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BEHAVIOR OF STAINLESS STEEL AT HIGH STRAIN RATES 

AND ELEVATED TEMPERATURES. EXPERIMENT AND 

MATHEMATICAL MODELLING 

Anatoly M. Bragov1*, Alexander Yu. Konstantinov1, Leopold Kruszka2,  

Andrey K. Lomunov1  
1Research Institute for Mechanics of Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod,  

23 Prospekt Gagarina (Gagarin Avenue) korp 6, 603950, Russia  
2Military University of Technology, Warsaw, Poland 

*e-mail: bragov@mech.unn.ru  
  
  
Abstract. On the example of 1810 stainless steel, the results of modern experimental and 
theoretical analysis of high-speed deformation and destruction of a viscoplastic material are 
presented. The analysis used the results of basic experiments based on the Kolsky method 
under compression and tension, as a result of which stress-strain curves were obtained at 
different strain rates and temperatures. On the basis of this data, the parameters of the 
Johnson-Cook model with different versions of the strain-rate multiplier are obtained. For 
verification of the selected model, in the framework of the Kolsky method, two schemes were 
proposed for dynamic indentation and diametrical compression of cylindrical specimens. 
Comparison of the numerical simulation and experimental results allowed us to estimate the 
reliability of the model. Using the plane-wave shock experiment and the VISAR 
interferometer, the yield strength and spall strength of stainless steel at the strain rate of 105 s-1 
were determined. This data, together with the results of experiments, using the Kolsky method 
under tension, allowed us to construct the dependence of the limiting strength characteristics 
of stainless steel in the range of strain rates of 103–105 s-1.  
Keywords: Kolsky method, plane wave experiment, material model, identification, 
verification, spall strength, stainless steel. 

  
  

1. Introduction  
The study of regularities in the behaviour of materials of different physical nature in a wide 
range of temperature variation, strain rates, and load amplitudes is one of the topical problems 
in the experimental mechanics of a deformable solid. Especially important is the study of 
influence of the strain rate and its change on physicomechanical properties of materials at the 
strain rates of 102-105 s-1 [1-3].  

To date, the formation of stress-strain curves of structural materials is carried out using 
several of the most common methods: tensile or compression tests by drop-weight machine, a 
cam plastometer, and a Taylor test [3]. The most popular and widely used method is the 
Kolsky method employing a split Hopkinson pressure bar (SHPB) [4-6]. This technique 
allows for testing various materials for different types of stress-strain state in the strain rate 
range of 102-104 s-1. To date, in addition to the basic scheme for compressing the specimen, a 
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large number of SHPB modifications have been developed, which make it possible to study 
the behaviour of materials in tension, shear, torsion, at combined loading regimes [7-9].  

To calculate the stress-strain state and strength of dynamically loaded structural 
elements, exposed to shock loading, using the LS-DYNA, ABAQUS etc. software packages, 
mathematical models are needed describing behaviour of the material in such conditions. The 
most popular are empirical models giving the relationships, the type and parameters of which 
are determined by the results of dynamic testing of materials.  

It should be noted that at the strain rates of 102-104 s-1 there is a large number of works 
in which dynamic deformation diagrams, ultimate strength and deformation characteristics are 
given, the deformation models are selected and equipped with parameters and constants. 
Verification of selected models is carried out in [10-11].   

For quasi-static loads, an experimental-theoretical methodology and the study of the 
processes of deformation and fracture of structural materials (basic experiments, selection of 
mathematical models, their parametric identification, verification and virtual experiments, 
evaluation of the adequacy of the selected model, based on a comparison of the experimental 
and computational results) were proposed in the last century by such famous Soviet scientists 
as A.A. Ilyushin, V.V. Novozhilov, A.Yu. Ishlinsky, S.A. Khristianovich, A.G. Ugodchikov 
et al. This approach is currently being successfully used at Lomonosov Moscow State 
University, the Institute of Problems of Mechanical Engineering of the Russian Academy of 
Sciences, the Institute of Problems of Mechanics of the Russian Academy of Sciences, etc. In 
Russia, for dynamic loads, an integrated approach is successfully used by Yu.V. Petrov and 
N.F. Morozov [13-14], R.A. Vasin [16-17], V.V. Zilberschmidt [18] etc. However, in the 
conditions of high-speed deformation, it is very difficult to fully realize such approach due to 
the lack of standard loading devices, measurement techniques for measuring short-term 
parameters of loads, displacements, and deformations.  

It should be noted that in many studies, that implement a comprehensive experimental 
and theoretical approach to the analysis of high-speed deformation processes of structural 
materials, the authors for verifying mathematical models use the results of the same basic 
experiments, on the basis of which parametric identification was made. This circumstance 
reduces the reliability of mathematical modelling.  

The purpose of this work is to show the fruitfulness of an integrated approach on the 
example of dynamic tests of 1810 stainless steel.  

  
2. Experimental methods and specimens  
In order to study the behaviour of materials, in the microsecond range of loads, two 
methodological approaches are used: the Kolsky method [4-5] for determining dynamic 
stress-strain curves, as well as ultimate strength and plasticity characteristics, fracture 
toughness at 102-104 s-1 strain rates, and plane-wave experiment for determining the shock 
adiabat, the limit of elasticity for Hugoniot and the spall strength [19].   

Using the Kolsky technique, basic experiments under compression and tension are 
carried out (Fig. 1). The incident εI, the reflected εR, and the transmitted εT strain pulses are 
recorded in measuring bars with the use of strain gauges. Then, using the Kolsky formulae, 
the time dependences of the specimen strain ε(t), the strain rate 𝜀𝜀̇(t), and the stress σ(t) are 
calculated [5]:  

[ ]∫ ⋅ε−ε−ε=ε
t

dtttt
L
Ct TRI

00

)()()()( , 

( ))()()()(
0

ttt
L
Ct TRI ε−ε−ε⋅=ε , 
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)()(
0

t
A
EAt Tε=σ . 

Here C, E, and A are the sound velocity, Young modulus and cross-sectional area of 
pressure bars, L0 and A0 are the initial length and the initial length and cross-sectional area of 
the sample, respectively.   

  

 
Fig. 1. The experimental setup and equipment for compressive dynamic tests 

  
Excluding time as a parameter, the material deformation curve σ(ε), with a known 

history of changing the loading conditions 𝜀𝜀̇(ε), is determined. The true (logarithmic) strain εt 
and the stress σt in the specimen are calculated in accordance with the following formulae:   

( ))(1ln)( ttt ε±=ε , 
( ))(1)()( tttt ε±⋅σ=σ , 

for compressing, the "-" sign is taken, and for tension, the "+" sign is taken.  
A gas gun with a calibre of 20 mm, is used as a loading device which allows for 

acceleration of strikers, having the length from 50 to 400 mm, in the speed range of 5–50 m/s.  
To carry out basic tensile tests, a simple gas gun is used (Fig. 2) which allows for 

creation of a direct tensile load in the SHPB. The tubular striker accelerates in a short barrel 
and impacts the anvil fastened with an incident pressure bar.  

 

  
Fig. 2. Scheme of gas gun creating a direct tensile wave 
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Sets of measuring bars, with a diameter of 20 mm, for testing under compression and 
tension, are made of high-strength maraging steel with a limit of elasticity equal to 2000 MPa. 
To implement the mode of multi-cycle loading of the specimen, in a single experiment, the 
loading and supporting bars have different lengths [20]. A measurement of strain pulses is 
carried out by using low-base foil strain gauges, glued onto the lateral surface of the pressure 
bars. Four gauges, connected in series, are glued in the working sections of the bars to 
compensate the bending vibrations in the bars and to increase the amplitude of the useful 
signal.  

The change in a value of the specimen strain rate was obtained by varying the speed of 
the striker and the required degree of deformation of the specimen was achieved by varying 
the length of the striker.  

To study the behaviour of the material at elevated temperatures, a miniature tubular 
furnace was used, located on the ends of the measuring bars with a specimen placed between 
them. To control the specimen temperature, a small thermocouple, welded to the side surface 
of the specimen, was used. At the test temperature of up to +350°C, no correction was made 
to the formulae and to the method of processing the experimental data, since at such 
temperatures the elastic characteristics of the material of the measuring bars (the speed of 
elastic waves and the modulus of elasticity) remain practically unchanged.  

As a result, a stress-strain diagram, with the dependence of the strain rate, is obtained 
and the ultimate characteristics of strength and ductility are determined.  

The above set of basic experiments allows us to obtain the mechanical properties of 
materials at different, but uniform, stress-strain states, at the strain rate of 5x102-5x103 s-1 and 
at the temperatures up to 350°С. The results of these experiments are used for direct 
parametric identification of mathematical models of plasticity and fracture criteria.  

Determination of strength characteristics at the strain rates of 105-106 s-1 and the times 
from microseconds to hundredths of microseconds, under uniaxial strain conditions, was 
carried out along the velocity profile of the free surface, recorded by the VISAR 
interferometer (Fig. 3). Spalling strength is also determined by the velocity profile of the free 
surface in the acoustic approximation [19].  

  

 
Fig. 3. Scheme of installation used for investigation of spalling strength of materials  

  
Thus, we apply an integrated approach for investigation of high-speed deformation and 

fracture of structural materials, combining the elaboration and evolution of modern methods 
and means for dynamic testing of materials. The study of the processes of high-speed 
deformation and destruction of materials, the selection of modern mathematical models and 
their defining relations that adequately describe the main effects of high-speed deformation, 
the identification of defining relations using the obtained experimental data, and finally, their 
verification by comparing the computational and experimental results are described.  
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Using the Kolsky technique, basic experiments are carried out for compression and 
tension. As a result, stress-strain curves are obtained for a homogeneous and uniaxial stress 
state, almost constant temperature, and strain rate. Based on the obtained curves, the yield 
stress, plastic hardening modulus, ultimate strength and final deformation characteristics, as 
well as their dependence on the strain rate and temperature are determined. This data are used 
to identify material plasticity models. According to the results of tensile tests, additionally, 
after the test, the characteristics of fracture are determined: the relative elongation and the 
relative narrowing after the rupture, as well as the temporal tensile strength σB is determined 
from the stress-strain curves. This data are used to equip the models of destruction.  

To verify the adequacy of the constitutive models, special verification dynamic 
experiments have been developed using the measuring Hopkinson bar technique (Fig. 4) [10-
12].  
 

      
 a)  b)  

Fig. 4. Schemes of verification dynamic experiments using indenters of various shapes (a), 
compression of the cylindrical specimen along its diameter (b) 

 
These experiments, on the one hand, are simple enough and allow for unambiguous 

interpretation of the results and numerical reproduction without simplifications. On the other 
hand - the stress state in these tests, and also changes in loading parameters differ from that in 
basic testing experiments. 

The advantage of the proposed and made verification experiments is that, in addition to 
determining the residual irreversible deforming of the specimens (depth and diameter of the 
imprint, changing the length, diameter, etc.), the time dependences of the deformation from 
the measuring bars are obtained. The data, determined from verification experiments, are 
compared with the results of numerical simulation of the corresponding experimental 
schemes, thereby evaluating the adequacy of the constitutive material model.  
  
3. Results of dynamic tests  
Basic dynamic testing experiments were carried out on 1810 stainless steel specimens in 
compression and tension at various strain rates and at the different temperatures of +20°C, 
+150°C, and +350°С. The change in the strain rate of the specimen was ensured by varying 
the striker velocity. The required test temperature was achieved by heating the ends of the 
measuring bars and the specimen, placed between them, using a special oven.  

For each deformation modes in which strain rate and ambient temperature have changed, 
3-5 tests were carried out, the results of which were averaged vs time. An example of 
obtaining average diagrams for compression, based on the results of three dynamic 
experiments, at the temperature of +20ºC and the strain rate of 1300 s-1, with their confidence 
intervals, is shown in Fig. 5. The curves of stress changes are shown in the upper part of the 
figures, while in the lower part the corresponding curves of change in the strain rate (its 
corresponding axis to the right) are shown.  
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 a)            b)  

Fig. 5. Averaged diagrams of stress and strain rate vs time (a) and their confidence intervals 
vs strain (b) for dynamic compression at room temperature 

  
As a result of the tests, the stress-strain diagrams and dependences of the strain rate 

changes were obtained. Figure 6a shows the average stress-strain curves, together with the 
static curve obtained during compression at the room temperature, while Figure 6b shows the 
effect of the test temperature on the courses of the static and dynamic diagrams.  

  

  
 a)            b)  
Fig. 6. The effect of strain rate (a) and temperature (b) on stress-strain curves for steel tested 

under static and dynamic compression 
  

It can be seen that the dynamic graphs are located above static one, both at room 
temperature and at elevated temperatures. In the studied dynamic range, the effect of the 
strain rate, on the courses of the stress-strain curves, does not appear. At elevated test 
temperatures, the stress-strain curves are lower than at the room temperature.  

Figure 7 shows a comparison of the behaviour of tested steel under the tension and 
compression, at the same strain rates at the room temperature (a) and at the elevated 
temperature of +350°C (b). It can be noted that there is a difference in the yield strength and 
as well hardening modulus at the plastic deformation for two required temperatures during 
tension and compression. It means those stress-strain graphs are non-symmetric caused by 
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various boundary conditions of tested specimens as well friction phenomena during 
compressive deformation process of specimens.  

  

           
 a)            b)  

Fig. 7. Comparison of deformation graphs under dynamic compression and tension  
at room (a) and elevated (b) temperatures 

  
According to the results of tensile tests, the limiting deformation characteristics δ 

(relative elongation) and ψ (relative narrowing) were determined (Fig. 8).  
  

           
 a)            b)  

Fig. 8. Dependence of the relative elongation δ (a) and the relative narrowing ψ (b) on the 
strain rate and ambient temperature 

  
It follows from the presented data, that δ and ψ are practically independent of the strain 

rate. The value of ψ, compared with δ value, weakly depends on the test temperature. The 
stronger effect of ambient temperature was observed in static tests.  

According to the results of experimental studies of steel behaviour, under static and 
dynamic loadings, the parameters of the Johnson-Cook model [21] were determined, in which 
the yield stress is defined as a function of strain, strain rate and temperature, and has the 
following form:   

( )( )( )mn
pJC TCBA ** 1ln1 −ε⋅+ε+=σ  . 
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The expression in the second brackets describes the effect of strain rate. Because for 
many materials the slope of the stress-strain curve, due to the adiabatic nature of the 
deformation process, decreases with an increase in the strain rate, the use of the standard 
approach (in which the strain hardening parameters A, B, and n are determined from the 
diagram obtained at 𝜀𝜀̇0 =1 s-1) leads to the fact that the model cannot adequately describe the 
experimental data in the dynamic range of strain rates. In the latest releases of LS-DYNA, it 
became possible to use alternative forms of recording the strain-rate factor. There are several 
variants of the multiplier model, which is responsible for the effect of strain rate. In addition 
to the classical (linear as a function of the logarithm of the strain rate) multiplier, other 
variants of the strain-rate multiplier may be used:  

• 
p

C

1
*

1 






 ε
+


 from Cowper-Symonds model [22];  

• ( ) ( )2* *
21 ln lnC C+ ⋅ ε + ⋅ ε  from Huh-Kang model [23];  

• ( )* C
ε from Allen-Rule-Jones model [24]. 

Here 
0

*

ε
ε

=ε



 is dimensionless strain rate, p and C are the model parameters (material 

constants).  
To describe the Johnson-Cook model, with strain-rate factors, in the forms given in [21-

24] (hereinafter referred to as model 1 - model 4, respectively), the experimental data were 
used. The parameters of different variants of the model of 1810 steel, obtained in the course 
of solving an optimization problem, are summarized in Table 1. A grey colour highlights the 
model that gives the best approximation for this material.  

