski-Krastanow quantum dots [1, 2]. This 
material system is also very useful for growing high quality axial [3] and radial [4] 
heterostructures in vertical nanowires (NWs). More recently, defect-free GaAs 
nanomembranes (NMs) have been used as templates for further III-V NW growth [5, 6]. Such 
structures have been successfully grown by metalorganic chemical vapour deposition and 
molecular beam epitaxy (MBE) using a gold-free selective area approach [5 – 7]. The NMs 
are patternable at the wafer scale and can additionally be fabricated in the form of Y-shaped 
structures [6, 8]. In Ref. [8], it has been shown that InAs NWs form on the top ridges of GaAs 
NMs with a certain shape and aspect ratio. Such structures are scalable and provide electron 
confinement to the top NWs which is sufficient to produce quasi-one-dimensional conduction. 
Here, we present a simplified model to explain the experimentally observed morphology of 
the NW/NM structures.  

 
2. Model 
The InAs/GaAs NW/NM structure is shown in Fig. 1 (a) [8] and is fabricated as follows. 
First, <11-2>-aligned GaAs NMs are grown by selective area approach as described in 
Ref. [5]. These NMs have a sharp top restricted by (-11-3) and (-1-31) planes, and vertical 
(01-1) and (0-11) sidewalls. Then, InAs is deposited by MBE for 200 s at 540°C and 
accumulated at the top of the NMs, forming InAs NWs along the NM vertex. The InAs NWs 
are restricted by two vertical (01-1) and (0-11) sidewalls, two (-11-3) and (-1-31) planes 
parallel to the NM ridges, and flat (111) top. Our aim is to understand and explain this shape 
of InAs NWs and in particular the experimentally observed aspect ratio lhx /=  of 
about 0.6 [8].      
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Fig. 1. (a) Morphology of a single GaAs/InAs NM/NW structure [8], and (b) plan view of 

the model geometry showing the relevant parameters 
 

According to the data [8], the InAs NW facets are composed of vertical, horizontal and 
inclined facets of the (011), (111) and (113) families, respectively (see Fig. 1 (b)). We 
additionally assume that the inclined NW facets are replaced by the horizontal facets at the 
crossing point of the initial NM facets with the inclined NW facets. From geometrical 
considerations, we have θ2cot anha =  and θanhlb cot−= , with θ  as the taper angle of the 
NM, hence  

)2cot(cot θθ ananhlab −−=+ . (1) 
The (131) facet of the InAs NW of width ab +  and surface energy )131(

InAsγ  replaces the 
initial facet of the GaAs NM of width l and surface energy )131(

GaAsγ . Additionally, the NW 
formation creates the InAs-GaAs interface of width l  and interfacial energy  

)131(
GaAsInAs−γ . We also create the vertical facet of height θsin/h having the surface energy )011(

InAsγ , 
and the horizontal facet of width c and surface energy )111(

InAsγ . From geometrical 
considerations,  

θ
θ
2sin

sinhc = . (2) 

Summarizing all these surface energy terms and using cotan2 (1/ 2)(cotan tan )θ θ θ= −  
and sin 2sin cosθ θ θ=  in Eqs. (1) and (2), respectively, the surface energy change per the 
length d2  (where d  is the length of the initial NM) equals 

[ ] hanlF InAs
InAs

InAs
GaAsInAsGaAsInAssurf 








++−+−+=∆ − θ

γ
θθγ

θ
γ

γγγ
cos2

)cot(tan
2
1

sin

)111(
)131(

)011(
131()131()131( . (3) 

Grouping the bracket terms into 1C  and 2C , we can write 
hClCFsurf 21 +=∆ . (4) 

Clearly, the 1C  term gives the surface energy change in the (131) direction and is 
positive in the non-wetting and negative in the wetting cases, respectively. The 2C  term 
should always be positive and is associated with the InAs facets in contact with vapor. 

(a) (b) 
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The surface area of half the NW cross-section s  equals the area of the parallelogram lh  
minus the area of the upper triangle s∆ . The latter is given by )cossin8/(2 θθh . Therefore,  

θθ cossin8

2hlhs −= , (4) 

where the second term is less than 10% of the first one in our geometry and can be neglected 
in the first approximation. 

To account for the effect of the strain relaxation, we use the simplest formula [9 – 11]

lh
VGelastic /1

12

a
le

+
=∆ , (5) 

showing that the elastic energy (for the reduced strain ε  due to dislocations) rapidly decreases 
( 1>>α ) with increasing the aspect ratio lh /  with respect to the 2D film of the same 
volume V . These dislocations are seen at the InAs/GaAs interface, with a density  
of ~ 100/μm of length, reducing the lattice mismatch to 03.0≅ε  [8].   

Using dlhV 2≅  and dividing Eq. (5) to the facet length d2 , we arrive at the equation 
expressing the free energy elasticsurf FFF ∆+∆=∆  [with )2/( dGF elasticelastic ∆=∆ ] of forming 
InAs NW of width l and height h  on top of the GaAs NM 

lh
lhC

hClChlF
/1

),( 3
21 α+
++=∆ . (6) 

This free energy is defined per unit length of the structure. The 1C  term gives the 
surface energy change upon covering the GaAs (131) facets with InAs, and is proportional to 
the NW width l  . The 2C  term ( 02 >C ) stands for the surface energy of all other InAs facets, 
and is proportional to the NW height h . The last term gives the elastic energy of InAs NW, 
proportional to the NW cross-sectional area lhs ≅ , with 3C  being the elastic energy per unit 
volume for the reduced mismatch [9], and α  describing the stress relaxation with the aspect 
ratio lh /  [9 – 11]. We also assume that the term associated with the dislocation energy is 
roughly the same for any aspect ratio, which should be valid for large enough volumes of 
deposited InAs with the NW heights already well above the critical thickness for forming 
misfit dislocations (~1.2 nm).      
 
3. Results and discussion 
To access the preferred shape of InAs on top of GaAs, we minimize the formation energy 
given by Eq. (6) in h  at a fixed constlhs =≅ , corresponding to a fixed volume of deposited 
InAs [12]. Using hsl /= , Eq. (6) can be re-arranged in terms of h  only: 

sh
sC

hC
h
sChF

/1
)( 2

3
21 α+
++=∆ . (7) 

It is interesting to note that the derivative of this free energy with respect to h  depends 
solely on the aspect ratio lhx /= . Introducing 2/ CFf ∆=  ( 2C  is always positive), we 
obtain 

2

2/1

)1(
1

x
vx

x
A

dh
df

α+
−−= . (8) 

Here, 21 / CCA =  is the normalized surface energy change in the (131) plane, which is 
positive in the non-wetting and negative in the wetting case, and 2/1

23 )/(2 sCCv α=  is the 
strain-induced factor that increases with the amount of deposited InAs per unit area s . The 
preferred aspect ratio is now defined by the stable zero point of dhdf /  corresponding to the 
minimum free energy.  
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Figure 2 shows two possible cases with the preferred ≅x 0.6, as observed 
experimentally in Ref. [6]. Of course, the three-dimensional (3D) geometry will occur in the 
non-wetting case with 0>A  even without any lattice mismatch, because the surface energy 
minimization leads to a reduction of the energetically costly InAs-GaAs interface [11]. This is 
shown by the dashed curve in Fig. 2. We believe, however, that our GaAs/InAs system is 
initially wetting. Therefore, the surface energy favours two-dimensional (2D) growth of InAs 
on GaAs, while 3D structures emerge only after the formation of a continuous wetting layer, 
as in the Stranski-Krastanow growth [11]. The energetics of the system is then described by 
the solid line in Fig. 2. In this case, reaching a high aspect ratio on the order of 0.6, which is 
necessary to form the NWs on top of the NMs, can only be due to strain relaxation and 
requires a high value of the strain-induced coefficient v  of about 140. The 3C  coefficient 
equals 2λε , with λ =1.22×1011 J/m3 as the elastic modulus of InAs and ε  as the reduced 
lattice mismatch. With the experimentally observed ε  = 0.03, this yields 140=v  at 
α  = 15 (Ref. [10]) for a plausible value of =2C 0.091 J/m2.  

 

 
 

Fig. 2. Derivative of the free energy of forming InAs NW on GaAs NM with respect to the 
aspect ratio, obtained from Eq. (8) in the non-wetting ( 0>A ) and wetting ( 0<A ) case 

 
The zero point at / 0.6h l ≅  corresponds to the minimum free energy of forming the 

NW, because its derivative is negative for smaller and positive for larger aspect ratios. The 
real curve is expected to be the one in the wetting case, where the system surpasses an 
energetic barrier at a small x  as in the Stranski-Krastanow growth. The value of v = 140 
corresponds to the parameters of InAs with the reduced mismatch ε =0.03. The insert shows 
the geometry, the approximation s lh≅  used in the calculations neglects truncation of the full 
parallelogram in the top NW part.  
 
4. Conclusions 
In conclusion, our model shows that formation of InAs NWs on the top ridges of GaAs NMs 
is driven by minimization of the formation energy including the surface and elastic 
contributions. In the wetting case, relevant for this material system, the existence of the 
optimal aspect ratio of InAs NWs ~ 0.6 can only be due to the elastic energy relaxation with 
the reduced strain. This energy minimum follows from the model with plausible parameters. 
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We now plan to consider other material systems, including a very promising case of InSb, 
using similar methods. It is also interesting to study in more detail the nucleation stage [13], 
growth kinetics of in-plane III-V NWs on the NM templates [14], and in particular three-fold 
symmetrical Y-shaped structures.  
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Abstract. The paper considers homogenization problems for porous piezoceramic material 
with partially metallized pore surfaces. It is assumed that the thickness of the metal layer at 
the boundaries of the pores is infinitesimally small, and the metallization effect is entirely 
described by setting the boundary conditions for equipotential surfaces. Following previous 
research of the authors, here the heterogeneity of piezoceramic polarization was taken into 
account. The homogenization problems were solved, using the effective moduli method, the 
finite element method, and the representative volumes with random closed porosity. An 
analysis of the effective moduli on porosity was carried out for homogeneous and 
inhomogeneous polarization fields. 
Keywords: piezoelectricity, porous piezoceramics, microstructure, metallized micropores, 
nonuniform polarization, effective moduli, representative volume, finite element method 
 
 
1. Introduction  
Nowadays, active elements of piezoelectric transducers are often made of piezoelectric 
materials on the base of Lead Zirconate Titanate (PZT) or Barium Titanate. PZT-ceramic, 
which is the most in-demand material for hydroacoustic devices, has high electroacoustic 
effectiveness. However, it has relatively large acoustic impedance, and this fact require using 
the transition layers for better coordination of the impedance of emitting body with the 
impedance of acoustic medium. The results of the range of experimental and theoretical 
investigations have shown that porous piezoceramic can significantly increase the properties 
of the transducers and widen the area of piezoelectric material use ([1 – 3] and others). Porous 
piezoceramic has high piezoelectric sensitivity and large thickness coefficient of 
electromechanical coupling, but it has smaller acoustic impedance in comparison with dense 
piezoceramic. Meanwhile, porous piezoceramic without modifiers has relatively low 
mechanical strength, due to its internal structure. 

For the majority of applications, porous materials with the pore size less than 100 mkm 
can be considered as quasi-homogeneous materials with effective moduli. The effective 
material properties of porous piezoelectric composites or composites with elastic inclusions of 
different coupling types were investigated earlier with the help of various theoretical 
models ([2-16] and others). For example, the Mori-Tanaka theory, popular in composite 
mechanics, and the differential micromechanics theory were extended in [6], in order to 
consider effective characteristics of piezocomposite materials. The application of these 
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theories is based on the solution of a 3D static problem of ellipsoidal inclusion in infinite 
piezoelectric medium. The solutions of such problems can be obtained using analytical 
approaches presented in [18 – 21]. Theoretical models for piezocomposites that include the 
methods of optimization and averaging were suggested in [15]. These models proved their 
efficiency on the example of periodic piezocomposite materials. 

This work continues investigations of microporous piezocomposites [22 – 25] that have 
metal microparticles precipitated on the boundaries between the pores and the piezoceramic 
skeleton. Such composites can be produced by transporting the particles of special substances 
into piezoceramic materials [26]. The effective properties of these microporous piezoceramic 
materials can be determined by a complex approach including the effective moduli method, 
the representative volume simulation and the finite element solution of a set of static problems 
of piezoelectricity with special boundary conditions. The methodology of numerical 
investigation of the effective properties of microporous piezoceramic materials with fully 
electrodized pore boundaries was presented in [23], where the pore surface metallization was 
taken into account by the boundary conditions of free electrodes, and in [24] with more 
general approach, where the mechanical properties of the metallized pore boundaries were 
also taken into account by using shell elements. Meanwhile, the models with partial pore 
surface metallization are more close to real world. Such case of the composite was considered 
in [25] and in this paper. As it was done in [25], here the pore surface metallization was 
simulated only by the conditions of free electrodes, and the technique of the effective 
properties calculation was implemented in ANSYS finite element package. It should be also 
noted that our previous papers [22 – 25] considered only homogeneously polarized 
pizoceramic, despite the presence of pores and metallized surfaces. In this work,  
similarly to [12], we investigate the influence of the inhomogeneous polarization on the 
effective moduli. 
 
2. Mathematical models and the effective moduli method 
In this section, we present the model of inhomogeneously polarized porous piezoelectric 
composite with the pore boundaries partially covered by a thin layer of metal. We will 
consider a porous composite as a two-phase composite in which the first phase (the skeleton) 
is a piezoceramic material with inhomogeneous polarization, and the second phase forms a set 
of pores that do not contact each other. 

Let us denote a representative volume of the composite as Ω , Ω∂=Γ  is the external 
normal of the volume. We consider that there are pN  nontouching pores ipΩ  with the 
boundaries ipip Ω∂=Γ , pNi  ..., ,2 ,1= . We also introduce the following notations: 

ipip Ω∪=Ω  is the set of pore volumes occupied by the second phase; pm ΩΩ=Ω \  is the 
domain, occupied by the material of the first phase, which is assumed to be a coupled phase; 
n  is the unit normal vector to the boundary mm Ω∂=Γ , external to the volume of the main 
material; x  is the radius-vector of the point in the Cartesian coordinate system. It is also 
assumed that the boundary ipΓ  of each pore is divided into the metallized parts e

jipΓ , 
e
iJj  ..., ,2 ,1= , and nonmetallized parts u

jipΓ , u
iJj  ..., ,2 ,1= . Thus, )()( u

jipj
e

jipjip Γ∪∪Γ∪=Γ . 
In the elasticity theory, the metallized surfaces of ceramics are often called electrodized, and 
nonmetallized surfaces are called nonelectrodized, or the parts free from electrodes. 

In order to determine the effective moduli of the considered material, we will consider 
the following boundary-value homogenization problems [22]: 

0)(* =⋅∇ TL , 0=⋅∇ D , EeScT ⋅−⋅= *E , EεSeD ⋅+⋅= S , (1) 
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



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



∂
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∂
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3

2

1

, (2) 

0
* )( SxLu ⋅= , 0Ex ⋅−=ϕ , Γ∈x , (3) 

where },,,,,{ 121323332211 σσσσσσ=T , }2,2,2,,,{ 121323332211 εεεεεε=S , jiσ , jiε  are the 
components of the stress and strain tensors; D , E  are the electric flux density vector and the 
electric field vector, respectively; u  is the vector-function of mechanical displacement; ϕ  is 
the function of electric potential; Ec  is the 66×  matrix of elastic stiffness moduli; e  is the 

63×  matrix of piezoelectric moduli; Sε  is the 33×  matrix of dielectric permittivity moduli; 
} , , , , ,{ 0605040302010 SSSSSS=S ; β0S  are some constant values that do not depend on x ; 0E  

is some constant vector; *(...)  is the transpose operation; and (...)(...) ⋅  is the scalar product 
operation. 

We note that problem (1)–(3) should be solved in an inhomogeneous volume Ω , where 
)(rEE cc = , )(ree = , )(rSS εε =  for rΩ∈x , pmr ,= . We consider that the pores are filled with 

piezoelectric material with negligibly small elastic stiffness, piezomoduli and dielectric 
permittivities equal to the dielectric permittivity of the vacuum 12

0 1085.8 −⋅=ε  (F/m). 
In the absence of metal layer on the pore boundaries, the following conditions should be 

satisfied: 
0)(* =⋅TnL , 0=⋅Dn , ipΓ∈x , pNi  ..., ,2 ,1= . (4) 

These conditions also hold with high precision when the pores are filled with the 
piezoelectric material with small moduli, as taken in the models of representative volumes. 

Meanwhile, if we assume that the pore boundaries are partially covered by a metal layer 
of negligibly small thickness, then conditions (4) should be kept at these parts u

jipΓ , but on the 
parts e

jipΓ  it is necessary to adopt the boundary conditions of free electrodes ( pNi  ..., ,2 ,1= ). 
As a result, instead of (4) we will have the following boundary conditions: 

0)(* =⋅TnL , 0=⋅Dn , u
jipΓ∈x , u

iJj  ..., ,2 ,1= , (5) 

0)(* =⋅TnL , jiΦ=j , e
jipΓ∈x , 0=Γ⋅∫Γe

jip

dDn  e
iJj  ..., ,2 ,1= , (6) 

where jiΦ  are constant unknown electric potentials e
jipΓ . 

In the case of porous piezoceramic of 6mm class, in order to determine its ten 
independent effective moduli ( eff

11
Ec , eff

12
Ec , eff

13
Ec , eff

33
Ec , eff

44
Ec , eff

31e , eff
33e , eff

15e , eff 
11
Se , eff 

33
Se ), it 

is enough to solve five static problems (1)–(4) or (1)–(3), (5), (6) with various values of 0S  
and 0E , having set one of the component β0S , lE0  ( 6 ..., ,2 ,1=β ; 3 ,2 ,1=l ) in the boundary 
conditions (3) not equal to zero: 
I.   ββ δ 100 SS = , 00 =E  ⇒ 0

eff
1 / Sc kk
E
k σ= ; 3 ,2 ,1=k ; 03

eff
31 / SDe = ,  (7) 

II.  ββ δ 300 SS = , 00 =E  ⇒ 0
eff

3 / Sc kk
E
k σ= ; 3 ,2 ,1=k ; 03

eff
33 / SDe = ,  (8) 

III. ββ δ 400 SS = , 00 =E  ⇒ 023
eff

44 / ScE σ= ; 02
eff
15 / SDe = ,  (9) 

IV. 00 =S , ll EE 100 δ=   ⇒ 013
eff
15 / Ee σ−= ; 01

eff 
11 / EDS =e ,  (10) 

V.  00 =S , ll EE 300 δ=    ⇒  0
eff
3 / Ee kkk σ−= ; 3 ,2 ,1=k ; 03

eff 
33 / EDS =e ,  (11) 
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where jiδ  is the Kronecker symbol; and the angle brackets denote the averaged by the 

volume Ω  values: ∫Ω ΩΩ>=< d(...)|)|/1((...) . 

These problems will be solved in a representative volume numerically by the finite 
element method. 

 
3. Models of representative volumes 
Finite element simulation of the representative volume Ω  of the porous composite with 
closed porosity is based on the basic cubic cell cΩ  with the edge cl . Along each edge the cell 

cΩ  is divided into three segments with the lengths pa , pl , pa , where ppc all 2+= , cpp lkl = , 
1<pk . Thus, a basic cell is divided into 27 hexahedrals, which we initially assume to be 

dielectric finite elements. The center of the basic cell is the main (central) cubic finite element 
with the edge pl . Then we translate the basic cell cΩ  cn  times by three coordinate axes and 
obtain an array of finite elements Ω  by the size LLL ××  ( cclnL = ), consisting of 3

cn  basic 
cells. 

We assume that central finite elements inside basic cells can have material properties of 
pores. These "porous" finite elements are selected according to the following algorithm. We 
set a desired porosity sp  as a ratio of the desired volume of the pores to the total volume. 
Then the number pN  of central finite elements that can be pores will be determined according 
to the formula: ])/([ 3

pcsp knpN = , where [...]  is the integer part of the number. We select 
these pN  central finite elements using a random number generator and then modify their 
material properties to the properties of pores. As a result, real porosity 3)/( cpp nkNp =  will 
slightly differ from sp . For example, with 10=cn , 8.0=pk  when sp  changes from 0.1 to 0.5 
with the step 0.1 we have: 022.0|| ≤− pps . 

In order to simulate a partial metallization, we will assume that among six faces of 
"porous" finite element, two opposite faces, which are located perpendicular to one of the 
axial direction kx , are electrodized. This direction kx  is chosen randomly for each 
"porous"element among the directions of three coordinate axes 1x , 2x  and 3x . Thus, in the 
representative volume Ω  there will be pN  "porous" elements, which have pN2  electrodized 
faces, where these paired faces are oriented randomly along the coordinate axes. 

One of the cases of the volume Ω , built according to the described algorithm when 
10=cn , 8.0=pk , 1.0=sp , is given in Fig. 1. We note that the elements piΩ  ( pNi ,...,2,1= ) are 

randomly chosen among central elements of the cells, and therefore the next run of the 
algorithm changes their location (Fig. 1b). The choice of metallized surfaces (Fig. 1c) is not 
deterministic as well. Thus, the next run of the algorithm will also change the location of the 
generated surfaces ipΓ , even in the case when the porous elements are the same. 

In the result, we will obtain a representative volume of porous material with closed 3-0 
porosity of partially stochastic structure. In this volume, there will be pN  elements-pores piΩ , 
all faces of which are in full contact with the boundaries of the neighboring elements of the 
composite material skeleton. Moreover, in each pore two opposite faces are assumed to be 
metallized. 
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a)      b)     c) 

Fig. 1. Example of a representative volume: (a) whole volume, (b) porous elements, (c) 
metallized pore surfaces 

 
4. Simulation of inhomogeneous polarization and finite element solution 
A piezoceramic is a transversally isotropic material of 6mm class. Usually it is assumed to be 
homogeneously polarized in one direction (for example, along 3Ox -axis). For the polarization 
of a piezoceramic sample, it necessary to have process electrodes through which a strong 
electric field exceeding the coercive field can be applied. Thus, the polarization is defined not 
only by the material itself, but by geometry of the device as well. At microlevel, a porous 
piezoceramic is an inhomogeneous material Therefore, the polarization field around the pores 
can be inhomogeneous. Despite the fact that usually the effective properties of porous 
piezoceramic are defined in assumption of homogeneous polarization, some papers [23, 24] 
also investigated the influence of inhomogeneous polarization. As it has been shown in these 
papers, for small and average porosity this influence is rather small.  

Obviously, for a porous piezoceramic with metallized pore surfaces, taking into account 
the inhomogeneity of the polarization field is more important. Indeed, the metallization of the 
pores is obtained by piezoceramic sintering, which is followed by the material polarization. It 
is clear that then the presence of conductive surfaces inside the material will additionally 
affect the distribution of the polarization field. In connection to this, in order to take into 
account inhomogeneous polarization of a porous piezoceramic around the pores, at the initial 
stage of the simulation we can model the process of polarization along 3Ox -axis. In order to 
do this, we solve a finite element problem of quasielectrostatic for a porous dielectric in a 
representative volume Ω , generated by the method described in the previous section. 

Then, for the inhomogeneous cube Ω  with the side L  in Cartesian coordinate system 
321 xxOx , we have the following boundary-value problem: 
0=⋅∇ D , EεD ⋅= , ϕ−∇=E , Ω∈x  (12) 

jV=j ,  jjΓ∈x , 2,1=j ; 0=⋅Dn ,  qΓ∈x , (13) 
where qjj ΓΓ=Γ  j ; jjΓ  are the electrodes 03 =x  and Lx =3 ; )(xεε =  is the matrix of 
dielectric permittivities of a nonpolarized ceramic with pores.  

Problem (12), (13) should be supplemented by electric boundary conditions for pores 
from (5), (6). After solving the formulated problem, we can find the values of the polarization 
vectors ekekek EDP 0e−=  in a central point of each finite element with the number k , which 
is not a pore. With these elements we associated their element coordinate systems ekekek xxxO 321 , 
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for which the axes ekxO 3  were chosen such that their directions coincided with the directions 
of the polarization vectors ekP . 

At the second stage, the finite elements of electrostatics were modified into the elements 
with possibilities of piezoelectric analysis. New elements were given material properties of 
two types, namely, the property of polarized piezoceramic for the elements of the material 
skeleton, and the negligibly small moduli for the pores. The finite elements of the skeleton 
were related to the element coordinate systems ekekek xxxO 321 , defined by the polarization 
vectors ekP . Then, in order to determine the effective moduli, we solved the problems of 
electroelasticity (1)–(4) or (1)–(3), (5), (6) by the cases (7)–(11). We emphasize that with 
accounting for inhomogeneous polarization the problem of electroelasticity is solved for an 
inhomogeneous structure, where each finite element of the polarized piezoceramic has its own 
moduli Eekc , eke , Sekε , obtained by known formulas for recalculation of tensor components at 
the transfer from crystallographic Cartesian coordinate system 321 xxOx  to the element 
coordinate systems ekekek xxxO 321 . 

If we do not take inhomogeneous polarization into account, then problem (12), (13) is 
not used and in problem (1)–(4) or (1)–(3), (5), (6) all elements have either the properties of a 
piezoceramic material of 6mm class polarized along 3Ox -axis, or the properties of pores. 
 
5. Numerical examples 
The homogenization problems were solved by the finite element method in ANSYS finite 
element package using the technique described above and in [23-25]. Special programs in 
ANSYS APDL were written for the representative volume generation, solution of the 
electrostatics problem (12), (13) and subsequent solution of five homogenization problems 
(1)–(4) or (1)–(3), (5), (6) with different boundary conditions (7)–(11). After solving the 
problems, the averaged characteristics were automatically calculated in ANSYS and thus the 
full set of the effective moduli was obtained. For the calculations, we used an eight-node 
finite element SOLID5 with the displacements and the electric potential as degrees of 
freedom in each node. For the problem of electrostatics, the option of only electric potential 
as degree of freedom was chosen. Numerical experiments were performed in ANSYS 11.0. 
However, the developed programs in ANSYS APDL will work in other versions of ANSYS 
that support piezoelectric analysis and finite element SOLID5.  

To provide an example, we consider a porous pizoceramic PZT-4. For the dense 
piezoceramic PZT-4 we take the following values of material constants [27]: 10

11 109.13 ⋅=Ec , 
10

12 1078.7 ⋅=Ec , 10
13 1074.7 ⋅=Ec , 10

33 105.11 ⋅=Ec , 10
44 1056.2 ⋅=Ec  (N/m2); 1.1533 =e , 

2.531 −=e , 7.1215 =e  (C/m2); 011 730εε =S , 033 635εε =S . For the pores, we set negligibly small 
elastic moduli EpE cc αβαβ κ= , 1010−=κ , piezomoduli κα =p

ie  (x1 С/m2) and 0εε =pS
ii . We 

consider a nonpolarized ceramic to be an isotropic material with the dielectric permittivity 
S

11εε = . (a specific value of ε  in the problem of electrostatics is not important, as the aim of 
this problem consists only in the determination of the polarization vector direction inside the 
composite material.) For the representative volume, we take the following geometric 
parameters: 500=L  (µm), 10=cn , 8.0=pk . In this case, the pores have the edges 

40/ == cpp nLkl  (µm). 
We note that specific size L  of the representative volume is not significant here, 

because we solve linear problem. On the contrary, the parameter cn , which denotes the 
number of basic cells along coordinates axes, has great impact. It was verified that the chosen 
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value 10=cn  ensures the stability of the solution results under random generation of porosity 
for different launches of the program. The homogenized material has the same anisotropy 
class 6mm, as the initial material of piezoceramic PZT-4. 

We will compare two model cases of the porous piezoceramics. In Case 1, we take into 
account the pore metallization by using the boundary conditions of free electrodes (5), (6). In 
Case 2, we consider ordinary porous piezoceramic, when only conditions (4) are held on the 
pore boundaries, and no equipotentiality conditions are satisfied on these boundaries. In 
addition, for each case we will consider the case of homogeneously polarized piezoceramic 
and the case of homogeneously polarized piezoceramic. 

We are going to analyze the relative effective moduli. For example, EEE cccr αβαβαβ /)( eff=  
are the values of the effective moduli effEcαβ , related to the corresponding values of the moduli 

Ecαβ  for the dense piezoceramic, and so on. Also, we will use the index 2 ,1=l  in more 
precise notation E

l
E

l
E cccr αβαβαβ /)()( eff=  to denote the number of Case l , for which the moduli 

calculation was performed. 
 

 
a)        b) 

 
Fig. 2. Dependencies of the effective elastic stiffness (a) and dielectric permittivity (b) on 

porosity 
 
Typical behavior of the effective elastic stiffness moduli and the dielectric permittivity 

moduli are shown in Fig. 2 for the examples of the moduli l
Ec )( eff
33  and l

S )( eff
33e , 2,1=l . Here 

and after the black curves correspond to the case of inhomogeneously polarized piezoceramic 
and the magenta curves correspond to the case of the piezoceramic with homogenous 
polarization. 

As it can be seen in Fig. 2a, the stiffness moduli decrease with the porosity growth in 
both cases, and the account for inhomogeneous polarization field has a weak effect on the 
stiffness moduli. Meanwhile (see Fig. 2b), the effective moduli of the dielectric permittivities 
decrease with the porosity growth (curves 2). However, the effective moduli of the dielectric 
permittivities for the porous piezoceramic with metallized pores increase when the porosity 
grows till 3.0=p  (curves 1), and this increase is stronger for the case of inhomogeneously 
polarized piezoceramic skeleton of the composite. 

The piezomoduli behavior (Figs. 3, 4) is of more interest. For example, the 
piezomoduli 2

eff
33 )(e  and 2

eff
31 )(e  for ordinary porous piezoceramic decrease with the porosity 

growth. Meanwhile, for the piezoceramic with metallized pore surfaces the 
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piezomodulus 1
eff
33 )(e  also decreases with the growth of p , and its decrease is faster than that 

of 2
eff
33 )(e . On the contrary, the piezomodulus 1

eff
31 )(e  grows when the porosity increases till 

3.0=p , and then it gets stabilized or slightly decreases. Taking into account the 
inhomogeneous polarization does not influence the behavior of the piezomodulus eff

33e , and for 
the piezomodulus eff

31e  it results in slightly greater decrease for the ordinary porous 
piezoceramic, and slightly greater increase for the porous piezoceramic with partial pore 
surface metallization. 

 

 
a)        b) 

 
Fig. 3. Dependecies of the effective piezomoduli ler )( 33  (a) and ler )( 31  (b) on porosity 

 

 
a)        b) 

 
Fig. 4. Dependecies of the effective piezomoduli ldr )( 33  (a) и ldr )( 31  (b) on porosity 

 
For the piezomodulus 2

eff
33 )(d  of ordinary porous piezoceramic, its unusual property of a 

weak dependence on porosity is well known, however, the values of piezomodulus 2
eff
31 |)(| d  

decrease with the growth of p . As it can be seen from the curves 2 and 4, these properties are 
weakly dependent on the inhomogeneity of the polarization, whether it is taken into account 
or not. 

For porous piezoceramic with metallized pore surfaces, as it can be seen in Fig. 4, the 
values of the piezomodulus 1

eff
31 |)(| d  increase with the growth of p , and taking into account 
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the inhomogeneity of polarization results in slightly less growth of the piezomodulus 1
eff
31 |)(| d  

in its absolute value. The piezomodulus 1
eff
33 )(d , with taking the inhomogeneous polarization 

into account, almost does not change with the porosity growth, i. e. it behaves in the same 
manner as for ordinary porous piezoceramic. If we consider the piezoceramic material of the 
composite to be homogeneously polarized, then the piezomodulus 1

eff
33 )(d  will also increase 

with the growth of porosity. Thus, we can conclude, that taking into account the 
inhomogeneity of polarization for the piezoceramic material with partially metallized pore 
surfaces has a significant influence on the values of the piezomoduli eff

3 jd . 
 
6. Conclusions 
In the present work, the properties of the inhomogeneously polarized porous piezoceramic 
with partially metallized pore surfaces have been investigated with the help of the methods of 
the composite mechanics and mathematical modelling. The pore surface metallization has 
been taken into account only by the electric boundary conditions of equipotentiality. The 
results of the numerical experiments have shown that microporous piezoceramic with 
metallized pore surfaces has a range of unusual properties, which are perspective for practical 
applications [28]. The comparison of the obtained results with similar results provided in [23, 
24] for the case of full pore surface metallization has shown that partial metallization slightly 
eliminates unusual properties of the effective moduli [25]. The computation results showed 
that taking into account the inhomogeneity of the polarization field of the composite material 
was more significant for the determination the effective values of piezomoduli and dielectric 
permittivities, and less important for the determination of the effective elastic stiffness 
moduli. 