 
Table 1. Variant values of Johnson-Cook model parameters for tested 1810 steel  

Parameter  Variant No 
1 

Variant No 
2 

Variant No 
3 

Variant No 
4 

Unit 

A  248.8  244  249  120  MPa  

B  1339  1338  1339  648  MPa  

n  0.6939  0.713  0.695  0.6958  -  

C  8.18E-03  7.49E-03  8.18E-03  1.53E-02  -  

C2  -  0.000822  -  -  -  

p  -  -  -  63.288  -  

m  1.18  1.164  1.179  1.178  -  

  
Figure 9 shows a comparison of Johnson-Cook constitutive curves under compression 

calculated in accordance with variant No 4 (solid lines) with experimental data (points) 
obtained under different conditions of strain rate and temperature. 
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Fig. 9. Comparison of obtained experimental stress-strain data for tested 1810 steel (points) 

with Johnson-Cook constitutive curves calculated in accordance with the optimization  
variant No 4 

 
To verify the model adequacy, the verification experiments were carried out in 

laboratory and numerical implementations for the dynamic impressing of a conic indenter, as 
well as for compression of a specimen along the diameter in a SHPB system (Fig. 4) with the 
registration of strain pulses in measuring bars as well as residual form of specimens. The 
numerical implementation of the relevant tests was carried out using the free Calculix 
software package. The indentation process is modelled in an axisymmetric formulation with 
allowance for friction. The task of modelling the diametric compression of an elastoplastic 
material is not axisymmetric and it is solved in a three-dimensional formulation. During the 
process of deformation, there are compared the shape and size of the specimens after loading 
obtained in field and numerical experiments, as well as the strain pulses in the measuring bars.  

The comparison showed residual forms of the specimens after the indentation process 
with conical and hemispherical indenters (Fig. 10), as well as after loading using the 
diametrical compression method in the SHPB (Fig. 11), obtained in the laboratory test (left) 
and as a result of numerical simulation (right).  

In addition, strain pulses were compared in the loading and support measuring bars, 
recorded in the experiment and obtained from numerical calculation. Due to a small contact 
area of the indenter (especially this of conic form) with the specimen, at the initial moment of 
the test, most of the loading waves were reflected and after some time they reloaded the 
specimen. The test facility, due to different lengths of the measuring bars [20], made it 
possible to authentically record two load cycles. For the conical indenter, the load amplitude 
in the second cycle is significant, and the indentation process is significant too. When a 
hemispherical indenter is used, the contact area is significantly larger, so the main plastic 
deformation of the specimen occurs during the first load cycle. Figure 12 compares the pulses 
in the supporting bar obtained in laboratory tests (solid lines) and in a numerical experiment 
(dotted lines) when studying the indentation of conical and hemispherical indenters.   

It can be seen from the presented figures, that the results of numerical simulation are in 
fairly good agreement with the experimental results, when comparing both the residual shape 
of the specimens after the test and the strain pulses in the measuring bars. The experimental 
and simulation results agree well, both qualitatively and quantitatively: the deviation does not 
exceed 5%, therefore, the constructed dependence of the yield surface radius on the loading 
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conditions for 1810 steel can be considered as an adequate one, allowing for accurate 
description of actual behaviour of the studied material.  

 

 
Fig. 10. Comparison of the imprint diameter obtained in the physical experiment (left) and as 

a result of numerical simulation (right): for a conical indenter (a), for a hemispherical  
indenter (b) 

 

 
Fig. 11. Views of the permanently deformed specimen after compressed along its diameter: 

left - experiment, right – simulation 
 

It should be noted that the modified Kolsky method on indentation can also be 
successfully used to determine the dynamic hardness of materials [6], [12].  

In addition, to determine the tensile strength properties of steel at the strain rate 105 s-1, 
the spalling strength of steel in a plane wave setting was studied using a VISAR 
interferometer for recording the velocity of a free surface [19]. To create plane load waves, 
the specimens studied were loaded with a plate impact. To accelerate the strikers, a gas gun of 
57 mm calibre is used.  
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Fig. 12. Comparison of experimentally obtained pulses and simulated ones in the supporting 

bar, for conical and semispherical indenters 
  

 
Fig. 13. Dependence of the maximum tensile stress on the logarithm of the strain rate for 

tested stainless steel 
 

Figure 13 shows the tensile strength of 1810 steel, obtained under static loading, under 
dynamic loading by the Kolsky method in the condition of a uniaxial stress state, as well as in 
the case of plane-wave shock loading in the conditions of uniaxial deformation.  

Thus, using complementary techniques (the Kolsky method and the plane wave shock 
experiment), the dependence of the tensile strength of stainless steel in the range of strain rate 
103-105 s-1 was obtained, which, together with the results of static tests allowed us to estimate 
the effect of strain rate on tensile strength of steel in a wide range of its change. A well-known 
trend is clearly visible: the strength of a viscoplastic material increases significantly at the 
strain rates greater than 103 s-1.  

  
4. Conclusions  
The paper presents the results of a study of the dynamic behaviour of 1810 stainless steel at 
the strain rates of 103-105 s-1 and at the ambient temperatures of +20°C and + 350°C. The use 
of two complementary techniques (the Kolsky method and the plane-wave shock experiment), 
together with the results of static tests, made it possible, for the first time, to establish the 
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dependence of the tensile strength of stainless steel in the range of the strain rate 10-3-105 s-1. 
Using the Kolsky method, the experimental data was obtained in the form of deformation 
diagrams, as well as ultimate strength and deformation characteristics. Positive effect of the 
strain rate on the yield strength and tensile strength was observed. On the basis of this data, 
parametric identification of the Johnson-Cook model with various variants of the strain-rate 
factor was made. It is shown that the best coincidence of the experimental stress-strain curves 
with the created numerically ones, according to the chosen model, gives a model with a strain-
rate factor proposed by Cowper-Symonds.  

To verify the parameters of the models, special physical experiments have been carried 
out what makes it possible to evaluate the adequacy of mathematical models of the behaviour 
of materials under various loading conditions and at various types of stress-strain state of the 
specimen. Using original modifications of the Kolsky method for testing on dynamic 
indentation and diametrical compression of cylindrical specimens, laboratory verification 
experiments were carried out. At the same time, the numerical simulations were carried out in 
which different variants of the identified model were used. The resulting Johnson-Cook model 
with the Cowper-Symonds speed factor for 1810 stainless steel is adequate: the deviation of 
the results of the laboratory and numerical experiments does not exceed 5%.  

It is shown that using of a modern experimental-theoretical approach, which includes 
carrying out basic (under a homogeneous and uniaxial stress state, constant strain rate and 
ambient temperature) and special (at a different stress state) verification experiments, 
identifying parameters of a mathematical constitutive model, performing a computational 
experiment and a comparison of the results of laboratory and computational experiments 
makes it possible to reasonably choose adequate mathematical models and to recommend 
them for calculation of structures and their elements under intensive dynamic loads.  
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Abstract. By using a set-up that implements the Kolsky method, dynamic tests were carried 
out at compression under conditions of uniaxial stress state and uniaxial strain of the 
spheroplastics in the initial state and aged. Dynamic diagrams were obtained for these modes. 
In the uniaxial stress state, the strength of the material was determined. In the uniaxial 
deformation, the lateral expansion ratio and shear strength were determined. 
Keywords: high-speed deformation, experiments, the Kolsky method, spheroplastic, dynamic 
diagrams 

 
 

1. Introduction 
It is known that objects of rocket and space technology can be subjected to intense dynamic 
loading of explosive, shock and other nature in operation. In modern constructions, various 
composite materials are widely used, both as load-bearing structural elements and as damping 
materials such as metal honeycombs, porous compounds, polymeric foams, etc. [1-10]. Many 
aspects of the behaviour of cellular solids are summarized well in the book by Gibson and 
Ashby [11].To prevent damage of the structures under the impact of shock wave loads, the 
rocket engine body is covered with a protective layer - a spheroplastic, which reduces the 
action of shock-wave loads by introduction of damping caused by the work required to 
compress the porosity.  

Spheroplastics are polymeric materials reinforced with microspheres, usually of glass, 
ceramic or polymer. Due to the use of microspheres, the spheroplastics possess a number of 
important technical characteristics: reduced density with simultaneously increased stiffness, 
reduced thermal conductivity, and increased radio engineering characteristics. Spheroplastics 
are actively used to create heat-shielding materials for rocket engines. To create composites 
with predetermined properties that provide resistance to impact loads, data on the properties 
of constituent composite materials obtained at high strain rates are needed. 

The purpose of the research is experimental confirmation of the protective 
characteristics of the spheroplastic under conditions of dynamic shock-wave loading. For this 
purpose the dynamic characteristics of spheroplastic (including aged ones) under high-speed 
loading were determined experimentally.  
 
2. Experimental methods and specimens 
Compression tests of spheroplastic were performed using the traditional Kolsky technique and 
its original modification. The traditional version of the Kolsky technique allows one to 
investigate the dynamic properties of materials at compression under uniaxial stress and 
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volumetric strain [12]. In this case, on the basis of the strain pulses in the measuring bars, the 
parametric dependences of the axial (longitudinal) components of stress σx(t), strain εx(t) and 
strain rate έx(t) tensors in the specimen are determined. After synchronization of those it is 
possible to construct the stress-strain curve σx~εx, with the dependence έx~εx and determine the 
parameters: conditional yield stress, hardening modulus, ultimate strength.  

To investigate the compressibility of the material under conditions of volumetric stress 
state and uniaxial deformation, an original modification of the Kolsky technique [13] is used: 
the tested specimen is placed in a rigid jacket, equipped with the strain gauges, from whose 
impulses it is possible to determine the radial stress component in the sample σr(t). The 
combination of the longitudinal and radial stress components in the specimen makes it 
possible to determine the tangential stress τ(t), the pressure P(t), the lateral thrust coefficient 
ξ(t) and then to construct the curves τ~P and ξ~P.  

For compression tests, specimens were used in the form of tablets with a height 
of ~10 mm and a diameter of ~20 mm. Such dimensions (the ratio L/D≈0.5) correspond to the 
minimum error in the stress measurement caused by inertia forces. Specimens were made of 
material in two states: as received (initial state) and artificially aged. 

In the compression tests the end faces of the specimen were smeared with a thin layer of 
graphite grease immediately before installation into the working position. That was made to 
ensure acoustic contact between the ends of the bars and the specimen, and to reduce the 
effect of frictional forces during radial expansion. The same lubricant was used to fill the gap 
between the lateral surface of the sample and the inner surface of the confining jacket. 

 
3. Results of dynamic tests at different types of stress-strain state 
Some of the tests were carried out using steel measuring bars (and confining jacket), which 
made it possible to achieve high stress level in the specimen and, correspondingly, high strain 
rates. To obtain properties at low strain rates, when the amplitude of the detected signal from 
the transmitting bar has a small value, we used pressure bars (and jacket) made of aluminum 
alloy. At the lowest levels of the transmitted pulse, the polymeric (vinyl-plastic) bar was used 
as the transmitting one.  

Since the acoustic impedance ρC of the spheroplastic is much lower than the acoustic 
impedance of the measuring bars, the specimen undergoes loading by a large number of 
cycles with gradually decreasing amplitude during single test [14]. The low speed of elastic 
waves in the vinyl-plastic bar allowed undistorted registration of several loading cycles of the 
specimen in a single experiment (Fig. 1). It can be seen that only after the sixth loading cycle 
the amplitude of the transmitted pulse begins to decrease. 

 

 
Fig. 1. Loading cycles for the spheroplastic with the use of the polymeric transmitting bar 
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In the condition of a uniaxial stress state, strain-strain curves were obtained for the 
spheroplastic in the initial state and aged. In Fig. 2 shows only 3-4 loading cycles, since the 
subsequent cycles do not produce significant changes in the levels of achieved stress and 
strain. As one can see, the structural strength of the spheroplastic is very low - about 5 MPa. 
Spheroplastic in an aged state showed a greater dispersion of strength properties, however, 
this may be a consequence of poor-quality end surfaces of the tested specimens. 

 

  

Fig. 2. Stress-strain curves of spheroplastic in the initial state (left) and aged (right) 
 

Due to the high viscosity of the polymer binder the material demonstrates a very slow 
recovery of the initial shape after each loading cycle, as is clearly shown in Fig. 1 (lower 
beam). It is not possible to obtain a complete specimen unloading for several tens of 
microseconds (pause between cycles). Therefore, the sections of the diagram between the load 
cycles are rather hypothetical. 

 

  

Fig. 3. Stress-strain curves for spheroplastic in the initial (left) and aged (right) states under 
uniaxial strain condition 

 
When the specimen is placed in a rigid jacket the uniaxial deformation process is 

realized. The stress-strain curves of spheroplastic obtained in this case for both initial and 
aged states for two loading cycles are shown in Fig. 3. The parameters of shear strength (the 
dependences τ~P and ξ~P) are shown in Fig. 4. 

The dynamic properties of spheroplastic in two states (initial and aged) are compared. 
Next, characteristic diagrams of spheroplastic specimens are shown in tests without a jacket 
(Fig. 5) and in a jacket (Fig. 6). It is possible to note somewhat less deformability of the 
spheroplastic in the artificially aged state. 
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Fig. 4. Shear strength parameters for spheroplastic in the initial (left) and aged (right) states 
under uniaxial strain condition 

 

  
Fig. 5. Comparison of stress-strain curves for spheroplastic in the uniaxial stress state (left) 

and uniaxial strain state (right) 
 

  

Fig. 6. Comparison of the parameters of shear strength of spheroplastic in two states under 
uniaxial deformation 

 
Comparison of the shear strength parameters (the dependences ξ~P and τ~P) is shown 

in Fig. 6. The coefficient of lateral thrust of the material in the aged state is somewhat greater 
than in the initial one. The curve τ~P can be approximated by a linear dependence. 

The appearance of the specimens after deformation with different load levels under 
uniaxial stress conditions is presented in Fig. 7.Analysis of the nature of the material 
destruction as a result of testing under uniaxial stress condition (without a confining jacket) 
revealed the following. At low loading pulse energy the specimen retains apparent integrity, 
but its actual residual strain is much less than that obtained from the curves in Fig. 2. 
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Apparently, the polymeric binder of the spheroplastic has a large coefficient of shape 
recovery, but because of high viscosity of the binder the registration of specimen's unloading 
after the loading pulse end seems to be impossible.  

 

a 

 

b 

 
Fig. 7. The appearance of spheroplastic specimens in the initial (a) and aged (b) states after 

loading without a confining jacket 
 

The destruction of samples is fragile and occurs closer to the outer peripheral surface, 
while the central zone remains intact. This may be due to the presence of friction on the end 
surfaces of the samples, leading to triaxiality of its stress state. 

 
4. Conclusion 
The structural strength of spheroplastic at compression under uniaxial stress condition was 
found to be about 5 MPa for both specimens in the state of delivery and artificially aged. For 
the condition of uniaxial strain, the coefficient of lateral thrust was determined. The average 
value of the lateral thrust ratio was found to be 0.35 for the spheroplastic in the initial state, 
and 0.45 for the aged state.  

In the aged state the spheroplastic showed somewhat less deformability for both types 
of stress-strain states. The shear strength τ~P of the aged spheroplastic is less than that in the 
initial state. 
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Abstract. For description of elastic modulus of nanocomposites polyurethane/graphene the 
modified mixtures rule was proposed, which takes into consideration two factors. First, this 
rule assumes, that in polymer nanocomposites interfacial regions are the same reinforcing 
element of their structure, as actually nanofiller. Secondly, real, but not nominal, 
characteristics values of nanocomposite components were used. This allows the quantitative 
description of elastic modulus of the considered nanocomposites exactly enough. Reaching of 
percolation threshold of graphene platelets results to the essential enhancement of elastic 
modulus for both structure components and nanocomposite as a whole. 
Keywords: mixtures rule, nanocomposite, graphene, elastic modulus, interfacial regions 
 
 
1. Introduction 
As a rule, the efficiency of nanofiller loading in polymer matrix is estimated with the aid of 
such parameter as reinforcement degree En/Em, where En and Em are moduli of elasticity of 
nanocomposite and matrix polymer, respectively [1-4]. From the technological point of view 
this parameter is an ideal quantitative characteristic of nanofiller efficiency in the process of 
polymer stiffness enhancement, but at theoretical treatment of reinforcement process certain 
difficulties arise, which are due to structure and hence properties modification of both 
nanofiller and polymer matrix in nanofiller loading process [5]. In case of nanofiller the 
indicated modification of the structure is due to a high degree of aggregation of its initial 
particles and their anisotropy [1] and for polymer matrix this modification is expressed by the 
variation of its molecular and structural characteristics, crystallization, interfacial regions 
formation and so on [5]. The authors [6] proposed the methods for determination of real 
values of an elastic modulus for nanofiller Enf and interfacial regions Eif for nanocomposites 
poly(vinyl alcohol)/carbon nanotubes and found out, that the value Enf =71±55 GPa at the 
nominal magnitude of elastic modulus of carbon nanotubes ECNT of the order of 1000 GPa 
and Eif =46±5.5 GPa at nominal elastic modulus of matrix poly(vinyl alcohol) Em≈2 GPa. 