We would like to note, that the developed model of the representative volume has only 
partially random porosity structure, as there are domains with the thickness pa2  or pa , which 
go through the whole volume and do not contain pores. In connection to this, the patterns of 
the inhomogeneous polarization field influence can be different for other internal structures of 
the representative volumes. Also, the values of the effective moduli are influenced by the 
extent of the pore surface metallization and the thickness of the metallized covering, which 
was noted in [24] for the case of homogeneously polarized piezoceramic. 
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Abstract. Interply slip plays an important role in composite forming processes, the resulting 
product geometry, final fiber orientations and fiber stresses. This interply slip will depend on 
fiber/resin properties, the fibers distribution, the reinforcement architecture and the process 
conditions. In this paper, a new model, based on Reynolds equation for thin film lubrication, 
was developed to predict the frictional behavior of these materials. This approach should be 
validated by means of experiments.  
Keywords: thermoforming, interply slip, thermoplastic, wrinkles 
 
 
1. Introduction 
Continuous fiber thermoplastic composites have been introduced as structural materials for 
aerospace and automotive applications [1 – 4]. Forming complex shapes from sheets of these 
composites, in their melt state, may be considered as a difficult process when compared to 
metal or plastic forming. 

Recently, a large number of manufacturing processes have been developed while 
existing ones were modified in order to obtain a high quality process.  The thermoforming 
technology (stamping), seems to be an attractive alternative due to low cycle times and the 
possibility to more or less automate the manufacturing process. Forming tools for 
thermoforming processes are very expensive and it is very time consuming until the optimal 
part quality is obtained. Therefore, simulating the process can be an effective tool to help 
producing parts with good quality in an efficient way. 

Software’s used to simulate the forming of thin parts should be able to predict the final 
orientation of the fibers which will determine the mechanical properties of the final part. It 
should also predicts wrinkling, the final thickness and the final quality of the product. 

In fact, during forming, a number of different deformation mechanisms can be 
identified [5] in composite sheet forming. There are mainly four forming mechanisms for 
fabric reinforced thermoplastics: intraply shearing, interply slip, resin percolation and 
transverse squeeze flow [6]. Interply slip is an important phenomenon that can dominate the 
resulting product geometry after forming.  

In this work, a model was developed that predicts the friction between subsequent plies. 
The model is based on the Reynolds’ equation for thin film lubrication and assumes 
hydrodynamic lubrication at a meso-mechanical level.  
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2. Ply/ply and Ply/tool slip 
Previous Work. During forming of a pre-consolidated laminate, the individual plies 

slide over each other to avoid wrinkling [7 – 13]. 
The constraints imposed by friction between subsequent plies and between the laminate 

and the tools are major factor in the laminate deformations generated during composite 
forming. 

Friction depends on the forming process parameters like the pressure, the mold 
temperature, the part temperature and the sliding velocity. 

Murtagh et al. [7], observed a resin rich layer existed between different plies and 
showed that the viscosity dominate the slip behavior at elevated temperature. 

Later, Murtagh et al. [8] worked on an interply slip tests carried out under varying 
conditions of temperature and pressure, results has allowed the development of a power law 
model which predicts shear stresses in the interlayer between plies as a function of applied 
strain in the plies and interply shearing velocity. 

The first model of friction for the tool/ply interface [14] assumes fully hydrodynamic 
lubrication by means of a resin layer of thickness h between the laminate and the tool. 

In 2002, Chow [15] proposed an analytical model for friction behavior of a woven 
fabric between the binder ring and the die from his test results for a commingled glass–
polypropylene four-harness satin-weave fabric. His analytical model incorporated weighted 
effects of Coulomb and hydrodynamic friction models to predict the effective friction 
coefficient for different testing parameter values that could be used in numerical simulations. 
He first theorized that the transition between these two friction mechanisms for various 
combinations of the testing parameters resulted in a relationship similar to the Stribeck 
curve (Fig. 1), which plots the coefficient of friction versus the Hersey number H in the 
transition region between elasto-hydrodynamic lubrication and hydrodynamic lubrication. 
 

 
 

Fig. 1. A typical Stribeck curve, relating the Hersey number H to the coefficient of friction μ 
 

The Hersey number H: 

,
P
VH ⋅

=
η  (1) 

where η is the resin viscosity, V is the fabric velocity and P the normal pressure. 
Chow [15] proposed that this relationship was applicable to the thermoforming of a 

commingled glass–polypropylene four-harness satin-weave fabric after conducting a set of 
experiments using a specific setup. 
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The tests parameters used by chow are shown in table below. 
 

Table 1. Specific parameters used by [15] 

Point 
Number 

Tool temperature 
(°C) 

Initial specimen 
temperature (°C) 

Velocity 
(mm/s) 

Norma Force 
(N) 

1 85 200 16.67 4000 
2 85 200 16.67 3000 
3 85 200 8.33 1500 
4 85 200 16.67 1500 
5 85 180 16.67 1500 
6 85 200 41.67 4000 
 

He noted that his data followed the trend indicated by the Stribeck-curve (Fig. 2).  
On the other hand, this reasoning remains week. It should be noted that we can obtain 

the same number H for various values of the normal pressure and the velocity. 
However, according to the Stribeck theory, each number H corresponds to a single 

coefficient of friction. A thorough study of this work must therefore be carried out to validate 
the Chow model.  

 

 
 

Fig. 1. Stribeck curve obtained by [15] 
 

As an alternative, Gorzcyca [10] started from a Stribeck curve (Fig. 1), plotting the 
coefficient of friction as a function of Hersey number H. 

A second-generation apparatus and associated procedure was designed and used to 
develop the current friction model for a larger range of processing parameters (Fig. 3).  

It was determined that velocity, tool temperature and normal force had the greatest 
effects on the friction coefficient µ. Temperature is included via the viscosity term. 

However, the temperature used to calculate the viscosity was the initial fabric 
temperature through the use of appropriate Power-Law parameters. As the tool temperature is 
lower than the melting point of the polypropylene, it cannot be directly considered with the 
viscosity calculation. 
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Fig. 2. Schematic representation of the pull-out experiment, to characterize ply-ply or tool-ply 
friction 

 
The resulting master curve for one specific type of Twintex was presented for 

hydrodynamic lubrication region as: 
.2718.01191.6 +×= Hµ  (2) 

Based on the work of Gorzcyca, Konstantine [16] confirmed that, velocity, normal force 
and tool temperature influence the friction coefficient. This coefficient vary with velocity and 
normal pressure similarly at both the fabric/tool and the fabric/fabric interfaces, and show a 
relation to the hydrodynamic region of stribeck curve. 

Akkerman and al. developed a model that predicts friction between thermoplastic 
laminates and a rigid tool by assuming hydrodynamic lubrication at a meso-mechanical 
level [12]. The pressure in the matrix material starts to build up as it squeezed in the wedge-
shaped cavities between the weave and the tool surface [17]. The film thickness was derived 
iteratively from the Reynolds’ equation for thin film lubrication. The fabric geometry and the 
matrix materials were used as the input parameters. 

Reynolds equation resolution. In this section, it is assumed that the equation 
governing the flow between subsequent plies is the incompressible, stationary Reynolds 
equation. A matrix film separates the two surfaces and the process could be considered like a 
flow between two surfaces for which only the top one can moves. The higher surface is 
defined by the equation ( )yxhz ,=  (Fig. 4). 

In this case, the process is governed by the Reynolds’ equation which for the two 
dimensional state reads: 

( ) ( ) ,0
2

 
12

33 211
2
22

2
1

3
2

3
1 =




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

 +
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+−− VhhPdraghhhhhhdiv


h
 (3) 

where P  is the pressure, ( )21 hh −  the local film thickness, η the viscosity and V is the slip 
velocity. 

The resolution of equation (3) is usually made using a finite element method. In our 
case and considering a periodic profile for ( )yxh ,1  and ( )yxh ,2 , a pseudo spectral method 
could be used. One boundary condition is needed.  
( ) .00,0 =P  (4) 

The inner surface velocity is written: 
.jviuV


+=  (5) 
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Fig. 3. Schematic representation of two subsequent plies 

 
In pseudospectral Fourier approximation, the problem involves periodic boundary 

conditions. Thus, all functions appearing in the problem are periodic. Let ( )yxP ,  be smoothly 
differentiable function with period xT  in x direction and yT  in the y direction. First, we 
approximate ( )yxP ,  by a trigonometric polynomial function that interpolates it at one of the 
following sets of points:  
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( ) ( ) ( ),, yFxFayxP ji
i j

ij∑∑=  (7) 

where, ija  is the unknown matrix to be determined.  
When the collocation points given by equation (6) are used, the Reynolds equation has 

the form: 
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And, ( ) jllj yF δ=  and ( ) ikki xF δ= , ( )xFi  and ( )yFj  are polynomial in the functions 
xsin , xcos  of degree at most N. 
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Explicitly, 
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Modeling the interply slip. It's important to notice through the writing of the Reynolds 
equation between two surfaces that the pressure depends linearly on velocity. For this reason, 
we will try first, and using method described in previous section to solve the Reynolds 
equation for two different cases where in the first one, the moved plan slips in the x direction, 
whereas in second case this plan slips in the y direction. The respective solutions will be 
called ( )yxP ,1  and ( )yxP ,2 . 

The linear solution could be written like 

1 2( . ( , ) . ( , ))x yP V P x y V P x yη= ⋅ +
  

, (2) 

where, ( )yx VVV ,=  is the velocity vector. 
The pressure gradient is calculated: 

[ ] ,2121 VMVePgradePgradPgradVPgradVPgrad yxyx ⋅⋅=⋅⊗+⊗⋅=⋅+⋅= ηηηη  (15) 

where yx ePgradePgradM ⊗+⊗= 21 . 
Integrating the shear stress over the sliding surface allows calculating the friction force: 
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 (16) 

This model predicts the friction force fF  as a function of the friction matrix fC   and 
velocity V. The friction matrix fC  depends on both plies geometries, described by 1h  and 2h , 
and on the pressure gradient. 

 
3. Model Analyses 
The previous model shows that the coefficient of friction is not scalar according to the 
velocity (Fig. 5). 

After calculating Eigen values 1λ , 2λ  and their corresponding Eigen vectors 1u  and 2u , 
of matrix fC , we deduced that friction force is only collinear to velocity when this one is 
collinear to 1u  or 2u  vectors. 

( ),111 uF ⋅⋅= βλ  (17) 

( ).222 uF ⋅⋅= βλ  (18) 

1λ , 2λ , 1u  and 2u  depend on the film thickness, distribution and regularity. 
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Fig. 4. Schematic representation of friction force when velocity is collinear with  

1u  or 2u  vectors 
 
4. Numerical results and discussion 
In this section, three examples will be treated to show the validity and usability of our model. 

Example 1. First, we will study the interply slip between a unidirectional ply with an 
arbitrary geometry and a fixed plan ply. The thickness of resin film separating the two 
surfaces must be obtained experimentally but in our case, we represent it by the following 
equation: 
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 (19) 
The parameters of the problem are represented in the following table. 

 
Table 2. Specific parameters of example 1 

Parameter Value Unit 
1ε  0.1  

2ε  0.1, 0.3, 0.5, 0.7  

yx TT  ,  0.06 m 
Η 100 Pa·s 

0h  6×10-6 m 
N (number of collocation points) 15  

 
We represent in Fig. 6 the profiles of both surfaces when varying the parameter 2ε . 

This variation causes a change in minimum and maximum resin film thicknesses. 
For each case, the pressure ( )yxP ,1  and ( )yxP ,2  and their respective gradients can be 

deduced by solving the Reynold’s equation and similarly, we can calculate using 
equation (16), the friction matrix fC . 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5. Profiles schematization when: (a) 1.02 =ε ; (b) 3.02 =ε ; (c) 5.02 =ε ; (d) 7.02 =ε  
 

To study the influence of the resin thickness on the friction matrix fC  we did, and in 
each case, the calculation of the eigen values and the eigen vectors of this matrix (Table 3).  
 
Table 3. Obtained result for example 1 
Parameter Value 

1ε  0.1 0.1 0.1 0.1 

2ε  0.1 0.3 0.5 0.7 

mine  (µm) 5.3 4 3 2 
maxe  (µm) 6.3 7.5 9 10 

1λ  630.49 682.83 803.21 1124.47 

1U  ji 705.0709.0 −  ji 945.0325.0 −  ji 974.0224.0 −  ji 98.0196.0 −  

2λ  613.013 618.38 640.7 633.32 

2U  ji 705.0709.0 −  ji 945.0325.0 −  ji 974.0224.0 −  ji 98.0196.0 −  
 

Figure 7 shows that the two Eigen values of the matrix fC  increase when the minimum 
thickness of the resin film is well below the maximum thickness of that film. The anisotropy 
factor 12 λλ  is then dependent on a certain factor maxmin ee  (Fig. 8). 
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Fig. 6. Eigen values and Eigen vectors of fC  for different ( maxmin ee ) 

 

 
 

Fig. 7. Variation of anisotropy factor with film irregularity 
 

Example 2. In this example, the previously presented model in equation 16 will be used 
to calculate the friction parameters between two 3×3 Twill plies as shown in (Fig. 9). 

 

 
 

Fig. 8 . Inter-ply slip between two 3x3 Twill plies 
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The geometric equations of both plies are given by: 
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The maximum and the minimum film thicknesses are equal to: 
( ) ( ),11 2211max εε −−+= ∗∗ hhε  (22) 
( ) ( ).11 2211min εε ++−= ∗∗ hhε  

As ∗
1h , ∗

2h , 1ε , 2ε , xT , yT  and N, the number of collocation points, are the imposed 
values (Table 3), ( )yxP ,1 , ( )yxP ,2  and their respective gradients could now be calculated 
using the pseudo-spectral Fourier method (Fig. 10). 
 
Table 3. Specific parameters of example 2 
Parameter Value Unit 

∗
1h  12.10-6 m 
∗
2h  6.10-6 m 

1ε  0.2  

2ε  0.2  

xT  0.06 m 

yT  0.06 m 
Η 100 Pa·s 
N 15  

 
As demonstrated before, the friction matrix fC , which characterize the relation between 

friction force and velocity, is dependent from both plies geometries 1h  and 2h . Or in other 
terms, the thickness of resin film layer formed between both plies will play an important role 
in the variation of the components of fC . 

To evaluate this influence, we calculated fC  for different ( maxmin ee ) values. Figure 11 
shows that changing film thickness did not affect the Eigen vectors.  In our case, when the 
velocity vector is deflected by a ±45° angle with x-axis, friction force is collinear to this 
vector whatever the film thickness variation is. 

On the other hand, the irregularity of film thickness has a significant effect on 1λ  and 

2λ . With the increase of ( maxmin ee ), the values of 1λ  and 2λ  will finish by being 
equal (Fig. 12). 
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Fig. 9. Different pressure and gradient of pressure profiles 
 

 
 

Fig. 10. Influence of film thickness on the friction matrix fC  
 

0
2

4
6

8

0
2

4
6

8
-1

-0.5

0

0.5

1

x 10
8

x (cm)y (cm)

P1
(x

,y
) (

Pa
)

0
2

4
6

8

0
2

4
6

8
-1

-0.5

0

0.5

1

x 10
8

x (cm)y (cm)

P2
(x

,y
) (

Pa
)

0
2

4
6

8

0
2

4
6

8
-2

-1

0

1

2

x 10
5

x (cm)y (cm)

dP
1/

dx
 (N

/m
)

0
2

4
6

8

0
2

4
6

8
-3

-2

-1

0

1

2

x 10
5

x (cm)y (cm)

dP
1/

dy
 (N

/m
)

0
2

4
6

8

0
2

4
6

8
-3

-2

-1

0

1

2

x 10
5

x (cm)y (cm)

dP
2/

dx
 (N

/m
)

0
2

4
6

8

0
2

4
6

8
-2

-1

0

1

2

x 10
5

x (cm)y (cm)

dP
2/

dy
 (N

/m
)

-2000

-1500

-1000

-500

0

500

1000

1500

2000

-2000 -1500 -1000 -500 0 500 1000 1500 2000x

y
λ1
λ2 0.05

0.07

0.1

0.125

0.166

0.25

0.5

emin/emax

32 E. Gazo Hanna, A. Poitou, P. Casari



 

 
 

Fig. 11. Variation of anisotropy factor with film irregularity 
 

Example 3. In this example, and using the same geometries as in example 2, we 
studied the influence of displacing the upper ply on the anisotropy of the matrix fC  and the 
effect of this variation on the the friction force. 

First, we assumed that the upper ply slips with a known velocity 
vector which component along x axis is equal to 15mm/ s and the one in y direction is equal 
to zero. 

The friction matrix fC  was calculated in five positions, where each one represents the 
state of the plies at instant: 
t= 0: initial position 
t= 1 s: the upper ply is displaced by 15 mm from his initial position 
t= 2 s: the upper ply is displaced by 30 mm from his initial position 
t= 3 s: the upper ply is displaced by 45 mm from his initial position 
t= 4 s: the upper ply is displaced by one period from his initial position 

Knowing that both plies are periodic in the x and y directions, the profiles corresponding 
to each displacement are represented in the figure below (Fig. 13). 

The friction matrix is calculated as usual by solving Reynold’s equation in each case. 
Then and using model described by (eq. 16), we can deduce the friction force in each state of 
displacement. 

The obtained results (Table 5) show that in each position, friction matrix components do 
change and as well the anisotropy factor 12 λλ  is variable with the displacement (Fig. 14, 
Fig. 15). 
 
Table 5. Obtained result for example 3 
Time 0 1 2 3 

mine  (µm) 2 4.14 7.2 4.14 
maxe  (µm) 16 13.8 10.8 13.8 

1λ  525 434.33 422.47 456.13 

1U  ji 699.0699.0 −  ji 626.099.0 −−  ji 71.071.0 −−  ji 95.099.0 −  

2λ  475.9 445.12 405.35 446.33 

2U  ji 71.071.0 −−  ji 779.00075.0 −  ji 7.07.0 +  ji 28.0017.0 +−  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Fig. 12. Profiles description at: (a) t= 0 s and t =4 s; (b) t = 1 s; (c) t= 2 s; t= 3 s 

 

 
 

Fig. 13. Variation of friction matrix components at each state of displacement 
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Fig. 14. Variation of anisotropy factor with the displacement 
 

These results show that during forming, the upper ply will rotate depending on his 
position because of, and in all cases, the non-linearity between the imposed velocity vector 
and the friction force one. 
 
5. Conclusions 
The proposed model consider that a thin film of resin builds up between the layers and plays 
an important role in forming processes of thermoplastic laminates. In this model, we supposed 
that a hydrodynamic lubrication exists between the layers in contact. 

The pressure and its gradient generated in the fluid are obtained by the resolution of the 
equation of Reynolds. 

As a result the relation between the friction force and the velocity is not scalar knowing 
that this model requires only the knowledge of the layers geometry and the viscosity of the 
used resin.  

The friction force vector is equal to the product of a matrix fC  by the vector velocity. 
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Abstract. A simple and accurate model of foam hydraulic fracturing is developed with both 
compressibility and rheology being taken into account. The governing equations for a 
compressible power-law fracturing fluid are derived for the classical PKN fracture geometry. 
Numerical simulations reveal an influence of compressibility and rheology on the temporal 
evolution of the fracture opening. 
Keywords: hydraulic fracturing, compressibility, rheology, foam, numerical solution 
 
 
1. Introduction 
Foam fracturing modern technique of the hydraulic fracturing looks promising due to several 
advantages: foam minimizes usage of liquid, limits fluid retention in the formation and has 
better proppant transport properties due to its high viscosity. However, a modeling of foam 
faces serious difficulties. Apart from the foam saturation and stability, it is necessary to take 
into account compressibility and non-Newtonian character of the foam viscosity. Moreover, 
foam contains both liquid and gas parts. Taking into account all these factors is a difficult 
task. The compressibility of foam is usually introduced through its quality or the importance 
of the gas part [1 – 4]. Modeling of viscosity is simpler for incompressible fluids [4 – 9], and 
for compressible foam experimental data is usually used to fit power-law model [10, 11].  

Existing models of foam fracturing could be divided into two groups. The first group 
uses simpler considerations and models foam as a single-phase fluid with effective properties 
depending on the foam quality and pressure. Gu's and Mohanty's model [12] is neglecting 
changing density of the foam and models its properties by relations for the power-law 
parameters depending on the fluid pressure in the fracture and given constant quality of the 
foam. For the two-dimensional model, it results in a difference in geometries of the fracture 
with the same fracturing conditions but different chosen foam qualities, while the total 
volume of the fracture remains constant. Another model, Park's approach [13], accounts for 
compressibility of foam by adding formation volume factor to the time-depended term in the 
continuity equation. Wang's et al. model [3] allows investigating influence of compressibility 
of fracturing fluid using linear density-pressure relation. 

The second group of models is considering foam as a multi-phase fluid under different 
assumptions (e.g. dimensions, pressure, temperature, solubility etc.) [10, 11, 14]. The systems 
of governing equations for these models became more accurate, but at the same time they 
became noticeably more complex, requiring more setting parameters and increasing time of 
calculations, especially for three-dimensional cases. 
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Our goal is to develop quite simple and fast but accurate model of foam fracturing, 
which takes into account fluid compressibility and non-Newtonian character of its viscosity 
by introducing both density-quality and rheology-quality relations. The governing equations 
are derived for the classical PKN [15] fracture geometry in order to develop two-dimensional 
model and qualitatively investigate it using numerical simulation. 
 
2. Governing equations 
We consider a problem of a hydraulic fracture propagation driven by injection of 
compressible non-Newtonian fluid in an infinite homogenous linear elastic medium. The 
geometry of the problem presented in Fig. 1: 
 

 
Fig. 1. PKN fracture geometry 

 
This is a classical PKN [15] fracture geometry approach: the length of the fracture L is 

much greater than its constant height H, and height is much greater than fracture opening w. 
Then the approximate plane strain condition can be assumed in every plane orthogonal to the 
direction of propagation. Assuming that net pressure is independent of y-axis leads to 
elliptical fracture cross section. The fracture width along z-axis is then given by [15]: 
𝑤𝑤(𝑧𝑧, 𝑥𝑥, 𝑡𝑡) = 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛(𝑥𝑥, 𝑡𝑡) 1

𝐸𝐸′
√𝐻𝐻2 − 4𝑧𝑧2, (1) 

where E’  is defined as  
𝐸𝐸′ = 𝐺𝐺

1−𝜈𝜈
, 

𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑝𝑝 − 𝜎𝜎min, 𝑝𝑝 is fluid pressure, 𝜎𝜎min is minimum horizontal stress, 𝜈𝜈 is Poisson’s ratio,  
𝐺𝐺 is the shear modulus. 

It is assumed that density and pressure of foam are constant in the each fracture cross 
section: ρ = ρ(x,t), p = p(x,t). Under these assumptions and according to the fracture geometry 
the continuity equation is given by: 
𝜋𝜋𝜋𝜋
4

𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚) + 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌𝜌𝜌) = 0, (2) 
where 𝑞𝑞 is the volumetric flow rate, 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 =  𝑤𝑤(0, 𝑥𝑥, 𝑡𝑡). 
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Equations of motions for single-phase fluid with one-dimensional flow in an elliptical 
fracture are reduced to the simple relation between volumetric flow rate and pressure gradient, 
neglecting inertial terms for Newtonian fluid: 
𝑞𝑞 = −𝜋𝜋𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚

3𝐻𝐻
64𝜇𝜇

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, (3) 
where 𝜇𝜇 is Newtonian viscosity. However, most investigations [16 – 19] are showing that 
foams rheology is well approximated by power-law models. That is why it can also be used 
another known relation for power law fluid motion in an elliptical fracture [20]: 

𝑞𝑞 = −𝜑𝜑(𝑛𝑛)𝐻𝐻(𝜋𝜋𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚)2𝑛𝑛+1 𝑛𝑛�

(2𝐾𝐾)1/𝑛𝑛 �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
1/𝑛𝑛

sign �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�, (4) 

where sign(𝑥𝑥) is a signum function, 𝐾𝐾 is flow consistency index and 𝑛𝑛 is flow behavior index. 
Term 𝜑𝜑(𝑛𝑛) depends on the fracture’s cross section geometry and is derived as follows: 

 𝜑𝜑(𝑛𝑛) = 𝑛𝑛
2(2𝑛𝑛+1)𝐻𝐻 ∫ � 𝑤𝑤

𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚
�
2𝑛𝑛+1
𝑛𝑛 𝑑𝑑𝑑𝑑𝐻𝐻/2

−𝐻𝐻/2 . (5) 
For the elliptic cross section, the solution is known as [21]: 

 𝜑𝜑(𝑛𝑛) = 𝑛𝑛
2(2𝑛𝑛+1)

𝚪𝚪�4𝑛𝑛+12𝑛𝑛 �

𝚪𝚪�5𝑛𝑛+12𝑛𝑛 �
� 2
√𝜋𝜋
�
3𝑛𝑛+2
𝑛𝑛 , (6) 

where 𝚪𝚪(𝑥𝑥) is gamma-function. 
 
3. Foam compressibility model 
The quality of the foam Γ is introduced as [1, 2] 
Γ = 𝑉𝑉𝑔𝑔

𝑉𝑉𝑔𝑔+𝑉𝑉𝑙𝑙
, (7) 

where 𝑉𝑉𝑔𝑔 , 𝑉𝑉𝑙𝑙  are the volumes of the gas and liquid phases of the foam respectively. The 
presence of a gas phase makes foams highly compressible. Indeed, for isothermal processes 
the Boyle’s law is 
𝑝𝑝0𝑉𝑉0𝑔𝑔  =  𝑝𝑝 𝑉𝑉𝑔𝑔 , (8) 
where 𝑝𝑝0 is the injection pressure in our case, 𝑉𝑉0𝑔𝑔 is initial volume of gas phase. It follows 
from Eqs. (7), (8) that 
𝑝𝑝
𝑝𝑝0

= Γ0(1−Γ)𝑉𝑉0𝑙𝑙
(1−Γ0)Γ𝑉𝑉𝑙𝑙

, (9) 
where Γ0 is the foam injection quality, 𝑉𝑉0𝑙𝑙 is initial volume of liquid phase. The density of the 
foam 𝜌𝜌 is defined as 
 𝜌𝜌 = 𝜌𝜌𝑙𝑙𝑉𝑉𝑙𝑙+𝜌𝜌𝑔𝑔𝑉𝑉𝑔𝑔

𝑉𝑉𝑙𝑙+𝑉𝑉𝑔𝑔
= (1 − Γ)𝜌𝜌𝑙𝑙 + Γ𝜌𝜌𝑔𝑔. (10) 

Equation (9) allows us to express quality through the pressure p. Substitution of the 
resulting expression into Eq. (10) gives rise to the connection between density and pressure, 
 𝜌𝜌 = Γ0𝑝𝑝0

Γ0𝑝𝑝0+(1−Γ0)𝑝𝑝
𝜌𝜌𝑔𝑔 + (1−Γ0)𝑝𝑝

Γ0𝑝𝑝0+(1−Γ0)𝑝𝑝
𝜌𝜌𝑙𝑙. (11) 

The second term in Eq. (11) is negligibly small for low quality foams due to 𝜌𝜌𝑔𝑔
𝜌𝜌𝑙𝑙
≪ 1. 

Then the compressibility relationship is 
 𝜌𝜌 = (1−Γ0)𝑝𝑝

Γ0𝑝𝑝0+(1−Γ0)𝑝𝑝
𝜌𝜌𝑙𝑙. (12) 

However, for the high quality foam the density of gas becomes comparable with the 
density of the liquid phase, so at least an estimation for ρg is needed. We assume that the value 
of ρg can be simply estimated as the density of an ideal gas at the defined values of pressure 
and temperature 𝑇𝑇: 
 𝜌𝜌𝑔𝑔 = 𝑀𝑀𝑀𝑀

𝑅𝑅𝑅𝑅
, (13) 
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where M = 28 g/mol for N2 and M = 44 g/mol for CO2, 𝑅𝑅 is ideal gas constant. As we consider 
isothermal case, the averaged temperature of the reservoir is assumed to be known and used 
in Eq. (13). 
 
4. Foam rheology model 
We consider foams as non-Newtonian fluids by using known models that predict power law 
parameters of the foam as functions of quality. In presented work we are using known 
empirical correlations [22] for K(Γ) and n(Γ). 

The correlation for 20-lbm/Mgal foam is: 
n = n0(1 − 2.1006Γ7.3003),  K = K0 exp(−1.9913Γ + 8.9722Γ2) (14) 

The correlation for 30-lbm/Mgal foam is: 
n = n0(1 − 0.1535Γ6.5152),  K = K0 exp(−2.3761Γ + 8.8830Γ2) (15) 

The correlation for 40-lbm/Mgal foam is: 
n = n0(1 − 0.6633Γ5.1680),  K = K0 exp(−0.4891Γ + 5.6203Γ2) (16) 

K0 and n0 are constant power law parameters of the base fluid which are assumed to be 
known. It should be noted that any other known correlations (e.g., Ref. [16 – 19]) for K(Γ), 
n(Γ) may be used instead of Eqs. (14), (15) and (16). It is also possible to use Newtonian µ(Γ) 
correlations (e.g., Ref. [5, 23]) with Eq. (3) in order to simplify the model. 

 
5. Numerical simulation 
Equations (1), (2), (4), (6), (11), (13) and relations (14), (15) or (16) together form a closed 
system of equations and can be modified to a single pressure or a fracture width equation. It 
can be solved implicitly using FDM with inner iterations. The boundary conditions are: 
𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥, 𝑡𝑡)|𝑥𝑥=𝐿𝐿 = 0, 
𝜌𝜌𝜌𝜌|𝑥𝑥=0 = 𝑄𝑄𝑖𝑖𝑖𝑖, 
where 𝑄𝑄𝑖𝑖𝑖𝑖  is an inlet mass flow rate. Fracture length L(t) is evaluated as follows: 
𝐿𝐿(𝑡𝑡) = min�𝑥𝑥|𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥)=0�. (17) 

The initial condition is a closed fracture: 
𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥, 0) = 0. 

Following hydraulic fracturing parameters are chosen to be fixed during the numerical 
simulations in order to investigate the dependence of the initial foam quality and its rheology 
on the fracture geometry: 

Qin = 1.5 kg/s, P0 = 1 MPa, 
ρl = 1000 kg/m3,   K0 = 0.01 Pa · s,    n0 = 1, 

E’ = 25 GPa,   H = 20 m,   σ = 1MPa 
Firstly, we are studying the influence of rheology relations defined by Eqs. (14), (15) 

and (16) for the different initial foam qualities by comparing obtained numerical results with 
the constant viscosity case (K(Γ) = K0 = const, n(Γ) = n0 = const). The fracture width 
distributions along L at t = 1000 s are shown for Γ0 = 0.25, Γ0 = 0.5 and Γ0 = 0.75 in Fig. 2, 
Fig. 3, Fig. 4 respectively. For this set of initial parameters non-Newtonian character of the 
foam viscosity starts to influence fracture geometry at Γ0 = 0.5, and its influence become 
essential for the case Γ0 = 0.75: fracture width is increasing while the fracture length 
decreases. In addition, it is shown that for different foams (20, 30 and 40lbm/Mgal) fracture 
geometry is changing not significantly. 
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Fig. 2. Fracture width distribution for initial foam quality 0.25 

 

 
Fig. 3. Fracture width distribution for initial foam quality 0.5 
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Fig. 4. Fracture width distribution for initial foam quality 0.75 

 
Secondly, we investigate the compressibility factor influence on the fracture geometry. 

Considering constant viscosity K(Γ) = K0 = const, n(Γ) = n0 = const for all the simulations we 
compare fracture propagation process for incompressible fluid (Fig. 5), compressible  
CO2–foam with Γ0 = 0.25 (Fig. 6), Γ0 = 0.5 (Fig. 7) and Γ0 = 0.75 (Fig. 8) at 50K–temperature 
cases. The numerical results show that increasing of initial foam quality leads to an increase 
in the final volume of the fracture for similar mass flow rate. For Γ0 = 0.25 overall calculated 
mass fraction of pumped gas in foam is equal to ∼ 0.54%, for Γ0 = 0.5 this value  
reaches ∼ 1.54%, and for Γ0 = 0.75 is ∼ 4.69%. 

 

 
 

Fig. 5. Fracture growth for incompressible fluid 
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Fig. 6. Fracture growth for 0.25-quality foam (no rheology) 
 

 
 

Fig. 7. Fracture growth for 0.5-quality foam (no rheology) 
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Fig. 8. Fracture growth for 0.75-quality foam (no rheology) 
 

Also it should be noted that assuming Γ0 = 0 and n(Γ) = 1 (the case corresponding to 
Fig. 5) the model reduces to classical PKN model for an incompressible fracturing fluid 
without leak-off. 

Finally we present the numerical results (Fig. 9) for 0.75-quality 30-lbm/Mgal foam 
(rheology is defined by Eq. 15). Comparing to the no-rheology case (Fig. 8) the modeling 
results show that the length of the fracture is decreasing while the fracture width increases. 