For theoretical description of nanocomposites elastic modulus the mixture rule is often 
applied [7]: 

( ) mnmnforn EEEE +ϕ−η= , (1) 
where ηor is a factor of length efficiency, ϕn is volume content of nanofiller. 

However, the equation (1) application for determination of value En for polymer 
nanocomposites gives exact results rarely, that is due to the factors described above. 
Therefore the purpose of the present work is the development of modified analogue of a 
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mixture rule, taking into consideration real values of Enf and Eif on the example of 
nanocomposites polyurethane/graphene (PU/Gr) [8]. 
 
2. Methods 
Graphen sheets (flaces) of firm Sigma Aldridge production were dispersed in 
dimethylformamide (DMF) at the initial concentration 3 mg/ml and processed in a sonic bath 
Branson MT-1510 for 150 h. This dispersion was split into four portions which were 
centrifuged at 500 rpm for 22.5 and 45 min and at 750 and 1000 rpm for 45 min. After 
centrifugation, the supernatants were collected. However, after such procedure graphene 
dispersions in DMF with low concentrations only (no higher than ~ 1 mg/ml can be obtained). 
Therefore the authors [8] proposed a new methods for obtaining graphene suspensions, 
having high concentrations. The indicated supernate of graphene suspensions in DMF was 
filtered onto a nylon membranes of pore size of 0.45 mcm (Sterlitech). These membranes 
were immersed in suspension and sonicated in a bath Branson MT-1510 for 60 min. At such 
procedure graphene tends to come through the membrane, after that it becomes re-dispersed 
in DMF but at much higher concentrations (up to 20 mg/ml), that allows to obtain composites 
with high graphene contents [8]. 

The polyurethane (PU) from firm Hydrosize of mark U2-01 with an average particle 
size ~ 3 mcm was used as a matrix polymer. The polymer solution was produced by drying of 
dispersion PU in water at 333 K for 72 h and followed by dissolution of PU in DMF to obtain 
solution, having concentration of 50 mg/ml [8]. 

Then PU solution and graphene suspension in DMF were blended to create 
10 dispersions with graphene concentrations 0-90 mass %, after that they were sonicated for 
4 h to homogenize. Films of composites polyurethane/graphene (PU/Gr) are obtained by 
drop-casting method of suspensions on smooth surface of flat Teflon trays, after that they 
were dried in a vacuum oven at 333 K for 12 h and further dried at 333 K for 72 h in a normal 
oven. The thickness of the prepared films varies within the range of 35-40 microns [8]. 

Tensile tests were carried out by using an apparatus Zwick Roell with a 100 N load cell 
at a clip rate of 50 mm/min and temperature 298 K [8]. 
 
3. Results and Discussion 
As it was noted above, in paper [6] the theoretical relationship, allowing to determine real 
values of elastic moduli of nanofiller Enf and interfacial regions Eif was proposed, which has 
the look: 

( ) ( )mnfor
n

if
mif

n

n EE
d
d

EE
d
dE

−η+
ϕ

ϕ
−=

ϕ
, (2) 

where ϕif is a relative fraction of interfacial regions and parameter ηor is accepted equal to 
0.38. 

The volume content of nanofiller (graphene) can be determined according to the well-
known formula [1]: 

n

n
n

W
ρ

=ϕ , (3) 

where Wn is mass content of nanofiller, ρn is its density, which is equal to 1600 kg/m3 for 
graphene [9]. 

The value ϕif can be estimated with the aid of the following percolation relationship [1]: 

( ) 7.1111 ifn
m

n

E
E

ϕ+ϕ+= . (4) 
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This relationship takes into consideration, that interfacial regions are the same 
reinforcing (strengthening) element of nanofiller structure, as actually nanofiller, that follows 
directly from the comparison of values Em and Eif, cited above [6-13]. 

Construction of the plots in coordinates dEn/dϕn - dϕif /dϕn in case of their linearity 
together with using of the equation (2) allows to determine real values of elastic moduli of 
nanofiller and interfacial regions. In reference to the considered nanocomposites PU/Gr it was 
found out, that the indicated plot falls apart on two linear parts: for Wn≤50 mass % and for 
Wn>50 mass %. These plots are adduced in Fig. 1 and Fig. 2, respectively. Since the 
relationship (4) allows to determine values ϕif only for the first from the indicated parts in 
virtue of the condition En/Em≤12, then for the second part the following simple equation has 
been used: 

nif ϕ−=ϕ 1 . (5) 
 

 
Fig. 1. The dependence of derivative dEn/dϕn on derivative dϕif /dϕn, corresponding to the 
equation (2), for nanocomposites PU/Gr at Wn≤50 mass % (on the percolation threshold 

lower) 
 

 
Fig. 2. The dependence of derivative dEn/dϕn on derivative dϕif /dϕn, corresponding to the 
equation (2), for nanocomposites PU/Gr at Wn>50 mass % (on the percolation threshold 

above) 

 dEn/dϕn, GPa 

0.6 

0.2 

2 4 
dϕif /dϕn 

0 

0.4 

 dEn/dϕn, GPa 
 

4 

2 3 
dϕif /dϕn 

2 

1 0 

154 G.V. Kozlov, I.V. Dolbin



The equation (5) assumes that at Wn>50 mass % structure of nanocomposites PU/Gr 
consists of nanofiller and interfacial regions only. 

The application of the described above methods showed that values Eif and Enf are 
distinguished for the two indicated parts of the dependence dEn/dϕn (dϕif /dϕn): for the first 
(Wn≤50 mass %) part Eif =0.124 GPa and Enf =0.236 GPa and for the second one (Wn>50 mass 
%) Eif =1.91 GPa and Enf =2.66 GPa, i.e. more than one order above. Nevertheless, the values 
Eif and Enf for both indicated parts essentially (also more than the order above) exceed elastic 
modulus of matrix polyurethane (Em=10 MPa [8]), that gives reasons to consider both 
nanofiller and interfacial regions as reinforcing element of nanocomposites PU/Gr structure. 
Then the modified mixtures rule can be written as follows: 

ififnnfn EEE ϕ+ϕ= . (6) 
In Fig. 3 the comparison of the calculated according to the modified mixtures rule, i.e. 

to the equation (6), and the obtained experimentally dependences of elastic modulus En on 
nanofiller mass contents Wn for nanocomposites PU/Gr is assumed. This comparison has 
shown both qualitative and quantitative good correspondence of theory and experiment (their 
average discrepancy makes up ~ 7 %), that confirms correctness of the proposed here 
modified mixtures rule. The equations (1) and (6) comparison demonstrates their main 
distinction: if the equation (1) operates by nominal values of elastic modulus of nanofiller and 
matrix polymer, then the equation (6) uses their real values and takes into consideration the 
formation of interfacial regions in polymer matrix at the introduction of nanofiller in matrix 
polymer. 

 

 
Fig. 3. The comparison of the calculated according to the modified mixture rule (the equation 
(6)) (1) and experimentally obtained (2) dependences of elastic modulus En on mass contents 
of nanofiller Wn for nanocomposites PU/Gr. The vertical shaded line 3 indicates percolation 

threshold ϕc=54.4 mass % 
 
And in conclusion let us consider the reason of the two linear parts appearance on the 

plot dEn/dϕn (dϕif /dϕn). As it is known [14-16], for spherical particles two percolation 
thresholds ϕc are observed, corresponding to particles contact and interpenetration. If for such 
strongly anisotropic particles as carbon nanotubes and graphene the first from the indicated 
percolation thresholds is very small (ϕc<0.01 [17-18]), then by analogy with spherical 
particles it can be supposed, that the interpenetration of graphene platelets is realized at 
ϕn=ϕc=0.34 or Wn≈54 mass % according to the formula (3). As it was noted above, just this 
very threshold value Wn corresponds to the decay of the plot dEn/dϕn (dϕif /dϕn) on two linear 
parts. In Fig. 3 this value Wn is indicated by vertical shaded line and it can be seen that it 
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divides two parts of the dependence En(Wn): at Wn≤50 mass % fast growth En is observed and 
at Wn>50 mass % the indicated dependence reaches plateau at En≈1.5 GPa. Let us note, that 
sharp enhancement of the parameters Eif and Enf, indicated above, at percolation threshold 
reaching defines anomalously high values En of the order of 1.5 GPa. At conservation of the 
values Eif and Enf, obtained up to percolation threshold, that value En, corresponding to the 
dependence En(Wn) plateau, would make up 180 MPa only, i.e. about one order below. 
 
4. Conclusions 
Hence, in the present work the modified mixtures rule is proposed, which describes correctly 
elastic modulus of nanocomposites polyurethane/graphene. The mixtures rule modification is 
contained in using not nominal, but real characteristics of nanocomposites and accounting of 
interfacial regions properties, which are the same reinforcing (strengthening) element of 
nanocomposite structure, as actually nanofiller. Reaching percolation threshold of 
interpenetrating platelets of 2D-nanofiller (graphene) results to essential enhancement of 
elastic modulus of both nanofiller and interfacial regions and, as consequence, to increasing 
of elastic modulus of nanocomposite as a whole almost on one order of magnitude. 
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Abstract. Youssef improved the generalized thermoelasticity base on two distinct 
temperatures; the conductive temperature and the thermodynamics temperature which coincide 
together when the heat supply vanishes [1, 2]. This theory has one paradox, where it offers an 
infinite speed of thermal wave propagation. So, this work assuming a new consideration of the 
two types of temperature which depends upon the acceleration of the conductive and the 
thermal temperature. This work introduces the proof of the uniqueness of the solution, 
moreover, one dimensional numerical application. According to the numerical result this new 
model of thermoelasticity offers finite speed of thermal wave and mechanical wave 
propagation. 
Keywords: elasticity, thermoelasticity, hyperbolic two-temperature, finite speed, wave 
propagation 
 
 
1. Introduction 
Duhamel was the first to consider elastic problems with heat changes. Neumann re-derived 
the equations obtained by Duhamel. This theory of uncoupled thermoelasticity consists of the 
heat equation independent of mechanical effects, and the equation of motion contains the 
temperature, as a known function. Danilovskaya [3] was the first who solved a problem in the 
context of the theory of uncoupled thermoelasticity with uniform heat, and it was for a half-
space subjected to a thermal shock. There are two defects of this theory. This theory states 
that the mechanical state of the elastic body does not affect the temperature, which is not in 
accord with right physical experiments. Second, the heat equation being parabolic predicts an 
infinite speed of propagation for the temperature, which again contradicts physical 
observations. 

Biot [4] introduced the coupled theory of thermoelasticity in which the equations of 
elasticity and heat conduction became coupled, and that agree with physical experiments, and 
any change of the temperature gives a certain amount of deformation in an elastic body and 
vice versa. The theory of coupled thermoelasticity has proved useful for many problems. The 
governing equations of this theory contain the equation of motion, which is a hyperbolic 
partial differential equation, and of the equation of energy conservation, which is parabolic. 
The nature of the heat equation implies that if an elastic medium is extending to infinity 
subjected to a thermal or mechanical disturbance, the effect will fall instantaneously at 
infinity, which contradicts physical experiments. Hence, a new equation of energy with 
hyperbolic type is needed.    

Lord and Shulman [5]  introduced the theory of generalized thermoelasticity with one 
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relaxation time for the particular case of an isotropic body. Dhaliwal and Sherief [6] extended 
this theory to include the anisotropic case. In this theory, a modified law of heat conduction 
including both the heat flux and its time derivative replaces the conventional Fourier's law 
(Cattaneo's heat conduction). The heat equation associated is hyperbolic and hence eliminates 
the paradox of infinite speeds of propagation inherent in both  

The second generalization of the coupled theory of elasticity is the theory of 
thermoelasticity with two relaxation times. Müller [7] in a review of the thermodynamics of 
thermoelastic solids, suggested an entropy production inequality, with the use of which he 
considered restrictions on a class of constitutive equations. Green and Laws [8] proposed a 
generalization of this inequality. Green and Lindsay [9] got an explicit version of the 
constitutive equations. These equations were obtained independently by Suhubi [10]. This 
theory contains two parameters that act as relaxation times. The classical Fourier's law of heat 
conduction is not satisfied if the medium under consideration has a center of symmetry. 

Chen and Gurtin [11], Chen et al. [12, 13] have constructed a theory of heat conduction 
in deformable bodies, which depends upon two different temperatures, the conductive 
temperature, and the thermodynamic temperature. For time-independent situations, the 
difference between these two temperatures is proportional to the heat supply. In the absence 
of the heat supply, the two temperatures are identical. For time-dependent problems, however, 
and for wave propagation problems in particular, the two temperatures are in general different 
regardless of the presence of heat supply. The thermodynamic temperature, conductive 
temperature, and the strain are found to have representations in the form of a traveling wave 
plus a response, which happen instantaneously throughout the body [14]. Warren and 
Chen [15] investigated the wave propagation in the two-temperature theory of 
thermoelasticity. 

Youssef [1] introduced a new theory of two-temperature generalized thermoelasticity 
with the general uniqueness theorem for the boundary mixed initial value problems in this 
theory. Youssef constructed a new theory of two-temperature generalized thermoelasticity 
theory for the homogeneous and isotropic body without energy dissipation; he presented the 
general uniqueness theory for the initial mixed boundary value problems in this theory [2], 
and he derived its variational principle [16].  
 
2. Basic Equations 
The governing equations of an isotropic and homogeneous thermoelastic medium, as 
proposed by Lord and Shulman are [5]: 

The equation of motion 
 iij, j iF =    ,uσ + ρ    (1) 

where ijσ  is the stress tensor, iF  is the body force components, ρ is the density, and iu is the 
displacement components. 

The constitutive relation is:  
( )ij ij kk ij 0 ij2 e e   T Tσ = µ + λ δ − γ − δ ,  (2) 

where ( ) T3 2γ = λ + µ α  are the coupling parameters, T is the dynamical temperature and 0T
being the reference temperature, ije  is the strain tensor and andλ µ  are the elastic constants 
of the material. 

The deformation  

( )ij i, j j,i
1e u u
2

= + . (3) 

The non-Fourier heat conduction  
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i o ,i

q
q K

t
∂

+ t = − φ
∂

, (4) 

where φ  is the conductive temperature.  
Moreover, we have 

E 0 kk ,iC T T e qρ + γ = − , (5) 
where K is the thermal conductivity, iq  is the heat flux components, and EC is the specific 
heat with constant strain . 

The increment of the entropy η  satisfies the following equations: 

i,i 0q  = T−ρ η , (6) 
and 

0 E 0 ij ijT  = C T + T eρ η ρ γ . (7) 
Equations (4), (6) and (7) formulate the heat conduction equations as proposed by 

Youssef [1] in the form: 

( )
2

,ii o E 0 kk2K C T T e
t t

 ∂ ∂
φ = + t ρ + γ ∂ ∂ 

, (8) 

and 
,iiT aφ− = φ , (9) 

where a 0≥ is called the two-temperature parameter, while i, j, k 1,2,3=  are the indeces for 
any general co-ordinates in 3-dimensons. 
 