 

 
 

Fig. 9. Fracture growth for 0.75-quality 30-lbm/Mgal foam 
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6. Conclusion 
The two-dimensional model of foam fracturing is presented. It takes into account fluid 
compressibility and non-Newtonian character of its viscosity by introducing density-quality 
relation based on the Boyle’s law and rheology-quality correlations. This model allows to 
calculate fracture geometry for the foams with different quality at given pressure. Both 
rheology and compressibility properties have been studied independently and together. The 
developed model shows that for higher quality foam it is expected to produce a fracture with 
higher opening value and lower length due to rheology properties, and with greater volume 
for the same mass of pumped foam due to compressibility. Due to the simplicity of the 
introduced system of equations, it is expected that one may develop fast and accurate 
pseudo3D foam fracturing model based on the presented model. 

However, the presented model does not take into account very important aspects of 
hydraulic fracturing, such as leak-off and proppant transport. Future generalization of the 
problem implies not only conversion to pseudo3D-geometry, but also consideration of 
proppant transport, its influence on the foam rheology and adding multi-phase leak-off terms 
to the governing equations. 
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Abstract. Cuspidal irregularities of solids have been recognized as Vibrating Black Holes for 
elastic and acoustic waves. The corresponding absorption phenomenon is caused, in particular, 
by the appearance of the continuous spectrum [𝜅𝜅†, +∞)  of the Lame system in a two-
dimensional plate with the sharp cusp that provokes for wave processes in a finite volume. 
However, if the plate is clamped in the small ℎ-neighborhood of the cusp top, the spectrum 
becomes discrete and consists of isolated natural frequencies 𝜅𝜅𝑗𝑗ℎ  of finite multiplicity. The 
asymptotics of 𝜅𝜅𝑗𝑗ℎ as ℎ → +0 is constructed that describes the effect of the "wandering" of the 
natural frequencies above the threshold 𝜅𝜅† > 0 , namely the asymptotic formula  
𝜅𝜅𝑗𝑗ℎ = 𝐾𝐾𝑗𝑗(lnℎ) + 𝑂𝑂�ℎ𝛿𝛿� with 𝛿𝛿 > 0 is valid where 𝐾𝐾𝑗𝑗 is a periodic function. In other words, 
some of frequencies flounce in the semi-axis (𝜅𝜅†, +∞) at a quite high rate 𝑂𝑂(ℎ−1). At the 
same time, natural frequencies below the threshold get the sustainable  
behaviour 𝜅𝜅𝑝𝑝ℎ = 𝜅𝜅𝑝𝑝0 + 𝑂𝑂�ℎ𝛿𝛿� , 𝛿𝛿 > 0, as ℎ → +0. 
Keywords: vibrating black holes, cuspidal plate, continuous spectrum, clamped peak, 
wandering eigenvalues, asymptotics 
 
 
1. Formulation of the elasticity problems in a cuspidal solid 
Let Ω  be a two-dimensional isotropic and homogeneous elastic plate and let its edge Γ = ∂Ω 
be smooth everywhere with exception of the point 𝒪𝒪, the origin of the Cartesian coordinate 
system 𝑥𝑥 = (𝑥𝑥1, 𝑥𝑥2). In a neighborhood of 𝒪𝒪, the domain gets the cuspidal shape, i.e.,  
{𝑥𝑥 ∈ Ω: 𝑥𝑥1 ≤ 𝑑𝑑} = Π𝑑𝑑 ,  
where  
Π𝑑𝑑 = {𝑥𝑥 ∈ ℝ2: 𝑥𝑥1 ∈ (0,𝑑𝑑], | 𝑥𝑥2| < 𝐻𝐻𝑥𝑥12},             𝑑𝑑 > 0,𝐻𝐻 > 0.  (1) 

First of all, we assume that the plate edge Γ is traction-free. Then the longitudinal 
oscillations of the plate Ω are described by the spectral boundary-value problem  
−𝜕𝜕1 𝜎𝜎𝑗𝑗1(𝑢𝑢; 𝑥𝑥) − 𝜕𝜕2 𝜎𝜎𝑗𝑗2(𝑢𝑢; 𝑥𝑥) = 𝜌𝜌𝜅𝜅2 𝑢𝑢(𝑥𝑥) ,   𝑥𝑥 ∈ Ω,   𝑗𝑗 = 1,2,                                            (2) 

𝜎𝜎𝑗𝑗
(𝑛𝑛)(𝑢𝑢; 𝑥𝑥) ≔ 𝑛𝑛1(𝑥𝑥) 𝜎𝜎𝑗𝑗1(𝑢𝑢; 𝑥𝑥) − 𝑛𝑛2(𝑥𝑥) 𝜎𝜎𝑗𝑗2(𝑢𝑢; 𝑥𝑥) = 0 ,   𝑥𝑥 ∈ Γ\𝒪𝒪,   𝑗𝑗 = 1,2.        (3) 

Here 𝜕𝜕𝑗𝑗 = 𝜕𝜕/𝜕𝜕𝑥𝑥𝑗𝑗 , 𝑢𝑢 = (𝑢𝑢1,𝑢𝑢2)  is the displacement vector, 𝜎𝜎(𝑛𝑛) = �𝜎𝜎1
(𝑛𝑛),𝜎𝜎1

(𝑛𝑛)�  is the 

normal vector of stresses, and the Cartesian components of the stress tensor 𝜎𝜎(𝑢𝑢) are given by   
𝜎𝜎𝑗𝑗𝑗𝑗(𝑢𝑢) =  𝜇𝜇 �𝜕𝜕𝑗𝑗𝑢𝑢𝑘𝑘 + 𝜕𝜕𝑘𝑘𝑢𝑢𝑗𝑗� + 𝜆𝜆 𝛿𝛿𝑗𝑗,𝑘𝑘(𝜕𝜕1𝑢𝑢1 + 𝜕𝜕2𝑢𝑢2) ,       𝑗𝑗,𝑘𝑘 = 1,2.                              (4) 
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Moreover, 𝜆𝜆 ≥ 0 , 𝜇𝜇 > 0   and 𝜌𝜌 > 0  are the Lame constants and the density of the 
elastic material, respectively. Finally, 𝑛𝑛 = (𝑛𝑛1,𝑛𝑛2) is the unit vector of the outward normal, 
𝛿𝛿𝑗𝑗,𝑘𝑘 is the Kronecker symbol, and 𝜅𝜅 ≥ 0 is the frequency of harmonic-in-time oscillations. We 
reduce the characteristic size of the domain Ω  to unity and make dimensionless the 
coordinates 𝑥𝑥1, 𝑥𝑥2 and all geometric parameters.  

It is known, see e.g. [1, 2], that the spectrum ℘  of the problem (2), (3) has the 
continuous component ℘𝑐𝑐𝑐𝑐 = [𝜅𝜅†, +∞)  with the positive cutoff value  

𝜅𝜅† = 5
2

 𝐻𝐻  �3 𝜌𝜌
𝑀𝑀

 ,                     (5) 

where 𝐻𝐻 and 𝜌𝜌 are taken from the relations (1) and (2), respectively, and  

𝑀𝑀 =  𝜇𝜇(𝜆𝜆+𝜇𝜇)
𝜆𝜆+2𝜇𝜇

 .                      (6) 

The primitive formula ℘𝑐𝑐𝑐𝑐 ≠ ∅ follows from the fact observed in [3; Sect. 3.1], namely 
the traditional Korn inequality, cf., the review paper [4], 
||𝑢𝑢;𝐻𝐻1(Ω)||2  ≤ 𝑐𝑐Ω(ℰ(𝑢𝑢;Ω) + ||𝑢𝑢; 𝐿𝐿2(Ω)||2)                                                             (7) 
does not hold true in the cuspidal domain (1). In (7), 𝐿𝐿2(Ω)  and 𝐻𝐻1(Ω), respectively, are the 
Lebesgue and Sobolev spaces with the standard norms 

�|𝑢𝑢; 𝐿𝐿2(Ω)|� = �∫ |𝑢𝑢(𝑥𝑥)|2𝑑𝑑𝑑𝑑Ω �
1/2

and  �|𝑢𝑢;𝐻𝐻1(Ω)|� = �∫ (|∇𝑢𝑢(𝑥𝑥)|2 + |𝑢𝑢(𝑥𝑥)|2)𝑑𝑑𝑑𝑑Ω �
1/2

, 
while ℰ(𝑢𝑢;Ω) is the energy functional, 

ℰ(𝑢𝑢;Ω) =     ∫ (|𝑢𝑢1(𝑥𝑥)|2 + |𝑢𝑢2(𝑥𝑥)|2)Ω  𝑑𝑑𝑑𝑑 +                                                                          

+ 1
2𝜇𝜇 ∫ �∑ �𝜎𝜎𝑗𝑗𝑗𝑗(𝑢𝑢; 𝑥𝑥)�

2
− 𝜆𝜆

2(𝜆𝜆+𝜇𝜇)𝑗𝑗,𝑘𝑘=1,2 |𝜎𝜎11(𝑢𝑢; 𝑥𝑥) + 𝜎𝜎22(𝑢𝑢; 𝑥𝑥)|2�Ω  𝑑𝑑𝑑𝑑                   (8) 

Furthermore, the energy space 𝐸𝐸(Ω) obtained by completion of the linear set 𝐶𝐶𝑐𝑐∞(Ω�\𝒪𝒪) 
(infinitely differentiable vector functions vanishing near the point 𝒪𝒪) with respect to the norm  
||𝑢𝑢;𝐸𝐸(Ω)||2 =   ℰ(𝑢𝑢;Ω)1/2,                                             (9) 
is much bigger that the Sobolev space 𝐻𝐻1(Ω)  and the embedding 𝐸𝐸(Ω) ⊂ 𝐿𝐿2(Ω)  is not 
compact. 

The latter assures that indeed the continuous spectrum ℘𝑐𝑐𝑐𝑐  of the operator of the 
problem (2), (3) is not empty according to general results in the operator theory, see, e.g., the 
monograph [5; Ch. 9, 10]. 

The continuous spectrum provokes for wave processes inside the cusp (1) which are 
known as Vibrating Black Holes, see the papers [6-8] where concrete engineering devices 
based on the effect under discussion, are described as well. We mention especially the 
pioneering paper [6] where, for the first time, the cutoff value (5) was computed on the basis 
of the Kirchhoff theory of thin elastic beams with variable thickness. 

Let us assume now that the peak of the cusp (1) is clamped along the short arcs  
𝛾𝛾ℎ

± = {𝑥𝑥: 𝑥𝑥1 ∈ (0,ℎ), |𝑥𝑥2| = ±𝐻𝐻𝑥𝑥12};  
here ℎ ≪ 1 is a small parameter. Then, for a vector field 𝑢𝑢 ∈ 𝐻𝐻1(Ω) satisfying the Dirichlet 
boundary conditions  
𝑢𝑢𝑗𝑗(𝑥𝑥) = 0, 𝑥𝑥 ∈ 𝛾𝛾ℎ = 𝛾𝛾ℎ+ ∪ 𝛾𝛾ℎ−,    𝑗𝑗 = 1,2,   (10) 
the Korn inequality (9) becomes valid. Indeed, one may extend by zero the vector function 𝑢𝑢 
from Πℎ  on the rectangle 𝑄𝑄ℎ = {𝑥𝑥: 𝑥𝑥1 ∈ (0,ℎ), |𝑥𝑥2| < 𝐻𝐻ℎ2}  and apply the standard Korn 
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inequality, see e.g. [4], in the two domains Ω\Πℎ and 𝑄𝑄ℎ with Lipschitz boundaries. Thus, the 
spectrum ℘ℎ of the Lame system (2) with the boundary conditions (10) and  
𝜎𝜎𝑗𝑗

(𝑛𝑛)(𝑢𝑢; 𝑥𝑥) = 0 ,   𝑥𝑥 ∈ Γ \𝛾𝛾ℎ���,   𝑗𝑗 = 1,2,        (11) 
is fully discrete due to the compact embedding 𝐻𝐻1(Ω) ⊂ 𝐿𝐿2(Ω). By [5; Theorems 10.1.5, 
10.2.2], this spectrum composes the monotone unbounded eigenvalue sequence        
0 < 𝜅𝜅1ℎ ≤ 𝜅𝜅2ℎ ≤ 𝜅𝜅3ℎ ≤ ⋯ ≤ 𝜅𝜅𝑝𝑝ℎ ≤ ⋯  → +∞, (12) 
where multiplicity is counted in. 

Our objective is to examine the asymptotic behavior of the eigenvalues 𝜅𝜅𝑝𝑝ℎ as ℎ → +0. 
It is remarkable that asymptotic formulas become quite different below and above the 
threshold (5) and, for 𝜅𝜅𝑗𝑗ℎ > 𝜅𝜅† , they exhibit the new effect of "wandering" described in 
Section 5. For 𝜅𝜅𝑝𝑝ℎ < 𝜅𝜅†, we conclude with rather standard asymptotic expansions. 

 
2. Waves inside the cusp 
Since width 2𝐻𝐻𝑥𝑥12 of the cusp (1) is much smaller than the distance 𝑥𝑥1 > 0 to its top 𝒪𝒪, the 
dimension reduction procedure, see e.g. [3; Ch. 4], can be applied in the same way as in the 
paper [1] in order to derive the asymptotic expansion of a solution 𝑢𝑢(𝑥𝑥) to the problem (2), (3) 
when 𝑥𝑥1 → +0. Thus, we accept the standard asymptotic ansatz   
𝑢𝑢(𝑥𝑥) = 𝑈𝑈−2(𝑥𝑥) + 𝑈𝑈−1(𝑥𝑥) + 𝑈𝑈0(𝑥𝑥) + 𝑈𝑈1(𝑥𝑥) + 𝑈𝑈2(𝑥𝑥) + ⋯                                                 (13) 
with the first terms computed, for example, in the book [3; Sections 1.3 and 4.1] and the 
paper [1, Section 3], 
𝑈𝑈−2(𝑥𝑥) = 𝑒𝑒(2) 𝑤𝑤(𝑥𝑥1),            𝑈𝑈−1(𝑥𝑥) = −𝑥𝑥2 𝑒𝑒(1)

𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥1

(𝑥𝑥1),       

𝑈𝑈0(𝑥𝑥) =  𝑒𝑒(2)
𝜆𝜆

𝜆𝜆+2𝜇𝜇
𝑥𝑥22

2
𝑑𝑑2𝑤𝑤
𝑑𝑑𝑥𝑥12

(𝑥𝑥1),          𝑈𝑈1(𝑥𝑥) = 𝑒𝑒(1)
3𝜆𝜆+4𝜇𝜇
𝜆𝜆+2𝜇𝜇

𝑥𝑥23

6
𝑑𝑑3𝑤𝑤
𝑑𝑑𝑥𝑥1

3 (𝑥𝑥1) − (14) 

−2𝑒𝑒(1)
𝜆𝜆+𝜇𝜇
𝜆𝜆+2𝜇𝜇

𝐻𝐻2𝑥𝑥14 𝑥𝑥2
𝑑𝑑3𝑤𝑤
𝑑𝑑𝑥𝑥1

3 (𝑥𝑥1)  − 8𝑒𝑒(1)
𝜆𝜆+𝜇𝜇
𝜆𝜆+2𝜇𝜇

𝐻𝐻2𝑥𝑥13 𝑥𝑥2
𝑑𝑑2𝑤𝑤
𝑑𝑑𝑥𝑥12

(𝑥𝑥1),                   

where 𝑒𝑒(𝑗𝑗) stands for the unit vector of the 𝑥𝑥𝑗𝑗-axis. To construct the next term 𝑈𝑈2(𝑥𝑥) in (13), 
we have to subject the unknown scalar function 𝑤𝑤  of the longitudinal variable 𝑥𝑥1  to the 
ordinary differential equation for the averaged bend of beams with variable thickness, cf., the 
original paper [6],  
4
3
𝑀𝑀𝑀𝑀3 𝑑𝑑2

𝑑𝑑𝑥𝑥12
𝑥𝑥16  𝑑𝑑

2𝑤𝑤
𝑑𝑑𝑥𝑥12

(𝑥𝑥1) = 2𝐻𝐻𝑥𝑥12𝜌𝜌𝜅𝜅2 𝑤𝑤(𝑥𝑥1),      𝑥𝑥1  > 0. (15) 

The coefficients 𝐻𝐻,𝜌𝜌, 𝜅𝜅 and 𝑀𝑀 are taken from the formulas (1), (2) and (6), respectively. 
Clearly, the equation (15) with 𝜅𝜅 = 0 has the particular solution 

𝑤𝑤(𝑥𝑥1) = 𝐶𝐶0 + 𝐶𝐶1𝑥𝑥1. (16) 
According to (14), the linear function (16) gives rise to the displacement field (13) 

which is nothing but a rigid motion. Solutions to the ordinary differential equation (15) of 
Euler type with 𝜅𝜅 > 0 have the form  
𝑤𝑤(𝑥𝑥1) = 𝑐𝑐𝑥𝑥1

𝜏𝜏−3/2, (17) 
where the exponent 𝜏𝜏 is a root of the bi-quadratic equation  

 �𝜏𝜏2 − 9
4
� �𝜏𝜏2 − 25

4
� = 3

4
𝜌𝜌𝜅𝜅2

𝑀𝑀𝐻𝐻2. (18) 
In the case  

 𝜅𝜅 ≤ 𝜅𝜅†,  
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i.e., below the threshold (5), the bi-quadratic equation (18) has four real rots but, for 
𝜅𝜅 > 𝜅𝜅†, (19) 
i.e., above the threshold, the equation gets two real and two pure imaginary roots  
𝜏𝜏±
𝑟𝑟𝑟𝑟 = ±𝑡𝑡+ and  𝜏𝜏±

𝑖𝑖𝑖𝑖 = ±𝑖𝑖𝑡𝑡− (20) 
where  

𝑡𝑡±
2 = 𝑇𝑇 ± 17

4
> 0,           𝑇𝑇 = 1

2
 �16 + 3 𝜌𝜌𝜅𝜅2

𝑀𝑀𝐻𝐻2 . (21) 

The displacement field 𝑢𝑢(±)
𝑖𝑖𝑖𝑖 (𝑥𝑥) constructed through the formulas (13), (14) and (20), 

(21) from the oscillatory solutions, see (17) and (20), 
𝑤𝑤(±)
𝑖𝑖𝑖𝑖 (𝑥𝑥1) = 𝑐𝑐(±)

𝑖𝑖𝑖𝑖 𝑥𝑥1
±𝑖𝑖𝑡𝑡−−3/2 (22) 

are interpreted as one-dimensional bending elastic waves propagating along the cusp Πℎ to its 
top 𝒪𝒪 (minus) and from the point 𝒪𝒪 (plus), see [6] and [1, 2]. The direction of propagation is 
found out by means of the Umov-Mandelstam (energy) radiation principle, see the 
monograph [9; Ch. 1] and, e.g., the paper [10] among many other publications. 

Computing components of the stress tensor 𝜎𝜎(𝑢𝑢0) according to the relations (4) and 
(13), (14), we obtain  

𝜎𝜎11(𝑢𝑢0;𝑥𝑥) = −4𝑀𝑀𝑥𝑥2
𝑑𝑑2𝑤𝑤
𝑑𝑑𝑥𝑥12

(𝑥𝑥1) + ⋯ ,          𝜎𝜎22(𝑢𝑢0;𝑥𝑥) = ⋯ (23) 

𝜎𝜎12(𝑢𝑢0;𝑥𝑥) = 4𝑀𝑀�𝑥𝑥2
2

2
− 𝐻𝐻2

2
𝑥𝑥14�

𝑑𝑑3𝑤𝑤
𝑑𝑑𝑥𝑥1

3 (𝑥𝑥1)  − 8𝑀𝑀𝐻𝐻2𝑥𝑥13  𝑑𝑑
2𝑤𝑤
𝑑𝑑𝑥𝑥12

(𝑥𝑥1) + ⋯, (24) 

where dots stand for lower-order terms, namely for 𝑂𝑂�𝑥𝑥1
−1/2� in (23) and 𝑂𝑂�𝑥𝑥1

+1/2� in (24). In 
view of (14), (21) and (20) integrands on the right-hand side of (8) get order 𝑥𝑥1−3 so that the 
integrals over the cusp (1) diverge at the rate 𝑂𝑂(|ln 𝑥𝑥1|). The latter observation, in particular, 
indicates transportation of energy along the cusp. 

The displacement fields 𝑢𝑢(±)
𝑟𝑟𝑟𝑟 (𝑥𝑥) constructed from the solutions  

𝑤𝑤(±)
𝑟𝑟𝑟𝑟 (𝑥𝑥1) = 𝑐𝑐(±)

𝑟𝑟𝑟𝑟 𝑥𝑥1
±𝑡𝑡+−3/2 (25) 

with the real exponents in (20) possess quite different properties. Indeed, by the 
definitions (25), (21) and (14), (23), (24), the vector function 𝑢𝑢(+)

𝑟𝑟𝑟𝑟  gives rise to the finite 
energy functional ℰ�𝑢𝑢(+)

𝑟𝑟𝑟𝑟 ;Πℎ�. At the same time, the integrals on the right-hand side of (8) 

with 𝑢𝑢 = 𝑢𝑢(−)
𝑟𝑟𝑟𝑟   diverge at the power rate 𝑂𝑂�𝑥𝑥1

−2𝑡𝑡+�.  
In what follows we will deal with elastic fields involving the following linear 

combination of the constructed special displacement vectors:  
𝑢𝑢0(𝑥𝑥) = 𝑐𝑐(+)

𝑖𝑖𝑖𝑖 𝑢𝑢(+)
𝑖𝑖𝑖𝑖 (𝑥𝑥) + 𝑐𝑐(−)

𝑖𝑖𝑖𝑖 𝑢𝑢(−)
𝑖𝑖𝑖𝑖 (𝑥𝑥) + 𝑐𝑐(+)

𝑟𝑟𝑟𝑟 𝑢𝑢(+)
𝑟𝑟𝑟𝑟 (𝑥𝑥) + 𝑐𝑐(−)

𝑟𝑟𝑟𝑟 𝑢𝑢(−)
𝑟𝑟𝑟𝑟 (𝑥𝑥). (26) 

Notice that imposing various relationships between the coefficients 𝑐𝑐(±)
𝑖𝑖𝑖𝑖  and 𝑐𝑐(±)

𝑟𝑟𝑟𝑟  yields 
different operators of the problem (2), (3) with very distinct properties, cf., Section 5. 

In the paper [2] it is proved that any solution of the problem (2), (3) verifying the 
estimate  

|𝑢𝑢(𝑥𝑥)| ≤ 𝑐𝑐𝑥𝑥1
−𝜃𝜃−32,    𝑥𝑥 ∈ Ω, (27) 

with an exponent 𝜃𝜃 > 𝑡𝑡+, admits the asymptotic form  
 𝑢𝑢(𝑥𝑥) = 𝜒𝜒(𝑥𝑥1)𝑢𝑢0(𝑥𝑥) + 𝑢𝑢�(𝑥𝑥),    (28) 
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where 𝑢𝑢0 is a linear combination (26) with coefficients depending on the solution 𝑢𝑢, 𝜒𝜒 is a 
smooth cut-off function, 
𝜒𝜒(𝑥𝑥1) = 1  for  𝑥𝑥1 < 𝑑𝑑

2
   and  𝜒𝜒(𝑥𝑥1) = 0  for  𝑥𝑥1 > 𝑑𝑑, 

and the remainder 𝑢𝑢�  enjoys the estimate          

|𝑢𝑢�(𝑥𝑥)| ≤ 𝑐𝑐𝑥𝑥1
𝜃𝜃−32,    𝑥𝑥 ∈ Ω. (29) 

We emphasize that the displacement fields 𝑢𝑢(±)
𝑟𝑟𝑟𝑟  and  𝑢𝑢(±)

𝑖𝑖𝑖𝑖  do not satisfy the relation (29) 
so that detaching a linear combination (26) is necessary to achieve the appropriate decay of 
the remainder 𝑢𝑢�(𝑥𝑥) as 𝑥𝑥 → 𝒪𝒪. 

 
3. The boundary layer phenomenon 
In order to take into account the boundary conditions (10) we introduce the stretched 
coordinates 
𝜉𝜉 = (𝜉𝜉1, 𝜉𝜉2) = (ℎ−2(𝑥𝑥1 − ℎ),ℎ−2𝑥𝑥2). (30) 

The coordinate dilation 𝑥𝑥 ↦ 𝜉𝜉  and formal setting ℎ = 0  turn the cusp Πℎ  into the 
infinite strip  
𝒮𝒮 = {𝜉𝜉 ∈ ℝ2: 𝜉𝜉1 ∈ ℝ, |𝜉𝜉2| < 𝐻𝐻}  
of width 2𝐻𝐻. Since the endpoints 𝑥𝑥 = (ℎ, ±𝐻𝐻ℎ2) of the arcs 𝛾𝛾ℎ

± are mapped into the points 
𝜉𝜉 = (0, ±𝐻𝐻), the original problem (2), (11), (10) about the plate with the clamped peak 
converts into the following mixed boundary-value problem for the Lame system in the strip 
−𝜕𝜕1 𝜎𝜎𝑗𝑗1(𝑤𝑤; 𝜉𝜉) − 𝜕𝜕2 𝜎𝜎𝑗𝑗2(𝑤𝑤; 𝜉𝜉) = 0 ,   𝜉𝜉 ∈ 𝒮𝒮,   𝑗𝑗 = 1,2,   

 𝜎𝜎𝑗𝑗2 �𝑤𝑤; 𝜉𝜉1, ± 1
2
� = 0 ,   𝜉𝜉1 > 0,   𝑗𝑗 = 1,2,        (31) 

𝑤𝑤𝑗𝑗 �𝜉𝜉1, ± 1
2
� = 𝐺𝐺𝑗𝑗

±,    𝜉𝜉1 < 0,   𝑗𝑗 = 1,2.                        

The boundary layer 𝑤𝑤(𝜉𝜉) = �𝑤𝑤1(𝜉𝜉),𝑤𝑤2(𝜉𝜉)� is intended to compensate for the main 
discrepancy of the vector function (28) in the Dirichlet conditions (10) and hence, the data of 
the problem (31) look as follows:           

𝐺𝐺2
±(𝜉𝜉1) = 𝑊𝑊2

ℎ ≔  ∑ �𝑐𝑐(±)
𝑖𝑖𝑖𝑖 ℎ±𝑖𝑖𝑡𝑡−−3/2 + 𝑐𝑐(±)

𝑟𝑟𝑟𝑟 𝑥𝑥1
±𝑡𝑡+−3/2�,±                                                                                                             

𝐺𝐺1
±(𝜉𝜉1) = ±𝑊𝑊1

ℎ ≔ ∓ 𝐻𝐻∑ ��±𝑖𝑖𝑡𝑡− −
3
2
� 𝑐𝑐(±)

𝑖𝑖𝑖𝑖 ℎ±𝑖𝑖𝑡𝑡−−3/2 + �±𝑡𝑡+ −
3
2
� 𝑐𝑐(±)

𝑟𝑟𝑟𝑟 𝑥𝑥1
±𝑡𝑡+−3/2� .±  (32) 

Thus, the solution of the problem (31) with the finite elastic energy is nothing but the 
bounded displacement field with the linear dependence on the transversal coordinate 𝜉𝜉2 ,  
that is, 
𝑤𝑤(𝜉𝜉) = �−𝐻𝐻𝜉𝜉2𝑊𝑊1

ℎ,𝑊𝑊2
ℎ�.  

This boundary layer term gets the intrinsic property of the exponential decay as 
𝜉𝜉1 → ±∞ only in the case 
𝑊𝑊1

ℎ = 0,               𝑊𝑊2
ℎ = 0. (33) 

This implies that the problem (31) must be homogeneous and the main term of the 
boundary layer must be absent in the asymptotics. 

Let us find coefficients in the linear combination (26) which provides the relation (33). 
The first step looks quite unanticipated, namely we set  
𝑐𝑐(+)
𝑟𝑟𝑟𝑟 = 0 (34) 
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and, therefore, exclude from the linear combination the "decent" solution in the couple (25) 
but keep the "undeserving" one with objectionable behavior as 𝑥𝑥1 → +0. A reason for this 
procedure will be explained in the end of Section 5. 

At the second step, we insert the formulas (32) into the equations (33) and exclude from 
the obtained system of linear algebraic equations 
𝑐𝑐(+)
𝑖𝑖𝑖𝑖 ℎ+𝑖𝑖𝑡𝑡−−3/2 + 𝑐𝑐(−)

𝑖𝑖𝑖𝑖 ℎ−𝑖𝑖𝑡𝑡−−3/2 + 𝑐𝑐(−)
𝑟𝑟𝑟𝑟 ℎ−𝑡𝑡+−3/2 = 0,  

𝑐𝑐(+)
𝑖𝑖𝑖𝑖 �𝑖𝑖𝑡𝑡− −

3
2
� ℎ+𝑖𝑖𝑡𝑡−−5/2 − 𝑐𝑐(−)

𝑖𝑖𝑖𝑖 �−𝑖𝑖𝑡𝑡− −
3
2
� ℎ−𝑖𝑖𝑡𝑡−−5/2 − 𝑐𝑐(−)

𝑟𝑟𝑟𝑟 �𝑡𝑡+ + 3
2
� ℎ−𝑡𝑡+−5/2 = 0 (35) 

the unknown and irrelevant coefficient 𝑐𝑐(−)
𝑟𝑟𝑟𝑟 . As a result, we come across the following 

relationship between the coefficients 𝑐𝑐(−)
𝑖𝑖𝑖𝑖  and 𝑐𝑐(+)

𝑖𝑖𝑖𝑖  of the oscillatory waves: 

𝑐𝑐(−)
𝑖𝑖𝑖𝑖 = −ℎ2𝑖𝑖𝑡𝑡− 𝑡𝑡++𝑖𝑖𝑡𝑡−

𝑡𝑡+−𝑖𝑖𝑡𝑡−
𝑐𝑐(+)
𝑖𝑖𝑖𝑖 .  (36) 

We emphasize that modulo of the coefficient on the right-hand side of (36) is equal to 
one. It should also be noted that the equalities (35) imply that the main asymptotic terms of 
the displacement field (26) with the coefficient (34) vanish at the cross-section 
{𝑥𝑥: 𝑥𝑥1 = ℎ, |𝑥𝑥2| < 𝐻𝐻ℎ2} of the cusp Π𝑑𝑑  and hence can be extended by zero onto the peak 
Πℎwith the clamped sides 𝛾𝛾ℎ

± in order to satisfy the Dirirchlet conditions (10). The latter is the 
immediate consequence of the equalities (33) caused by our consideration of the boundary 
layer phenomenon. 

 
4. Asymptotic conditions at the cusp top and the self-adjoint operator pencils 
Let 𝒲𝒲(Ω) be a space of vector functions in the form (9) where  
𝑢𝑢0(𝑥𝑥) = 𝑐𝑐(+)

𝑖𝑖𝑖𝑖 𝑢𝑢(+)
𝑖𝑖𝑖𝑖 (𝑥𝑥) + 𝑐𝑐(−)

𝑖𝑖𝑖𝑖 𝑢𝑢(−)
𝑖𝑖𝑖𝑖 (𝑥𝑥) + 𝑐𝑐(+)

𝑟𝑟𝑟𝑟 𝑢𝑢(+)
𝑟𝑟𝑟𝑟 (𝑥𝑥). (37) 

Notice that in contrast to (34) we now have set  
𝑐𝑐(−)
𝑟𝑟𝑟𝑟 = 0 (38) 

and the linear combination (26) under the restriction (38) becomes nothing but (37). The norm 
in 𝒲𝒲(Ω) is the sum of the coefficients moduli �𝑐𝑐(±)

𝑖𝑖𝑖𝑖 � + �𝑐𝑐(+)
𝑖𝑖𝑖𝑖 � and an appropriate (see [2] and 

compare with (29)) weighted norm of the remainder 𝑢𝑢� . Such spaces are called weighted 
spaces with detached asymptotics. Fixing some phase 𝜓𝜓 ∈ [0,2𝜋𝜋), we impose the relationship  
𝑐𝑐(−)
𝑖𝑖𝑖𝑖 = 𝑒𝑒𝑖𝑖𝑖𝑖 𝑐𝑐(+)

𝑖𝑖𝑖𝑖  (39) 
and denote by 𝒲𝒲(Ω;𝜓𝜓)  the subspace of vector functions 𝑢𝑢 ∈ 𝒲𝒲(Ω)  subject to the 
restriction (39). Dealing with solutions of the problem (2), (3) in this space should be 
interpreted as imposing certain asymptotic conditions at the top 𝒪𝒪 of the cusp. 

To investigate general properties of the problem (2), (3), (39), we first of all insert any 
vector functions 𝑢𝑢(𝑚𝑚) ∈ 𝒲𝒲(Ω;𝜓𝜓),𝑚𝑚 = 1,2,  into the Green formula on the domain 
 Ω𝜀𝜀 = Ω ∖ Π𝜀𝜀  and perform the limit passage 𝜀𝜀 → +0. Denoting by 𝑐𝑐(±)

𝑖𝑖𝑖𝑖(𝑚𝑚), 𝑐𝑐(+)
𝑟𝑟𝑟𝑟(𝑚𝑚)  and 𝑢𝑢� (𝑚𝑚) 

the introduced attributes of 𝑢𝑢(𝑚𝑚) and setting 
𝑤𝑤(𝑚𝑚)(𝑥𝑥1) = 𝑐𝑐(+)

𝑖𝑖𝑖𝑖(𝑚𝑚)𝑥𝑥1
𝑖𝑖𝑡𝑡−−3/2 + 𝑐𝑐(−)

𝑖𝑖𝑖𝑖(𝑚𝑚)𝑥𝑥1
−𝑖𝑖𝑡𝑡−−3/2 + 𝑐𝑐(+)

𝑟𝑟𝑟𝑟(𝑚𝑚)𝑥𝑥1
𝑡𝑡+−3/2, (40) 

we obtain   

−∑ ��𝜕𝜕1𝜎𝜎𝑗𝑗1�𝑢𝑢(1)�,𝑢𝑢𝑗𝑗
(2)�

Ω𝜀𝜀
+ �𝜕𝜕2𝜎𝜎𝑗𝑗2�𝑢𝑢(1)�,𝑢𝑢𝑗𝑗

(2)�
Ω𝜀𝜀

2
𝑗𝑗=1 −  

−�𝑢𝑢𝑗𝑗
(1),𝜕𝜕1𝜎𝜎𝑗𝑗1�𝑢𝑢(2)��

Ω𝜀𝜀
+ �𝑢𝑢𝑗𝑗

(1),𝜕𝜕2𝜎𝜎𝑗𝑗2�𝑢𝑢(2)��
Ω𝜀𝜀
� +  

52 S.A. Nazarov



+�𝜎𝜎(𝑛𝑛)�𝑢𝑢(1)�,𝑢𝑢(2)�
Γ∖𝛾𝛾𝜀𝜀���

− �𝑢𝑢(1),𝜎𝜎(𝑛𝑛)�𝑢𝑢(2)��
Γ∖𝛾𝛾𝜀𝜀���

=  

= 8
3

 𝑀𝑀𝐻𝐻3 lim𝜀𝜀+0 �
𝑑𝑑
𝑑𝑑𝑥𝑥1

�𝑥𝑥16
𝑑𝑑2𝑤𝑤(1)

𝑑𝑑𝑥𝑥12
(𝑥𝑥1)�𝑤𝑤(2)(𝑥𝑥1)����������� − 𝑥𝑥16

𝑑𝑑2𝑤𝑤(1)

𝑑𝑑𝑥𝑥12
(𝑥𝑥1) 𝑑𝑑𝑤𝑤

(2)

𝑑𝑑𝑥𝑥1
(𝑥𝑥1)

������������
+  

 +𝑥𝑥16
𝑑𝑑𝑤𝑤(1)

𝑑𝑑𝑥𝑥1

𝑑𝑑2𝑤𝑤(1)

𝑑𝑑𝑥𝑥12
(𝑥𝑥1)

�������������
 − 𝑤𝑤(1)(𝑥𝑥1)� 𝑑𝑑

𝑑𝑑𝑥𝑥1
𝑥𝑥16

𝑑𝑑2𝑤𝑤(2)

𝑑𝑑𝑥𝑥12
(𝑥𝑥1)�

������������������������
��

𝑥𝑥1=𝜀𝜀
= 

= 4𝑇𝑇𝑇𝑇𝑡𝑡− �𝑐𝑐(+)
𝑖𝑖𝑖𝑖(1)𝑐𝑐(+)

𝚤𝚤𝚤𝚤(2)�������� − 𝑐𝑐(−)
𝑖𝑖𝑖𝑖(1)𝑐𝑐(−)

𝚤𝚤𝚤𝚤(2)��������� = 0. (41) 
The numbers 𝑀𝑀 , 𝐻𝐻  and 𝑇𝑇  are taken from (1), (6) and (21), respectively, and (   , )Ξ 

stands for the natural scalar product in the Lebesgue space 𝐿𝐿2(Ξ) . In the middle of the 
calculation (41) we have used the formulas (23) and (24) while the last equality is due to the 

imposed relationship (39) which demonstrates that 𝑐𝑐(+)
𝑖𝑖𝑖𝑖(1)𝑐𝑐(+)

𝚤𝚤𝚤𝚤(2)�������� = 𝑐𝑐(−)
𝑖𝑖𝑖𝑖(1)𝑐𝑐(−)

𝚤𝚤𝚤𝚤(2)��������. 
Green’s formula (41) means that the operator 𝒜𝒜𝛾𝛾(𝜅𝜅) of the problem (2), (3) with the 

domain 𝒲𝒲(Ω;𝜓𝜓)  is formally self-adjoint. It must be regarded as a holomorphic pencil,  
see the monographs [11; Ch. 1] and [12; Ch. 1].  Its spectrum in the half-plane  
ℂ† = �𝜅𝜅 ∈ ℂ: Re 𝜅𝜅 ≥ 𝜅𝜅†� form the monotone unbounded sequence of normal real eigenvalues 
listed according to their multiplicity  
𝜅𝜅† < 𝑘𝑘𝑁𝑁(𝜓𝜓) ≤ 𝑘𝑘𝑁𝑁+1(𝜓𝜓) ≤ ⋯ ≤ 𝑘𝑘𝑁𝑁+𝑞𝑞(𝜓𝜓) ≤ ⋯  + ∞.                                            (42) 

By the relationship (39), the eigenvalues (42) depend 2𝜋𝜋 -periodically on the 
parameter 𝜓𝜓.    

 
5. Asymptotics of eigenvalues of the problem with clamped peak 
We now are in a position to formulate appropriate asymptotic conditions at the cusp top 𝒪𝒪 in 
order to create an asymptotic model of the problem (2), (10), (11) with the help of asymptotic 
conditions. Comparing (39) with (36), we set 
𝜓𝜓(ℎ) = 𝜏𝜏 + 2𝑡𝑡− ln ℎ, (43) 
where the phase 𝜏𝜏 ∈ [0,2𝜋𝜋) is chosen such that 
𝑒𝑒𝑖𝑖𝑖𝑖 = − 𝑡𝑡++𝑖𝑖𝑡𝑡−

𝑡𝑡+−𝑖𝑖𝑡𝑡−
. (44) 

The operator 𝒜𝒜𝜓𝜓(ℎ)(𝜅𝜅) of the problem (2), (3) defined in the space 𝒲𝒲(Ω;𝜓𝜓(ℎ)), that is, 
with the asymptotic conditions (28), (37), (39), (43), differs crucially from the operator ℳ(𝜅𝜅) 
of the same problem but with the Umov-Mandelstam radiation conditions 

 𝑢𝑢(𝑥𝑥) = 𝜒𝜒(𝑥𝑥1) �𝑐𝑐(−)
𝑖𝑖𝑖𝑖 𝑢𝑢(−)

𝑖𝑖𝑖𝑖 (𝑥𝑥) + 𝑐𝑐(+)
𝑟𝑟𝑟𝑟 𝑢𝑢(+)

𝑟𝑟𝑟𝑟 (𝑥𝑥)�+  𝑢𝑢�(𝑥𝑥),                                            (45) 

which allow only the wave 𝑢𝑢(−)
𝑖𝑖𝑖𝑖  outgoing to the top 𝒪𝒪, and of course, the field 𝑐𝑐(+)

𝑟𝑟𝑟𝑟 𝑢𝑢(+)
𝑟𝑟𝑟𝑟  with 

the finite elastic energy. Indeed, the operator ℳ(𝜅𝜅) get a skew-symmetric component owing 
to Green’s formula (41) whose right-hand side gets the form 

−4𝑇𝑇𝑇𝑇𝑡𝑡−𝑐𝑐(−)
𝑖𝑖𝑖𝑖(1)𝑐𝑐(−)

𝚤𝚤𝚤𝚤(2)��������.  
In contrast to ℳ(𝜅𝜅), the operator 𝒜𝒜𝜓𝜓(ℎ)(𝜅𝜅) is self-adjoint and possesses the discrete 

spectrum (42) with the parameter (43). The eigenvalues (42) of 𝒜𝒜𝜓𝜓(ℎ)(𝜅𝜅) become (π/𝑡𝑡−)-
periodic in the logarithmic scale, namely this period is attributed to the functions               
ln ℎ  ⟼ 𝑘𝑘𝑁𝑁(𝜓𝜓(ℎ)).                                                                                                      (46) 
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In the case 𝜅𝜅 ∈ �0, 𝜅𝜅†� the operator of the problem (2), (3) in the energy space 𝐸𝐸(Ω) is 
Fredholm and self-adjoint too. Hence, it has a finite number of eigenvalues below the 
threshold (5) 
0 = 𝜅𝜅10 = 𝜅𝜅20 = 𝜅𝜅30 < 𝜅𝜅40 ≤ ⋯ ≤  𝜅𝜅𝑁𝑁−10 < 𝜅𝜅†.                                                               (47) 

Here, the three null eigenvalues are generated by rigid motions, that is, two translations 
and one rotation, which are generated by the linear solutions (16) of the limit differential 
equation (15). 

Asymptotic forms for the eigenvalues 𝜅𝜅40, … , 𝜅𝜅𝑁𝑁−10  in (47) are well-known, see [13-16], 
and we only mention that the perturbation of the null eigenvalues by the Dirichlet 
conditions (10) is evaluated in [15, 16] as follows: 
𝜅𝜅𝑝𝑝ℎ = 𝑂𝑂(ℎ),    𝑝𝑝 = 1,2,3.                                                                                    

The justification procedure of the asymptotic forms  
𝜅𝜅𝑗𝑗ℎ = 𝑘𝑘𝑗𝑗�𝜓𝜓(ℎ)� + 𝑂𝑂�ℎ𝛿𝛿�,    𝑗𝑗 = 𝑁𝑁,𝑁𝑁 + 1, …                                                               (48) 
for the eigenvalues in the sequence (12) above the threshold (5) is much more complicated. 
To construct a proper approximation pattern of an eigenmode of the problem (2), (10), (11), 
we add to an eigenmode 𝑢𝑢(𝑗𝑗)

0  with a natural frequency (19) the displacement field  
𝑐𝑐(−)
𝑟𝑟𝑟𝑟 (ℎ) 𝜒𝜒(𝑥𝑥1) 𝑢𝑢(−)

𝑟𝑟𝑟𝑟 (𝑥𝑥) (49) 
with the very singular behavior but the small coefficient  
𝑐𝑐(−)
𝑟𝑟𝑟𝑟 (ℎ) = 𝑂𝑂(ℎ𝑡𝑡+)  

calculated through the system (35) of linear algebraic equations with the entries 𝑐𝑐(±)
𝑖𝑖𝑖𝑖  taken 

from the representation (28), (26), (39) of the chosen vector function 𝑢𝑢(𝑗𝑗)
0 . The term (49) 

brings sufficiently small discrepancy into the problem (2), (19), (11) so that general results of 
the spectral theory of self-adjoint operators in Hilbert space, see [5, Ch. 6], provide the 
desiered asymptotic representation (48) with the exponent 𝛿𝛿 = 𝑡𝑡+ > 0. 

It is worth to mention that the proposed structure of the approximate eigenmode with 
the singular term (49) explains our procedure in Section 3 to impose the "strange" 
requirement (34) and to derive the algebraic system (35) which leads to the key 
relationship (36). 
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Abstract. Physical-mechanical properties of rubber filled by mineral filler (micro and 
nanoparticles of shungite) were studied experimentally. To date, shungite is one of the most 
promising materials used in the tire industry as active reinforcing fillers. Experiments on 
uniaxial tensile at break showed that input of this filler leads to a significant increase in rubber 
strength. Investigation of thermo-viscoelastic properties of these materials using dynamo-
mechanical analyzer (DMA) were also carried out. As a result, the dynamic and  
viscous modulus dependences on the frequency (at 20°C) and their temperature  
dependences (from –50 to +100°C) were constructed.  
Keywords: rubber composite, shungite filler, strength, dynamo-mechanical analyzer 

 
 

1. Introduction  
Carbon black (technical carbon) and white soot (hydrated silicon dioxide mSiO2·nН2О) are 
traditionally the most common fillers (reinforcing agents) of elastomeric composites based on 
natural and synthetic rubbers. The incorporation of these fillers into elastomers significantly 
improve their mechanical characteristics, especially the strength and stress-strain behavior of 
the material. To date, these effects have been well studied, and it can be said that this 
approach to the modifying rubber properties "has reached its ceiling" [1 – 3].  

The further progress in this area requires a continuous search for new unconventional 
fillers [4 – 7]. One promising direction is the use of dispersed clay minerals (monmorillonite, 
halloysite, palygorskite, shungite, etc.) [8 – 16]. This allows to vary the shape of filler 
particles in a natural way depending on the task and according to the peculiar structure of 
these materials. For example, dispersion of montmorillonite produces ultra-thin  
plates [17, 18], palygorskite – needle-like particles [19 – 20], shungite – globules [21].  

It should be noted that all the aforementioned mineral fillers are made from loose and 
soft sedimentary rocks (Mohs hardness from 1 to 4). At the same time, the filler particles 
obtained after dispersing the original mineral are much more rigid and durable than their 
progenitor. That is, the "low hardness" of the mineral is one of the signs of its good 
dispersibility.  

The input of clay dispersed particles into rubber allows not only to improve its physical 
and mechanical characteristics, but also to give it a number of additional important 
operational properties: increased thermal stability, resistance to burning, low diffusion 
permeability, ecological purity and relative cheapness of production [22, 23].  

At its core, these materials represent a complex structural heterogeneous systems 
consisting of a low-modulus highly elastic matrix, which embedded by a much more rigid and 
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durable particles of the particulate filler. Such materials are characterized by a complex 
mechanical behavior (finite deformations, nonlinear elasticity, viscoelasticity), which is 
caused by a different nature reversible and irreversible structural changes occurring under 
deformation [24, 25]. Currently, elastomer composites with various mineral fillers are the 
subject of intensive research, both experimental and theoretical [26 – 30]. As for application, 
the most promising direction of using such materials is the production of automobile tires. 

 
2. The object of study 
The main object of research were elastomeric composites with a dispersed filler made of 
micro and nanoshungite dispersed particles. Shungite is a sedimentary mineral formed from 
organic bottom sediments in freshwater reservoirs (sapropel). As for their structure, shungites 
are natural composites with a uniform distribution of highly disperse crystalline silicate 
particles in a carbon matrix [21, 31]. Depending on a deposit, the composition of shungite 
rocks can vary within fairly wide limits. On average, these materials contain  
about 60-70%-wt. of silicates and 30%-wt. of shungite carbon with an admixture of other 
inorganic substances (< 4%-wt., Al2O3, FeO, MgO, CaO, etc.) [32].  

Shungite carbon is a mixture of various allotropes of carbon, whose crystal lattices are 
joined with amorphous carbon. It is reliably established that the shungite carbon in the rock is 
lined up by globules connected together (that is, particles of approximately spherical shape). 
The diameter of the shungite globules is about 10 nm (which is unique for materials of natural 
origin). There is a strong bond between the carbon and silicate components. The rock is 
characterized by high density (1.9–2.4 g/cm3), chemical resistance and electrical  
conductivity ((1-3)×103 S/m), hardness on mineralogical Mohs scale is 3.5–4 [33 – 36].  

Such structure and composition impart a number of unusual physicochemical and 
technological properties to shungite material. The particles of the shungite powder contain 
different phases with respect to polarity. Due to the bipolarity, powders of shungite rocks mix 
well practically with all known substances (aqueous suspensions and fluoroplastics, rubbers, 
resins and cements, etc.). Therefore, they are one of the most promising fillers in terms of 
universality.  

Currently, shungite is being used in the tire industry to produce active and semi-active 
fillers of a new generation. In general, the experimental testing of shungite in rubber 
compounds revealed the following main effects [37 – 40 ]  

1) Improving the ability of rubber compounds to process (in comparison with carbon 
black and white soot).  

2) Shungite-filled rubber has improved dynamic properties: resistance to growth of 
cracks in bending with puncture, reduced heat generation under alternating bending, dynamic 
endurance under angular rotation. 

3) Filling rubber with shungite significantly increases their thermal and fire resistance.  
The main goal of this work was to study experimentally the strength properties of 

shungite-filled rubbers depending on the size of the filler particles and their concentration, as 
well as their thermo-viscoelastic behavior using the dynamo-mechanical analyzer (DMA). 

Experimental studies were carried out on samples of synthetic butadiene-styrene rubber 
SBR-1500, filled with dispersed shungite particles, shredded to micro and nano-state in the 
planetary ball mill. The average characteristic size of the microshungite particles was about 
500 nm, nanoshungite – 60-80 nm. The volume concentration (φ) of microfiller was equal to 
10% (phr = 25), 18% (phr = 65) and (phr = 105), for the nanofiller φ = 18% (phr = 65). All 
particles were pretreated with a surfactant (3-Mercaptopropyltriethoxysilane) to improve the 
interfacial adhesion between the filler and the matrix (and improving the overall strength of 
the composite). The elastomeric compositions were prepared in the standard laboratory mixer 
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HAAKE Rheomix. All samples were manufactured at the Institute of Applied Mechanics 
RAS (by Yu.V. Kornev).  

 
3. Experiment and results discussion 
Experimental studies of shungite-filled elastomers consisted of two stages: 1) uniaxial 
stretching prior to rupture; 2) tests on the dynamo-mechanical analyzer (DMA).  

Experiments on uniaxial stretching were carried out using the universal tensile testing 
machine Testometric FS100kN CT. Samples were manufactured in accordance with the 
standard ISO 527-25A with working part 10×2×2 mm. During the test, each sample was 
monotonically stretched to a break at a deformation rate of 25%/min. 9-12 samples were 
tested for each particle size and filler concentration. The averaged results of the experiments 
are shown in Fig. 1.  

 

 
 

Fig. 1. Nominal stresses σ0 versus extension ratio λ at stretching of elastomers filled with 
micro- and nanoshungite particles. Microshungite filler (black lines): φ=0% (1),  

10% (2), 18% (3), 27% (4); nanoshungite filler (gray line) – φ=18% (5) 
 

It was found that the addition of micro-shungite filler to the rubber leads to increase in 
the composite strength. At the same time, its deformability grew too, but not so much (by 
about 10-30%).  

A more interesting picture is observed for nanoshungite filler. Comparison of 
dependencies 3 and 5 in Fig. 1 shows, that at the same volume concentration of 18%, the use 
of the nanoshungite filler increases the strength of material more than 2 times compared with 
the microshungite and 8.5 times with respect to the pure elastomer (see curve 1 in Fig. 1). The 
limiting deformations of micro- and nanoshungite rubbers turned out to be quite close. From 
the structural point of view, the main difference between micro and nano shungite is that the 
particles of the latter have approximately 4 times the specific surface area. That is, it can be 
argued that an increase in the specific surface area of the filler improves stiffness and the 
strength characteristics of the material (provided good adhesion (chemical affinity) between 
the matrix and the dispersed phase). These results are consistent with known literature data on 
testing of filled elastomers with other clay fillers [29]. 
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The thermo-viscous-elastic properties of these composite materials were investigated in 
the second stage. The experiments were held on a dynamo-mechanical analyzer 
DMA/STDA861e (METTLER TOLEDO STARe). This device allows obtaining information 
about the change in the viscoelastic characteristics of the material under the action of a 
dynamic cyclical load (linear viscoelasticity model) for given temperature values  
from –150 to +500°C. Rectangular samples were used for the tests: base (working part) 
10 mm, width 3 mm and thickness 2 mm. One-point loading scheme was applied: cyclic 
uniaxial stretching–compression of a pre-stretched sample with dynamic load applied 
according to a harmonic law.  

The range of assigned frequencies f varied from 1 to 20 Hz, which corresponds to the 
rolling speed of a standard automotive wheel (landing diameter 15 inches) in the range  
from 6 to 136 km/h, respectively. The amplitude of specimen deformations ε0 was set at 3% 
in all cases.  

As a result, the dependences of the dynamic (E') and viscous (E") modules on the 
loading frequency f were plotted. Their temperature dependences (–50 to +100°C) at a 
constant frequency of 13 Hz (which corresponds to approximately 90 km/h) were built too. 
The corresponding graphs are shown in Figures 2-4. The analysis of results obtained by DMA 
showed the following.  

 
Frequency tests. The addition of micro-shungite filler to rubber promoted an increase in 

both E' and E", and with concentration growth this effect intensified. The replacement of 
microparticles with a nanofiller (at the same concentration) also contributed to an increase in 
the values of these characteristics (curves 3 and 5 in Fig. 2). It was also found that in this 
frequency range the dynamic and viscous modules retained almost constant values (increasing 
slightly with φ rising). Thus, we can assume that the studied rubber composites have 
sufficiently stable viscoelastic characteristics in this frequency range of tire rotation.  

 

 
 

Fig. 2. Frequency dependences of dynamic (E') and viscous (E") modules for rubbers filled 
with micro and nanoshungite particles. Microshungite filler (black lines): φ=0% (1),  

10% (2), 18% (3), 27% (4); nanoshungite filler (gray line) – φ=18% (5) 
 

Temperature tests. The conducted studies showed that all samples demonstrated the 
stability of their mechanical characteristics at temperatures in the range of about –25°C and 
above, that is, they are quite suitable for operation in temperate climates.  

A sharp increase in both the dynamic and viscous modules (by several orders of 
magnitude) occurred in the rubbers filled with micro and nanoshungite if the temperature 
dropped below –30°C. The values of E' and E" also increased with the filler concentration 
growth, but, interestingly, the effect of "cold amplification" on nanoparticles was somewhat 
weaker than for microshungite for the same concentration (curves 3 and 5 in Fig. 3). The pure 
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elastomer was much more stable: E' at t= –50°C increased approximately 15 times,  
and E' – in 70.  

The analysis of the temperature dependences of the loss tangent (tan δ=E''/E') (Fig. 4) 
showed that when both in case of micro and nanoshungite fillers added, the characteristic 
peaks corresponding to the glass transition temperature shifts toward increasing it:  
from –45°C (pure elastomer) to –25°C (volume concentration 27%).  

 

 
 

Fig. 3. Temperature dependences of dynamic (E') and viscous (E") modules for rubbers filled 
with micro and nanoshungite particles. Microshungite filler (black lines): φ=0% (1),  

10% (2), 18% (3), 27% (4); nanoshungite filler (gray line) – φ=18% (5) 
 

 
 

Fig. 4. Temperature dependences of loss tangent for rubbers filled with micro and 
nanoshungite. Microshungite filler (black lines): φ=0% (1), 10% (2), 18% (3),  

27% (4); nanoshungite filler (gray line) – φ=18% (5) 
 

Consequently, the use of tires with only such fillers in such low temperatures is quite 
problematic – some special additives are needed in the tire compound in this case. 

 
4. Conclusions 
The addition of dispersed mineral filler from micro and nanoshungite to tire rubber improves 
their strength and deformability, moreover in the case of nanoparticles this effect is enhanced. 
Studies of these rubber composites on dynamo-mechanical analyzer showed that they have 
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stable viscoelastic properties at temperatures above -25 ° C, that is, they are quite suitable for 
operation in temperate climates.  
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Abstract. This paper presents the results of experimental work carried out in dry turning 
operation of nitrogen alloyed duplex stainless steel ASTM A 995 Grade 5A. In this 
investigation, the cutting parameters considered were cutting speed, feed rate and depth of 
cut. The effects of these cutting parameters on the surface roughness were analyzed using 
Taguchi technique. The results revealed that the feed rate is the most important parameter 
affecting the surface roughness, followed by cutting speed and depth of cut. The minimum 
surface roughness was obtained when the process parameters were set at their optimum 
values. 
Keywords: duplex stainless steel, dry turning, surface roughness, Taguchi technique 
 
1. Introduction 
Stainless steels are iron-base alloys that contain a minimum of approximately 11% Cr, the 
amount needed to prevent the formation of rust in unpolluted atmospheres. Duplex stainless 
steels (DSSs) are chromium-nickel-molybdenum alloys that are balanced to contain a mixture 
of austenite and ferrite and are magnetic. But their machinability is more difficult than other 
alloy steels due to the reasons like low heat conductivity, high built up edge formation 
tendency, high deformation hardening and so on. DSS combines the benefits of both Ferritic 
stainless steel (FSS) and austenitic stainless steels (ASS) by proper balancing of ferrite and 
austenite. [1]. Machinability aspect is importance for manufacturing engineers to know about 
the machinability of a work material so that the processing can be planned in an efficient 
manner. Modern DSS grades tend to be difficult to machine, by virtue of their higher austenite 
and nitrogen contents. The use of DSSs has been increased because of their high strength, 
higher pitting corrosion resistance equivalent and stress corrosion resistance. DSSs are used in 
desalination plants and other industrial applications [2]. DSSs are extensively being used 
within a number of industry sectors outside desalination, e.g. chemical tankers, pressure 
vessels, storage tanks and oil and gas, petrochemical, pulp and paper, pollution control 
industries and civil engineering applications. The DSSs are less costly due to lower contents 
of mainly nickel and molybdenum, and they are excellent engineering materials [3]. 

Ciftci [4] investigated the machining characteristics of AISI 304 and AISI 316 ASSs 
using coated carbide tools. They reported that the increase in cutting speed decreased the 
surface roughness values until a minimum value and beyond which they increase. Korkut et 
al. [5] carried out turning tests to determine optimum machining parameters for machining of 
ASS. They reported that the Surface roughness values were found to decrease with increasing 
cutting speeds. Xavior et al. [6] investigated the influence of cutting fluids on tool wear and 
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surface roughness during turning of AISI 304 with carbide tool. The use of coconut oil as 
cutting fluid improved the surface roughness during turning process. Kaladhara et al. [7] used 
Taguchi method to determine the optimum process parameters for turning of AISI 304 ASS 
on CNC lathe using coated cemented carbide cutting insert. Their results revealed that the 
cutting speed was the dominant parameter which affects the surface roughness.  
Koyee et al. [8] conducted turning tests on ASS and DSSs applying Taguchi coupled Fuzzy 
Attribute Decision Making (FMADM) methods for optimize the surface roughness. They 
found that the feed rate was the predominant parameter which affects the surface roughness. 
Selvaraj et al. [9] conducted turning experiments to optimize the cutting force, surface finish, 
and tool wear of cast DSS. They reported that higher cutting speed and lower feed rate gave 
lower surface roughness and cutting force. 

From the literature stated above, it is clear that many research works have been carried 
out in the machining of ASS. But few reports could be found on the machining of DSS and 
the machining of nitrogen alloyed DSS are yet to be investigated. Surface roughness is the 
vital machinability index to evaluate the machining characteristics of the materials. Therefore 
in this work the machining studies of nitrogen alloyed DSS are carried out to understand the 
influence of the cutting speed, feed rate and depth of cut on the surface roughness using 
Taguchi technique. 

 
2. Taguchi method 
Taguchi method provides a simple, efficient and systematic approach to determine optimal 
machining parameters. Taguchi method uses an orthogonal array (OA) to study the entire 
process with only a small number of experiments. The Taguchi design method can be divided 
into three stages: system design, parameter design, and tolerance design. The second stage-the 
parameter design-is considered to be the most important stage [10, 11]. Several researchers 
have been applied Taguchi technique to optimize the cutting parameters in various machining 
operations like turning, end milling, drilling, flow forming etc in various alloys [11-16]. 
 
3. Experimental procedure 

Work Piece Material. The work piece material selected for investigation was the cast 
nitrogen alloyed DSS ASTM A 995 grade 5A with the chemical composition as shown in 
Table 1. The mechanical properties of the material investigated are given in Table 2.  
 
Table 1. Chemical composition of ASTM A 995 grade 5A DSS (Wt %) 

C Si Mn S P Cr Ni Mo N Fe 
0.028 0.67 0.87 0.005 0.028 25.10 6.63 4.16 0.17 Bal 

 
Table 2. Mechanical properties of ASTM A 995 grade 5A DSS 

Tensile Strength (MPa) Yield Strength (MPa) Elongation (%) Hardness 
(BHN) 

741 546 32.2 223 
 

Machining process. The turning tests are conducted on a Kirloskar Turn master-35 
Lathe with a power rating of 3HP. The power rating of the variable feed motor is 1HP. The 
variable speed and feed controller are used to adjust the speed and feed rates. The diameter 
and length of the cylindrical work piece used in the turning experiments are 80 mm and 
300 mm, respectively. 

The cutting tools used are carbide inserts (Taegu Tec make) coated with TiC and TiCN 
with a specification of SNMG 120408 MT TT5100. The inserts are clamped on a pin and hole 

64 D. Philip Selvaraj



type tool holder (Taegu Tec make) with a specification of PSBNR 2525M12. The tool holder 
is shown in Fig. 1. The basic forms and geometries of the tool insert are shown in Fig. 2. The 
dimensions of the inserts are given in mm. Surface roughness was measured using a portable 
TIME surface roughness tester (TR100). A cut-off length of 2.5 mm was used for taking the 
surface roughness measurements. The experiments were conducted without the application of 
cutting fluid (dry turning).  

 

 
 

Fig. 1. Tool holder 
 

 
l = 12.7, d = 12.7, t = 4.76 and R = 0.8  

 
Fig. 2. Turning tool insert 

 
Plan of experiments. There are several parameters that could be considered for 

machining of a particular material in turning operation. However, the review of literature 
shows that cutting speed, feed rate and depth of cut are the most significant cutting parameters 
to control the turning process. Hence in the present study cutting speed, feed rate and depth of 
cut are selected as the machining parameters while the other parameters such as nose radius 
and tool angles are kept as constant [11, 17, 18]. For 3 levels and 3 factor experiments, the 
turning tests are planned using the Taguchi’s L9 OA. For turning DSS material using carbide 
cutting tool, the cutting speed range is 80-120 m/min as per the standard published by 
International Molybdenum Association (IMOA 1999). Based on the tool manufacturer 
recommendation, preliminary experiments are conducted and feasible range of feed rate (0.04 
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to 0.12 mm/rev) and depth of cut (0.4 to 1.2 mm) are selected for the present study. The 
experiments are conducted at three different cutting speeds (80, 100 and 120 m/min) with 
three different feed rates (0.04, 0.08 and 0.12 mm/rev) and three different depth of cuts (0.4, 
0.8 and 1.2 mm). The cutting parameters and their levels in dry turning operation are 
indicated in Table 3. The experimental layout using L9 OA for dry turning is shown in 
Table 4. 
 
Table 3. Cutting parameters and their levels in dry turning operation 
Symbol Cutting parameters Level 1 Level 2 Level 3 

V Cutting speed (m/min) 80 100 120 
F Feed rate (mm/rev) 0.04 0.08 0.12 
D Depth of cut (mm) 0.4 0.8 1.2 

 
Table 4. Experimental layout using L9 OA for dry turning operation 

Experimental number 
Cutting parameter level 

V F D 
1 1 1 1 
2 1 2 2 
3 1 3 3 
4 2 1 2 
5 2 2 3 
6 2 3 1 
7 3 1 3 
8 3 2 1 
9 3 3 2 

 
4. Analysis of Experimental Results 
The experiments are conducted according to a 3-level and 3-factor L9 OA. The experimental 
results for surface roughness during dry turning of 5A grade DSS is given in Table 5. The 
experimental results are analyzed to find out the main effects and their difference between 
level 1 and 2, level 2 and 3 and level 3 and 1 of the input parameters on the surface roughness. 
In the present study, Taguchi analysis is conducted using average-of-results methodology. 
Design of experiment software Qualitek-4 is used for this analysis. 

In order to calculate the main effects and their differences, first the overall mean of the 
surface roughness is calculated by using the equation (1) discussed by Phadke [19].  
Mean Ra = 1

9
∑ Ra9
i=1 =  1.249 µm. (1) 

The main effect of cutting speed, V at level 1 (i.e., = 80 m/min), on surface roughness is 
calculated by using the Equation (2) discussed by Phadke [19]. 
Mean Ra for V at level 1 = Ra1+Ra2+Ra3

3
=  1.293 µm. (2) 
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Table 5. Experimental results for surface roughness during dry turning operation 
Exp. No. Parameter level Ra (μm) 

V F D 
1 1 1 1 1.18 
2 1 2 2 1.29 
3 1 3 3 1.41 
4 2 1 2 1.12 
5 2 2 3 1.21 
6 2 3 1 1.24 
7 3 1 3 1.22 
8 3 2 1 1.23 
9 3 3 2 1.34 

 
 The main effects and their difference between levels associated with the surface 
roughness of 5A grade DSS during dry turning operation is given in Table 6.  
 