3. One-Dimensional Generalized Thermoelastic Half-Space (Classical Two-
Temperature) 
Without losing the generality, we will consider one-dimensional isotropic and homogeneous 
thermoelastic medium occupies the half-space x 0≥ , and this medium is at rest in the 
undeformed state at zero time with uniform temperature 0T . 

When t 0> , the boundary x 0= of the half-space subjected to a uniformly distributed 
time-dependent strain and temperature, then, the governing equations take the following 
forms: 

( )
2 2 2

2 2 2

e T e2   =    ,
x x t
∂ ∂ ∂

λ + µ − γ ρ
∂ ∂ ∂

 (10) 

( )
2 2

o E 02 2K C T T e
tx t

 ∂ φ ∂ ∂
= + t ρ + γ ∂∂ ∂ 

, (11) 

2

2T a
x

∂ φ
φ− =

∂
, (12) 

( ) ( )02 e   T Tσ = λ + µ − γ − , (13) 
and 

ue
x

∂
=
∂

. (14) 

The boundary and the initial conditions are 
( ) ( ) ( ) ( ) ( ) ( )T x,0 x,0 e x,0 T x,0 x,0 e x,0 0= φ = = = φ = =  , (15) 

and 
( ) ( ) ( ) ( )o oe 0, t e t , 0, t t= φ = φ . (16) 
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For simplicity, use the following non-dimensional variables; 

( ) ( ) ( ) ( ) ( )
2 20 0

o o o o o
0 0

E

T T T 2x ,u c x,u , t , c t, , , , , c ,
T T 2

C
.

K

− φ− σ λ + µ′ ′ ′ ′ ′ ′= η t = η t θ = φ = σ = =
λ + µ ρ

ρ
η =

 (17) 

Hence,  
2 2 2

12 2 2

e e  =  ,
x x t
∂ ∂ θ ∂

− e
∂ ∂ ∂

 (18) 

( )
2 2

o 22 2 e
tx t

 ∂ φ ∂ ∂
= + t θ+ e ∂∂ ∂ 

, (19) 

2

2x
∂ φ

φ−θ = β
∂

, (20) 

and 
1e  σ = − e θ , (21) 

where  0
1

T
2

γ
ε =

λ + µ
, 2 2

oc
γ

ε =
η

, 2 2
oc aβ = η , 1 20, 0, 0ε ≥ ε ≥ β ≥ . 

Taking the Laplace transform for the both sides of the equations (18)-(21) as follows: 

( ) ( )∫
∞

−=
0

st tdetfsf . (22) 

Hence, 
2 2

2
12 2

d e d  = s e ,
d x d x

θ
− e  (23) 

( )( )
2

2
o 22

d s s e
d x
φ
= + τ θ + e , (24) 

2

2
d
d x
φ

φ − θ = β , (25) 

1e  σ = − e θ , (26) 
d ue
d x

= , (27) 

and 
( ) ( ) ( ) ( )o oe 0,s e s , 0,s s= φ = φ . (28) 

Eliminating θ  from equations (23)-(25), then  
2

2 32

d e e
d x

= α φ +α , (29)
 

 

and 
2

1 2 12

d e
dx
φ
= α φ + e α , (30) 

 

 

where  

( )
2

o
1 2

o

s s
1 s s

+ τ
α =

 +β + τ 
,
 

( )
[ ]

1 1 1
2

1 1 2

1
1
α ε −βα

α =
−βα εε

 and ( )
[ ]

2
1 1 2 1

3
1 1 2

s 1
1

−α εε  −βα
α =

−βα εε
. 
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By solving the system in (29) and (30), the general solution will be as follows: 
( ) ( )1 2k x k x

1 o o 1 2 2 o o 1 2e a , e , k , k e a , e , k , k e− −= φ + φ , (31) 
and 

( ) ( )1 2k x k x
1 o o 1 2 2 o o 1 2b , e , k , k e b , e , k , k e− −φ = φ + φ . (32) 
By using equations (25) and (32), we obtain 

( ) ( ) ( ) ( )1 2k x k x2 2
1 1 o o 1 2 2 2 o o 1 21 k b , e , k , k e 1 k b , e , k , k e− −θ = −b φ + −b φ , (33) 

where 1 2k and k± ± are the roots of the following characteristic equation 

( )4 2
1 3 1 3 2 1 2k ( )k 0− α +α + α α − ε α α = . (34) 

By solving the above algebraic equation, then 

( )2
1 3 1 3 1 3 2 1 2

1

( ) ( ) 4
k

2
α +α + α +α − α α − ε α α

= , 

and 

( )2
1 3 1 3 1 3 2 1 2

2

( ) ( ) 4
k

2
α +α − α +α − α α − ε α α

= .  

For small values of time t, this corresponds to a large value of s ( )s →∞  and by using 
Taylor expansion; the following cases will be discussed. 
 
4. One-Temperature Model (Lord-Shulman)  
To get Lord-Shulman model, 0β =  so, the roots of the characteristic equation will be in the 
following form  

( )1,2 1,2 1 2 o
1,2

s 1k Q , , O
V s

 = + εετ   +  
 

. (35) 

Moreover, the speeds of the waves are: 

1,2

o 1 2 o

2V
1

=
+ τ + εετ   ± Ψ

, (36) 

where  
2 2 2 2 2
1 2 o 1 2 o 1 2 o o o2 2 2 1Ψ = εετ   + εετ   + εετ   + τ − τ + . (37) 
Equation (36) shows that the solutions have two waves propagated with speed 1V and 2V

( )1 2V V< . 1V  is the speed propagation of the mechanical wave and 2V  is the speed 
propagation of the thermal wave, and the medium has no disturbance for which 2x tV>  with 
the following cases: 

Case (1.1): o 0τ ≠ . 
When o 0τ ≠ , then, 1 2V and V  as in equation (36), in this case, the mechanical and the 

thermal waves propagate with finite speeds which depend on the material properties, where 
Lord and Shulman got that results in the generalized thermoelasticity theory [5]. 

Case (1.2): o 0τ = .  
When o 0τ = , then, 1 2V 1 and V→ →∞ , hence, only the mechanical wave propagates 

with finite speed, and this speed is constant and independent on the material properties, while 
the thermal wave propagates with infinite speed and this case is called coupled 
thermoelasticity or Biot's model [4]. 
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Case (1.3): 1 0ε =  and o 0τ ≠ .  

When 1 0ε = , then, 1 2
o

1V 1 and V→ →
τ

, in this case, the mechanical wave 

propagates with finite speed that is constant and doesn't depend on the material properties, 
and the thermal wave propagates with finite speed and depends on the relaxation time only 
which is called uncoupled thermoelasticity. 
  
5. Classical Two-Temperature Model  
To get the classical two-temperature thermoelasticity model of Youssef (15), 0β ≠  and 
hence, the roots of the characteristic equation of the system in (29) and (30) lead to the 
following cases:  

Case (2.1): o o0 or 0τ ≠ τ = . 

For any value of oτ , then, 1 1 2 2V 1 and V→ +εε  →∞ , in this case, only the mechanical 
wave propagates with finite speed and depends on the material properties while the thermal 
wave propagates with infinite speed. Also, the two-temperature parameter β  does not affect 
the speed of the thermal or the mechanical wave propagation. 

Case (2.2): 1 0ε = . 
When 1 0ε = , then, 1 2V 1 and V→ →∞ , which is equivalent to the case (1.1). So, the 

classical two-temperature model of thermoelasticity Youssef (15) presents not a perfect 
model, where it generates the infinite speed of thermal wave propagation as the uncoupled 
thermoelasticity. 
 
6. Hyperbolic Two-Temperature Generalized Thermoelasticity Theory  
According to the results in case (2), another form for two-temperature thermoelasticity 
generates to thermal and conductive heat waves propagating with finite speed is needed. 

Now, define φ  as the acceleration of the conductive heat, and T  as the acceleration of 
the dynamical heat.  

Assuming the difference between φ and T is the proportion of the heat supplies, i.e. 
2

,iiT cφ− = φ  ,  (38) 
where c (distance/time) is constant. 

Definition 
"The constant 2c is equal to the difference between the acceleration of the conductive 

temperature and the acceleration of the thermal temperature when the heat supply is a unit." 
To apply the last equation in the above one-dimensional problem, we have to use the 

dimensionless in (18). Hence we have 
2

*
2T

x
∂ φ

φ− = β
∂

  , (39) 

where 
2

*
2
o

c
c

β =  is the dimensionless of the hyperbolic two-temperature parameter. 

Then,  

( )* * *
1,2 1,2 1 2 o*

1,2

s 1k Q , , , O
V s

 = + εετ   β +  
 

 (40) 

and 
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* *
o 1 2 o*

1,2
* *

o 1 2 o o

2 1
V

1

+β τ + εε  β τ
=

+β τ + εετ   + τ ± Ψ
, (41) 

where   
* 2 2 2 2 2 * 2 * 2 * *2 2

o 1 2 o o 1 2 o 1 2 o 1 2 o o o o1 2 2 2 2 2 2Ψ = − τ + εετ   + τ + εετ   + εετ   − β εετ   − β τ + β τ +β τ . (42) 
Equation (41) shows that the solutions have two waves propagating with speed *

1V  and
*
2V ( )* *

1 2V V<  given by (41), where *
1V  is the speed propagation of the mechanical wave, and 

*
2V  is the speed propagation of the thermal wave, and the medium has no disturbance for 

which *
2x tV>  with the following cases: 

Case (3.1): * 0β ≠  and o 0τ ≠ . 
When * 0β ≠  and o 0τ ≠  then, * *

1 2V and V  as in equation (41), in this case, the 
mechanical and the thermal waves propagate with finite speeds which depend on the material 
properties, which agree with Lord and Shulman in case (1.1).  

Now, the hyperbolic two-temperature parameter *β  effects on the speed of the thermal 
and the mechanical wave propagation. 

Case (3.2): * 0β ≠ and o 0τ = . 
When * 0β ≠  and o 0τ = , * *

1 2V 1 and V→ →∞ , in this case, only the mechanical wave 
propagates with finite speed and this speed is constant and independent on the material 
properties, while the thermal wave propagates with infinite speed, and this case is equivalent 
to cases (1.2) and (2.2). 

Case (3.3): *
o0, 0β ≠ τ ≠  and 1 0ε = . 

When * 0β ≠ , o 0τ ≠  and 1 0ε = , then, *
1V 1→ and * *

2
o

1V → β +
τ

.  

In this case, the mechanical wave propagates with finite speed that is constant and 
doesn't depend on the material properties, and the thermal wave propagates with finite speed 
and depends on the relaxation time and the hyperbolic two-temperature parameter, and it 
agrees with the case (1.3).  

Case (3.4): * 0β =  and o 0τ ≠ . 
When * 0β =  and o 0τ ≠ , then, *

1 1V V=  and *
2 2V V= , which is equivalent to the 

case (1.1) and agree with Lord-Shulman results [3]. 
Case (3.5): *

o0, 0β = τ ≠  and 1 0ε = . 

When *
o0, 0β = τ ≠  and 1 0ε = , then, 1 2

o

1V 1 and V→ →
τ

, in this case, the 

mechanical wave propagates with finite speed is constant and doesn't depend on the material 
properties, while the thermal wave propagates with finite speed and depends on the relaxation 
time only. This case is equivalent to the case (1.3) of the uncoupled thermoelasticity.  

Case (3.6): * 0β =  and o 0τ = . 
When * 0β =  and o 0τ = , then, 1 2V 1 and V→ →∞ , in this case, only the mechanical 

wave propagates with finite speed, and this speed is constant and independent on the material 
properties, while the thermal wave propagates with infinite speed and this case is equivalent 
to the case (1.2) or Biot model. 
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7. Uniqueness Theorem 
Let V be an open regular region of space with boundary S occupied by the reference 
configuration of a homogeneous isotropic linear thermoelastic solid. S is assumed closed and 
bounded. 

Supplement the equations of two temperature-generalized thermoelasticity (1)-(8) and 
(38) by prescribed boundary conditions  [1]: 

[ )i i 1u u on S 0,= × ∞
, (43) 

[ )i i ji j 1p p n on S S 0,= = σ − × ∞ , (44) 

[ )i i i iand on S 0,φ = φ θ = θ × ∞
 

, (45) 

where SS1 ⊂  and superposed "


" denotes the prescribed values on arbitrary subsets of S and 
their complements. 

Also, the initial conditions as follows: 

i i0 i i0 0 0u u , u u ,= = ϕ = ϕ = θ = θ  , 0φ = θ =   in V[0, )∞  at t = 0  (46) 
Theorem: 
Given a regular region of space V+S with boundary S then there exists at most one set 

of single-valued functions ( )t,x kijσ and ( )t,xe kij  with of C(1), ( )t,xu ki , ( )t,x kiφ and 

( )t,xT ki  of class C(2) in V+S, 0t ≥ which satisfy the equations (1)-(8) and (38) and the 
conditions (43)-(46) where E o oK ,C , , , ,T , ,c andλ µ γ ρ τ  all are positive. 

Proof: 
Let there be two sets of functions )I(

ijσ and )II(
ijσ , )I(

ije and )II(
ije …etc. and let 

(I) (II)
ij ij ijσ = σ −σ , (I) (II)

ij ij ije e e= − , (I) (II)φ = φ −φ …etc. 
By the linearity of the problem, it is clear that these differences also satisfy the 

equations mentioned above moreover, both kinematic and static boundary conditions are 
equal to zero (with iF Q 0= = ), and homogeneous counterparts of conditions (43)-(46), 
namely they satisfy the following field equations in ( )V 0,× ∞ : 

 iij, j =  uσ ρ , (47) 

( )ij ij kk ij2 e eσ = µ + λ − γ θ δ , (48) 

o ,i i  i +  = - K q qτ φ , (49) 

i,i 0q  - T= ρ η  (50) 

0 E 0 ij ijT  = C  + T  eρ η ρ θ γ , (51) 

( ) ( )E  0 0 kk o kk i iK   =  +    + T e e, Cφ ρ θ θ γ + ττ     (52) 
2

,iicφ−θ = φ   (53) 

( )ij i, j j,ie = ½ u u+ , (54) 
with the boundary and the initial conditions in (43)-(46). 

For simplicity, the wave par has been omitted.  
Now, consider the integral  

∫ ∫∫ σ−=σ=σ
v v

ij,ijj,iij
v

ijij dvudvudve  . (59) 

Upon inserting equation (47), the latter equation reduced to 
( ) 0dvuudve

v
iiijij =ρ+σ∫  . (60) 
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Using the equation (48), hence 
( )[ ] 0dvuueee2

v
iiijijkkijij =ρ+dθγ−λd+µ∫  . (61) 

It could be written as follows: 
2 i i
kk ij ij kk

v v

u ud 1 e e e dv e dv 0
d t 2 2

ρ λ +µ + − γ θ =  ∫ ∫
 

 . (62) 

Substituting for kke  from equation (52), then 

2 2i i E
0 kk ij ij ,ii

0v v

o E 0 o kk
v v

u u Cd 1T e e e dv K dv
d t 2 2 2T

C dv T e dv 0 .

 ρ ρ
λ +µ + + θ − θφ 

 

+ t ρ θθ +γ t θ =

∫ ∫

∫ ∫

 

 

 (63) 

From the well-known inequality  
0q i,i ≥q− . (64) 

By using equation (49), then 

,i ,i o ,i i
v v

K dv q dv 0q φ + τq  ≥∫ ∫  , (65) 

which gives 

,i ,i o i,i
v v

K dv q dv 0q φ − τq  ≥∫ ∫  . (66) 

Inserting equations (50) and (51) in the last equation, hence 

,ii o E 0 o kk
v v v

K dv C dv T e dv 0− θφ + τ ρ θθ + γ τ θ ≥∫ ∫ ∫  . (67)  

Finally, from equations (63) and (67), we obtain 

2 2i i E
kk ij ij

0v

u u Cd 1 e e e dv 0
d t 2 2 2T

 ρ ρ
λ +µ + + θ ≤ 

 
∫

 
. (68) 

The integral in the left-hand side of (68) is initially zero since the difference functions 
satisfy homogeneous initial conditions. By inequality (68), however, this integral either 
decreases (or therefore becomes negative) or remains equal to zero. Since the integral is the 
sum of squares, only the latter alternative is possible, that is 

0t,0dv
T2
c

2
uueee

2
1

v

2

0

Eii
ijij

2
kk ≥=








θ

ρ
+

ρ
+µ+λ∫


. (69) 

It follows that the different functions are identically zero throughout the body and for all 
time this completes the proof of the theorem. 
 