Table 6. Main effects and their differences on the surface roughness in dry turning operation 

Factors 
Level 1 

(L1) 
Level 2 

(L2) 
Level 3 

(L3) 
Difference between levels 

L2-L1 L3-L1 L3-L2 
V (mm/min) 1.293 1.189 1.263 -0.104 -0.030 0.073 
F(mm/rev) 1.173 1.243 1.330 0.070 0.157 0.086 
D (mm) 1.216 1.250 1.279 0.034 0.062 0.028 
 

During dry turning of 5A grade DSS, the change of cutting speed from 80 to100 m/min 
decreases the main effects of surface roughness from a mean value of 1.293 to 1.189 µm. The 
change of cutting speed from 100 to 120 m/min increases the main effects of surface 
roughness from a mean value of 1.189 to 1.263 µm. Generally surface finish increases with 
increase of cutting speed. At lower cutting speed (80 m/min), surface finish is poor due to 
built-up edge formation tendency.  When the cutting speed is increased from 80 to 
100 m/min, the built-up edge size starts decreasing and disappears owing to increased tool 
temperature. However, as the cutting speed increases from 100 to 120 m/min, the tool 
temperature increased and softened the tool materials. Hence abrasive, adhesive and diffusive 
wear are occurred in the tool. Hence, at higher cutting speed, surface finish is reduced due to 
the tool wear [9, 20]. Therefore, medium cutting speed (100 m/min) is the optimal cutting 
speed which gives better surface finish in the present work. The change of feed rate from 0.04 
to 0.08 mm/rev increases the main effects of surface roughness from a mean value of 1.173 to 
1.243 µm. The change of feed rate from 0.08 to 0.12 mm/rev increases the main effects of 
surface roughness from a mean value of 1.243 to 1.330 µm. The change of depth of cut from 
0.4 to 0.8 mm increases the main effects of surface roughness from a mean value of 1.216 to 
1.250 µm. The change of depth of cut from 0.8 to 1.2 mm increases the main effects of 
surface roughness from a mean value of 1.250 to 1.279 µm. The surface roughness value 
increases with increase in feed rate and depth of cut. As the feed rate and depth of cut is 
increased, the area of contact between tool and work and the volume of material removed by 
the tool increases. Hence cutting force increases which leads to increase in surface roughness. 

The main effects and their difference between levels of the cutting parameters on the 
surface roughness of 5A grade DSS during dry turning operation is shown in Fig. 3. The 
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relative slopes of linear graphs indicate significance of the cutting parameters [15]. Here the 
slope of the line showing the influence of the feed rate is higher compared to the slope of the 
cutting speed and depth of cut. Hence, the feed rate is the most significant cutting parameter 
for surface roughness followed by the cutting speed and the depth of cut. The lowest main 
effect for surface roughness is obtained when the cutting speed is at level 2, feed rate at 
level 1 and depth of cut at level 1. Therefore the optimal cutting parameters for surface 
roughness are the cutting speed at level 2 (100 m/min), the feed rate at level 1 (0.04 mm/rev) 
and depth of cut at level 1 (0.4 mm). 
 

 
Fig. 3. Main effects of the design parameters on surface roughness during dry turning 

operation 
 

At lower cutting speed, the built-up edge formation tendency is more. Therefore, the 
cutting speed has more influence on the surface roughness at lower cutting speed. At higher 
cutting speed, the built-up edge formation tendency is decreased and disappeared. Therefore, 
the cutting speed has less influence on the surface roughness at higher cutting speed. 

The average surface roughness, Ra is given by the following equation discussed by 
Juneja et al. [21]. 
Average surface roughness, Ra = 0.2566 f2

rn
. (3) 

Here, f is the feed rate in mm/rev and rn is the nose radius in mm.  
In the present work nose radius (rn) is kept as constant. Hence, from the equation (3) 

surface roughness depends only on feed rate. The equation (3) does not consider the effects of 
cutting speed and depth of cut. Hence, this equation does not give correct results in practical 
applications. Basically, surface roughness is correlated strongly with machining parameters 
such as cutting speed, feed rate and depth of cut in turning operation. Hence, for more 
accurate results surface roughness model is developed by researchers using regression method 
and Response surface methodology (RSM). 

The results of the ANOVA for the surface roughness of 5A grade DSS in dry turning 
operation is given in Table 7. It can be observed that the feed rate is the most significant 
cutting parameter affecting the surface roughness in dry turning operation of DSS. The 
contribution order of the cutting parameters for affecting the surface roughness is feed rate, 
cutting speed and then depth of cut. ANOVA results show that the feed rate, cutting speed and 
depth of cut affect the surface roughness by about 61%, 28% and 10%, respectively.  
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Table.7 ANOVA results for surface roughness during dry turning operation 
Cutting Parameter DOF SS MS F-Ratio Contribution (%) 

V 2 0.016 0.008 107.761 27.95 
F 2 0.036 0.018 234.897 61.24 
D 2 0.006 0.003 32.278 9.76 
Error 2 0.002 0.001  1.05 
Total  8 0.060   100 
 
Table.8 Optimum condition for minimum surface roughness during dry turning operation 

Factor Level description Level Contribution 

V 100 2 -0.059 

F 0.04 1 -0.076 

D 0.4 1 -0.033 

 
Table 8 gives the optimum cutting conditions for achieving minimum surface roughness 

for 5A grade DSS during dry turning operation. It reveals that for optimal surface roughness, 
the cutting speed should be at level 2, the feed rate should be at level 1 and the depth of cut 
should be at level 1. The total contribution from the three input parameters is -0.168. It 
provides the contribution that a parameter has made to improve the expected response. The 
current grand average of performance is 1.249 µm. It is the overall mean of all trials. 
Expected surface roughness value at optimum condition is 1.08 µm. Experimental surface 
roughness value at optimum condition is 1.03 µm. 
 
5. Conclusions 
The Taguchi technique was applied to find the optimal process parameters of nitrogen alloyed 
duplex stainless steel during dry turning process. The variables affecting the surface 
roughness according to their relative significance were the feed rate, the cutting speed and the 
depth of cut. 

The ANOVA results revealed that the feed rate, the cutting speed and the depth of cut 
were affecting the surface roughness by about 61%, 28% and 10%, respectively. The 
optimum surface roughness was obtained when the cutting speed was at 100 m/min, the feed 
rate at 0.04 mm/rev and the depth of cut at 0.4 mm. It was found that the optimum levels of 
cutting parameters ensured significant improvement in the surface finish. 
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Abstract. It is shown that a strong Coulomb and exchange interactions between π electrons in 
a fullerene molecule lead to the localization of these electrons, quantization of their energies, 
and a highly correlated state manifesting itself in the formation of electron crystals. In this 
approximation the fullerene molecule is a nanosize quantum system consisting of a positively 
charged rolled-up carbon backbone surrounded by three electron crystals: (i) two crystals 
formed by π electrons in the 2 pz state that participate in the π bond formation through the 
resonance of structures and are located on the convex and concave sides of the molecule, and 
(ii) the crystal formed by pairs of π* electrons excited into the 2pz 3s state and participating in 
the formation of nonresonant π* bonds. The chemical activity and physical properties of such 
a system are determined by the crystal formed by electron pairs.  
Keywords: fullerenes, highly correlated electron state, electron crystals, nanosize quantum 
system 
 
 
1.Introduction 
The π electron state in the fullerene molecule is typically considered in the approximation of 
weakly interacting particles and is characterized by a set of molecular energy levels for 
π electrons near EF.  

However, it is difficult to explain a number of rather unusual experimentally observed 
properties of the molecule in this approach. First of all, this concerns the molecule chemical 
activity. In contrast to benzene which consists of one carbon hexagon and is characterized by 
a negative electron affinity (-1.1eV), a fullerene molecule containing 20 hexagons shows a 
positive electron affinity (+2.7eV) [1]. As a consequence, the molecule is capable of 
accepting up to 12 additional electrons (without noticeably changing its icosahedral shape), 
but hardly loses electrons [2, 3].  

In addition, the molecule demonstrates a pronounced selectivity of attachment sites [4], 
a high polarizability [5], and the ability to pass into an excited state [6]. The molecule is also 
characterized by a complex multistage ionization process when exposed to a laser radiation. 
This process is often accompanied by the formation of a short-lived triplet state [7], delayed 
ionization [8], and fragmentation of the molecule through the loss of neutral  
С2 molecules [8, 9]. Besides, the absorption of one energy quantum often results in a 
simultaneous emission of two electrons [10].  

It is also difficult to explain: (i) the rotation of molecules when they come closer to each 
other (a disordered rotation at high temperatures and a synchronous rotation at low 
temperatures) [11, 12]; (ii) excitation of Ridberg states [13]; (iii) a considerable scatter in the 
lengths of bonds between carbon atoms observed by neutron diffraction [14]. 

The attempts to explain these experimental facts led to the assumption that strong 
electron correlations can exist in the molecule [10]. The assumption of the presence of strong 
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intramolecular interactions resulted also from the observation of superconductivity in doped 
solid fullerenes [15]. However, the character of the interactions still remains unclear.  

The hypothesis has recently been put forward [16] that the exchange and strong 
Coulomb interactions between π electrons in an atomically flat carbon monolayer (graphene) 
can lead to their strongly correlated state which manifests itself in the formation of electron 
crystals.  

Since the basis of the fullerene molecule is a carbon monolayer with π electrons that 
perform the same function of resonant π bonding as in a flat monolayer, it can be supposed 
that the state of π electrons in the molecule must be similar to their state in the monolayer. 

The goal of our study was to show that in the approximation of strongly interacting π 
electrons the fullerene molecule, as well as the flat carbon monolayer, is a quantum system 
with π electrons that form electron crystals. 

 
2. Fullerene molecule in the approximation of strongly interacting π electrons  
It was shown in [16] that under the influence of exchange and strong Coulomb interactions 
between the π electrons these electrons are localized on carbon atoms and form a spin-
polarized electron crystal on each side of the carbon backbone. It would seem that exactly the 
same state of π electrons and on the same terms as in [16] could also be expected in a 
fullerene molecule, since the molecule is formed by the rolled-up carbon monolayer. 
However, as also shown in [16], the process of rolling up of the carbon backbone under the 
condition of a strong interaction between electrons is accompanied by a change in the state of 
a part of π electrons: they are pushed out from the π electron crystal plane to the convex side 
of the curved carbon backbone and are excited from the 2рz state into the hybrid 2рz3s one. 
The 2рz3s state is more extended in space and is higher in energy. The carbon atoms to which 
such excited electrons belong pass into a new hybridization state sp2 + 2pz3s (see Fig. 1).  

 

 
Fig. 1. Two states of hybridization of carbon atom in the fullerene molecule: sp2+2pz (a) and 

sp2+2pz3s (b) 
 

According to [16], the ordering of such excited carbon atoms in the lattice can be 
accompanied by the formation of nonresonant π bonds between neighboring atoms, i.e., the 
formation of pairs by the excited π electrons, and also the formation of quasi-1D crystals from 
these pairs. By analogy, it can be expected that quasi-1D π-electron pair crystals will be 
formed on the convex side of the fullerene molecule whose carbon backbone is rolled-up to a 
truncated icosahedron. 

As for the two spin-polarized π-electron crystals in the 2рz state, mentioned above, they 
will have a quasi-spherical shape in the fullerene molecule since they will repeat the shape of 
the carbon backbone. Under a strong Coulomb interaction between π-electrons the ratio of 
squares of radii for these quasi-spherical crystals will be determined by the equality of 
electron densities on both sides of the rolled-up backbone. In order to achieve this equality of 
densities, a part of π electrons of the internal electron crystal must pass to the convex side of 
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the molecule and must be excited into the hybrid 2pz 3s state (Fig. 1). Thus, the number of π 
electrons on two sides of the carbon backbone of the molecule will be different. 

It is possible to find the number of such excited π electrons and their location in the 
fullerene molecule by constructing resonant structures of the Kekule type. It is known that the 
number of such structures for the fullerene molecule is very high. However, if we take into 
account the spin ordering of π electrons which arises due to the exchange interaction between 
them, the number of such resonant structures for the molecule decreases to nine. One of such 
structures is presented in Fig. 2a, where the projection diagram of the molecule is shown. 

 

 

 
 

Fig. 2. Projection diagram of fullerene molecule: a) One of resonance structures of the 
molecule. Black circles show the carbon atoms the π electrons of which participate in 
resonant π bonding. Open circles are carbon atoms the π* electrons of which do not 

participate in resonant π bonding. Double and single lines denote double (σ + π) and single 
bonds (σ) of the resonant bond state, respectively. Heavy lines correspond to double bonds 
between excited carbon atoms (σ + π*). Dashed lines are single bonds between excited and 

unexcited atoms (σ). The arrows show the electron spin direction.  b) Schematic 
representation of distortions of hexagons and pentagons, and the arrangement of quasi-1D 

crystal formed by π* electron pairs. Single lines correspond to resonant bonds, dashed lines 
are single σ bonds, and heavy lines show double nonresonant bonds (σ + π*) 

 
The construction of such resonant structures which differ only in the arrangement of 

double and single bonds proved to be surprisingly informative. It allowed us to determine the 
multiplicity and, hence, the length of each of 90 bonds and their location in the molecule. The 
bond multiplicity was calculated from the frequency of occurrence of double and single bonds 
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in nine resonant structures.  The bond length was determined by extrapolating the known 
bond lengths in benzene and graphite under the assumption of a linear dependence of the 
length on multiplicity. Certainly, the accuracy of determining the bond length in this way is 
not high, but, as will be seen below, the accurate estimation of the bond lengths was not as 
important as revealing of the fact that there is a scatter in the bond lengths. The calculated 
scatter in the lengths and multiplicities is presented in Table 1.  

 
Table 1. Scatter in lengths and multiplicities of bonds 

Bond multiplicity Number of bonds Bond length, Å 
1.0 24 1.52 

1.14 18 1.48 

1.29 12 1.43 

1.50 12 1.41 
1.57 12 1.37 

1.85 6 1.35 

2.00 6 1.33 

  
It can be seen that most of the bonds (60 of 90) are characterized by different non-

integral multiplicities, which points, in particular, to a non-equivalence of positions of carbon 
atoms in the fullerene molecule. The remaining 30 bonds proved to be either double bonds 
with a nonresonant π bond (6) or single bonds (24). The scatter in the bond lengths also points 
to distortions of all hexagons and pentagons, except for two hexagons located at opposite 
points of the molecule. Their planes are parallel to each other and perpendicular to the same 
axis passing through their centers. These two undistorted hexagons with a bond multiplicity 
of ~1.30 and a bond length of ~1.43 Å form as if two poles of the fullerene molecule. In 
Fig. 2a, b these hexagons are developed on the plane and form the lines that limit the 
projection diagram of the molecule from above and below.  

The presence of distorted hexagons and pentagons means that the fullerene molecule is 
not a regular truncated icosahedron. It can be seen from Fig. 2b that double and single bonds, 
i.e., the shortest and longest bonds, are located in the equatorial region relative to the 
molecule poles which are formed by two undistorted hexagons. It can also be seen that each 
distorted pentagon contains two single bonds belonging to one and the same carbon atom. 
This atom differs from the neighboring ones: the spin direction of its π electron cannot be 
determined because the spin directions of the neighboring electrons are oppositely directed 
(Fig. 3). In other words, the π electron of this atom cannot be spin-ordered relative to the π 
electrons of neighboring atoms and, hence, cannot take part in resonant π bonding. 

It is this π electron that will be pushed out by the Coulomb interaction with the 
remaining π electrons of spin-polarized electron crystals and will be excited into the hybrid 
2pz3s state (Fig. 1). There will be 12 of such excited π electrons. Under the influence of the 
same Coulomb repulsion, each excited π electron will be forced to occupy only one of two 
hybrid 2pz3s states located on the convex side of the molecule. As a result, the total number of 
electrons on the convex side of the molecule will exceed by 12 electrons their number on the 
concave side, i.e., there will be 36 electrons on the convex side and 24 electrons on the 
concave one. In all probability, this difference will ensure the equality of electron densities on 
both sides of the rolled-up carbon backbone under the conditions of a strong Coulomb 
interaction between electrons. 
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Fig. 3. Fragment of projection diagram of fullerene molecule. Impossibility of spin ordering 
of π electrons of carbon atoms (С1 and С2) at pentagon apexes is demonstrated. π* electrons 

can form only a π* bond between these atoms 
 

In order to distinguish between the excited π electrons and the π electrons forming the 
resonant π bonds, we will denote them as π* electrons, and the bonds they form will be 
denoted as π* bonds. 

The ordered arrangement of distorted pentagons and hexagons leads to an ordered 
arrangement of π* bonds between excited carbon atoms and, hence, an ordered arrangement 
of π* electron pairs. As a result, a quasi-1D crystal from π* electron pairs is formed in the 
equatorial region of the molecule. Such a crystal consists of six electron pairs and has a 
peculiar zigzag-like shape (Fig. 2b).  

The π*-electron pairs of this quasi-1D crystal form negatively charged "protrusions" on 
the molecule surface that increase the diameter of the fullerene molecule in its equatorial 
region. This unscreened π*-electron pair crystal, along with the unscreened π-electron crystal 
and unscreened (in some places) carbon ions, make the electric field around the molecule 
highly inhomogeneous. 

The crystallization of all π and π* electrons which are in definite quantum states (2pz 
and 2pz3s, respectively) makes the fullerene molecule a nanoscale quantum system of 
~10 Å in diameter. The system consists of a positively charged rolled-up carbon backbone 
(including 12 excited carbon atoms) and the three electron crystals considered above. In 
contrast to the extremely unstable quantum system of a flat carbon monolayer [16], the 
quantum system of the fullerene molecule is stable. This stability is first of all due to the 
presence of the π* electron pair crystal on the convex surface of the fullerene molecule. This 
crystal (i) lowers the free energy of the system by the amount of energy of π* bonds, (ii) 
ensures the equality of electron densities on both sides of the rolled-up carbon backbone, (iii) 
partly screens the underlying π-electron crystal from external influences, (iv) converts the 
molecule from a radical to a non-radical (by pairing π* electrons). 

 
3. On properties of a nanosize quantum fullerene system 
The consideration of the quantum fullerene system structure described above and the state of 
π electrons in it leads to some conclusions on its chemical and physical properties. Below we 
compare the properties predicted by our model with the properties observed experimentally.  

As shown above, the carbon backbone rolling up under the conditions of exchange and 
Coulomb interactions between π electrons is accompanied by distortions of hexagons and 
pentagons and, hence, a significant scatter in bond lengths. Neutron scattering experiments 
with crystalline fullerene at low temperatures [14] confirm the presence of a scatter in the 
bond lengths. It turns out that the lengths of the bonds shared by two hexagons and hexagon-
pentagon lie in the ranges 1.366-1.412 Å and 1.420-1.487 Å, respectively. These values 
somewhat differ from the calculated ones (see Table 1). However, an exact coincidence in the 
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bond lengths cannot be expected because, on the one hand, the calculation of the bond length 
from its multiplicity is inaccurate and, on the other hand, the accuracy of the neutron 
scattering data can be affected by a permanent rotation of molecules relative to each other in 
the crystalline phase. 

It is fairly obvious that the chemical activity of the quantum system should be 
determined by the electron crystal formed by pairs of π* electrons which are in the 2pz3s state 
and are the farthest from the carbon backbone and less tightly bound to it than the π electrons 
in the 2pz state (the difference in bond energies depends on the energy of the 3s state for 
carbon atom and is likely to be several electron volts). Since the hybrid 2pz3s states of excited 
atoms are occupied incompletely, the electron affinity of this system must be positive. 
Moreover, in accordance with the number of free hybrid states on the convex side of the 
molecule, the system can be capable of accepting at least 12 more electrons. This conclusion 
agrees well with the experimental observation of a positive electron affinity [1] and the 
attachment of 12 electrons not accompanied by noticeable changes in the molecule shape [2]. 

The presence of π* electrons must lead to a decrease in the work function of electron at 
the sites of their localization and also to a nonhomogeneity of the work function on the 
molecule surface. The location of π* electrons only in the equatorial region of the molecule 
must result in a highly nonhomogeneous polarizability of the molecule and also the selectivity 
of attachment sites for other atoms. All these features were observed experimentally [4, 5]. 

Because of the presence of π*-electron pairs, simultaneous emission of two electrons of 
one pair can occur at absorption of one quantum of energy. In all probability, this was 
observed in [10] and is known as a double photoemission. 

Since π* electrons belong to excited carbon atoms which are strongly coupled to each 
other via double bonds (σ + π*) but are coupled much weaker to the carbon backbone (via 
single σ bonds) (Fig. 3), the molecule ionization can result in a simultaneous loss of two 
excited atoms. Perhaps that is why a molecule fragmentation with a loss of С2 was observed 
during its ionization [9]. 

In addition to the twelve 2pz3s states on the convex side of the molecule, there are 12 
completely unoccupied similar states on the concave side. Therefore, if an additional electron 
is accepted by the molecule, it can occupy one of free states, and then (in the case of π* bond 
rupture) triplet electron pair can appear in an excited carbon atom (in accordance with the 
Hund's rule for hybrid state filling). However, such a triplet state in the fullerene molecule 
will be extremely unstable due to a strong Coulomb repulsion of the accepted electron from 
the electron crystal formed by π electrons on the concave side of the molecule. Such 
instability of the triplet state can apparently explain the observation of a short-lived highly 
reactive triplet state that appeared during electron bombardment of a fullerene molecule [7]. 

A strong nonhomogeneity of the electric field on the surface of the quantum fullerene 
system can result in a Coulomb interaction between molecules as they approach each other, 
i.e., the so-called configuration forces which depend on the mutual arrangement of charges in 
neighboring molecules arise. Possibly, these forces can cause clustering of molecules and 
their rotation when they come nearer to each other, which was observed in [11, 12]. Besides, 
the Coulomb interaction between molecules must also promote the crystallization of 
molecules in the structures which are more typical of ionic crystals, which is also observed 
experimentally (fcc at room temperature and sc at low temperatures) [14].  

As for the magnetic properties of the quantum fullerene system in which there are no 
unpaired π electrons, the system can show only the diamagnetism associated with the orbital 
rotation of π electrons forming resonant bonds, like in a flat carbon monolayer [16]. However, 
the diamagnetic susceptibility of a fullerene molecule must be very weak because the 
curvature of the carbon backbone violates the parallelism of the planes of electron rotation 
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orbits which prevails in a flat monolayer [16]. A low diamagnetic susceptibility was observed 
experimentally in [17]. 

 
4. Conclusions  
It has been shown that in the approximation of strongly interacting π electrons the fullerene 
molecule С60 proves to be a nanoscale quantum system consisting of a positively charged 
rolled-up carbon backbone and three electron crystals with quantized energies. Two of these 
crystals consist of spin-polarized π electrons, have a quasi-spherical shape, and are located on 
opposite sides of the carbon backbone. The third crystal is quasi-1D, it consists of six pairs of 
π* electrons excited into the 2pz3s state and is located on the convex side of the molecule (it 
encircles the molecule in the equatorial region). This crystal, which is the farthest from the 
carbon backbone, is responsible for the chemical activity of the fullerene molecule and its 
physical properties, including stability. It has been shown that the chemical activity and the 
physical properties of such a quantum system are in good agreement with the experimental 
data obtained.  

The possibility to explain the set of available experimental data on the fullerene 
molecule properties demonstrated in this paper is a serious argument speaking in favor of the 
proposed approach. 
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Abstract. In this work, optical properties of a variety of boron host glasses with copper in 
relation to the lithium content from 0 to 25 % are studied. It is shown that with the increase of 
the lithium concentration the absorption band of Cu2+ increases. This fact is associated with 
the interaction of lithium ions in the melt with atmospheric oxygen. It is shown that the 
photoluminescence band shifts by more than 20 nm upon excitation at 320 nm with increasing 
lithium concentration. This is can be explained by the high splitting of the levels of Сu(I) 
under the action of lithium ions, and also with the formation of Cu+ -Cu+ dimers in the glass 
structure. 
Keywords: boron copper-containing glasses, lithium content, optical properties 
 
 
1. Introduction 
The development and investigation of new photonic materials for «down converters» is a new 
research trend that grows rapidly. These materials convert the UV solar radiation to visible 
radiation due their luminescence by UV radiation, which allows to improve efficiency of solar 
cell. Silicon solar cells are not susceptible to the UV radiation. Thus, the converting of 
UV radiation to visible radiation increases the absorption of solar cell and consequence its 
efficiency. 

There are several types of glass hosts that can be used for down converters. First one, 
there are borate-barium glasses with ions of rare earth [1]. These glasses production is 
expensive since the cost of rare earth reagents. Another one type of glass compositions are 
silicate glass with ions and clusters of silver [2]. The melt temperatures of such glasses are 
high (1550°С), the requirements for chemical purity of reagents are also high; in addition; 
cerium ions are present in their composition. Thus, glasses with ions and clusters of silver are 
also not cheap. 

In this work, boron glasses with copper ions are proposed as an alternative to reviewed 
glasses [3-5]. These glasses have not expensive components, and their synthesis temperatures 
are 1300-1400°C. In these glasses basic luminescent components are copper ions and clusters. 
As shown in [6], such type of glasses can be efficient converters of solar UV radiation. 

We should say a few words about the states of copper ions in glass. Copper ions can be 
in three states: atomic (Cu0), Сu(I), Cu(II). When the oxidation-reduction potential of the melt 
is shifted toward the reduction, an atomic copper [7] occurs in the glass. At the shift towards 
oxidation the bivalent Cu(II) will be released. Ions of bivalent copper have an absorption band 
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at 800 nm. The main factor determining in which state will be the copper ions in the glass is 
the concentration of oxygen in the melt [8, 9].  

Let us consider the luminescent properties of copper ions and clusters more in detail. 
The absorption bands of Cu+ ions for different glass hosts can range from 250 to 300 nm [10], 
and the photoluminescence from 460 to 475 nm, 485-500 nm [11]. 

It has reason to suppose that the blue luminescence of 485-500 nm corresponds to a 
transition from the lower triplet energy level 3Eg" formed by the splitting of the 3Eg level due 
to the tetragonal stretching of the oxygen octahedron [11]. The change in the level splitting of 
the 3Eg level (12) determines the energy of the 3Eg level, as a result, the blue luminescence 
band shifts. The 540-nm luminescence band is referred to the Cu +-Cu+ dimers (13, 14), as 
well as to the Cu+ (15) ions in a planar environment. 

In [16] it is shown that lithium in potassium-alumina borate glasses promotes the 
crystallization and the separation of nanoparticles. Such processes occur at temperatures 
above the glass transition temperature. As concerns clusters, there may be a separation of 
copper clusters during the primary cooling of the glass after synthesis. S.A. Stepanov in his 
work [17] notes that for each type of glass host the pore size is different, that determines the 
size of the separated clusters [17]. 

In addition, according to the electronegativity table, lithium ions have a high field 
strength in comparison with sodium and potassium ions. That can lead to the destruction of 
covalent bonds in the glass, to the formation of non-bridging oxygens, to the deformation of 
structural groups in the glass, and thus to change the environment of copper ions. The changes 
of copper environment contributes to the changes of character of the copper ions 
luminescence and to the formation of copper clusters. 

 
2. Experimental 
In this work, glasses obtained by standard melting methods in a quartz crucible were 
investigated. The glasses were melt at 1400°C for 2 hours with a quartz stirrer mixing. 
Further, the glasses were cooled in a muffle from 400 °C to room temperature for 12 hours. 
The glass composition was (25-x)K2O-xLi2O-50B2O3-25Al2O3 (molar %). There were 
additions in excess of 100% of 0.5 Cu2O and four weight percent of ground coal as a reducing 
agent. The content of lithium ions was varied from 0 to 25% in steps of 5%. 

For further measurements from synthesized glasses, flat-parallel samples were made. 
The absorption spectra from 300 to 800 nm were measured by the Avaspec 2048 spectrometer 
complex, photoluminescence spectra were measured on the same complex upon excitation of 
320 nm. The quantum yield was measured by the Hamamatsu C9920-02G quantum yield 
measuring device at the same excitation wavelength. 

 
3. Discussion 
The absorption spectra of the samples are shown in Fig. 1. As can be seen, depending on the 
concentration of lithium, the maximum of absorption in the visible range has the glass, in 
which the potassium is completely replaced by lithium. It is seen from the Fig. 1 that there is 
an absorption band at 800 nm due to the presence of bivalent copper in the glass.With an 
increase in the potassium concentration, the absorption band decreases, which negates the 
green color of the glass, due to the transition of ions to the Cu + state. As can be seen all 
synthesized glasses have a short-wavelength absorption edge at 350 nm, which is typical for 
boron glasses with copper [8, 9]. The short-wavelength absorption edge can be coupled with 
the presence of copper ions in the state of Cu+, as well as Cu+ -Cu+ dimers [10]. 

Also shown in the figure 2 (left), that at the concentration of 5% of lithium oxide, the 
absorption band at 600 nm exists, as consequence of copper nanocrystals plasmon absorption. 
According to [18], it is possible to shift the absorption toward larger wavelengths with an 
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increase in the refractive index of the surrounding medium. The absorption peak with several 
absorption bands is possible in the presence of elliptical nanoparticles or particles with 
dimensions larger than 50 nm. Under this work, this effect was not investigated in details. It 
should be noted that there is an anomalous formation of these copper nanoparticles just at the 
announced concentration of lithium ions. One can suppose that the presence of small 
concentration of lithium contributes to an additional increase of ability of nanoparticle 
formation in glass, that is, liquation. In this case, lithium exists as a liquation agent [16] rather 
than the component of a glass net. 
 

 
 

Fig. 1. Optical absorption spectra of glass samples with various concentration of lithium 
oxide (digits) 

 
In Figure 2 (right), the dependence of the absorption bands of bivalent copper for 

glasses with different concentrations of lithium ions is shown. As can be seen, the dependence 
is practically linear, consequently with the increase of lithium concentration the intensity of 
the absorption band of Cu2+ increases. For obvious reasons, there are no results for the glass 
composition with 5 % of lithium are shown since in this case the plasmon absorption band of 
copper nanoparticles also appears. Thus, one can say that with an unchanged concentration of 
the reducing agent (coal) and copper in the glass compositions, an increase in the 
concentration the lithium content occurs an increase in the concentration of copper ions (II). 

This can be explained by the high chemical reactivity of the lithium. In a melt during 
the glass synthesis, lithium easy interacts with oxygen from the atmosphere above the melt, 
and thereby displaces the oxidation-reduction equilibrium in the melt toward the oxidation, 
and therefore also increases the content of bivalent copper in the melt. 

The photoluminescence spectra of the samples are shown in Fig. 3. It should be taken 
into account that these spectra only the structure of the bands should be determined. It can be 
seen that all the bands have a half-width of 125 nm and have one maximum. The dependence 
of the magnitude of the maximum on the concentration of lithium ions is shown  
in Fig. 4 (left). 

 

80 P.S. Shirshnev, Zh.G. Snezhnaia, E.V. Shirshneva-Vaschenko, A.E. Romanov, V.E. Bougrov



  
 

Fig. 2. Opticalabsorption spectra of a glass with 5 % Li2O (left) and dependence of 
intensity of optical absorption Cu(II) from the Li2O concentration (right) 

 

 
 

Fig. 3. Photoluminescence emission spectra of glass samples with various concentration of 
lithium oxide (digits) 

 
As can be seen from the luminescence bands, with a change in the lithium 

concentration, the maximum of the luminescence intensity shifts by 30 nm from 480 nm to 
510 nm. According to the data we can suppose [6] that the peak at 480 nm in the spectrum 
corresponds to the luminescence of Cu+. For the abnormal shift more than 30 nm of the 
luminescence maximum in spectrum both the Cu+-Cu+ dimer bands and the above-mentioned 
tetragonal stretching of the oxygen octahedron under the action of lithium ions [11] can be 
responsible. Therefore, in an increase of lithium ions concentration occurs to an increase in 
the concentration of copper dimers and to the splitting of the levels of univalent copper. 

Figure 4 (right) shows the dependence of the quantum yield on the concentration of 
lithium ions in the glass. It can be seen that the quantum yield decreases by more than 3 times. 
It can be explained by increasing of the absorption band of bivalent copper ions with the 
concentration of lithium increases. In this case, part of the copper ions, which could be 
univalent, became divalent, thereby reducing the number of luminescent centers. The 
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absorption centers of Cu2+ block the luminescence of the remaining univalent copper ions. 
Owing to these two factors, shown above, the quantum yield of glasses decreases as the 
concentration of lithium ions increases. 

Thus, we can detail the basic results of this work: 
1. There is an increase in the concentration of bivalent copper in glass at the transition from 
lithium to potassium. 
2. The quantum yield decreases at the transition from potassium to lithium. 
3. The maximum of the luminescence spectra changes by 30 nm - a shift to a longer 
wavelength occurs. 
4. An increase in the concentration of lithium ions in boron glass leads to the transition of Cu+ 
ions to the state of Cu+-Cu+ dimers, as well as to anomalous stretching of bonds of oxygen-
containing octahedral groups, into which univalent copper ions enter. 
 

  
 

Fig. 4. Photoluminescence peak wavelength dependence from lithium oxide concentration 
(left) and quantum yield dependence from lithium oxide concentration (right) 

 
4. Conclusions 
With an increase in the concentration of lithium in the borate glass with copper, the 
concentration of bivalent copper ions increases, and the luminescence band shifts from 480 to 
510 nm. We suppose that lithium ions contribute to an increase in the content of oxygen 
groups in the melt, and contribute to a high degree of splitting of the energy levels of 
univalent copper ions in the glass and, possibly, to the formation of Cu+-Cu+ dimers. 
 
Acknowledgements. This work was supported by the Russian Science Foundation (Grant no. 
17-72-10216). 
 
References 
[1] http://spie.org/newsroom/4235-fluorescent-borate-glass-enhances-cadmium-telluride-

solar-cells?highlight=x2358&SSO=1 
[2] Y.M. Sgibnev, N.V. Nikonorov, A.I. Ignatiev // Journal of Luminescence 188 (2017) 172.  
[3] A.N. Babkina, N.V. Nikonorov, A.I. Sidorov, P.S. Shirshnev, T.A. Shakhverdov // Optics 

and Spectroscopy 116 (2014) 84.  
[4] A.N. Babkina, A.I. Sidorov, P.S. Shirshnev // Optics and Spectroscopy 116 (2014) 593. 
[5] A.N. Babkina, N.V. Nikonorov, T.A. Shakhverdov, P.S. Shirshnev, A.I. Sidorov // Optical 

Materials 36 (2014) 773. 
[6] B. Moine, C. Pedrini, E. Duloisy, P. Boutinaud, C. Parent, G. Le Flem // Journal de 

Physique IV France 01(C7) (1991) 289. 
[7] X. Yang, J. Xu, Z. Li // Journal of Chinese ceramic society 36 (2018) 990.  

82 P.S. Shirshnev, Zh.G. Snezhnaia, E.V. Shirshneva-Vaschenko, A.E. Romanov, V.E. Bougrov

http://spie.org/newsroom/4235-fluorescent-borate-glass-enhances-cadmium-telluride-solar-cells?highlight=x2358&SSO=1
http://spie.org/newsroom/4235-fluorescent-borate-glass-enhances-cadmium-telluride-solar-cells?highlight=x2358&SSO=1


[8] P.S. Shirshnev, N.V. Nikonorov, D.I. Sobolev, A.A. Kim, I.M. Kislyakov, S.S. Povarov, 
I.M. Belousova // Journal of Optical Technology 84 (2017) 705. 

[9] P. Shirshnev, V. Tsekhomskiy, N. Nikonorov, Glassceramic optical material with abrupt 
absorption edge in uv-spectrum and method of producing said material (RU 2466107C2, 
2010). 

[10] S. Lecoultre, A. Rydlo, C. Felix, J. Buttet, S. Glib, W. Harbich // Journal of Chemical 
Physics 134 (2011) 074303.  

[11] R. Debnath // Journal of Luminescence 43 (1989) 375. 
[12] A.W. Adamson, In: Advanced Inorganic Chemistry, ed. by F.A. Cotton and 

G. Wilkinson (ACS, 1963). 
[13] P. Boutinaud, C. Parent, G. Le Flem, C. Pedrini, B. Moine // Journal of Physics 

Condensed Matter 4(11) (1992) 3031. 
[14] J.D. Barrie, B. Dunn, G. Hollingsworth, J.I. Zink // The Journal of Physical Chemistry 93 

(1989) 3958. 
[15] J. Dedecek, Z. Sobalik, Z. Tvaruazkova, D. Kaucky, B. Wichterlova // The Journal of 

Physical Chemistry 99 (1995) 16327. 
[16] A.N. Babkina, A.D. Gorbachev, K.S. Zyryanova, N.V. Nikonorov, R.K. Nuryev, 

S.A. Stepanov // Optics and Spectroscopy 123(3) (2017) 369.  
[17] O.S. Ivanova, E.A. Petrakovskaya, R.D. Ivantsov, I.S. Édel'man, S.A. Stepanov, 

T.V. Zarubina // Journal of Applied Spectroscopy 73 (2006) 400. 
[18] S.A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business 

Media, 2007). 
 

Relation of the optical properties of boron copper-containing glasses on the concentration of lithium 83



 

 

EFFECT OF NON-HOMOGENEITY IN A MAGNETO ELECTRO 

ELASTIC PLATE OF POLYGONAL CROSS-SECTIONS 

R. Selvamani
1*

, G. Infant Sujitha
2
 

1
Department of Mathematics, Karunya Institute of Technology and Sciences , Coimbatore, Tamil Nadu, India. 

2
Department of Mathematics, Sri Krishna College of Technology, Coimbatore-641 114, Tamil Nadu, India 

*e-mail: selvam1729@gmail.com 

 

 

Abstract. The effect of non-homogeneity in a magneto electro elastic plate of polygonal cross 

sections is studied using the linear theory of elasticity. The wave equation of motion based on 

two-dimensional theory of elasticity is applied under the plane strain assumption of plate of 

polygonal shape, composed of non-homogeneous transversely isotropic material. The 

frequency equations are obtained by satisfying the irregular boundary conditions of the 

polygonal plate using Fourier expansion collocation method. The analytical results obtained 

in the physical domain have been computed numerically for Triangle, Square, Pentagon and 

Hexagonal plates. The results for stress, strain, displacements, induced electric and magnetic 

fields have been presented graphically.  

Keywords: magneto-electro elastic cylinder, solid with polygonal cross sections, Fourier 

expansion collocation method, stresses/vibration, transducers, sensors/actuators, 

MEMS/NEMS 

 

 

I. Introduction 

The three dimensional vibration in plates of polygonal cross section made of smart and 

intelligent materials has considerable importance for a long time. The electro-magneto-elastic 

materials exhibit a desirable coupling effect between electric and magnetic fields, which are 

useful in smart structure applications. These materials have the capacity to react 

corresponding response due to the external stimulation and impulse load. The advantages of 

non homogeneous material still remain the structural integrity than the conventional 

composite materials under severe conditions. The composite consisting of piezoelectric and 

piezomagnetic have found increasing application in engineering structures, particularly in 

smart/intelligent structure system. The magneto-electro-elastic materials are used as magnetic 

field probes, electric packing, acoustic, hydrophones, medical, ultrasonic image processing, 

sensors and actuators with the responsibility of magnetic-electro-mechanical energy 

conversion.  

Recently, many researchers have devoted their attention to the mechanics problems of 

transversely isotropic material connected with magneto-electro-elasticity. Ahmadi and 

Eskandari [1] investigated the vibration analysis of a rigid circular disk embedded in a 

transversely isotropic solid. Green’s functions of a surface-stiffened transversely isotropic 

half-space were developed by Eskandari and Ahmadi [2]. Ahmadi and Eskandari [3] studied 

the axisymmetric circular indentation of a half-space reinforced by a buried elastic thin film. 

Eskandari et al. [4] analyzed the time-harmonic response of a surface stiffened transversely 

isotropic half-space. Weaver et al. studied the transient elastic waves in a transversely 
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isotropic Plate, Haojiang et al. [5] investigated the free axisymmetric vibration of transversely 

isotropic piezoelectric circular plates 

Pan [6] and Pan and Heyliger [7] analyzed the three-dimensional behavior of 

magnetoelectroelastic laminates under simple support boundary conditions. An exact solution 

for magnetoelectroelastic laminates in cylindrical bending has also been obtained by Pan and 

Heyliger [8]. Pan and Han [9] studied the exact solution for functionally graded and layered 

magneto-electro-elastic plates. Feng and Pan [10] discussed the dynamic fracture behavior of 

an internal interfacial crack between two dissimilar magneto-electro-elastic plates. 

Buchanan [11] developed the free vibration of an infinite magneto-electro-elastic cylinder. 

Dai and Wang [12, 13] have studied thermo-electro-elastic transient responses in piezoelectric 

hollow structures and hollow cylinder subjected to complex loadings. Annigeri et al. [14 – 15] 

studied respectively, the free vibration of clamped-clamped magneto-electro-elastic 

cylindrical shells, free vibration behavior of multiphase and layered magneto-electro-elastic 

beam, free vibrations of simply supported layered and multiphase magneto-electro-elastic 

cylindrical shells. Gao and Noda [16] presented the thermal-induced interfacial cracking of 

magnetoelectroelastic materials. Hon et al. [17] analyzed a point heat source on the surface of 

a semi-infinite transversely isotropic electro-magneto-thermo-elastic material. The dynamic 

response of a heat conducting solid bar of polygonal cross section subjected to moving heat 

source is discussed by Selvamani [18] using the Fourier expansion collocation method 

(FECM).The wave propagation in a magneto-thermo elastic wave in a transversely isotropic 

cylindrical panel using the wave propagation approach were investigated by Ponnusamy and 

Selvamani [19]. Recently, Selvamani and Ponnusamy [20] have studied the wave propagation 

in a generalized piezothermoelastic rotating bar of circular cross-section using three-

dimensional linear theory of elasticity. 

Bin et al. [21] analyzed the wave propagation in non-homogeneous magneto-electro-

elastic plates. Chen et al. [22] worked on free vibration of non-homogeneous transversely 

isotropic magneto-electro-elastic plate. Chakraverty et al. [23] studied the flexural vibrations 

of non-homogeneous elliptic plates. Tanigawa [24] presented some basic thermoelastic 

problems for nonhomogeneous structural materials. Li [25] discussed the 

magnetoelectroelastic multi-inclusion and inhomogeneity problems and their applications in 

composite materials. Kong et al. [26] presented the thermo-magneto-dynamic stresses and 

perturbation of magnetic field vector in a non-homogeneous hollow cylinder. Ding et al. [27] 

and Hou et al. [28] presented an analytical solution to solve the transient responses of a 

special non-homogeneous pyroelectric hollow cylinder for piezothermoelastic axisymmetric 

plane strain dynamic problems. Ibrahim [29] provided a finite element method to solve the 

thermal shock problem in a non-homogeneous isotropic hollow cylinder with two relaxation 

times. 

In this paper, the effect of magnetic field and non-homogeneity in a piezoelectric plate 

of polygonal cross sections is studied using the linear theory of elasticity. The frequency 

equations are obtained by satisfying the irregular boundary conditions of the polygonal plate 

using Fourier expansion collocation method. The analytical results obtained in the physical 

domain have been computed and the numerically analyzed results for the stress, strain, 

displacements and induced electric and magnetic fields have been presented graphically.  

 

2. Formulation of the Problem 
We consider a homogeneous transversely isotropic magneto-electro-elastic plate of polygonal 

cross-sections as shown in Fig. 1. The system displacements and stresses are defined by the 

cylindrical coordinates r,   and z. The governing equations of motion of the electric and 

magnetic conduction in the absence of body force are taken from Selvamani and 

Ponnusamy [22] 
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The equation of electric conduction is given by: 
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The equation of Magnetic conduction is given by: 
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where , ,rr r     are the stress components, 11 12,c c and 66c  are elastic constants, 11 are the 

dielectric constants, 11  are the magnetic permeability coefficients, 31 33 15, ,e e e  are the 

piezoelectric material coefficients, 11m  are the magnetoelectric material coefficients,   is the 

density of the material, ,rD D  are the electric displacements, ,rB B  are the magnetic 

displacements components. The strain ije  are related to the displacements corresponding to 

the cylindrical coordinates are given by 

,
1

2

1

,
1

 ,









































r

v

r

vu

r
e

r

uv

r
e

r

u
e

r

rr









 (7) 

where u  and v  are the mechanical displacements along the radial and circumferential 

directions. 

The Electric field vector iE  is related to the electric potential E as: 

r

E
E

r


 


, 

1 E
E

r





 


. (8) 

Similarly, the magnetic field vector iH  is related to the magnetic potential H as 

r

H
H

r


 


, 

1
.

H
H

r





 


 (9) 

Substituting Eqs. (7) – (9) in Eqs. (1) – (6), we obtain the following stress displacement 

relations: 

11 12

1
rr

u v u
c c

r r r




  
   

  
,
 

12 11

1u v u
c c

r r r




  
   

  
,
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66

1
r

u v v
c

r r r




  
   

  
,
 

and  

.

,

,

,

1111

1111

1111

1111



























































H

r

E

r

m
B

r

H

r

E
mB

H

r

mE

r
D

r

H
m

r

E
D

r

r

 (10)
 

The elastic constants 11 12 66, ,c c c , magnetic permeability coefficient 11 , 

electromagnetic material coefficient 11m , density   are characterized in terms of non-

homogeneity of the material as follows: 

 

, ,'

 ,' ,'

 ,
2

 , ,

2

0

2

1111

2

1111

2

11

2

66

2

12

2

11

mm

mm

mmm

rr

rmmrV

r
V

cLrcrVLc











 (11) 

where ' , , VVL  and 11110 ' ,' ,  m  are constants of homogeneous matter and m is the rational 

number. Substituting Eq. (11) in Eq. (10) we obtain the stress displacement equations for 

nonhomogeneous medium: 

 2 1m
rr

u v u
r L V L

r r r




    
      

     
,
 

 2 1m
rr

u v u
r L L V

r r r




    
      

     
,
 

2 1

2

m
rr

V v v u
r

r r r




   
    

   
,
 

2
11 11' 'm

r

E H
D r m

r r


  
   

  
, (12)

 

2 11 11' 'm mE H
D r

r r




 

  
   

  
,
 

2
11 11' 'm

r

E H
B r m

r r


  
   

  
,
 

2 11 11' '
.m m E H

B r
r r





 

  
   

    

Substituting the Eq. (12) in the Eqs. (1) - (3), we obtain the set of displacement 

equations 

 

 

2 2 2

2 2 2 2 2

2

2

1 1 1 2 1 2 3 1

2 2 2

2 1

u u V u L V v L V v
L V u

r r r r r r r r

m u v u u
L V L

r r r r t

  




          
          

         

       
        

      

 (13a) 
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2 2

2 2 2

2 2

2 2 2

1 1 2 2 3 1

2 2

1

V v v L V u L V u
v

r r r r r r r

L V v Vm v v u v

r r r r r t

 


 

           
         

          

        
        

       

 (13b) 

2 2 2 2
' ' ' '

11 11 11 112 2 2 2 2 2

1 1 1 1 2
0

E E E H H H m E H
m m

r r r r r r r r r r r
 

 

            
             

            
 (13c) 

2 2 2 2
' ' ' '

11 112 2 2 2 2 2

1 1 1 1 2
0

E E E H H H m E H
m V m V

r r r r r r r r r r r 

            
             

            
 (13d) 

 

3. Solution of the problem 

The Eqs. (13) is a coupled partial differential equation with three displacements and magnetic 

and electric conduction components. To uncouple the Eqs. (13), we seek the solution in the 

following form: 

   1

, ,, n n n ru r r      , 

   1

, ,, n n n rv r r       , 

  ,, n n zw r W  , (14) 

  ,, n n zE r E  ,
 

  ,, n n zH r H  , 

where  ,n r  ,  ,n r  ,  ,nW r  ,  ,nE r   and  ,nH r   are the displacement potentials. 

Substituting the Eq. (14) in (13), we get  

 
2

2

1 02 2
2 0n n

n n

L V L
L V m

r r r t

 
  

  
      

  
, (15a) 

' 2 ' 2 ' '

11 1 11 1 11 11

2
0n n

n n

E Hm
E m H m

r r r
 

  
     

  
, (15b) 

' 2 ' 2 ' '

11 1 1 11

2
0n n

n n

E Hm
m E V H m V

r r r

  
      

  
, (15c) 

and 

2

1

1
0

2

n n
n

V
Vm

r r r

 


 
    

 
, (16) 

where 
2 2

2

1 2 2 2

1 1
.

r r r r 

  
   

  
 

We consider the free vibration of non homogeneous polygonal cross-sectional plate and 

we seek the displacement function, electric and magnetic displacement function as: 

   , , cosm i t

nn r t r r n e     , 

   , , cosm i t

n nE r t r E r n e  , (17) 

   , , cosm i t

n nH r t r H r n e  , 

and 

   , , cos .m i t

n nr t r r n e     (18) 
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Using the Eqs. (17) and (18) in the Eqs. (15) and (16), we get 

   
  

 
2 2

2 2
'' ' 0

21
0

n n n

m n mLa
r r r

r L V L V

 
  

 
   
  
 

, (19)

 

which is reduced as  

      '' ' 2 2 21
0

n n nr r r r
r

       , (20)

 

where 
  2 2

2 2
2 20

2
, .

m n mLa

L V L V

 
 


 

 
 

Equation (20) is Bessel equation with order   and its solution is given by:  

      
1

'

1 cos 0
nn nr A J r A Y r n       , (21) 

where 1nA  and 
1

'

n
A  are arbitrary constants and  J r   and  Y r   are the Bessel functions 

of first and second kind of order 
 

respectively. 

Substituting Eq. (18) in to Eq. (16), we get
 

       
2 2

'' ' 2 20

2

21 1
4 4 0

n n n

a
r r m n n r

r V r

 
  

 
     

 
, (22)

 
which is reduced to 

      '' ' 2 2 21
0.

n n nr r k r r
r

       (23)

 
Equation (23) is Bessel equation with order and its solution is given by  

      
4

'

4 sin 0
nn nr A J r A Y r n       , (24) 

where 4nA  and 
4

'

n
A  are arbitrary constants and  J r   and  Y r   are the Bessel functions 

of first and second kind of order
 

respectively. 

Substituting Eq. (17) in to Eqs. (15), we get
  

   
2 2 2 2' ' ' '

' '11 11 11 11
11 112 2 2 2 2 2

2 1 2 1 0n n n n n nE E E H H Hm
m m m

r r r r r r r r

  


 

        
          

        
, (25) 

   
 

     
 

 
2 2 2 2

' '' ' ' '' '

11 2 2

1 1
0n n n n n n

m n m n
m E r E r E r V H r H r H r

r r r r

    
        
   
   

, (26)

 
which will reduced in to  the convenient form: 

           
2 2

' '' ' ' '' '

11 112 2

1 1
0n n n n n n

p p
E r E r E r m H r H r H r

r r r r


   
        

   
, (27) 

           
2 2

' '' ' ' '' '

11 2 2

1 1
0n n n n n n

p p
m E r E r E r V H r H r H r

r r r r

   
        

   
, (28) 

where

 

 
2 2 2.p m n   

Solving Eq. (27) and Eq. (28), we can get 

     
2

'' '

2

1
0n n n

p
E r E r E r

r r
   , (29) 

     
2

'' '

2

1
0.n n n

p
H r H r H r

r r
    (30) 

Effect of non-homogeneity in a magneto electro elastic plate of polygonal cross-sections 89



The general solution of Eqs. (29) and (30) are as follows: 

    ,cos,, 22

iwtp

n

p

nn enrArAtrE    (31) 

    ,cos,, 33

iwtp

n

p

nn enrArAtrH    (32) 

where nnnn AAAA 3322 ,,,   are the arbitrary constants. 

The general solution of the non-homogeneous solid plate of polygonal cross sections is 

as:  

   1, , cosn nr t A J r n    , (33a)
 

  2, , cosp

n nE r t A r n  , (33b)
 

  3, , cosp

n nH r t A r n  , (33c)
 

   1, , sin .n nr t A J kr n    (33d) 

 

4. Boundary condition and frequency equations  

In this problem, the vibration of polygonal cross-sectional plate is considered. Since the 

boundary is irregular in shape, it is difficult to satisfy the boundary conditions along the 

surface of the plate directly. Hence, the Fourier expansion collocation method is applied to 

satisfy the boundary conditions. For the plate, the normal stress xx  and shearing stresses 

,xy xz  , the electric field rD  and the magnetic field rB  is equal to zero for stress free 

boundary, and for rigidly fixed boundary, the displacements along the radial direction ru , 

along the circumferential direction u , and the electric field E, and the magnetic field H is 

equal to zero. Thus the following types of boundary conditions are assumed for the plate of 

polygonal cross-section is 

(i) Stress free(unclamped edge), which leads to 

          0xx xy xz r ri i i ii
D B       ; (34) 

(ii) Rigidly fixed(clamped edge), implies that 

        0r i i i i
u u E H    , (35) 

where xx  is the normal stress, ,xy xz   are the shearing stresses, rD  is the electric field, rB  

is the magnetic field and the bracket  
i
 is the value at the boundary i . Similarly ,ru u  are 

displacements along the radial and circumferential direction, E and H are respectively the 

electric and magnetic displacements in the thi  segment of the polygonal cross-sectional plate. 

Since the vibration displacements are expressed in terms of the coordinates r and  , it is 

convenient to treat the boundary conditions when the derivatives in the equations of the 

stresses are transformed in terms of the coordinates r and   instead of the coordinates ix  and 

iy . The relations between the displacements are as follows for thi  segment of straight-line 

boundaries 

   

   .sincos

,sincos

iriy

iirx

uuu

uuu












 (36) 

Since the angle i  between the reference axis and normal of the thi  boundary has a 

constant value in a segment i , we obtain: 
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   

   .cos
1

  ,sin

,sin
1

  ,cos

i

i

i

i

i

i

i

i

ryy

r

rxx

r

















































                                                                         (37) 

Using the Eqs. (36) and (37), the normal and shearing stresses are transformed as: 

         

    

2 2 1 2 2

11 12 , 11 12 ,

1

66 , , 13 , 31 , 31 ,

cos sin sin cos

sin 2 0

xx i i r i i

r i z zz zz

c c u r c c u v

c r v u v c w e E q H





        

 





        

       
 

          1 1

66 , , , ,sin 2 cos 2 0xy r i r ic u r v u r u v v                

             

    

1 1

44 , , , , 15 , ,

1

15 , ,

cos sin cos sin

cos sin 0

xz z r i z i r i i

r i i

c u w v r w e E r E

q H r H

 



        

   

 



         

    

11 11 0x

E H
D m

r r


 
   

 
, 11 11' ' 0.x

E H
B m

r r


 
   

 
 (38) 

Imposing non-homogeneity to the Eq. (38), we can get the following mechanical, 

magnetic and electric stress equations : 

             

    

2 2 1 2 2

, ,

1

66 , , 13 , 31 , 31 ,

cos sin sin cos

sin 2 0

xx i i r i i

r i z zz zz

L V L u r L V L u v

c r v u v c w e E q H





        

 





          

       

          1 1

, , , ,sin 2 cos 2 0
2

xy r i r i

V
u r v u r u v v              

 

11 11 0x

E H
D m

r r


 
   

 
 

11 11 0.x

E H
B m

r r


 
   

 
 (39)

  
Substituting the Eqs. (33a) - (33d) in the Eq. (34), the boundary conditions are 

transformed for stress free non-homogeneous polygonal cross-sectional plate as follows:  

    i t
xxxx i i

S S e  
 

 

    i t
xyxy i i

S S e  
 

 

    i t
xx i i

E E e  
 

 

    i t
xx i i

H H e  
 

, 

where 

   1 2 3 1 2 3 4

10 0 20 0 30 0 1 2 30 4

1

0.5xx n n n n n n n

n

S A e A e A e A e A e A e A e




        

   1 2 3 1 2 3 4

10 0 20 0 30 0 1 2 30 4

1

0.5xy n n n n n n n

n

S A f A f A f A f A f A f A f




        

   1 2 3 1 2 3 4

10 0 20 0 30 0 1 2 30 4

1

0.5xz n n n n n n n

n

S A g A g A g A g A g A g A g




        

   1 2 3 1 2 3 4

10 0 20 0 30 0 1 2 30 4

1

0.5 n n n n n n n

n

E A h A h A h A h A h A h A h




        
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   1 2 3 1 2 3 4

10 0 20 0 30 0 1 2 30 4

1

0.5 n n n n n n n

n

H A i A i A i A i A i A i A i




        (40) 

 5 1 2 3 4

500 1 2 30 4

1

0.5xx n n n nn n n

n

S e A A e A e A e A e




      

 5 1 2 3 4

50 1 2 30 40

1

0.5xy n n nn n n n

n

S f A A f A f A f A f




      

 5 1 2 3 4

50 1 2 30 40

1

0.5xz n n nn n n n

n

S g A A g A g A g A g




      

 5 1 2 3 4

500 1 2 30 4

1

0.5 n n n nn n n

n

E h A A h A h A h A h




      

 5 1 2 3 4

500 1 2 30 4

1

0.5 .n n n nn n n

n

H i A A i A i A i A i




      (41)

 

The coefficients 
i

n

i

n ie


~  are given in the Appendix A. 

Performing the Fourier series expansion to Eq. (35) along the boundary, the boundary 

conditions along the surface are expanded in the form of double Fourier series. In the 

symmetric mode, the boundary conditions are obtained as:  

 1 2 3 4 1 2 3 4 5

0 10 0 20 0 30 0 40 1 2 3 4 5

0 1

0m m m m m mn n mn n mn n mn n mn n

m n

E A E A E A E A E A E A E A E A E A
 

 

 
         

 
   

 1 2 3 4 1 2 3 4 5

0 10 0 20 0 30 0 40 1 2 3 4 5

0 1

0m m m m m mn n mn n mn n mn n mn n

m n

F A F A F A F A F A F A F A F A F A
 

 

 
         

 
    

 1 2 3 4 1 2 3 4 5

0 10 0 20 0 30 0 40 1 2 3 4 5

0 1

0m m m m m mn n mn n mn n mn n mn n

m n

G A G A G A G A G A G A G A G A G A
 

 

 
         

 
   

 1 2 3 4 1 2 3 4 5

0 10 0 20 0 30 0 40 1 2 3 4 5

0 1

0m m m m m mn n mn n mn n mn n mn n

m n

H A H A H A H A H A H A H A H A H A
 

 

 
         

 
   

 1 2 3 4 1 2 3 4 5

0 10 0 20 0 30 0 40 1 2 3 4 5

0 1

0m m m m m mn n mn n mn n mn n mn n

m n

I A I A I A I A I A I A I A I A I A
 

 

 
         

 
  . (42) 

Similarly, for the antisymmetric mode, the boundary conditions are expressed as:  

 5 1 2 3 4 5

0 50 1 2 3 4 5

0 1

0m mn n mn n mn n mn n mn n

m n

E A E A E A E A E A E A
 

 

 
      

 
   

 5 1 2 3 4 5

0 50 1 2 3 4 5

0 1

0m mn n mn n mn n mn n mn n

m n

F A F A F A F A F A F A
 

 

 
      

 
   

 5 1 2 3 4 5

50 1 2 3 4 50

0 1

0n n n n nm mn mn mn mn mn

m n

G A G A G A G A G A G A
 

 

 
      

 
   

 5 1 2 3 4 5

0 50 1 2 3 4 5

0 1

0m mn n mn n mn n mn n mn n

m n

H A H A H A H A H A H A
 

 

 
      

 
   

 5 1 2 3 4 5

0 50 1 2 3 4 5

0 1

0m mn n mn n mn n mn n mn n

m n

I A I A I A I A I A I A
 

 

 
      

 
  , (43) 

where 

 
1

1

2
, cos

i

i

I
j jn

mn n i

i

E e R m d






  






 
  
 

   

 
1

1

2
, sin

i

i

I
j jn

mn n i

i

F f R m d






  






 
  
 

   
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 
1

1

2
, cos

i

i

I
j jn

mn n i

i

G g R m d






  






 
  
 

   

 
1

1

2
, cos

i

i

I
j jn

mn n i

i

H h R m d






  






 
  
 

   (44) 

 
1

1

2
, sin

i

i

I
j j

n
mn n i

i

E e R m d






  






 
  
 

   

 
1

1

2
, cos

i

i

I
j j

n
mn in

i

F f R m d






  






 
  
 

   

 
1

1

2
, sin

i

i

I
j j

n
mn in

i

G g R m d






  






 
  
 

   

 
1

1

2
, sin

i

i

I
j j

n
mn n i

i

H h R m d






  






 
  
 

  , (45) 

where j=1,2,3,4, I is the number of segments, iR  is the coordinate r at the boundary and N is 

the number of truncation of the Fourier series. The frequency equations are obtained by 

truncating the series to N+1 terms, and equating the determinant of the coefficients of the 

amplitude 0inA   and 0inA  (i=1,2,3,4), for symmetric and anti symmetric modes of 

vibrations. When the plate is symmetric about more than one axis, the boundary conditions in 

the case of symmetric mode can be written in the form of matrix as given below: 
1 2 3 4 1 1 2 2 3 3 4 4 5 5

00 00 00 00 01 0 01 0 01 0 01 0 01 0

1 2 3 4 1 1 2 2 3 3 4 4 5 5

0 0 0 0 1 1 1 1 1

1 2 3 4 1 1 2 2 3 3 4 4 5

00 00 00 00 01 0 01 0 01 0 01 0 01 0

0

0

0

N N N N N

N N N N N NN N NN N NN N NN N NN

N N N N N

E E E E E E E E E E E E E E

E E E E E E E E E E E E E E

F F F F F F F F F F F F F F 5

1 2 3 4 1 1 2 2 3 3 4 4 5 5

0 0 0 0 1 1 1 1 1

1 2 3 4 1 1 2 2 3 3 4 4 5 5

00 00 00 00 01 0 01 0 01 0 01 0 01 0

1 2 3 4 1 1 2 2 3 3

0 0 0 0 1 1 1

0

0

0

N N N N N NN N NN N NN N NN N NN

N N N N N

N N N N N NN N NN N NN

F F F F F F F F F F F F F F

G G G G G G G G G G G G G G

G G G G G G G G G G G4 4 5 5

1 1

1 2 3 4 1 1 2 2 3 3 4 4 5 5

00 00 00 00 01 0 01 0 01 0 01 0 01 0

1 2 3 4 1 1 2 2 3 3 4 4 5 5

0 0 0 0 1 1 1 1 1

1 2 3 4 1 1 2 2 3 3

00 00 00 00 01 0 01 0 01 0

0

0

0

N NN N NN

N N N N N

N N N N N NN N NN N NN N NN N NN

N N N

G G G

H H H H H H H H H H H H H H

H H H H H H H H H H H H H H

I I I I I I I I I I

10

20

30

40

50

11

1

21

2

4 4 5 5
5101 0 01 0

1 2 3 4 1 1 2 2 3 3 4 4 5 5
50 0 0 0 1 1 1 1 10

N

N

N N

NN N N N N NN N NN N NN N NN N NN

A

A

A

A

A

A

A

A

A

AI I I I

AI I I I I I I I I I I I I I

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 
 
 
 
 
    

0




















 
 
 
 
 
  

 (46) 

Similarly, the matrix for the antisymmetric mode is obtained as: 
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5 1 1 2 2 3 3 4 4 5 5

10 11 1 11 1 11 1 11 1 11 1

5 1 1 2 2 3 3 4 4 5 5

0 1 1 1 1 1

5 1 1 2 2 3 3 4 4 5 5

10 11 1 11 1 11 1 11 1 11 1

5 1 1 2 2 3 3

0 1 1 1

N N N N N

N N NN N NN N NN N NN N NN

N N N N N

N N NN N NN N NN

E E E E E E E E E E E

E E E E E E E E E E E

F F F F F F F F F F F

F F F F F F F
4 4 5 5

1 1

5 1 1 2 2 3 3 4 4 5 5

10 11 1 11 1 11 1 11 1 11 1

5 1 1 2 2 3 3 4 4 5 5

0 1 1 1 1 1

5 1 1 2 2 3 3 4 4 5 5

10 11 1 11 1 11 1 11 1 11 1

5 1 1

0 1

N NN N NN

N N N N N

N N NN N NN N NN N NN N NN

N N N N N

N N NN

F F F F

G G G G G G G G G G G

G G G G G G G G G G G

H H H H H H H H H H H

H H H
2 2 3 3 4 4 5 5

1 1 1 1

5 1 1 2 2 3 3 4 4 5 5

10 11 1 11 1 11 1 11 1 11 1

5 1 1 2 2 3 3 4 4 5 5

0 1 1 1 1 1

N NN N NN N NN N NN

N N N N N

N N NN N NN N NN N NN N NN

H H H H H H H H

I I I I I I I I I I I

I I I I I I I I I I I

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

50

11

1

21

2

31

3

41

4

51

5

0

N

N

N

N

N

A

A

A

A

A

A

A

A

A

A

A

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
  



 (47) 

 

5. Homogeneous electro-elastic plate of polygonal cross-sections        
The result for homogeneous transversely isotropic electro-elastic plate of polygonal cross-

sections can be obtained by omitting the magnetic conductions iB =0 (i= r,  ,z) in the 

corresponding relations and expressions. Thus the displacement potential for this problem is 

obtained by setting piezomagnetic material coefficients 15 31 33 0q q q   , magnetic material 

coefficients 11 33 0m m   and the magnetic permeability coefficients 11 33 0   . Therefore 

the Eqs. (13a)- (13d) are reduced to 

     2 2 2 2 2
11 13 31 152 1 0nnnL L Lc t c t W e e t E         

     2 2 2 2 2 2
33 13 152 2 21 0nn nL Lc t W c e t E           (48) 

     2 2 2 2 2
15 31 15 33 112 2 2 0nn nL Le t W e e t E            

and 
2 2

2

2
66

0L
n

t

c


  
   
 

. (49)  

Solving the Eq. (48), we obtain a trivial solution. To obtain the non-trivial solutions, put 

the determinant of the coefficient of the matrix is equal to zero. Thus we get  

     

     

     

 

2 2 2 2 2
11 13 31 152

2 2 2 2 2 2
13 33 152 2 2

2 2 2 2 2
31 15 15 33 112 2 2

1

1 , , 0

L L L

nnnL L

L L

c t c t e e t

c c t e t W E

e e e t t



 

    

       

      

 (50) 

Simplifying the Eq. (50), we get a six order partial differential equation, that is 

 6 4 2

2 2 2 0nP Q R S        , (51) 

where 

 2

11 11 15P c e    

      
2

2 2
11 11 15 11 15 11 157 5 6 1 2 2 3 32 2LQ c g g g e g e t g g g e g            
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      2 2 2
11 11 155 7 6 1 7 5 6 2 2 7 3 6 3 52 2LR c g g g g g g g e t g g g g g g g         

 2

1 5 7 6S g g g g  . (52) 

Solving the Eq. (51), the solution for the symmetric mode is obtained as 

     
3

1

sin sin i t
inn n i

i

r A J r m n e    


  

     
3

1

sin sin i t
inn i n i

i

W r d A J r m n e   


  (53) 

     
3

1

sin sin i t
n ini n i

i

E r e A J r m n e   


 . 