8. Numerical Application 
To get the numerical result which includes the three models of thermoelasticity; one 
temperature of L-S; classical two-temperature model and the hyperbolic two-temperature 
model, and then the coefficients of the governing equations (29) and (30) will be in the form  

( )
2

o
1 2

o

s s
1 s s

+ τ
α =

 +Ω + τ 
,
 

( )
[ ]

1 1 1
2

1 1 2

1
1
α ε −Ωα

α =
−Ωα εε

 and ( )
[ ]

2
1 1 2 1

3
1 1 2

s 1
1
−α εε  −Ωα

α =
−Ωα εε

.  (72) 

where 

* 2

0 for one temperature
for classical two temperature

/ s for hyperbolic two temperature

− 
 Ω = b − 
 b − 

 .  (73) 
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Assume the thermal shock problem as follows: 
( ) ( ) ( ) ( ) ( )o o 0e 0, t e t 0, 0, t t H t= = φ = φ = ϕ , (74) 

where ( )H t is the Heaviside unit step function and 0ϕ is the thermal shock intensity? 
By using Laplace transform, and then 

( ) ( ) ( ) ( ) 0
o oe 0,s e s 0, 0,s s

s
ϕ

= = φ = φ = . (75) 

Hence, the solutions in the Laplace transform domain in the forms: 

( ) ( )
1 2k x k x2 o

2 2
1 2

e x,s e e
s k k

− −α ϕ  = − −
, (76) 

( ) ( ) ( ) ( )1 2k x k x2 2o
1 3 2 32 2

1 2

x,s k e k e
s k k

− −ϕ  φ = −α − −α −
, (77) 

( ) ( ) ( )( ) ( )( )1 2k x k x2 2 2 2o
1 1 3 2 2 32 2

1 2

x,s 1 k k e 1 k k e
s k k

− −ϕ  θ = −Ω −α − −Ω −α −
, (78) 

( ) ( )
( )( )( )

( )( )( )
1

2

k x2 2
2 1 1 1 3

o
2 2 k x2 2
1 2 2 1 2 2 3

1 k k e
x,s

s k k 1 k k e

−

−

 α − e −Ω −αϕ  s =
 − − α − e −Ω −α  

, (79) 

and 

( ) ( )
1 2k x k x2 o

2 12 2
1 2 1 2

u x,s k e k e
sk k k k

− −−α ϕ  = − −
. (80) 

To invert the Laplace transforms, we adopt a numerical inversion method based on a 
Fourier series expansion [17]. 

By this method, the inverse )t(f of the Laplace transform ( )sf  is approximated by  

( ) ( )
vt N

1
k 11 1 1

e 1 i k i k tf t f v Re f v exp , 0 t 2t,
t 2 t t=

    p p
= + + < <    

    
∑  (81) 

where N is a sufficiently large integer representing the number of terms in the truncated 
Fourier series, chosen such that 

( )
1 1

i N i N texp v t Re f v exp
t t

    p p
+ ≤ e    

    
, (82) 

where e is a prescribed small positive number that corresponds to the degree of accuracy 
required. The parameter v is a positive free parameter that must be greater than the real part of 
all the singularities of ( )sf . The optimal choice of v was obtained according to the criteria 
described in [17]. 

The copper material was chosen for purposes of numerical evaluations, and the 
constants of the problem were taken as following [1]: 

N/K.sec386K =   , ( ) 15
T K1078.1 −−=α , K/m1.383C 2

E = , 2sec/m73.8886=η  

( ) 210 m/N1086.3=m , ( ) 210 m/N1076.7=λ , 3m/kg8954=ρ , sec02.0o =τ , K 293To = , 

1 1.60861ε = , 2 0.0104442ε = , *0.1 and 1.0β = β = (Assumed). 
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Fig. 1. The conductive temperature distribution 
 

 
 

Fig. 2. The thermo-dynamical temperature distribution 
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Fig. 3. The stress distribution 
 

 
 

Fig. 4. The displacement distribution 
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Fig. 5. The strain distribution 
 

 
The Figures 1-5 show the conductive temperature, the thermo-dynamical temperature, 

the stress, the displacement and the strain distributions respectively for the three models; one 
temperature model, classical two-temperature model, and hyperbolic two-temperature model. 

In Figures 1-3, the hyperbolic two-temperature model agrees with one temperature 
model, and they introduce finite speed of the conductive temperature, the thermo-dynamical 
temperature, and the stress waves propagation, while it is not in the classical two-temperature 
model. 

In Figures 4 and 5, the hyperbolic two-temperature model agrees with one temperature 
model where the displacement and the strain waves vanish before the classical two-
temperature model. 

In Figure 5, the peak points of the strain are closed in the two cases of the one-
temperature model and the hyperbolic two-temperature model, while the peak point of the 
classical two-temperature model has a different value and far from the others peak point. 

 
9. Conclusion 

1- The classical two-temperature generalized thermoelasticity model Youssef [1] does not 
introduce finite speed of the thermal wave propagation which is physically 
unacceptable. 

2- This work introduces hyperbolic two-temperature generalized thermoelasticity model in 
which the thermal wave propagation has a finite speed. 

3- The two-temperature parameter has significant effects on all the studied fields for the 
hyperbolic two-temperature generalized thermoelasticity model and the classical two-
temperature generalized thermoelasticity model. 

4- The numerical results of all the studied fields show that, the thermo-mechanical waves 
of the hyperbolic two-temperature generalized thermoelasticity model and the one-
temperature generalized thermoelasticity have the same attitude. 

5- The hyperbolic two-temperature generalized thermoelasticity model is a successful 
model to study the behavior of the thermoelastic materials.  
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Abstract. The work is devoted to description of unsteady thermal processes in low-

dimensional materials. One-dimensional harmonic crystals with alternating masses and 

stiffnesses are considered. Analytical solution demonstrates the ballistic nature of heat 

propagation, which is confirmed by numerical simulations based on the particle dynamics 

method. It is shown that temperature distribution propagates as two consecutive thermal 

fronts with finite speed, and its initial shape is preserved.  

Keywords: mathematical modeling, low-dimensional materials, discrete media, thermal 

processes, heat transfer, lattice dynamics, harmonic crystal, polyatomic lattice 

 

 

1. Introduction 
The relevance of this study is connected with the active development of new technologies for 

creating materials that allow to regulate the material composition and structure at the atomic 

level [1-3]. The properties of low-dimensional materials are often unique, which opens up 

promising opportunities for their application [4]. For example, the hexagonal boron nitride 

has high stability, chemical resistance, hardness, strength and thermal conductivity [5, 6]. In 

general, low-dimensional materials have a complex crystal structure. For example, two-

dimensional graphene lattice consists of two sublattices formed by carbon atoms, and the 

sublattices of hexagonal boron nitride, binary boron and nitrogen compound, are formed by 

two different kinds of atoms. Filamentary nanocrystals (nanowires, nanowhiskers) can be 

formed by either one type of atoms (silicon, carbon-carbine), or several ones (gallium 

arsenide, indium phosphide). Hence, the development of models that would correctly describe 

the physical and mechanical properties of such media and structures, including non-stationary 

thermal processes, becomes particularly important. It should be noted that the existing 

mathematical models are often not applicable to low-dimensional structures. For example, 

recent experimental studies have shown that heat propagation at the nanoscale has peculiar 

properties [6-8]. In particular, the Fourier law, which implies the diffusive type of heat spread, 

is not fulfilled for low-dimensional structures; in contrast, the heat propagation in 

nanostructures is of a ballistic nature [7, 9]. The analytical solution demonstrating the 

anomalous heat propagation in one-dimensional harmonic chain was first presented in [10]. 

The solution was obtained for the stationary problem of heat propagation between two 

thermal reservoirs with different temperatures, and it was shown that the thermal resistance 

does not depend on the length of the chain, which contradicts the Fourier law; harmonic 

crystals consisting of particles with different masses were considered, for example, in [11, 

12]. 
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In recent works [13-17], a method that allows analytical description of thermal 

processes in harmonic crystals has been developed. This paper is devoted to application of 

this method to one-dimensional harmonic crystals with alternating masses and stiffnesses. The 

object of investigation is a harmonic crystal, which is a crystal lattice consisting of material 

points interacting via linearized forces. The principle of separation of fast and slow thermal 

processes is applied. Characteristic time for a fast process is of order of several periods of 

atomic vibrations. Fast motions refer to fluctuations in the kinetic temperature associated with 

the partial transfer of the kinetic energy to thermal energy; in polyatomic crystals, it is 

accompanied by the redistribution of kinetic energy over the unit cell's degrees of freedom. 

Characteristic time for a slow process is much larger than a period of atomic vibrations [18, 

19]; heat transport, i.e. time evolution of the spatial distribution of kinetic temperature, is a 

slow process. In this paper, analytical solutions are given for two unsteady heat transfer 

problems: (i) cold and hot half space contact and (ii) propagation of an initially rectangular 

thermal perturbation. Analytical results are verified by numerical simulation based on the 

particle dynamics method. 

 

2. Problem statement 

 

 
Fig. 1. One-dimensional harmonic crystal with alternating masses 

 

Lattice dynamics equations. Initial conditions. Particle dynamics equations for an 

infinite one-dimensional harmonic crystal with alternating masses (Fig. 1) have the form: 

  ̈      
 (                 )        ̈      

 (                 ). (1) 

Here      and      are displacements of the particles with masses    and    which 

belong to the  th unit cell;   is the bond stiffness, and the respective frequencies are 

   √ 
  

⁄  and    √ 
  

⁄ . Following [20], we introduce the equilibrium interparticle 

distances:   is the one inside the unit cell, and     is the distance between the neighboring 

particles from different cells. Hence, the so-called length of the unit cell is equal to  . 

Consequently, for the case of       the system yields to one-dimensional harmonic chain 

with the unit cell length equal to   ⁄ . 

In order to reduce the number of unknowns, let us introduce a parameter        : 

              
 ⁄                  √ 

 ⁄          √   (2) 

Taking the symmetry of its definition (2) into account, we can restrict ourselves to 

       . 
The initial conditions are written as follows 

                                 ̇                   ̇            , (3) 

where      are random velocities with zero mean, i.e. their mathematical expectations are 

equal to zero. Such initial conditions are used, for instance, to model an ultrashort laser 
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impact [21, 22]. Note, that the solution of the resulting system (1)-(3) will be a set of random 

values. 

Dispersion relation. Let us seek the solution of (1)-(2) in the wave form with frequency 

  and one-dimensional wave vector  : 

        
                         

            (4) 

Hence, the dispersion relation is determined as 

    
    [(   

 ⁄ )  √    
  ⁄         ]  (5) 

 

 
Fig. 2. Dispersion curves for one-dimensional diatomic harmonic crystals with various mass 

ratios      . Black line (   ) corresponds to the one-dimensional harmonic chain 

 

Figure 2 shows the branches of dispersion relation for one-dimensional diatomic 

harmonic crystal at different values of the parameter        . For example, the curves for 

      correspond to the mass ratio for the two-dimensional hexagonal boron nitride (the 

exact value is 0.772), which possesses unique physical and mechanical properties [5, 6]. 

If the masses differ slightly, i.e.    , optic and acoustic branches    and    merge. 

Consequently, we obtain two dispersion curves for monoatomic chain, shifted by    along 

the horizontal axis relative to each other. The appearance of the two curves is due to the 

change in the translational symmetry; in this case we still solve the system (1) of the two 

equations for two neighboring particles. 

Differentiation of (5) with respect to the wave vector leads to the following 

representation of group velocities  

     
 

     
  

⁄           

(

 
         

     √    
  ⁄        

⁄

)

 
 

. (6) 

Note, that the dispersion curves (Fig. 2) will look the same for the system with 

alternating stiffnesses provided that the ratio of its parameters is kept 
  

  
⁄   . 
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3. Heat propagation 
Kinetic temperature. Let us now follow [13-17] and consider the transfer from the 

stochastic problem for particle displacements (1)-(3) to closed deterministic one for the 

statistical characteristics of pairs of particles.  

First, we introduce a spatial coordinate     , which is one of the convenient ways to 

identify a  th unit cell. Then, we introduce the kinetiс temperature        proportional to the 

sum of the kinetic energies of the particles in the unit cell:  

          
 ⁄ (  〈 ̇   

 〉    〈 ̇   
 〉)  (7) 

where    is Boltzmann constant, and brackets 〈 〉 denote mathematical expectation. 

Consequently, the velocities      (see initial conditions (3)) are the random velocities with the 

variance 〈    
 〉  

        
  

⁄ , where             . 

Thus, the conditions (3) mean that at the initial time, the particles have random 

velocities corresponding to a certain temperature field. This field correlates with the initial 

kinetic temperature of the system, while the potential energy is initially zero. This, in turn, 

means that, according to the virial theorem [13, 16, 23], after a certain period of time, the 

kinetic and potential energies will equilibrate. Characteristic time of this process is of order of 

several periods of atomic vibrations, and it is referred to as fast process. Also, at such times 

the kinetic energy is redistributed over the degrees of freedom inside the unit cell [17]. On the 

contrary, heat transport is a slow process, for which the characteristic time is much larger.  

It has been demonstrated that the propagation of the thermal perturbation       in a 

monoatomic chain is described by the formula [16]: 

            

   
     

  ⁄ ∫            
 

  

    
  ⁄ ∫ [  (         )    (         )]     

 

  

, (8) 

where   is frequency, determined by the dispersion relation,   is one-dimensional wave 

vector, and    is group velocity. At large times fast processes    vanish, and temperature field 

is a superposition of thermal waves travelling with the speed    and having the shape of the 

initial perturbation      . 
Analysis of fast processes for one-dimensional diatomic crystal is given in [17]. 

Specifically, it is demonstrated that the solution oscillates around the half of the initial 

temperature   , and its amplitude decays as  
√ 

⁄ . At larger times when fast processes are 

negligible, formulae (8) for polyatomic chain can be rewritten 

           
   ⁄ ∫ ∑ *  (     

     )    (     
     )+ 

        
 

  
  (9) 

where   is the number of atoms in the unit cell; for diatomic chain    ;    
 are the 

respective group velocities (6). Further, several solutions will be constructed and compared 

with the results of numerical simulation using the particle dynamics method. Formula (9) 

means that the heat propagation has ballistic character, which differs from the Fourier law. In 

the case of    , formula (9) was derived for scalar lattices [16]. 

Cold and hot half space contact. Let the initial thermal perturbation have the form of a 

Heaviside function: 

                    ̇         (10) 

where    is the temperature of     half-space before kinetic and potential energy 

equilibrate. Then, for the considered diatomic system, formula (9) yields to 
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     )   (     
     )  

 

  

 (     
     )]     . (11) 

Taking into account, that            we finally obtain 

 (  ⁄ )  
  

  ⁄ ∫ * (  ⁄     
    )   (  ⁄     

    )   (  ⁄     
    )  

 

  

 (  ⁄     
    )+      . (12) 

 

 
Fig. 3. Propagation of a Heaviside function in one-dimensional diatomic chain with different 

mass ratios       

 

Figure 3 shows the result of integration of (12) for different values of the parameter  

       . For     and     there are two thermal fronts travelling with finite speeds 

[16], i.e. maximum values of group velocities    
 and    

 respectively (6). Note, that    
   , 

corresponding to the acoustic branch, is always larger than    
   . 