The constants id  and ie  defined in the Eq. (53) are given by 

  
    

2 2 2 2
11 151 6 3 6

2 2 2
152 6 3 5

i i i L

i

L i i

c g e g g g t
d

t g e g g g

  

 

  


  
 

  

    

2 2 2 2 2
11 1 5 2

2 2 2
152 6 3 5

i i i L

i

L i i

c g g g t
e

t g e g g g

  

 

  


  
. (54) 

Similarly solving the Eq. (49), we obtain the solution for the symmetric mode as 

     4 4 sin sin i t

n n nr A J r m n e     . (55) 

The boundary condition for a electro-elastic plate of polygonal cross-section is obtained 

as 

(i) Stress free(unclamped edge) 

        0xx xy xz ri i ii
D      ; (56) 

(ii) Rigidly fixed (clamped edge) 

      0r i i i
u u E   , (57) 

where xx  is the normal stress, xy , xz  are the shearing stresses, rD  is the electric potential 

as discussed in the section A. By using the same procedure as discussed in the section A, the 

boundary conditions (56) and (57) are transferred as 

         

    

2 2 1 2 2

11 12 , 11 12 ,

1

66 , , 13 , 31 ,

cos sin sin cos

sin 2 0

xx i i r i i

r i z zz

c c u r c c u v

c r v u v c w e E





        

 





         

      
  

          1 1

66 , , , ,sin 2 cos 2 0xy r i r ic u r v u r u v v                 

            1

44 , , , , 15 , ,

1
cos sin cos sin 0xz z r i z i r i ic u w v r w e E E

r
           

            
 

0xD   (58) 

Substituting the Eq.v(53) in the Eq. (56) the boundary conditions are transformed for 

stress free polygonal cross-sectional plate is obtained as 

     sin sin i t
xxxx i i

S S m n e    
 

 

     sin sin i t
xyxy i i

S S m n e    
 

 

     sin sin i t
xzxz i i

S S m n e    
 

 

Effect of non-homogeneity in a magneto electro elastic plate of polygonal cross-sections 95



     sin sin i t
xx i i

E E m n e    
 

, (59) 

where    1 2 3 1 2 3 4
10 20 30 1 2 3 40 0 0

1

0.5 n n n nxx n n n n

n

S A p A p A p A p A p A p A p




         

   1 2 3 1 2 3 4
10 20 30 1 2 3 40 0 0

1

0.5 n n n nxy n n n n

n

S A q A q A q A q A q A q A q




         

   1 2 3 1 2 3 4
10 20 30 1 2 3 40 0 0

1

0.5 n n n nxz n n n n

n

S A r A r A r A r A r A r A r




         

   1 2 3 1 2 3 4
10 20 30 1 2 3 40 0 0

1

0.5 n n n nx n n n n

n

E A s A s A s A s A s A s A s




         (60) 

 4 1 2 3 4

40 1 2 3 40

1

0.5 n n n nxx n n n n

n

S p A A p A p A p A p




       

 4 1 2 3 4

40 1 2 3 40

1

0.5 n n n nxy n n n n

n

S q A A q A q A q A q




       

 4 1 2 3 4

40 1 2 3 40

1

0.5x n n n nn n n n

n

E s A A s A s A s A s




       (61) 

The boundary conditions along the irregular shape cannot be satisfied directly. To 

satisfy the boundary conditions, the Fourier expansion collocation method is applied along the 

boundary. Performing the Fourier series expansion to the transformed expression in Eq. (56) 

along the boundary, the boundary conditions are expanded in the form of double Fourier 

series for symmetric and antisymmetric modes of vibrations. For the symmetric mode, the 

equation which satisfies the boundary condition, is obtained in matrix form as follows 

1 2 3 1 1 2 2 3 3 4 4

00 00 00 01 0 01 0 01 0 01 0

1 2 3 1 1 2 2 3 3 4 4

0 0 0 1 1 1 1

1 2 3 1 1 2 2 3 3 4 4

00 00 00 01 0 01 0 01 0 01 0

1 2 3 1 1 2 2 3

0 0 0 1 1 1

N N N N

N N N N NN N NN N NN N NN

N N N N

N N N N NN N NN N

P P P P P P P P P P P

P P P P P P P P P P P

Q Q Q Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q 3 4 4

1

1 2 3 1 1 2 2 3 3 4 4

00 00 00 01 0 01 0 01 0 01 0

1 2 3 1 1 2 2 3 3 4 4

0 0 0 1 1 1 1

1 2 3 1 1 2 2 3 3 4 4

00 00 00 01 0 01 0 01 0 01 0

1 2 3 1

0 0 0 1

NN N NN

N N N N

N N N N NN N NN N NN N NN

N N N N

N N N N NN

Q Q Q

R R R R R R R R R R R

R R R R R R R R R R R

S S S S S S S S S S S

S S S S S

10

20

30

11

1

21

2

31

3

1 2 2 3 3 4 4

1 1 1 41

4

0

N

N

N

N NN N NN N NN

N

A

A

A

A

A

A

A

A

A

S S S S S S A

A

 
 
 
 

   
   
   
   
   
   
   
   
       
   
   
   
   
   
   
   
     

 
 
 
  

 (62) 

where 

 
11

2
, cos

i

i

I
j jn

mn n i

i

P p R m d





  

 

 
  
 


 

 
11

2
, sin

i

i

I
j jn

mn n i

i

Q q R m d





  

 

 
  
 


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 
11

2
, cos

i

i

I
j jn

mn n i

i

R r R m d





  

 

 
  
 

  

 
11

2
, cos

i

i

I
j jn

mn n i

i

S s R m d





  

 

 
  
 

  (63) 

Similarly, for the antisymmetric mode, we get 

4 1 1 2 2 3 3 4 4

10 11 1 11 1 11 1 11 1

4 1 1 2 2 3 3 4 4

0 1 1 1 1

4 1 1 2 2 3 3 4 4

10 11 1 11 1 11 1 11 1

4 1 1 2 2 3 3 4 4

0 1 1 1 1

4 1 1 2 2

10 11 1 11 1

N N N N

N N NN N NN N NN N NN

N N N N

N N NN N NN N NN N NN

N N

P P P P P P P P P

P P P P P P P P P

Q Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q Q

R R R R R
3 3 4 4

11 1 11 1

4 1 1 2 2 3 3 4 4

0 1 1 1 1
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R R R R
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 
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 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
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A

A

A

A

A

A

A

A

 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
   
   

 (64) 

where  
11

2
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i

i
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j j
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
  
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  
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
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 
  
 
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 
11

2
, sin

i

i

I
j j

n
mn n i

i

S s R m d





  

 

 
  
 

 , (65) 

where j=1,2,3 and 4, I is the number of segments, iR  is the coordinate r at the boundary and N 

is the terms in the Fourier series. The frequency equation for determining the frequencies may 

be obtained by equating the coefficient of the system of Eq. (62) or Eq. (64) to zero. 

 

6. Numerical results and discussion 

The frequency equations obtained in symmetric and antisymmetric cases given in Eq. (46) 

and (47) are analyzed numerically for magneto electro elastic plate of polygonal (triangular, 

square, pentagonal and hexagonal) cross-sections. The material properties of the electro-

magnetic material based on graphical results of Aboudi [33] are 
9 2

11 218 10c N m  , 
9 2

12 120 10c N m  , 
9 2

13 120 10c N m  , 
9 2

33 215 10c N m  , 
9 2

44 50 10c N m  ,
9 2

66 49 10c N m  , 15 0e  ,
2

31 2.5e C m  ,
2

33 7.5e C m , 
2

15 200q C m , 
2

31 265q C m ,
2

33 345q C m , 
9

11 0.4 10 C Vm   , 
9

33 5.8 10 C Vm    ,
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6 2 2

11 200 10 Ns C    , 6 2 2

33 95 10 Ns C   ,
9

11 0.0074 10m Ns VC  ,
9

33 2.82 10m Ns VC  . 

The geometric relations for the polygonal cross-sections given by Nagaya [32] as

 
1

cosi iR b  


    , (66) 

where b is the apothem. The relation given in Eq. (66) is used directly for the numerical 

calculation. The dimensionless wave numbers, which are complex in nature, are computed by 

fixing   for 0 1.0  using secant method (applicable for complex roots). The basic 

independent modes like longitudinal and flexural modes of vibration are analyzed and the 

corresponding non-dimensional wave numbers are computed. The polygonal cross-sectional 

bar in the range 0   and    is divided into many segments for convergence of wave 

number in such a way that the distance between any two segments is negligible. The 

computation of Fourier coefficients given in Eq. (44) is carried out using the five point 

Gaussian quadrature.  

 

 
Fig. 1. Geometry of ring shaped polygonal plates 
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Longitudinal modes of polygonal plates. In case of longitudinal vibration of square 

and hexagonal cross-sectional plates, the displacements are symmetrical about both major and 

minor axes, since both the cross-sections are symmetric about both the axes. Therefore the 

frequency equation is obtained by choosing both terms of n and m as 0, 2, 4, 6… in Eq. (46). 

During flexural motion, the displacements are anti-symmetrical about the major axis and 

symmetrical about the minor axis. Hence the frequency equation is obtained by  

choosing n, m=1, 3, 5 in Eq. (46).   

Flexural modes of polygonal plates. In flexural mode of square and hexagonal cross-

section, the vibration and displacements are antisymmetrical about the major axis and 

symmetrical about the minor axis The vibrational displacements are symmetrical about the x 

axis for the longitudinal mode and anti-symmetrical about the y axis for the flexural mode in 

the triangular and pentagonal cross-sectional plates, since the cross-section is symmetric 

about only one axis. Therefore n and m are chosen as 0, 1, 2, 3… in Eq. (47) for the 

longitudinal mode and n, m=1, 2, 3 … in Eq. (47) for the flexural mode.  

Dispersion analysis. The variation of circumferential stress   with the non-

homogeneous parameter m is discussed for different cross section of the magneto electro 

elastic plate in Fig. 2. It is clear that, the circumferential stress propagation behavior which is 

caused by the non-homogeneous parameter m is decreasing in all the cross section of the 

plates. Fig. 3 shows the variation of the radial stress 
rr  with respect to the non-homogeneous 

parameter m of the magneto electro elastic plate for various cross section of the magneto 

electro elastic plate. From the curves in Fig. 3, it is clear that the radial stresses are higher in 

lower non-homogeneous parameter m and decreases slowly in the remaining range with small 

oscillation in the hexagonal plate. The parameter m is effective in the stress distribution of the 

entire cross sectional plate. 

Figure 4 depicts the variation of the radial strain rre  with respect to the non-

homogeneous parameter m of the magneto electro elastic polygonal cross sectional plate. In 

Fig. 4, the radial strain obtain the positive values in the range 0 0.075m   for all cross 

sectional plates, then the radial strain distribution goes on increasing and vanishes on the 

domain 0.25m .The trend is same in circumferential strain e  in Fig. 5 for all type of cross 

sectional plates, except there is a small deviation in the starting range of the non-

homogeneous parameter m.  

 

 
Fig. 2. Variation of circumferential stress versus parameter m for different cross sections of 

the plate 
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Fig. 3. Variation of radial stress versus parameter m for different cross sections of the plate 

 

 
Fig. 4. Variation of radial strain versus parameter m for different cross sections of the plate 

 

 
Fig. 5. Variation of circumferential strain versus parameter m for different cross sections of 

the plate 
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Fig. 6. Variation of induced electric field versus parameter m for different cross sections of 

the plate 

 

 
Fig. 7. Variation of induced magnetic field versus parameter m for different cross sections of 

the plate 

 

A graph is drawn between the variations of induced electric field versus the non-

homogeneous parameter m of magneto electro elastic plate of polygonal cross sections in 

Fig.6. From the Fig.6, it is clear that the displacement of induced electrical energy is getting 

negative values in the range 0 0.1m  , but for the higher values of m it becomes constant 

for all the cross sections of the plate. The transfer of electrical energy is higher in the lower 

values of the parameter m as compared to the higher values and this cross over point 

represents the transfer of electrical energy between modes of vibration of polygonal plates. 

The variation of the induced magnetic field versus the non-homogeneous parameter m of 

magneto electro elastic polygonal plates is analyzed in Fig. 7. From these curves it is clear 

that in the entire cross sectional plates, the induced magnetic field takes negative values in the 

range 0.01 0.15m   but for 0.15m  slowly it vanishes.  
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7. Conclusion 

The effect of magnetic field and non-homogeneity in a piezoelectric plate of polygonal cross 

sections is studied using the linear theory of elasticity. The wave equation of motion based on 

two-dimensional theory of elasticity is applied under the plane strain assumption of plate of 

polygonal shape, composed of homogeneous transversely isotropic material. The frequency 

equations are obtained by satisfying the irregular boundary conditions of the polygonal plate 

using Fourier expansion collocation method. The analytical results obtained in the physical 

domain have been computed numerically for a magneto electro elastic material. The 

numerically analyzed results for the stress, strain, displacements and induced electric and 

magnetic fields have been presented graphically. The polygonal plates, as structural elements, 

are widely used in construction of oil pipes, submarine and flight structures to ensure the 

strength and reliability, acted upon by nonuniform loads. 
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Abstract. By the method of molecular dynamics a study in the work is made of the statistical 
characteristics of a quasi-breather in a model CuAu crystal. The phonon spectrum of this 
model crystal, the dependences of mean-square deviation, the coefficient of variation and the 
average frequency of the model quasi-breather on the time of its existence are obtained. The 
statistical data analysis allows for the conclusion that the quasi-breather model solution in the 
model considered (which uses the interatomic potential obtained by means of embedded atom 
method (EAM)) slightly differs from the one in the corresponding exact breather. 
Keywords: quasi-breather, discrete breather, nonlinear dynamics, soliton 
 
 
1. Introduction 
Solitary waves are among the most interesting and important objects of nonlinear physics 
relevant for practical applications [1, 2]. Despite the fact that solitons were discovered more 
than 180 years ago, the number of studies devoted to their properties is still growing. 
Recently, there has been growing interest in the investigation of discrete nonlinear systems 
where the existence of dynamic solitons is possible. High-amplitude, spatially localized time-
periodic vibrational modes in nonlinear crystals with translational symmetry called discrete 
breathers (DBs) belong to the class of the above mentioned dynamical solitons [3]. 

There are experimental evidences of formation of such localized excitations in different 
physical systems, including spin lattices in antiferromagnets [4], the lattices of coupled 
nonlinear optical waveguides [5], the assemblies of micromechanical oscillators [6]. The 
application of such systems as an element base of promising radio-frequency filters, 
magnetometers and other devices [7] determines not only a fundamental but also a practical 
interest for the breathers. 

Discrete breathers can be divided into two types based on the nature of their frequency 
dependence on the amplitude [8]. In soft-type discrete breathers the frequency decreases as its 
amplitude grows (such discrete breathers can only exist in the crystals having a slot in the 
phonon spectrum: their frequency lies in the phonon spectrum slot, and therefore they are 
called slotted), while a reverse situation occurs with the hard-type discrete breathers (they 
may have frequencies both in the slot and above the phonon spectrum). Discrete breathers 
with a soft-type of nonlinearity can be excited in diatomic crystals, for example, in NaCl [8], 
Pt3Al [9-14], as well as in graphene and grafane [15]. Breathers with a hard type of non-
linearity exist in pure metals with FCC –, BCC –, and HCP – structures. 

Depending on the problem formulation we speak of the discrete breathers with either an 
infinite lifetime (in this case, the solution is always periodic in time [15] and the 
corresponding family of trajectories has a null measure) or with a finite lifetime, so-called 
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quasi-breathers - such solutions have a non-zero probability measure and can be implemented 
in physical systems or in statistical numerical experiments [16]. A discrete breather, as a 
strictly time-periodic object, is obtained by means of numerical simulation only provided that 
the initial conditions of the Cauchy problem are perfectly set for a certain diversity of small 
dimension in the multidimensional space of all possible initial values of coordinates of 
individual particles and their velocities. Such fine-tuning is difficult to fulfill even within a 
computational experiment. Moreover, it is practically impossible to do when performing any 
physical experiments, particularly in cases when the breather-like objects arise spontaneously. 

Therefore, the paper [16] proposed the concept of quasi-breathers as some dynamic 
objects localized in space, but not strictly time-periodic. For that purpose, a certain criterion 
of proximity of a quasi-breather to its corresponding exact breather was formulated. It is 
based on the calculation of mean-square deviation η(tk) of the oscillation frequencies of 
selected breather particles found at some interval in the vicinity of time tk, and calculating the 
mean-square deviation of the oscillation frequencies of a selected j-th breather particle at 
different time intervals. 

The objective of this paper is to fulfill a statistical evaluation of quasi-breathers 
characteristics in a model CuAu crystal. In this formulation, we will identify the concept of 
quasi-breather and quasi-breather model solution. The molecular dynamics method was 
selected as a research method in our paper. The choice of the method is due to a number of 
factors. Discrete breathers are very difficult to observe in a full-scale experiment given the 
fact that they are not topological defects; they have a lifetime of several thousand periods of 
atomic oscillations, which is about 0.1ns. Besides, they can move at high velocities in metals. 
At the same time, computer simulation has become a very successful research method in 
condensed matter physics and materials science. This fact is due to the continuous power 
growth and availability of computers, development and software implementation of numerical 
methods. Being based on the well-tested interatomic potentials, the molecular dynamics 
method is one of the most effective methods of studying discrete breathers. When we speak of 
the molecular dynamics method in more detail, it should be noted that it provides an 
opportunity to solve the issues related to the problems of structural energy transformations 
both in crystalline and non-crystalline materials. Besides, this method makes it possible to 
design many properties of the system both thermodynamical (e.g., energy, pressure, entropy) 
and kinetic (diffusion coefficients, frequencies of atom oscillations). Moreover, the process 
dynamics is studied on a real time basis in this method. 
 
2. Model description and experimental procedure 
We considered the biatomic system CuAu. As it has already been mentioned above, the 
investigation was performed by means of the well-known molecular dynamics method. This 
method was implemented using LAMMPS Molecular Dynamics Simulation, the package for 
modular dynamic modeling [17], which uses well-tested many-body interatomic potentials 
built according to the embedded atom method (EAM-potentials). 

We considered a three-dimensional crystal containing 48000 atoms (Fig. 1). Periodic 
boundary conditions were imposed along all directions. 
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Fig. 1. The view of a 3D CuAu crystal containing 48000 atoms 

 
The potential obtained by the method described in [18] for the Cu-Au system was used 

in the calculations. The process of selecting the interatomic potentials is an important task 
worth a detailed consideration. The home-made software [18] generates EAM-potentials of 
alloys using the rapid fitting procedure by combining the previously developed elemental 
potentials. More specifically, we applied the Finnis-Sinclair potentials for alloys determining 
the energy of each atom in the system, using the expression: 
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This equation consists of three types of functions: embedding functions (F), electron 
density functions (ρ), and pairwise interaction functions (φ). In this formula there is an 
embedding function for each element type, one electron density function for each permutation 
of two types of atoms (a, p), and a pairwise interaction function for each combination. For 
binary potentials, there are only three functions that need to be selected in case of using 
elementary conditions from existing potentials: ραβ, ρβα, and φαβ. Since there are no triple 
conditions in the Finnis-Sinclair formula, potentials with more than two elements can be 
created by combining all the information contained in the binary files. The method proposed 
by the authors of the article allows to combine elemental EAM potentials and to establish the 
potentials for alloys using the density functional theory (DFT) data. 

Firstly, the approach of simple "rule of mixtures" is used for compensation of the 
difference between the lattice parameters and elasticity modulus predicted by the DFT and 
measured experimentally. The elastic moduli and lattice parameters calculated for 
intermetallic compounds are multiplied by the effective correction factor, which is the average 
of the elementary correction factors taken in the proportion of elements fractions. Secondly, 
single-element potentials are adapted to improve compatibility in binary and multicomponent 
potentials in such a way as to preserve all the initial states of the system. Thirdly, in the case 
of bonding of two elemental potentials, the maximum cut off distance is adopted for the 
binary potential. The electron density functions and the interaction of the original pair 
potentials are defined as equal to 0 at the distances greater than the cut off radius. Since most 
of interatomic potentials are available in a tabular format with functions defined at discrete 
points, this implementation uses cubic spline interpolation in order to calculate the values of 
functions in between the tabulated points. 

The next step was the installation of cross-potentials. The Finnis-Sinclair composition 
for the EAM potential is used for every alloy potential considered. For a binary system, two 
embedding functions (Fα, Fβ), four electron density functions (fαα, fαβ, fβα, fββ) and three pair 
interaction functions (φαα, φββ) are used. Similarly to the case of single-component potentials, 
two-component ones are combined by converting the embedded function so that it exists on 
the same interval and assumes the maximum cut off radius. While the "pure" elemental 
potentials are used to create each double file, the electron density and interaction functions of 
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the pair contained in the original binaries are sufficient to create higher-order potentials 
without any additional equipment. In addition, the properties of each binary system and the 
original pure elements remain in these new potentials. The potentials created by means of the 
proposed technique were confirmed by comparison with the experimental results and existing 
potentials for the alloys. In addition, the dependence of the accuracy of binary potentials on 
the source of elementary potentials was estimated. 

In order to analyze the possibility of the existence of DBs in CuAu crystal, the density 
of the phonon states of the crystal was calculated (see Fig. 2). The absence of a gap in the 
CuAu phonon spectrum dictates the impossibility of DB with soft nonlinearity type in this 
system. [19, 20]. This was confirmed in [21]. 

 

 
Fig. 2. The density of phonon states of CuAu crystal 

 
The process of searching for discrete breathers in crystals involves selecting initial 

conditions-deviations of atoms from the equilibrium position or setting initial velocities. 
For pure metals or alloys with a small difference in the atomic masses of the 

components, the excitation of DBs with a hard type of nonlinearity has some peculiarities. 
Thus, the authors of [19] proposed an ansatz for excitation of DBs in pure fcc and bcc 
metals, setting the DB profile in a closely packed atomic row by setting atomic 
displacements and velocities according to physically motivated functions. The 
displacements of the atoms were realized in such a way that the neighboring atoms 
oscillated in antiphase [22]. 

The Gaussian function (2), adapted for crystal conditions was used to excite a DB in 
the CuAu crystal 
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where 0A  defines the initial amplitude of the central atoms of a DB, x is the relative 
coordinate of a pair of atoms in a row, and parameter C is the degree of spatial localization of 
DB. Varying the values 0A  and C, we select the profile of the discrete breather, thereby 
setting the initial deviations from the equilibrium position for the atoms included in the DB 
oscillations. 
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Unlike the exact discrete breathers, quasi-breathers are not dynamic objects strictly 
periodic in time, although they are localized in space. They arise in any sufficiently small 
deviations from the exact breather solutions in multidimensional space of any and all initial 
conditions while solving the Cauchy problem for the original differential equations, since 
there is no complete suppression of contributions from the oscillations of peripheral particles 
with their natural frequencies in this case. Thus, "dictatorship weakening" on the part of the 
breather nucleus (a single central particle forms a nucleus as well in case of a symmetric 
breather considered by us, and it is being formed by its two central particles in case of an 
antisymmetrical breather) leads to the presence of small contributions with different 
frequencies in the breather solution. These small contributions may be detected in the 
oscillations of all chain particles including the central ones. If we estimate (with reasonable 
precision) the oscillation frequencies of all quasi-breather particles calculated at a certain time 
interval near t = tk, they will not be strictly identical. In light of this, let us find the mean-
square deviations η(tk) of the oscillation frequency of different breather particles from the 
average breather frequency ϖ: 
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The more the value η(tk), the more the quasi-breather solution differs from the exact 
breather solution, for which η(tk)=0 at any particular time tk. 
 
3. Results and discussion 
The distribution of the phonon modes, i.e. the crystal phonon spectrum is important for 
the existence of quasi-breather on a first-priority basis. The reduced density of the 
phonon states of CuAu was compared with the oscillation frequencies of the quasi-
breather. Below is a calculation of the statistical characteristics of a quasi-breather. 

The dependence of the model quasi-breather mean-square deviation η on its lifetime tk 
is shown in Fig. 3. 

 

 
Fig. 3. Dependence of the model quasi-breather mean-square deviation η on its lifetime tk (in 

picoseconds (ps)) 
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The mean-square deviation characterizes the measure of data scattering. In our case, this 
is a deviation of peripherical atom frequencies of model quasi-breather from the quasi-
breather nucleus frequency. It is apparent from Fig. 3 that the quasi-breather mean-square 
deviation ranges from 0.01261065 to 0.02610272, which is equivalent to slight scattering of 
peripheral atom frequency from the model quasi-breather nucleus frequency. 

The mean-square deviation gives an absolute estimation of the measure of spread. 
Therefore, in order to understand how much variation is large relative to the values 
themselves (i.e., regardless of their scale), a relative index is required. Such an indicator is 
called the coefficient of variation and is calculated by the following formula: 

.
.ср

V
ω
η

=  (5) 

By this indicator, it is possible to compare the homogeneity of the most diverse 
phenomena, regardless of their scale and units of measurement. Table 1 shows the exponents 
of the coefficient of variation of V from the lifetime of the quasi-breather tk. 
 
Table 1. The exponent of the coefficient of variation of V from the lifetime of the quasibriser 
tk (in ps) 

tk V 

5 0.00220377958477173 
10 0.00286022261352874 
15 0.00374032727309376 
20 0.00435946841613917 
25 0.00491586066089457 

 
The dependence of the model quasi-breather mean frequency ωmean on its lifetime tk is 

shown in Fig. 4. 
 

 
Fig. 4. Dependence of the model quasi-breather mean frequency ωmean (in THz) on its 

lifetime tk (in ps) 
 

It is apparent from Fig. 3 and 4 that the deviation of the model quasi-breather frequency 
of peripherical atoms from the quasi-breather nucleus frequency is extremely negligible. 
Moreover, the medium frequency ranges from 5.30989773163211 THz to 
5.72228656205187 THz. 
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For a group of atoms contained in the model quasi-breather, the mathematical 
expectation (the sample mean) of an ungrouped sample of the mean frequencies 
(5.72228656205187, 5.60811384473751, 5.39908960106847, 5.39342834099743, 
5.30989773163211) is calculated by the formula: 
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The mathematical expectation of the initial sample is 5.486563 THz, which is slightly 
higher than the upper limit of the phonon spectrum of the CuAu crystal (see Fig. 2). 

The variance of the same ungrouped sample is calculated by the formula: 
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The result of the calculation by the formula above is 0.0229469. The obtained values 
show that within the framework of this model of the CuAu crystal, one can speak of the 
proximity of the model quasi-breather to the corresponding exact breather. Besides, the 
following statistical characteristics and functions were calculated within the limits of this 
model: grouped statistical array of absolute and relative frequencies, range of absolute and 
relative frequencies, histogram of relative frequencies, empirical distribution function. 
 
4. Conclusion 
The statistical characteristics of a quasi-breather with the hard type of nonlinearity were 
calculated by means of the molecular dynamics method. The main characteristics include the 
mean square deviation of the frequencies of some particular atoms in the breather from the 
mean value of the quasi-breather core frequency, as well as the coefficient of variation at 
different stages of life of the object under study. 

It should be noted that the final quasi-breather destruction occurs at the moment when 
the frequencies mean square deviation exceeds the difference between the quasi-breather 
mean frequency and the crystal phonon spectrum upper boundary. At this moment the 
oscillations delocalization and the energy dissipation through the crystal in the form of low-
amplitude thermal lattice vibrations occur. It is shown that the obtained quasi-breather is 
slightly different from the corresponding exact breather. This may indicate the stability of the 
obtained discrete breather in the model cells and the possibility of its excitation in real alloys 
of the composition examined in the work 
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Abstract. In this paper, structural and thermal properties of Zn1-xCdxO alloys for x=0, 0.125, 
0.25, 0.375, 0.5, and 0.625 have been investigated by Ab initio calculations method. Both 
lattice constants a and c of wurtzite structure follow Vegard's law and are in a good agreement 
with the experimental data for x=0. The diagrams of specific heat at constant volume versus 
temperature for different values of x have been plotted and values of specific heat at constant 
pressure for different concentrations of x at 300K, 600K and 900K have been obtained. The 
value of specific heat at constant pressure for ZnO has a good consistency with experimental 
data. Specific heat at constant volume increased by increasing temperature and specific heat at 
constant pressure decreased by increasing x. The diagrams of Debye temperature versus x at 
0K, 300K, 600K and 900K have been plotted, too. These diagrams state that Debye 
temperature decreases by increasing x or increasing temperature. 
Keywords: ab initio calculations, thermal properties, Debye-Gruneisen model, Zn1-xCdxO 
alloy. 
 
 
1. Introduction 
Wurtzite Zn1-xCdxO ternary alloys were investigated because of applications for the light 
emitting diodes. For this reason, the study of the thermodynamic properties of the Zn1-xCdxO 
ternary alloy is very significant in the point of view of the fabrication of effective LEDs [1]. 

So far, Wang Zhi et al. [2], have obtained structural and corrected band properties of  
Zn1-xCdxO by first principle study. They found that the band gap decreases by increasing 
concentration of Cd. Xin Tang et al. [3], have investigated the doping stability and electronic 
structure of Zn1-xCdxO. They found that by increasing Cd concentration, formation enthalpy 
of Zn1-xCdxO alloy increases. I.I. Shtepliuk et al. obtained the critical temperature for  
Zn1-xCdxO system about 1140K. Yabin Chen et al. [4], have investigated pressure-induced 
structural transition of Zn1-xCdxO alloys. According to their experiment, at x=0.67 where the 
alloy is intrinsically stable in the rock-salt phase even at ambient pressure. 

Since theoretical works on electronic properties were successful [2, 3], we decided to 
investigate the structural and thermal properties of Zn1-xCdxO for  
x=0, 0.125, 0.25, 0.375, 0.5, 0.625 by Debye-Gruneisen model that scarcely has been paid 
attention by researchers. 

In this paper, in addition to obtaining the related lattice constants and testing the 
correction of Vegard's law about them the thermal quantities like, specific heats at constant 
volume and pressure, Debye temperature  at different temperatures and concentration of x 
have been investigated. 
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2. Computational Details 
The calculations are on the basis of Density Functional Theory (DFT). Ab initio calculations 
have been done by Quantum Espresso [5] package. The exchange correlation functional 
GGA(PBE) has been used. In these calculations the cut off energy equals 60 Rydberg and 
uniformed k-mesh 5*5*5 has been considered. Using third-order Brich-Murnaghun Eos, the 
fitting of energy versus volume data was done by code Gibbs 2 [6, 7] and the thermal 
properties also were calculated by this code. 

In code Gibbs 2, non-equilibrium Gibbs function is written in the following form: 
],),([)(),;(* TVAPVVETPVG Dvib θ++=  (1) 

where )(VE  is the total energy per unit cell, PV  is corresponding hydrostatic pressure 
conditions, )(VDθ  is Debye temperature and vibA is vibration term which can be written as: 
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where 0V  and 0B  are equilibrium volume and bulk modulus, respectively. The values of 
parameters a and b are assumed to be -0.5 and 0.5, respectively in the Dugdale-McDonald 
approximation [7].  

By minimizing non-equilibrium Gibbs Free energy proportional to volume, the thermal 
properties of the system like Cv and Cp can be calculated. 
 
3. Results and Discussions 

Structural Properties. The diagrams of lattice constants of Zn1-xCdxO alloy versus x 
have been shown in Fig.1. 