If    , the two fronts merge and the solution coincides with the solution for the 

monatomic chain with the unit cell length equal to   ⁄  [13]: 

 (  ⁄ )  

{
 
 

 
 
  

 ⁄  
  

  ⁄       (     ⁄ )        
 ⁄

  
 ⁄       

 ⁄
  (13) 

To verify the obtained solution (12), a numerical simulation based on the particle 

dynamics method was carried out. A sample consisting of 1000 particles was considered, for 

which equations (1) were solved with initial conditions: 

                                  {
 ̇              ̇                

 ̇           ̇             
, (14) 

and periodic boundary conditions. The kinetic temperature was calculated using formula (7), 

where the mathematical expectation was approximated by averaging over 20 realizations with 
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various random initial conditions. Comparison of the analytical solution (12) with the 

numerical solution has shown a good agreement up to small thermal oscillations near    . 

Propagation of rectangular thermal perturbation. For further analysis of the limiting 

cases when     and    , let us consider the following initial temperature distribution 

          (             )      ̇         (15) 

where   is a half of the interval with nonzero temperature.  

The solution of this problem is a sum of solutions (12), according to superposition 

principle. Temperature distribution for a diatomic chain with       at several consequent 

times is shown in Fig. 4. Comparison of the analytical and numerical solutions (see Fig. 5) 

has also shown quite a good agreement. The deviations in the vicinity of     are caused by 

the residual fast processes, which have not fully decayed [17]. This effect decreases with the 

increase of the sample size. 

 

 
Fig. 4. Evolution of initially rectangular thermal perturbation (     ), analytical solution 

 

 
Fig. 5. Comparison of analytical and numerical solutions at t = 600s 
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According to the classical heat conduction theory, a maximum would be observed at 

    and it would decay exponentially. In the case of anomalous thermal conductivity, the 

solution decays faster near zero, forming four fronts that propagate two by two in opposite 

directions with constant speeds. 

Note that in a system with alternating masses or stiffnesses, the thermal front at large 

times, when the "peaks" become less prominent, looks in a way similar to the solution of a 

similar problem based on the Fourier thermal conductivity law, whereas the solution for a 

monatomic chain demonstrates a fundamentally different behavior [13]. 

If the width of the initial perturbation   decreases and its amplitude    increases, the 

solution tends to fundamental solution, i.e. solution with perturbation in the form of a delta 

function. Numerical simulation for     and     has demonstrated that the thermal fronts 

stay at a finite distance from each other, and the speed of the first ones (   
   , acoustic 

branch) always turns out to be greater than the speed of the second ones (   
   , optic branch). 

If one of the masses is negligible in comparison to another, i.e.    , most of the heat is 

transferred with the speed    
   , whereas if     almost all the heat propagates with    

   . 

These observations can be further used to test the presented theory in future experiments. 

 

4. Conclusions 
In the present work, the method that allows analytical description of heat propagation in 

harmonic crystals [13-17] is applied to one-dimensional harmonic crystals with alternating 

masses (Fig. 1). Solution (9) was obtained by analogy with (8) for scalar lattices [16]. Slow 

motions are considered: the temperature field is a superposition of waves moving with group 

velocities (6), and has the form of the initial temperature distribution. 

Analytical solutions are given for two problems: (i) cold and hot half space contact and 

(ii) propagation of an initially rectangular thermal perturbation. It is shown, that if the masses 

differ slightly, all the solutions tend to the profiles for a monoatomic chain.  

For the problem (i), it is demonstrated that, for any ratios between the masses, the initial 

thermal perturbation propagates in the form of two successive thermal fronts having finite 

speeds and repeating the form of the initial perturbation. The speed of the first, faster front 

corresponds to the acoustic branch of the dispersion relation (5), and the speed of the second 

front corresponds to the optical one. In turn, rectangular thermal perturbation (ii) splits into 

four thermal fronts, which propagate two by two in opposite directions with constant 

velocities.  

Comparison of the analytical results with numerical simulation shows that the presented 

theory describes the distribution of heat in a diatomic chain with high accuracy. It is 

demonstrated numerically that if the masses differ slightly, the main part of the initial 

perturbation propagates at a speed corresponding to the acoustic branch, but the velocities of 

the fronts corresponding to the optical branch remain finite. The latter means that up to the 

achievement of exact equality of the masses all fronts exist, and they are located at a finite 

distance from each other. 

The dispersion relation (5) is the same both for a chain with alternating masses and for a 

chain with alternating stiffnesses, if the ratio of the respective parameters is the same as well. 

Thus, from the point of view of the heat transfer problem, these systems are equivalent. Note 

that this is true only when considering the average temperature in the unit cell (7). The 

propagation of heat waves corresponding to different degrees of freedom will be significantly 

different for the two systems [17]. 
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Abstract. The original pseudo three-dimensional (P3D) model is extended to an arbitrary 
stress contrast on the basis of the correspondence principle suggested. The principle employs 
the similarity between solutions to plain-strain elasticity problems for (i) the crack, 
corresponding to the central cross-sections of the P3D model, and (ii) the crack of the 
Khristianovich-Geertsma-de Klerk (KGD) model, when the sizes and average openings of the 
cracks are the same. This suggests using the propagation speeds of the KGD problem for 
assigning the speed of the height growth of the P3D model. This approach is applicable in all 
the cases when the KGD problem may be accurately solved; specifically, when accounting for 
an arbitrary stress contrast.   
Keywords: hydraulic fracturing, pseudo three dimensional (P3D) model, stress contrast 
 
 
1. Introduction 
Hydraulic fracturing (HF) is the operation of injecting viscous fluid into the rock mass to 
create tensile cracks. The operation is widely used in petroleum industry for stimulation of oil 
and gas reservoirs [2]. Numerical simulators are developed for the design of this expensive 
operation to make it efficient. Commonly simulators are based on simplified mathematical 
models. Among those, the most popular is the pseudo-three dimensional (P3D) model [1, 5, 6, 
10]. It combines physically clear prerequisites with computational efficiency (e.g. [1]). To 
assign the vertical speeds of fracture cross-sections, the authors introduced either  
actual [6, 9], or "apparent" [1] stress intensity factor (toughness) 𝐾𝐾𝐼𝐼𝐼𝐼 in the line of the 
classical fracture mechanics (e.g. [9]). Yet, being justified for high fracture toughness, the 
original model becomes irrelevant in practically important cases when the fluid viscosity 
dominates. Efforts to overcome the difficulty by assigning an apparent fracture toughness 𝐾𝐾𝐼𝐼𝐼𝐼 
have actually succeeded merely for a particular case of a pay layer between half-spaces with 
the same (positive) stress contrast [1]. Authors obtained a solution, which in the particular 
case considered agrees with the solution to the truly 3D solution found by using the implicit 
level set algorithms (ILSA) suggested in [8]. Still, there has been no solution for the general 
case. The present work aims to consistently extend the P3D model to an arbitrary input of 
viscosity and to an arbitrary stress contrast. 
 
2. Problem formulation 
The original P3D model is based on three main assumptions: 
1. The length of the fracture is greater than its height (Fig. 1). Then plane-strain 
conditions occur in central cross-sections parallel to the fracture front; 
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Fig. 1. Fracture footprint assumed in the P3D model 

 
2. Elasticity modulus E and the Poisson ratio 𝜈𝜈 are the same in each layer of the elastic 
homogeneous isotropic media considered (Fig. 2); 
 

 
Fig. 2. Profile of the opening for the P3D model 

 
3. The physical pressure 𝑝𝑝 is the same along each cross-section, where plain-strain 
conditions are applicable (Fig. 3), while in-situ stress which acts and closes the fracture along 
the 𝑥𝑥-axis, commonly changes in the z-direction. 

 
Fig. 3. Pressure in various cross-sections 

 
These assumptions yield the system of equations, which is consists of 5 equation: 
1. elasticity equation, obtained from the classical solution [7] 

𝑤𝑤𝑎𝑎𝑎𝑎 = 2𝑧𝑧∗
𝐸𝐸′
�𝜋𝜋𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛

2
− 1

2 ∫ ∆𝜎𝜎(𝑧𝑧(𝜍𝜍))�1 − 𝜍𝜍2𝑑𝑑𝜍𝜍1
−1 �, (1) 

where 𝑤𝑤𝑎𝑎𝑎𝑎 is the opening averaged over a cross-section, 𝐸𝐸′ = 𝐸𝐸/(1 − 𝜈𝜈2), 
𝜍𝜍 = �𝑧𝑧 − (1/2(𝑧𝑧∗𝑙𝑙 + 𝑧𝑧∗𝑢𝑢)� /𝑧𝑧∗, 𝑧𝑧∗(𝑥𝑥, 𝑡𝑡) = 1/2(𝑧𝑧∗𝑢𝑢 − 𝑧𝑧∗𝑙𝑙) is the half-height, 𝑧𝑧∗𝑙𝑙 (𝑧𝑧∗𝑢𝑢) is the global 
coordinate of the lower (upper) tip; 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑝𝑝(𝑥𝑥, 𝑡𝑡) − 𝜎𝜎𝑝𝑝 is the difference between the actual fluid 
pressure 𝑝𝑝 and a fixed value 𝜎𝜎𝑝𝑝 of the confining rock pressure; 
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2. the continuity equation  
𝜕𝜕(2𝑧𝑧∗𝑤𝑤𝑎𝑎𝑎𝑎)

𝜕𝜕𝜕𝜕
= −𝜕𝜕(2𝑧𝑧∗𝑤𝑤𝑎𝑎𝑎𝑎𝑣𝑣𝑎𝑎𝑎𝑎)

𝜕𝜕𝜕𝜕
− 𝑄𝑄𝑙𝑙 + 𝑄𝑄0𝛿𝛿(𝑥𝑥), (2) 

where 𝑄𝑄𝑙𝑙 is the total leak-off through the surface of a cross-section, 𝑄𝑄0 is prescribed pumping 
rate at the source point; 

3. the Poiseuille type equation  

𝑣𝑣𝑎𝑎𝑎𝑎(𝑥𝑥, 𝑡𝑡) = 𝐹𝐹𝑣𝑣 �−
𝑤𝑤𝑎𝑎𝑎𝑎𝑛𝑛+1

𝜇𝜇′
𝜕𝜕𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛
𝜕𝜕𝜕𝜕

�
1
𝑛𝑛, (3) 

where 𝐹𝐹𝑣𝑣(𝑥𝑥, 𝑡𝑡) =
1
2𝑧𝑧∗

 ∫ 𝑤𝑤2+1/𝑛𝑛𝑑𝑑𝑑𝑑𝑧𝑧∗𝑢𝑢
𝑧𝑧∗𝑙𝑙

𝑤𝑤𝑎𝑎𝑎𝑎
2+1/𝑛𝑛 , 𝑛𝑛 is the fluid behavior index, 𝜇𝜇′ = 2[2(2𝑛𝑛 + 1)/𝑛𝑛]𝑛𝑛𝑀𝑀, 𝑀𝑀 

is the consistency index;  
4. the speed equation for the fracture front 

𝑣𝑣∗𝑥𝑥(𝑡𝑡) = 𝐹𝐹𝑣𝑣(𝑥𝑥∗,𝑡𝑡)
𝑡𝑡𝑛𝑛

� 1
𝜋𝜋𝑧𝑧∗(𝑛𝑛+2)

�
1/𝑛𝑛

𝐶𝐶𝑤𝑤
1+2/𝑛𝑛, (4) 

where 𝐶𝐶𝑤𝑤 = 𝑤𝑤𝑎𝑎𝑎𝑎(𝑟𝑟𝑖𝑖)
𝑟𝑟𝑖𝑖
𝛼𝛼 , 𝑟𝑟 = 𝑥𝑥∗ − 𝑥𝑥 is the distance from a point 𝑥𝑥 behind the front to the front 𝑥𝑥∗, 

𝛼𝛼 = 1
𝑛𝑛+2

; 
5. the speed equations for vertical growth of cross-sections 

𝑣𝑣𝑧𝑧𝑧𝑧(𝑥𝑥, 𝑡𝑡) = 𝑑𝑑𝑧𝑧∗𝑙𝑙
𝑑𝑑𝑑𝑑

= 𝑓𝑓𝑧𝑧𝑧𝑧�𝑧𝑧∗𝑙𝑙 , 𝑧𝑧∗𝑢𝑢,  𝑤𝑤𝑎𝑎𝑎𝑎�;  𝑣𝑣𝑧𝑧𝑧𝑧(𝑥𝑥, 𝑡𝑡) = 𝑑𝑑𝑧𝑧∗𝑢𝑢
𝑑𝑑𝑑𝑑

= 𝑓𝑓𝑧𝑧𝑧𝑧�𝑧𝑧∗𝑙𝑙 , 𝑧𝑧∗𝑢𝑢,  𝑤𝑤𝑎𝑎𝑎𝑎�, (5) 
where 𝑓𝑓𝑧𝑧𝑧𝑧�𝑧𝑧∗𝑙𝑙, 𝑧𝑧∗𝑢𝑢,  𝑤𝑤𝑎𝑎𝑎𝑎� and 𝑓𝑓𝑧𝑧𝑧𝑧�𝑧𝑧∗𝑙𝑙 , 𝑧𝑧∗𝑢𝑢,  𝑤𝑤𝑎𝑎𝑎𝑎� are known functions.  

The system (1)-(5) is complemented with the initial conditions (6) at an initial  
moment 𝑡𝑡0: 
𝑥𝑥∗(𝑡𝑡0) = 𝑥𝑥∗0,  𝑤𝑤𝑎𝑎𝑎𝑎(𝑥𝑥, 𝑡𝑡0) = 𝑤𝑤𝑜𝑜(𝑥𝑥),  𝑧𝑧∗𝑙𝑙(𝑡𝑡0) = 𝑧𝑧∗𝑙𝑙0,  𝑧𝑧∗𝑢𝑢(𝑡𝑡0) = 𝑧𝑧∗𝑢𝑢0. (6) 

To extend the original P3D model to an arbitrary regime of the fracture height growth 
we need to define 𝑓𝑓𝑧𝑧𝑧𝑧�𝑧𝑧∗𝑙𝑙 , 𝑧𝑧∗𝑢𝑢,  𝑤𝑤𝑎𝑎𝑎𝑎� and 𝑓𝑓𝑧𝑧𝑧𝑧�𝑧𝑧∗𝑙𝑙 , 𝑧𝑧∗𝑢𝑢,  𝑤𝑤𝑎𝑎𝑎𝑎�. It can be done by using the 
correspondence principle formulated in the next section. 
 
3. The correspondence principle 
As a physically consistent approach, we suggest to use the next correspondence principle. 
Two plane-strain HF under the same conditions are assumed equivalent, as regards to the 
speeds of their height growth, when the HF have the same: (i) tip positions, and (ii) fluid 
volumes above and below the injection point. The "same conditions" mean that the rock 
structure, stress contrasts, leak-off parameters, and the properties of rock, fluid and proppant 
are the same for the both HF. Taking into account that Khristianovich-Geertsma-de Klerk 
(KGD) and P3D models employ the same elasticity equation (1) for a straight crack under 
plain-strain conditions, one may expect that profiles of the opening for both models are 
similar when items (i) and (ii) are met. In fact, the difference concerns with merely near-tip 
zones influenced by the asymptotics, while the openings of the central parts of fractures may 
be almost the same (Fig. 4). 

Then in any cross-section of the P3D model, the current tip positions and the current 
volumes above (and below) the injection point uniquely define the tip propagation speeds via 
the speeds in the corresponding (in the mentioned sense) KGD model (Fig. 5). 
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(a)                                          (b)                                  (c) 

Fig. 4. Profiles of the opening for the KGD and P3D models: (a) full profiles; (b) comparison 
of the profiles; (c) magnified area with the difference between KGD and P3D openings 

 

 
Fig. 5. Tip propagation speeds 

 
The data to find the speeds via the tip positions and the volumes are prepared in 

advance by solving a set of extended KGD problems (e.g. [3]). For each cross-section of the 
P3D model, this gives the propagation speeds needed to update the tip positions on a time 
step. Clearly, the method may serve for an arbitrary propagation regime when the KGD 
problems are solved accounting for the universal asymptotics [4].   