 

 
Fig. 1. The diagrams of lattice constants of Zn1-xCdxO alloy versus x 
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It is obvious that the lattice constants increase by increasing concentration of Cd. It is 
because of weaker bonding of CdO than ZnO due to more ionic bonding of ZnO than CdO 
caused by higher difference of electronegativity between Zn (1.65) and O (3.44) than 
Cd (1.69) and O (3.44). Also, more atomic radius of Cadmium and more distance of valence 
electrons from nucleus of Cd might be the other reasons of weaker bonding of wurtzite ZnO. 
The experimental results confirm above sentences where binding energy of wurtzite ZnO is 
7.52(ev/pair) [9], while, as we know, the highest calculated value of wurtzite CdO binding 
energy equals 5.97(ev/pair) [9]. 

Our calculated lattice constants a and c at different concentration of Cd together with 
experimental and other theoretical values results are listed in Table 1. 

 
Table 1. Calculated lattice constants a and c at different concentration of Cd together  with 
experimental and theoretical results in Angstrom unit 

 X=0 X=0.125 X=0.25 X=0.375 X=0.5 X=0.625 

Present work a=3.2496, 
c=5.1993 

a=3.31, 
c=5.3 

a=3.3767, 
c=5.4027 

a=3.4323, 
c=5.4917 

a=3.4831, 
c=5.5729 

a=3.514, 
c=5.622 

Experimental 
work [8] 

a=3.2496, 
c=5.2042 - - - - - 

Theoretical 
work [8] 

a=3.286, 
c=5.241 - - - - - 

 
Lattice constants of Zn1-xCdxO alloy follow Vegard's law and experiment confirms this 

result up to x=0.69[2]. The reasons of following lattice constants from Vegard's law include: 
i) The relative atomic sizes of the elements;  
ii) The relative volume per valence electron in crystals of the pure elements;  
iii) Brillouin-zone effects;  
iv) electrochemical differences between the elements [10]. 

 
Thermal properties. The diagrams of specific heat at constant volume versus 

temperature for different values of x for Zn1-xCdxO have been plotted in Fig. 2. The diagrams 
at low temperatures have T3 behavior and at high temperatures tend to saturation limit. 

 

 
Fig. 2. The diagrams of variations of specific heat at constant volume by increasing 

temperature at different concentration of Cd 
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The diagrams of specific heat at constant pressure of Zn1-xCdxO at 300K, 600K and 
900K and different Cd concentrations have been shown in Fig. 3. At low temperatures, the 
specific heat depends on strength of bonding between atoms and their molecular mass. 
Because of weaker bonding between cadmium and oxygen in comparison with zinc and 
oxygen plus heavier molecular mass of cadmium oxide than zinc oxide that decreases the 
velocity of phonon vibrations, the Specific heat at constant pressure and low temperatures 
decreases linearly by doping of Cd atoms as it is confirmed with our calculations. At higher 
temperatures due to ionic nature of these bonding, Coulomb interactions have the most 
important role in optical modes. Hence, the specific heats of this alloy decrease with 
increasing Cd concentration because of higher lattice constants, higher difference of 
electronegativity of ZnO wurtzite than CdO wurtzite and more screening of ionic potential in 
cadmium. 

 

 
Fig. 3. The diagrams of variations of specific heat at constant pressure of Zn1-xCdxO at 300K, 

600K and 900K  
 

 
Fig. 4. The diagrams of Debye temperature versus x at 0K, 300K, 600K and 900K 
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As we know from literatures, Debye temperature is the highest temperature that can be 
achieved due to a single vibration in alloys and has a direct relation with static bulk modulus. 
The diagrams of Debye temperature of Zn1-xCdxO versus x at different temperatures have 
been shown in Fig. 4. As it is seen, Debye temperature decreases by increasing the 
concentration of Cd in Zn1-xCdxO so that the difference of this parameter is about 130K when 
x varies between 0 and 0.67. 
 
4. Conclusion 
In this paper, structural and thermal properties of Zn1-xCdxO alloy for  
x=0, 0.125, 0.25, 0.5, 0.625 have been investigated. The values of lattice constants a and c 
were calculated 3.2496 and 5.1993, respectively, for x=0 which are in good agreement with 
the experimental and theoretical reports. Also lattice constants for different values of x follow 
Vegard's law. The diagrams of specific heat at constant volume at low temperatures have T3 
behavior and at high temperatures tend to saturation limit. Specific heat at constant pressure 
versus x at 300K, 600K and 900K has been plotted. Specific heat at constant pressure 
decreases linearly by increasing x and specific heats increases by increasing temperature. 
Debye temperature diagram versus x at different temperature shows to be decreased by 
increasing x and temperature.  
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Abstract. The paper presents the results of experimental testing by magnetic-pulse method of 
Cu-ETP samples with crack type macro defect. Three-dimensional modeling of the magnetic 
field in the loading device -sample system was performed, on the basis of which the magnetic 
pressure was calculated and mechanical simulation was performed with Johnson-Cook 
plasticity model and fracture criteria. Comparison of the obtained results of residual 
deformation indicates the applicability of Johnson Cook plasticity model for OFHC copper 
for describing the behavior of Copper ETP in the deformation rate range up to 104 1/s. 
Keywords: high speed deformation, magnetic-pulse loading, Johnson-Cook plasticity model 
 
 
1. Introduction 
Using of the magnetic-pulse method for creation controlled pressure pulses with microsecond 
duration for study of pulse strength of brittle nonconductive materials allowed to reveal a 
number of general consistent patterns of deformation process [1, 2, 3]. Applying of the 
thermodynamic approach for analysis of the results allowed to obtain the characteristic 
relation between extreme deformation loads and their duration, and specific for each material 
parameter - the time of energy accumulation [4]. Main feature of magnetic-pulse method of 
loading is the ability to form stress states, in which there are no loading modes with 
preliminary material compression, typical for spalling deformation tests. The realization of 
this feature is especially important in the testing of composite and laminate materials with an 
explicit spatial anisotropy of deformation characteristics. 

The aim of the work is to substantiate and experimentally confirm the possibility of 
testing conductive samples in high-speed deformation modes and to identify possible 
limitations associated with the influence of the current induced in the sample on the 
deformation curves of the metal. 

 
2. Pressure forming by the magnetic-pulse loading  
The use of magnetic-pulse method, described in [4], for forming a load on a conducting 
sample can lead to a change in the ratios of the current pulse parameters flowing along the 
magnetic-pulse driver (hereinafter MPD) and the parameters of the pressure transferred to the 
sample. 

The impact of conducting sample presence was studied with the use of numerical 
simulation in the environment Comsol Multiphysics. Process of generating a magnetic field in 
a MPD-sample system with geometric dimensions corresponding to dimensions of the sample 
used in the experiment. Simulation was performed for the MPD with length 15 mm. The main 
view of test sample with installed MPD is shown in Fig. 1. 
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Fig. 1. Test sample (О) with installed magnetic-pulse driver  
(insulation is not shown) 

 
The results of magnetic field simulation for simple and quasi-coaxial MPD with the 

width cmpd =7.8 mm and samples with different conductivity are shown in Fig. 2. 
 

 
  

a) b) c) 
 

Fig. 2. Distribution of magnetic field induction at the moment of current maximum: 
a) simple MPD, conductive sample; b) quasi-coaxial MPD, conductive sample; c) simple 

MPD, conductive sample 
 

Analysis of the results revealed some influence of the MPD width on the parameters of 
the pressure acting on the sample. This is due to the fact that in the system of flat busbars, 
under condition cmpd >> hmpd, magnetic pressure Pm is related to the MPD current 𝐼𝐼 with a 
simple relation: 
𝑃𝑃𝑚𝑚 = 𝜇𝜇0 ∙ �𝐼𝐼 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚⁄ �

2
2⁄ , (1) 

where µ0 = 4π∙10-7 H/m, but this condition is not always satisfied during the experiment.  
Real relations between ratio of magnetic pressure acting on the groove and calculated with the 
use of (1), during the impulse current flowing through MPD 
𝑖𝑖(𝑡𝑡) = 𝐼𝐼𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠 �2𝜋𝜋𝑡𝑡

𝑇𝑇
� (2) 

with the period T=8 µs, close to the experimental one, and geometry parameters of MPD are 
shown in Fig. 3. Simulation was provided varying the width of MPD cmpd and saving the 
value of current density Im/cmpd =10 kA/mm, where Im - amplitude value of current for test 
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sample with thickness 𝑐𝑐=2 mm, width and length b=a=30 mm, height of the groove h=3 mm, 
length of the groove l=15 mm (Fig. 1). 
  

 
 

Fig. 3. Relations between ratio of magnetic pressure acting on the groove and calculated  
with the use of (1) and ratio of MPD busbars width and length between those busbars;  

1 – simple MPD, 2 – quasi-coaxial MPD 
 

The relations shown in Fig. 3 reveal that the increase of ratio cmpd /hmpd makes closer 
magnetic pressure to the pressure calculated with the use of (1). Since the calculation was 
performed for the experimental configuration of the sample, where groove height is constant, 
magnetic pressure formed by quasi-coaxial MPD exceeds the pressure formed by simple 
MPD with the same current in the branch of MPD. 
 
3. Process of sample deformation under pulse loading 
The simulation of elastic–plastic deformation of a copper busbar with macro defect of type of 
crack in the three-dimension setting was carried out using the ANSYS Autodyn 
environment [5]. Johnson-Cook (JC) plasticity model for OFHC copper [6] was selected as a 
calculation model of deformation. 

JC plasticity model describes deformation process up to fracture, and the validity of use 
of JC plasticity model is confirmed by the good correspondence between calculated and 
experimental deformation curves for different plastically deformable materials at strain rates 
up to ~ 2000 1/s. The reliability of mentioned model for various metals is supported by its 
implementation in different programming environments, e.g. [5]. For instance, the 
applicability of JC model for description of the high-speed deformation process for 
steel 09G2S at strain rates up to 1500 1/s is shown in [7].  

According to JC model the elastic limit of material varies depending on plastic strain, 
strain rate vp, which must be equal or more then 1 s-1, and temperature is described by the next 
expression 
𝜎𝜎 = �𝐴𝐴 + 𝐵𝐵𝜀𝜀𝑝𝑝𝑛𝑛� ∙ �1 + 𝐶𝐶𝐶𝐶𝐶𝐶𝜀𝜀𝑝𝑝* � ∙ �1 − 𝑇𝑇*𝑚𝑚�, (3) 
where εp – is an effective plastic strain, 𝜀𝜀𝑝𝑝* = 𝜀𝜀𝑝𝑝 𝜀𝜀𝑝𝑝0⁄ is a standardized effective plastic strain 
rate (𝜀𝜀𝑝𝑝0 = 1s-1), 𝑇𝑇* is homologous temperature 
𝑇𝑇* = (𝑇𝑇 − 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) (𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)⁄ , (4) 
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A = 90 MPa, B = 292 MPa, n = 0.31, C = 0.025, m = 1.09, Tmelt = 1082.9°C are model 
parameters. 

JC fracture model similar to plasticity model is applied as the failure criterion: 
𝐷𝐷 = ∑ ∆𝜀𝜀

𝜀𝜀𝑓𝑓
, (5) 

𝜀𝜀𝑓𝑓 = �𝐷𝐷1 + 𝐷𝐷2𝑒𝑒𝐷𝐷3𝜎𝜎
*� ∙ �1 + 𝐷𝐷4𝑙𝑙𝑙𝑙𝜀𝜀𝑝𝑝* � ∙ �1 + 𝐷𝐷5𝑇𝑇*�, (6) 

where εf is an effective fracture strain, D1 = 0.54, D2 = 4.89, D3 = -3.03, D4 = 0.014,  
D5 = 1.12 – deformation model parameters. When the parameter D reaches the value 1, the 
material is destroyed. 

As it is presented in [8], the character of the stress state is defined by the characteristic 
size of the sample b and the loading wavelength λ = c1T, where the condition λ << b allows to 
realize a shock-wave mode of loading, otherwise quasi-static mode. Maximum von Mises 
stress forms in the zone near the top of the groove at uniform distribution of pulse pressure. 

Deviation of deformation curve from linear as a result of plastic flow leads to sufficient 
reduce of acceptable stress, as it is shown in figure 4a in the case of shock-wave loading mode 
(curves 1, 2, 3). Herewith it is not possible to ensure high strain rate ε˙p (Fig. 4). Transition to 
the quasi-static loading mode allows to expand the range of reachable stress and ensure 
greater deformations of material in the top of the groove, up to the fracture (Fig. 4, curve 4). 
 

  
a) b) 

Fig. 4. Von Mises Stress (a) and strain (b) at the groove top.  
1 – Pm = 250 MPa, T = 8 μs (excluding plastic deformation); 2 – Pm = 250 MPa, T = 8 μs, 
𝜀𝜀𝑝𝑝= 1600 1/s; 3 – Pm = 85 MPa, T = 8 μs, 𝜀𝜀𝑝𝑝 = 500 1/s; 4 – Pm = 250 MPa, T = 50 μs, 

𝜀𝜀𝑝𝑝= 90000 1/s; 5 – Pm = 85 MPa, T = 50 μs, 𝜀𝜀𝑝𝑝= 14000 1/s 
 
The results of numerical simulation show that the impact of uniformly distributed pulse 

pressure on groove, created by MPD, allow to expand strain rate up to 105 1/s. 
 
4. Experiment 
The experimental setup - the pulse current generator GIT-50/12 was used for experimental 
study of deformation process [9] with the simple MPD loading scheme (Fig. 1). 
Current form, measured by Rogowski coil, was damped sinusoid, which can be described by 

𝑖𝑖(𝑡𝑡) = 𝐼𝐼𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠 �2𝜋𝜋𝜋𝜋
𝑇𝑇
� ∙ 𝑒𝑒�

−𝑡𝑡
𝜏𝜏 �, (7) 

where T = 5.9 µs , τ = 5.6 µs, the amplitude was determined by the test setup charging 
voltage, e.g. Im = 352 kA for №4. 

Variation of pressure amplitude was reached by changing relation between current 
amplitude and MPD width. The dependence graph of relative values of groove opening – 1 
and precrack – 2 to their initial height Di = he / hi, where he, hi – height of a groove (a 

120 S.G. Magazinov, S.I. Krivosheev, Yu.E. Adamyan, D.I. Alekseev, V.V. Titkov, L.V. Chernenkaya



precrack) after the experiment and initial respectively, and pressure amplitude, applied to the 
groove, relative to the yield stress is shown in Fig. 5. 

 

 
Fig. 5. Dependence graph of relative values of precrack-I groove opening-II and applied 

pressure relative to the yield stress – σy = 90 MPa; P - pulse pressure form;  
A – photo of precrack opening of experimental samples; JC – calculated points 

 
Correlation between experimental and simulation results of plastic deformation is 

shown in figure 5, wherein average calculated strain rate for the sample №2 was ~ 3 300 1/s 
and for the sample №4 was ~ 10000 1/s.  

Complete fracture after the experiment of the sample №5 is observed (orange points  
in Fig. 5), whereas the results of calculation with the use of Johnson-Cook criterion for OFHC 
copper do not correspond conditions of fracture. 

Induced current density in the top of the groove of the sample №4  
reached ~ 35 kA/mm2, oscillation period ~ 5.7 µs, ratio of near amplitudes ~ 1.29. Joule 
heating caused the raise of temperature in the zone with induced current less than 18°C, which 
according to Johnson-Cook deformation model leads to the reduce of yield stress less  
than ~ 2 %.  

Maximum of magnetic field induction in the top of sample groove reached 4.2 T, which 
corresponds the amplitude of magnetic pressure equal ~ 9 MPa, while the amplitude of 
magnetic pressure applied to the shores of the groove reached 421 MPa. 

Analysis of experimental results revealed that thermal and force impact of induced 
currents was insufficient. Since the simulation does not include the impact of electroplastic 
effect and in the range of relatively low strain rates, experimental data and simulation results 
have a good correlation; it can be assumed that the impact of electroplastic effect during the 
action of currents with microsecond duration is not observed within the framework of used 
method. 
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It should be noted that in contrast with the data presented in [10–13] where the 
electroplastic effect was observed at current density 1 kA/mm2 and impulse duration 60 µs 
and more, the results of experiments with parameters described in this work revealed no 
impact of electroplastic effect at current densities ~ 20–40 kA/mm2. This may be due to 
sufficiently less impulse duration or higher strain rate obtained in the experiment.  

Further research implies the use of quasi-coaxial MPD, which will allow to exclude the 
impact of induced currents in the deformation zone, and external current source with the wide 
range of impulse parameters. 

 
4. Conclusion 
Analysis of simulation results showed the possibility of using magnetic-pulse method of 
deformation of conductive materials at strain rates up to ~ 100 000 1/s. 

The results of experimental study have a good correlation with Johnson-Cook model up 
to strain rate 103-104 1/s, however deviation of calculated parameters from experimental data 
at the increase of a strain rate can be observed. 

Experimental transition to higher strain rates will allow to receive data for  
Johnson-Cook model verification in a wider range of influences. 
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Abstract. The article deals with the relevance of the stress strain state (SSS) in areas of 
potential destruction for the assessment of deformed structures strength. The article develops 
a calculation and experimental method for building a combined strength criterion equation 
involving strength coefficients, introduced by Pisarenko-Lebedev criterion equation with 
regard to the real SSS type. The proposed method has been implementedand experimental 
mechanical tests were carried out for the selected samples which follow the idea that the SSS 
type in the active zone is identical to the SSS of the analyzed structure in the area of interest. 
Results of the calculations and experimental tests demonstrate a significant decrease in the 
limit strength value for 50CrV (high quality) under biaxial tension in comparison with the 
conventional limit strength value. 
Keywords: modeling, stress strain state, limit state equation, prismatic sample, finite element 
method, strength parameters, biaxial stretching 
 
 
1. Introduction 
Strength analysis for deformed structures under multidirectional loads has to be carried out 
with regard to the stress strain state (SSS) type in the areas of potential destruction [1 – 6]. 
A large number of vital parts and elements with stress concentrators are used in machines and 
units of the transport, energy and petrochemical industries. Stress concentration near 
structural irregularities of different size and shape (fillets, holes, roundings, slots) is typical. 
Examples of such parts are choke parts of capacitive equipment [5], suspension system 
elements (levers, axes) [6], compressor and turbine discs [7], wrought wheels of the rolling 
stock [8], etc. The SSS near these concentrators is biaxial, and its most dangerous case is 
biaxial tension that affects the parts lifecycle and is able to cause the destruction under quasi-
static loading [1 – 6].  

According to the experimental data, the material strength under biaxial tension is 
different from the one under uniaxial tension [1, 9 – 11]. In this case, the static strength of the 
part calculated with regard to the traditional criteria can be erroneous if its material is under 
biaxial loading. The result of this error can cause premature destruction of the structure in the 
area where the stress level is not maximum for the whole structure. It can also cause an 
unjustified increase in the specific amount of metal per structure [3]. Thus, the SSS type 
which is ignored by conventional criteria, affects the strength. 

The SSS type can be used by two methods. The first method is based on the  
Pisarenko-Lebedev, Yagna-Buzhinsky, and Drucker-Pragger strength criteria [1, 3]. The 
method involves the preliminary calculation of material strength properties by destroying the 
samples under different loads in a quasi-static way. The properties are as follows: uniaxial 
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tension, compression and shear (respectively, determination of the values of σt, σc and τs). 
These criteria combine various weight factors and two summands corresponding to the shear 
destruction (the first summand) and the cleavage destruction (the second summand). A factor 
limiting the accuracy of the combined strength criteria is the difference of the real SSS type of 
the structure and the SSS type of the samples tested before destruction when calculating σt, σc 
and τs. Moreover, calculations of these values and the need for various laboratory tools 
complicate the implementation of the method.  

Let us analyze the Pisarenko-Lebedev limit state equation [1, 3] which is used for the 
assessment of structures strength. The condition under which the quasi-static destruction of 
the material accompanied by crack formation occurs is as follows  

( ) t
1

1 σσ1ασ ≤−+ −Plimlim
i Aα , (1) 

where σi
lim 

 is the stress intensity in the area of potential destruction 

( ) ( ) ( )213
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lim, σ2

 lim, σ3
 lim are primary stresses occurring in this area; P is the Smirnov-Alyaev 

coefficient [4, 5] characterizing the SSS type at the point under study. The coefficient is 
calculated by formula  
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(for biaxial tension P = 2, for uniaxial tension P = 1, for uniaxial compression P = –1, for 
uniaxial shearing P = 0); α and А are empirical constants characterizing the material strength 
independent of the SSS (P) and the SSS level (σi

lim) of the material in the area of destruction 
(hereinafter referred to as strength coefficients) calculated by formulas  
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Equation (1) takes into account the structural irregularity of the material, the ability to 
resist shearing and normal stresses. As mentioned above, in some cases, the accuracy of the 
criterion (1) is not sufficient due to differences between the real SSS type in the area of 
potential destruction and the SSS type for the samples tested before destruction when 
calculating σt, σc, τs and α and А. In [10 – 11], the authors argue that P calculated by 
equation (3) affects the area of destruction: with an increase in P (according to Smirnov-
Alyaev, the rigidity of the SSS type), the limit stress intensity values and the first primary 
stress decrease. 

The second method is based on the results of laboratory experiments carried out using 
special samples with the SSS type in the area of destruction similar to the SSS type in the area 
of potential destruction of the structure element. The results were accounted for in the 
deformation criteria [3]. The second method was implemented using special test equipment 
with several power drives (Fig. 1-а) creating multidirectional forces affecting the sample and 
special leverage mechanisms (Fig. 1-b) transforming a uniaxial force impact of the one-drive 
machine by levers linked to the sample into multidirectional forces affecting the sample. 
These samples, machines and mechanisms improve the accuracy of strength simulation and 
calculations but limit opportunities for carrying out the experiments. 

The present article describes calculations and experiments carried out to improve the 
strength criterion which combines the elements of two methods. The combined criterion takes 
into account the real SSS type of the structure element in the area of potential destruction 
using typical one-drive testing machines. The use of experimental data on destruction of 
laboratory samples improved the calculations whose stress state at the moment of destruction 
simulates the stress state of the real structure in the working zone. 
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Fig. 1.  Biaxial loading unit (а) and leverage mechanisms (b) for static tests under biaxial 
tension 

 
2. Methods  
The mathematical simulation method and modern engineering technologies can be used to 
solve the task set in the article. The FEM can be used for solving the task of body mechanics. 
To improve the strength criteria for structures under complex loading and strength calculation 
accuracy, strength coefficients α and А can be calculated by equation (1) with regard to the 
real type of the SSS of the loaded area of the structure. The general scheme of the method is 
presented in Fig. 2. 
 

 
 

Fig.2. The scheme of improved strength calculations with regard to the real SSS type based 
on the combined strength criterion  

 
Equation (1) shows that α and А are coefficients of the formula which describethe 

structural strength of amaterial with certain calculation values of σ1
lim, σi

 lim and  
Plim (parameters σ1

lim, σi
 lim) at the moment of destruction at Plim. From this perspective, the 

Pisarenko-Lebedev criterion can be transformed into the following equation: 
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( ) t
1

1 σσ1ασ ≤−+ − limPlimlim
i Aα , (5) 

where α and А can be calculated from equation (5) with regard to its other parameters σ1
lim,  

σi
 lim and Plim. That implies that α and А calculated from (1) do not have a conventional 

physical meaning resulting from the Pisarenko-Lebedev criterion. They depend on the 
SSS type of the material. Thus, α and А are coefficients of the empirical formula (hereinafter 
referred to as strength coefficients) considering the results for samples tested before 
destruction. They simulate the SSS type of the area of assessment. 

The present article as well as the Pisarenko-Lebedev equation assumes the 
independence of α and А on the stress intensity σi and the first primary stress σ1 in the area of 
potential destruction. Equation (5) approximates the real limit state equation built for a 
specific (or a relatively narrow range of modifications) value of P describing the SSS type. 
This type is determined by structural properties of samples tested before destruction. The area 
of destruction has to be characterized by P equal or close to P for the area of the structure. 

After the value of P has been determined by the FEM used for solving the tasks of body 
mechanics to determine α and А from equation (5), it is necessary to match the type of the 
SSS of the samples and the type of the SSS of the structure. To this end, it is sufficient to test 
two samples before destruction. The samples have to have different sizes and 
SSS characteristics at the moment of destruction. Strength coefficients α and А can be 
calculated by the following algorithm: 

• matching geometrical parameters of two different structural samples of special shapes 
with the values of Plim which are close to the values of P for the area of the structure 
under study– P 1 lim and P 2 lim; 

• testing structural variants of the samples before destruction; 
• calculating σ1

lim and σi
lim which are the characteristics of the SSS level of equation (5) 

in the working area of the samples; 
• calculating values of α and А from the system of equations  
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where values of σ1
1 lim, σi

1 lim and P1 lim correspond to the experimentally determined moment 
of destruction of the first sample, σ1

2 lim, σi
2 lim and P2 lim correspond to the experimentally 

determined moment of destruction of the second sample. In this case, equations of type (5) 
corresponding to two selected structural variants form the system of two non-linear algebraic 
equations with unknown variables α and А which can be solved by the successive 
approximation method. The use of experimental data on destruction of laboratory samples 
obtained under the SSS of the real structure can improve calculations accuracy. The need for 
strength parameters depending on primary stresses complicate the strength criterion. The 
author and his co-authors used a prismatic shape sample for the assessment of the strength of 
the structure under the complex stress state [12]. That helped obtain strength data with regard 
to the required coefficient P using a standard test machine compressing the sample. The 
principle of multidirectional test forces formation in the sample and the sample structure have 
been described in [22]. 
 
3. Calculation results  
To improve the strength criterion with regard to deformation characteristics by the method 
presented in Fig. 2, strength coefficients α and А were calculated for 50CrV (high quality) 
steel which is in the most rigid SSS (using the Smirnov-Alyaev terms) under biaxial 
tension (1< P <2). The SSS with P =1.85 was used. 
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The state at P = 1,85 corresponds to the type of the SSS of the experimental model of 
the pressure vessel’s choke part whose destruction area is on its external surface in the area 
adjacent to the weld of the choke (Fig. 3-b) [19]. In [19], the experimental model of the choke 
part consisted of a spherical frame and a welded choke (148 mm in internal diameter, and 
216 mm in external diameter) made from the same material. The model was loaded with 
internal pressure in a quasi-static way. The destruction pressure of the model was  
ppf = 77.7 MPa. As a result of the model destruction, a thorough crack cutting the choke wall 
along the meridian line formed. The crack is maximum in the area adjacent to the weld of the 
choke on its external surface (see Fig. 3-b). The view of the fracture surface corresponded to 
the quasi-brittle nature of destruction [19]. 

 

        
а                                                                            b  

Fig. 3. Distribution of the calculated values of coefficient P (а) at the moment of destruction 
along the cross-section of the choke part (b) 

 
The calculated value of P at the moment of destruction of the pressure vessel’s choke 

model was determined by numerical analysisin MSC Patran and MSC Nastran. The numerical 
solution was based on the experimental results obtained when testing the model before 
destruction with regard to the elastoplastic properties of the deformed material. The 
mathematical elastoplastic deformation model described by Prandl-Reiss equations [20, 21] 
was used. 

The comparison of the calculated value ppc = 75 MPa and the real destruction pressure 
ppf = 77.7 MPa shows that the calculation error does not exceed 5%.  

With regard to the SSS characteristics at the moment of destruction, P in the  
FE-network along the cross-section of the choke part and in the area of destruction of the 
choke (on the external surface in the weld adjacent zone) was calculated using (3). Fig. 3-а 
shows the distibution of the calculated values of P along the cross-section of the choke part. 
In the area of destruction, the maximum value of P was P =1.85. 

Model development is the first implementation stage for the method which can improve 
the accuracy of the strength criterion. This part of the article is a methodological description 
of the stage. 
 
4. Results of experiments and calculations  
To determine the conventional values of mechanical characteristics of 50CrV (high quality) 
steel, standard round samples were tested for tension. Static machining of five samples 
identified that 50CrV (high quality) steel has strength limit σt= 1270 MPa and relative 
extension δ = 7.5 %.  

crack 
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According to the method (see Fig. 1), to determine the values of α and А introduced by 
equation (5), it is necessary to destroy two structural samples of different size and value of  
σ1

1 lim, σi
1 lim and σ1

2 lim, σi
2 lim at the moment of destruction. The samples have to have equal 

(or close) values of P in their working zones. Sampling was described in [4, 23]. Two series 
of samples (series 1 and series 2) with three samples in each series were produced. Their sizes 
had to ensure P =1.85 in the working zone [23]. 

Prismatic samples of series 1 and series 2 were tested using Instron 5989 Testing 
System. The load diagrams presented in Fig. 4 show averaged values of force characteristics 
of three loaded samples in each series. The relative mean square deviation of these values did 
not exceed 5%. 

 

 
а                                                                            b  

Fig. 4. Averaged load diagrams for prismatic samples series 1 (a) and series 2 (b):  
 point 1 – crack formation moment in the working zone of the prismatic samples 

 
Destructive forces were F1 = 205 kN,  F2 = 235 kN.  F1 and F2 were used as initial 

values for the numerical FE analysis of the samples at the moment of destruction. The 
accuracy of calculated deformation models was proved by calculations and full-sized 
experiments [4, 23]. Values σ1

1 lim, σi
1 lim were calculated for the first prismatic sample  

(P1 lim = 1.9). Values σ1
2 lim, σi

2 lim  were calculated for the second prismatic sample  
(P2 lim =1.8). Fig. 5-a shows the results of the numerical analysis of prismatic samples series 1 
at the moment of destruction (corresponds to the moment of crack formation). Fig. 5-b shows 
the distribution of the component of the first primary stress. 

The results of the numerical analysis of deformation for prismatic samples series 2 at 
the moment of destruction are shown in Fig. 6-a (the distribution of stress intensity) and in 
Fig. 6-b (the distribution of the component of the first primary stress). 

The calculations and experimental results are presented in Table 1. The experimental 
results show that the influence of biaxial tension in the area of destruction can be significant 
for the samples of series 1. The limit value of the first primary stress σ1

1 lim corresponding to 
the moment of destruction is 892 MPa which is a quarter less than the value of strength limit 
σt σ1

1 lim = σt = 1270 MPa determined under uniaxial tension (P = 1). The results are close to 
the result of experimental studies carried out by Y.А. Vilimok, К.А. Nazarov, and 
A.K. Evdokimov [14]. Using special test equipment, the researchers identified the same 
decrease (by more than a quarter) in σ1

1 lim under biaxial tension of X10CrNiTi18-10 steel 
with P ≈ 2. 
 

Increasing the reliability the combined criteria of the static strength of a material of complexly loaded... 129



  
     а                                                                                                b 

Fig. 5. Calculated distribution of stresses at the moment of destruction of samples series 1 
(the view of a quarter of the sample cut by two axial planes):  

а – distribution of stress intensity σi
1 lim, b – distribution of the first primary stress σ1

1 lim 
 
 

        
       а                                                                                b 

Fig. 6. Calculated distribution of stresses at the moment of destruction of samples series 2  
(the view of a quarter of the sample cut by two axial planes):  

а – distribution of stress intensity σi
2 lim, b – distribution of the first primary stress σ1

2 lim 
 

Table 1. Calculated characteristics of the SSS of the samples at the moment of destruction 

No. of 
series 

Working zone 

σ1
lim, MPa σ2

lim, MPa σi
lim,  

MPa 
P 

1 985 743 892 1,9 

2 1050 615 917 1,8 
 

To calculate α and А introduced by equation (5), let us insert the calculated values of the 
SSS characteristics (see Table 1) into the system of equations (6)  

( )
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Solving equations (7) by the successive approximation method, one can obtain the 
following values: 
α =  0.73;  А = 0.40. (8) 

Equation (5) can be used to improve the calculations of static strength of the structure 
made from 50CrV (high quality) steel and described by P ≈ 1.85.  

If we take into account that α and А in equation (1) do not depend on P, for 50CrV (high 
quality) steel strength parameters (according to the conventional terminology) α and А 
calculated by (4) will be α = 0.6, А = 0.75 at any P. It contradicts the hypothesis that the 
strength depends on the SSS type (P). Therefore, α and А have to be adjusted. Otherwise, at 
given P, a rigid zone of the structure will fail (it happened to the choke part in the area 
adjacent to the weld where the stress intensity value was not maximum for the whole 
structure). If α = 0.73 and А = 0.4, one can see that the influence of P on α and А can be 
significant. Thus, condition (1) has to be the approximation of the real limit state equation 
built for a specific (or a relatively narrow range of modifications) value of P describing the 
SSS type. 

 
5. Conclusions 
The proposed method for building a combined strength criterion involves using experimental 
data on destruction of laboratory samples whose stress state at the moment of destruction 
simulates the stress state of the structure. The use of these data can improve calculations 
accuracy for strength coefficients in the Pisarenko-Lebedev strength equation.  

The calculations and experiments identified that for 50CrV (high quality) steel, the limit 
value of stress intensity under biaxial tension (P ≥ 1.8) decreases by a quarter in comparison 
with the strength value determined under uniaxial tension (P = 1). 
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