Numerical implementation of the method has confirmed that for the particular case 
studied in [3], the profiles of the opening found for P3D and KGD models are practically the 
same. The propagation speeds are close, as well, what follows from the perfect agreement of 
footprints. Since the latter were verified in [1] against the truly 3D bench-mark solutions, this 
implies that the method developed is quite accurate.  
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Fig. 6. Comparison of the footprints obtained by using the correspondence principle the 

benchmark solution given in [1] 
 
4. Conclusions 
The correspondence principle, based on similarities between KGD and P3D models, serves to 
extend the original P3D model to a general case. The proposed method allows one to obtain 
accurate results, which are comparable with those for the truly 3D model when a fracture 
grows in the viscosity-dominated regime. The comparison of fracture footprints, obtained by 
the method suggested, with published solutions to truly 3D benchmark problems, has shown 
good agreement. This confirms that the speeds of height growth are evaluated correctly when 
employing the correspondence principle. The method can be also used to determine the limits 
of applicability of the original P3D model. 
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Abstract. Within the theory of small deformations superposed on a finite one, a consistent 
linearization for the nonlinear equations of the mechanics of an originally isotropic elastic 
body in a neighborhood of some initial stress state is carried out in the Lagrange coordinate 
system. As the elastic potential for the originally isotropic body, we use the representation of 
the specific strain energy through the algebraic invariants of the Green-Lagrange strain tensor. 
The linearized constitutive relations and the equations of motion of the prestressed medium 
are derived that allow taking into account the nonlinear effects of the initial deformation on 
the elastic properties of the originally isotropic body. 
Keywords: initial stress, prestressed, initial deformation, elastic moduli of III orders, elastic 
moduli of IV orders, linearized theory, large initial deformations, elastic potential of IV orders 
 
 
1. Introduction 
The widespread use of artificial materials in aerospace and mechanical engineering, and in 
electronics leads to the need for a detailed study of the physical properties of used materials, 
their technological and strength characteristics, depending on the operating modes and 
conditions. Such studies involve the solution of complex applied problems of the static and 
dynamic theory of elasticity, as well as the use of mathematical models that describe the 
processes taking place in the materials under consideration with some degree of accuracy. In 
turn, the modeling of these processes while taking into account various initial effects is 
associated with the use of an elastic potential [1, 2], which describes the energy accumulated 
during deformation. The choice of the particular form of the potential is determined by the 
specifics of the problem under consideration and by the coordinate system used. For isotropic 
materials, the elastic potential can be represented as a scalar function of invariants of one of 
the strain tensors [2-4]. Various expressions for the potential in the form of polynomials of III 
and IV order in invariants of the Green-Lagrange strain tensor were successfully used in [5, 6] 
for the modeling of highly elastic materials. For more rigid materials (rocks, metals, alloys, 
crystals, etc.), the Murnaghan representation of the elastic potential in the form of a cubic 
function of the Green-Lagrange strain tensor invariants [7] is widely used, in which, along 
with the elastic moduli of II order, there are also III order moduli. At present, due to 
theoretical and experimental studies, the values of III order moduli are known for a wide 
range of metals, alloys, crystals, various structural materials and for some rocks [8-12]. The 
use of hyperelastic material model with elastic moduli of III order made it possible to describe 
the properties of a prestressed medium more accurately: to analyze the second-order 
effects [11, 12], to determine the mechanical stresses [13, 14], and to study the features of 
dynamics, propagation and localization of waves [15-24]. In [21] a fairly comprehensive 
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review on this subject is given. In order to develop a linearized contact theory for prestressed 
bodies, a consistent linearization for the nonlinear equations of the mechanics of an elastic 
solid has been carried out in the Lagrange and Euler coordinate systems [15]. The linearized 
equations of motion and the constitutive relations of the prestressed medium were derived in 
an arbitrary, generally curvilinear, coordinate system. The expressions presented in a compact 
form convenient for research were used in [15, 20-24] to solve a number of mixed boundary-
value problems of the dynamic theory of elasticity. Particularly, for the model of originally 
isotropic hyperelastic material with the Murnaghan potential, the influence of the nature of the 
initial mechanical effects on the formation, propagation, and localization of wave fields in 
both homogeneous and inhomogeneous prestressed media has been studied [22-24]. 

Recently, a number of new materials, promising in practical applications and possessing 
unique physical properties, have appeared. In particular, these materials are able to withstand 
a very high level of elastic deformation, at which the nonlinearity of elastic properties 
becomes very significant. In [25-27], the results of experimental studies on the determination 
of elastic moduli of III and IV order for bulk metallic glasses based on zirconium (Zr) and 
palladium (Pd) are presented. The appearance of information about IV order moduli 
necessitate the improvement of the linearized contact theory for prestressed bodies developed 
in [15]. In this paper, we use a representation of the potential in which the elastic moduli of 
IV order are taken into account. The linearization is carried out in the Cartesian material 
coordinate system. The linearized equations of motion and the constitutive relations of the 
prestressed medium are derived, which allow taking into account the nonlinear effects of 
second-order and third-order in the influence of mechanical deformations on the elastic 
properties of the original material. Within the framework of the proposed model, we studied 
the effect of accounting for higher-order moduli on the parameters of the initial strained state 
and the properties of the prestressed material. 

 
2. Nonlinear boundary-value problem for a prestressed originally isotropic elastic body 
Consider the reference v and the actual V configurations before and after application of 
surface and mass forces, respectively. The position of a material point in these configurations 
is given by the vectors k kx=r i  and k kX=R i , where { }1 2 3, ,i i i  is the orthonormal Cartesian 

vector basis, 1 2 3, ,x x x  and 1 2 3, ,X X X  are the Lagrangian and Eulerian coordinates. Here and 
below, we use the Einstein summation convention. Representation of the nabla-operators in 
the reference 0∇  and the actual ∇  configurations is defined by expressions: 

0 m
mx
∂

∇ =
∂

i ,    m
mX

∂
∇ =

∂
i . (1) 

Deformation of the medium is characterized by the deformation gradient C , the 
Cauchy-Green strain tensor G , and the Green-Lagrange strain tensor S  (I is the unit tensor): 

0= ∇C R ,    T= ⋅G C C ,    ( )1
2

= −S G I . (2) 

To describe the stress state of a medium, we use the Piola stress tensor Π  and the 
Kirchhoff stress tensor P , defined in the reference configuration: 

= ⋅Π P C ,    
χ∂

= =
∂SP χ
S

. (3) 

The tensor Sχ  is the derivative of the scalar function of the elastic potential ( )χ = χ S  
with respect to the strain tensor S . For an isotropic elastic material, the specific strain energy 
function can be expressed in terms of the algebraic invariants ( )tr k

kI = S  ( )1,2,3k = of the 
Green-Lagrange strain tensor [1-3, 7, 15, 25]: 
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2 3
1 1 2 1 1 2 1 2 3 3

4 2 2
1 1 2 1 2 3 1 3 4 2

1 1 4
2 6 3

1 1 4 1
24 2 3 2

pI I I I I I I

I I I I I I

χ = − + λ +µ + ν + ν + ν

+ γ + γ + γ + γ
 (4) 

where ,λ µ  are the elastic moduli of II order; 1 2 3, ,ν ν ν  and 1 2 3 4, , ,γ γ γ γ  are the elastic moduli 
of III and IV orders, respectively. The moduli of III and IV orders are interpreted as linear and 
quadratic in deformations additives to the elastic moduli of II order, which gives one of the 
ways to determine them [25]. Further, when deriving the constitutive relations, we assume 
that the state 0=S  is a state with a minimum free energy, 0p = . It should be noted that the 
expression (4) with the moduli of only II and III orders coincides with the Murnaghan 
potential [3, 7, 15].  

Taking (4) into account, the Kirchhoff stress tensor (3) is written in the form: 
2

0 1 22 3k

k

I
I
∂∂χ

= = ψ + ψ + ψ
∂ ∂

P I S S
S

, (5) 

( )

2 3
0 1 1 1 2 2 1 1 2 1 2 3 3

1

2
1 2 1 2 1 4 2 2 3 3 1

2 3

1 1 4 ,
2 6 3

4/ 2 , .
3

I I I I I I I
I

I I I I
I I

∂χ
ψ = = λ + ν + ν + γ + γ + γ

∂
∂χ ∂χ

ψ = = µ + ν + γ + γ ψ = = ν + γ
∂ ∂

 (6) 

Here we used the following relations for the derivatives of algebraic invariants kI  
( )1,2,3k =  with respect to the strain tensor S  [3]: 

231 2, 2 , 3II I ∂∂ ∂
= = =

∂ ∂ ∂
I S S

S S S
. 

The boundary-value problem of the nonlinear elasticity for a prestressed originally 
isotropic body in Lagrangian coordinates is described by the equations of motion 

2

0 0 0 2t
∂

∇ ⋅ +ρ = ρ
∂

RΠ b  (7) 

and the boundary conditions on the body surface 1 2o o o= +  

1
*

2

:

:

o
o

⋅ =

=

n Π t
R R

 (8) 

where b  is the mass forces vector; t  is the surface forces vector; *R  is the position vector of 
a point on the deformed body surface; 0ρ  is the material density in the reference 
configuration; and n  is the unit vector normal to the surface of the undeformed body. The 
formulation of the problem is closed by the constitutive law of a hyperelastic isotropic body, 
which is described by the expression (5) with the coefficients (6). 
 
3. Linearization about the initial stress state of a hyperelastic originally isotropic body 
We assume that there is an initial deformed equilibrium state of the elastic body and the 
quantities characterizing this state do not depend explicitly on time [3, 15]: 

( )1 1=R R r ,    1 0 1= ∇C R ,    ( )1 1S = S C ,    ( )1 1P = P C ,    ( )1 1Π = Π C . (9) 
Equilibrium equations in the volume and on the surface 1 2o o o= +  in the basis of the 

reference configuration are given by the relations:  
0 1 0 1 0∇ ⋅ +ρ =Π b , (10) 
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1 1 1
*

2 1 1

: ,

: .

o
o

⋅ =

=

n Π t
R R

 (11) 

Consider a small perturbation of the initial deformed equilibrium state (9), caused by a 
small change in the mass or surface forces (characteristics of the perturbed state will be 
denoted by the superscript × ): 

1
× = + ηb b d ,     1

× = + ηt t f . (12) 
Then the position of the points in the perturbed state of the medium is determined by the 

vector 
1

× = + ηR R u . (13) 
Here η  is the small parameter; u  is the vector of additional displacements.  
For the Piola stress tensor, the following representation holds in the perturbed state: 

2
1 (...)× •= + η +η + ⋅⋅⋅Π Π Π . (14) 

By retaining in the expansion only the terms linear in η , we obtain 

( )1 0 0
d

d
•

η== + η∇
η

Π Π C u . (15) 

Here and below, the superscript •  denotes the convective derivatives of the 
corresponding tensors. 

The quantities (12) – (14), which determine the perturbed state of the body, must satisfy 
the equations of motion (7) and the boundary conditions (8). Taking into account the 
equilibrium of the stress-strain state (9) – (11) and the expressions (12) – (15), we derive the 
linearized (up to accuracy ( )2o η ) equations of motion in the absence of mass forces: 

2

0 0 2t
• ∂

∇ ⋅ = ρ
∂

uΠ  (16) 

and the linearized boundary conditions on the surface 1 2o o o= + : 

1
*

2

:

:

o
o

•⋅ =

=

n Π f
u u

 (17) 

To find the convective derivative of the Piola stress tensor, its representation in terms of 
the Kirchhoff stress tensor (3) is used:  

1 1
• • •= ⋅ + ⋅Π P C P C . (18) 

Taking (5), (6) into account, for the convective derivative of the Kirchhoff stress tensor, 
we obtain: 

( )2
0 1 1 1 2 1 2 1 12 2 3 3• • • • • • •= ψ + ψ + ψ + ψ + ψ ⋅ + ⋅P I S S S S S S S , (19) 

where 

( )

2

1
2

1 2 1 3 1

T T
1 1 0

, , , 0,1, 2, 1, 2,3,

, 2 , 3 ,
1 , .
2

m
k km m km m

k m

II I k m
I I

I I I

• • • •

+

• • • • • •

• • • •

∂∂ χ
ψ = ψ ψ = = = =

∂ ∂ ∂

= = =

= ⋅ + ⋅ = ∇

S
S

I S S S S S

S C C C C C u



    (20) 

Here   denotes the full product.  
Further it is assumed that the initial stressed state in the originally isotropic hyperelastic 

body is due to the uniform initial deformation: 
1 ; const, 1, 2,3k m k k m kv v k= ⋅ = δ ⊗ = =R r Λ, Λ i i , (21) 
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where 1 2 3, ,v v v  are the stretch ratios along the Cartesian coordinate axes; kmδ  is the Kronecker 
delta.  

Within the framework of assumptions (21), it follows from (1), (2) that the deformation 
gradient, the Cauchy-Green strain tensor, and the Green-Lagrange strain tensor have the form: 

( )2 2
1 1 1

1, , ; 1 , 1, 2,3
2k k k k k k k k k k kv v S S v k= ⊗ = ⊗ = ⊗ = − =C i i G i i S i i . (22) 

The Piola and Kirchhoff stress tensors are expressed as follows: 
2

1 1 0 1 2, ; 2 3 , 1,2,3k k k k k k k k k kv P P P S S k= ⊗ = ⊗ = ψ + ψ + ψ =Π i i P i i . (23) 
Taking (4), (6) into account, the convective derivatives of the stress tensors (18), (19) 

take the form: 

( )

( )

* *

*
1 2

*
1 2

2
01 02 03 11

, ;

3 ,
2

3 , , 1, 2,3;
2

2 3 2

km k m km k m

n k m m
km km m n kn m k m k m k

n m k k

n k m
km km n kn k m k m

n m k

kn n n

P

u u u uv v v S S v v P
x x x x

u u uP v S S v v k m
x x x

S S

• •= P ⊗ = ⊗

 ∂ ∂ ∂ ∂ P = δ x + ψ + ψ + + +  ∂ ∂ ∂ ∂   
 ∂ ∂ ∂ = δ x + ψ + ψ + + =  ∂ ∂ ∂   

x = ψ + ψ + ψ + ψ

Π i i P i i

( ) 2
12 212 4 , , 1, 2,3.n k kS S S k n+ ψ + ψ =

  (24) 

Here we used the following relations 
1
2

k m
k m k m

m k

u uv v
x x

•  ∂ ∂
= + ⊗ ∂ ∂ 

S i i , 

2
1 2 3, 2 , 3k k k

k k k k k
k k k

u u uI v I v S I v S
x x x

• • •∂ ∂ ∂
= = =

∂ ∂ ∂
, 

( )

( )

2
0 01 02 03

1 11 12 2 21

2 3 ,

2 , .

n
n n n

n

n n
n n n

n n

uS S v
x

u uS v v
x x

•

• •

∂
ψ = ψ + ψ + ψ

∂
∂ ∂

ψ = ψ + ψ ψ = ψ
∂ ∂

 

The coefficients kmψ  defined in (20), according to (4), (21), have the form: 
2

01 1 1 1 1 2 2 02 11 2 2 1

03 21 3 12 4 13 22 23

1 2 3

1 , ,
2

4 , , 0,
3

, 1, 2,3.m m m
m

I I I I

I S S S m

ψ = λ + ν + γ + γ ψ = ψ = ν + γ

ψ = ψ = γ ψ = γ ψ = ψ = ψ =

= + + =

 (25) 

Using the formulae (6), (24), (25), the linearized equations (16) can be written in the 
scalar form ( 1,2,3m = ): 

( )
2 2 2 2 2

1 2 02 2 2

3 =
2

n k m m m
m n mn m k m k m k

m n k m k k

u u u u uv v v S S v v P
x x x x x x t

 ∂ ∂ ∂ ∂ ∂ x + ψ + ψ + + + ρ  ∂ ∂ ∂ ∂ ∂ ∂ ∂   
.  (26) 

The expressions (24) for the components of the linearized Piola stress tensor •Π  can be 
represented in a more compact and traditional for anisotropic materials form [2, 3, 15, 22]: 

* * , , 1, 2,3k
ij ijkl

l

uC i j
x

∂
Π = =

∂
, (27) 

where  
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( )

( ) ( )

* 2 2 *
1 2

* * 2
1 2 1 2

2 3 , , ,

3 3, ,
2 2

iiii i ii i i i iijj i j ij

ijij j i i j ijji j i j i

C v v S P C v v i j

C v v S S C v S S P

= ξ + ψ + ψ + = ξ ≠

   = ψ + ψ + = ψ + ψ + +   
   

 (28) 

and all the remaining coefficients *
ijklC  are zero. 

The relations (28) show the influence of the initial deformations on the original 
properties of isotropic material, i.e. *

ijklC  determine the properties of the prestressed material. 
According to (6), (22) – (25), in the absence of initial stresses ( 1 2 3 1v v v= = = ) we have: 

* * * *2 , , ,iiii iijj ijij ijjiC C C C= λ + µ = λ = µ = µ . 
Taking (27) into account, the linearized equations of motion (26) for a prestressed 

originally isotropic body take the form [1-3, 15, 22]:  
22

*
0 2 , 1, 2,3.jk

ijkl
l i

uuC j
x x t

∂∂
= ρ =

∂ ∂ ∂
 (29) 

When solving boundary-value problems for semi-bounded media, the problem (17), 
(29) is closed by additional boundary conditions, depending on the medium type: 
– for the half-space 1 2 3, , 0x x x≤ ∞ ≤  

3 : 0x →−∞ →u ; (30) 
– for the layer 303021 xxxxx ≤≤∞≤ ,, , the lower bound of which is rigidly clamped 

3 0 : 0x x= =u ; (31) 
– at the interface of n -th and 1n + -th structural elements with plane-parallel boundaries (with 
full coupling): 

( ) ( ) ( ) ( )1 * * 1
3 0 3 3: , , 1, 2,3n n n n

k kx x k+ += = Π = Π =u u ; (32) 
– at the interface (in contact without friction):  

( ) ( ) ( ) ( )1 * * 1
3 0 3 3 3 3: 0, 0, 1, 2n n n n

k kx x u u k+ += = = Π = Π = = . (33) 
 

4. Determination of the initial stress state 
The prestressed state of a body is described by the Kirchhoff stress tensor, which, for the 
uniform initial deformation (21), is defined in (23) while taking into account the elastic 
moduli of II, III and IV orders. By grouping the terms in powers of the deformation tensor S , 
for the components of the Kirchhoff stress tensor we obtain: 

( )
( )

( )

2 3
1 1 2 3 1 1

2 3
2 1 2 3 2 2

2 3
2 1 2 3 3 3

2 ,

2 ,

2 .

P S S S H H

P S S S H H

P S S S H H

= λ + µ + λ + λ + +

= λ + λ + µ + λ + +

= λ + λ + λ + µ + +

 (34) 

If in the representation (4) only the terms with the elastic moduli of II and III orders are 
retained, then for ( )1,2,3k kψ = , according to (6), we have: 

2
0 1 1 1 2 2 1 2 1 2 3

1 4, ,
2 3

I I I Iψ = λ + ν + ν ψ = µ + ν ψ = ν , 

and 3 0kH =  in the expressions (34).  
If the elastic potential (4) has only the terms with the moduli of II order, then the 

coefficients ( )1,2,3k kψ =  are determined by the relations: 

0 1 1 2, , 0Iψ = λ ψ = µ ψ = ,    2 3 0k kH H= = . 
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The components of the Kirchhoff stress tensor in this case are linearly related to the 
components of the strain tensor.  

The terms 2
kH  and 3

kH  ( )1, 2,3k =  from (34) allow one to take into account the 
influence of the elastic moduli of III and IV orders: 

( )
( )
( )

2 2 2 2
1 1 2 1 1 1 2 1 1 3 1 2 1 3 1 2 3

2 2 2 2
2 1 2 2 1 2 1 1 2 3 1 1 1 3 1 1 3

2 2 2 2
3 1 2 3 1 3 2 1 3 1 1 1 1 2 1 1 2

1 1 2 2 2 3

2 2 2 ,

2 2 2 ,

2 2 2 ,
1 , 2 .
2

H a a S a S S a S S a S a S S S

H a a S a S S a S S a S a S S S

H a a S a S S a S S a S a S S S

a a

= + + + + + + ν

= + + + + + + ν

= + + + + + + ν

= ν + ν = ν + ν

 (35) 

( ) ( )( ) ( )( )( )
( )( ) ( )

( ) ( )( ) ( )( )( )
( )( ) ( )

( ) ( )

3 3 2 2 2
1 1 2 4 1 1 3 2 3 1 1 2 3 1 2 2 3 1

3 3
1 3 2 3 1 2 3 2 3

3 3 2 2 2
2 1 2 4 2 1 3 1 3 2 1 1 3 1 2 1 3 2

3 3
1 3 1 3 1 1 3 1 3

3 3
3 1 2 4 3 1 3 1

1 4 2 2
3
1 2 ,
3

1 4 2 2
3
1 2 ,
3

1 4 2
3

H b b b S b b S S S b S S b b S S S

b b S S b S S S S

H b b b S b b S S S b S S b b S S S

b b S S b S S S S

H b b b S b b S

= + + + + + + + + + +

+ + + + +

= + + + + + + + + + +

+ + + + +

= + + + + +( ) ( )( )( )
( )( ) ( )

2 2 2
2 3 1 1 2 1 2 1 2 3

3 3
1 3 1 3 1 1 2 1 2

2

1 2 ,
3

S S b S S b b S S S

b b S S b S S S S

+ + + + +

+ + + + +

  (36) 

1 1 2 2 2 4 3 2 3 4 2 4 3
1 , 2 , 2 , 4 .
2

b b b b= γ + γ = γ + γ = γ + γ = γ + γ + γ  

Relations (34) represent a system of three generally nonlinear equations with respect to 
three unknowns: 1 2 3, ,S S S  or 1 2 3, ,P P P  or their combinations, depending on the method for 
specifying the initial stress-strain state. With the combined specification of the initial state, the 
deformation along one axis (for example, 1v ) is assumed to be given, as well as two 
conditions for the stresses. The deformations and stresses along the other axes are determined 
from the system (34). 

Further we studied the influence of ( ), , 1, 2,3;i j k i j k= ≠ ≠  
uniaxial 1 , 0i i j kx P P P P⇒ = = = , 
biaxial 2 0,i i j kx P P P P⇒ = = = , 
triaxial 3 ,i i j kx P P P P G⇒ = = = , 
and hydrostatic 1 2 33x P P P P⇒ = = =  initial loadings. 

The material used is the metallic glass 40 30 10 20Pd Cu Ni P  with the following 
parameters [27]: 

3 11 11

11 11 11
1 2 3

12 11
1 2

11 11
3 4

9300 / , 1.453 10 , 0.358 10 ,
2.27 10 , 2.34 10 , 0.818 10 ,

105,828 10 , 15.556 10 ,

1.81 10 , 2.98 10 .

kg m Pa Pa
Pa Pa Pa

Pa Pa
Pa Pa

ρ = λ = ⋅ m = ⋅

ν = − ⋅ ν = − ⋅ ν = − ⋅

g = − ⋅ g = ⋅

g = ⋅ g = − ⋅

 

The results of the numerical analysis are presented in the dimensionless parameters. The 
elastic coefficients and initial stresses are related to the shear modulus µ  of the isotropic 
material in the reference state. 

Higher-order model of prestressed isotropic medium for large initial deformations 193



Figs. 1 and 2 show the dependences of the initial stresses on deformations obtained 
from the solution of the system (34), while taking into account the elastic moduli of II order 
only ( 2 3 0k kH H= = , 1, 2,3k = , dotted lines, Curves 1), the moduli of III order (

2 30, 0k kH H≠ = , dashed lines, Curves 2), and both the elastic moduli of III and IV orders (
2 30, 0k kH H≠ ≠ , solid lines, Curves 3). Fig. 1 shows the stresses for uniaxial (1xi), biaxial 

(2xi), and hydrostatic (3x) states, respectively. 
 

 
a)               b) 

 
c) 

Fig. 1. The effect of accounting for higher-order moduli on stresses in the case of uniaxial (a), 
biaxial (b) and hydrostatic (c) loadings 

 
Fig. 2 shows the initial stresses for triaxial (3xi) states at 0.1G µ =  (Fig. 2a) and 

0.1G µ = −  (Fig. 2b). 
 

 
a)               b) 

Fig. 2. The effect of accounting for higher-order moduli on stresses in the case of triaxial 
loading: G/µ= 0.1 (a), G/µ= –0.1 (b) 

 
In the Figs. 1 and 2, the critical values of the stretch ratio iv  ( )1,2,3i = , corresponding 

to the Curve k  ( )2,3k = , at which the initial stresses become complex-valued are denoted by 
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*
kv , and the values at which the stresses reach a local minimum or maximum – by kv−  and kv+ , 

respectively. In the range ,k kv v− +   , the condition of a one-to-one correspondence is fulfilled. 
The shaded area is the region of physical linearity where the effect of accounting for the 
elastic moduli of III and IV orders is insignificant. It should be noted that the region 
corresponding to the uniaxial stress state was selected. From the Figs. it is clear that generally 
the linearity region depends on the type of initial loading: for hydrostatic (Fig. 1c) and various 
triaxial loadings (Fig. 2b), it is significantly reduced and can be shifted toward compression or 
extension. 

 
5. Accounting for the effect of elastic moduli of higher-order on the properties of 
prestressed originally isotropic bodies 
The role of the stress tensor in prestressed elastic body plays the linearized Piola stress 
tensor •Π  (27) involved in the equations of motion (29) with boundary conditions (30) – (33), 
depending on the problem and the medium type. The influence of initial stresses on the 
properties of originally isotropic material is represented by the coefficients *

ijklC  from (28). 

We rewrite *
ijklC  in the form [15, 22]: 

* , , , , 1, 2,3ijkl i jk j k ijklC P v v C i j k l×= δ + = . (37) 

Here ijklC×  depend on the material properties and the type of initial loading 

( ) ( ) ( )

( ) ( )

2 2
2 1 1 3 4 3 1 1 1 2 2

2 2 2
2 1 1 3 2 1 4 2 2 1 1

2
3 2 1 3 1 4 2 2 1

72 4 2 4 4 ,
3

4 12 4 3 2 4 ,
3 2

12 2 , , 1, 2,3,
2

iiii i i i

iijj i j i j i j i j

ijij ijji i j i j

C a S a I S b I S b I b I

C S S I S S S S I S S I I

C C S S I I S S I I i j i j

×

×

× ×

 = λ + µ + + + γ + γ + + + 
 

= λ + ν + + ν + γ + + γ + + γ + γ + γ

= = µ + ν + + ν + γ + + γ + γ = ≠

  (38) 

All the remaining coefficients ijklC×  are zero; the parameters ,m ma b  ( )1,2,3m =  are 
defined in (35), (36). 

Figs. 3 and 4 show the influence of deformation on four types of elastic coefficients in a 
prestressed body: * *,iiii iijjC C  (Fig. 3) and * *,ijij ijjiC C  (Fig. 4) for the uniaxial ( 11x ) and triaxial (

13x , 0.1G µ = − ) initial loadings. As before, the approximations of *
ijklC  which take into 

account the elastic moduli of II, II and III, and also II, III and IV orders are indicated by 
dotted lines (Curves 1, 1'), dashed lines (Curves 2, 2') and solid lines (Curves 3, 3'), 
respectively. The numbers 1,2,3 and 1',2',3' in Fig. 3a,b mark the approximations of *

1111C  and 
*
2222C , in Fig. 3c,d – the approximations of *

1122C  and *
2233C , in Fig. 4a,b – the approximations 

of *
2323C  and *

2332C , and in Fig. 4c,d – the approximations of *
1313C  and *

1331C , respectively. 
As can be seen from Figs. 3 and 4, even in the region of linearity for the initial stresses 

(the shaded area), the account of higher-order moduli in a prestressed body leads to significant 
changes in the behavior of *

ijklC . So the intersection points of the approximations of *
1111C  and 

*
2222C , *

1122C  and *
2233C  for 11x  correspond to the values of the coefficients in the reference state 

( 1 1v = , Fig. 3a,c). In the case of triaxial stress state ( 13 , 0.1x G µ = − ), the intersection of *
1111C  

and *
2222C , *

1122C  and *
2233C  occurs in a certain deformed state ( 1 1v ≠ , Fig. 3b,d), the value of 

the coefficients at the point of intersection depends both on the type of this state and on the 
constants involved in the corresponding approximations. 
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a)               b) 

 
c)               d) 

Fig. 3. The effect of accounting for higher-order moduli of original material on the 
coefficients * *,iiii iijjC C  in the case of uniaxial (a, c) and triaxial (b, d) initial loadings 

 

 
a)               b) 

 
c)               d) 

Fig. 4. The effect of accounting for higher-order moduli of original material on the 
coefficients * *,ijij ijjiC C  in the case of uniaxial (a, c) and triaxial (b, d) initial loadings 
 
It should be noted that if for uniaxial initial loadings in the shaded area there are 

significant differences in the behavior of the approximations of * *,iiii iijjC C , which take into 
account either only Lame moduli or higher-order moduli as a whole (the differences between 
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the approximations taking into account the moduli of III order, and III and IV orders in the 
shaded area are negligible), then for more complex triaxial loadings, the differences due to 
taking into account the IV order moduli become more substantial. In the case of a uniaxial 
initial deformed state for the coefficients * *,ijij ijjiC C , as for * *,iiii iijjC C , it is typical that there is a 
point of intersection of all approximations (Fig. 4a,c), but for 13x  ( 0.1G µ = − ) there is no 
such point. 
 
6. Linear deformation approach 
In the case of small initial deformation, a linear approximation is used for the invariants of the 
strain tensor: 

21 , 1 2 , 1 , , 1, 2,3,k k k k k i k iv v v v i k i k= + δ = + δ = + δ + δ = ≠ , 

1 1 2 3 2 3, , 0,k kS I I I= δ = θ = δ + δ + δ = =  
where 1 2 3, ,δ δ δ  are the relative axial compressions/tensions. 

According to (6), (25), the coefficients kψ  and kmψ  ( )1,2,3, 0,1,2k m= =  in the linear 
approximation take the simple form: 

( )0 1 2 2 3 3

01 1 02 11 2 2 03 21 3

12 4 13 22 23

4, , ,
3

4, , ,
3

, 0.

ψ = λθ ψ = µ + ν θ ψ = ν + γ θ

ψ = λ + ν θ ψ = ψ = ν + γ θ ψ = ψ = γ

ψ = γ ψ = ψ = ψ =

 

The components of the Kirchhoff stress tensor P  then are expressed as follows: 
2 , 1, 2,3k kP k= λθ+ µδ = . 

The coefficients *
ijklC  from the representation (27), (28) of the components of the 

linearized Piola stress tensor •Π  in this case can be written in the form: 
( ) ( )

( )( )
( )( )

( )

*
1 2

*
1 2

*
3

*
3

2 2 2 2 ,

2 ,

2 ,

2 2 , , 1, 2,3, .

iiii i i

iijj i j

ijij i j

ijji i j i j

C P

C

C

C P i j i j

= + λ + µ + ν θ+ λ + µ + ν δ

= λ + ν θ+ λ + ν δ + δ

= µ + µ + ν δ + δ

= +µ + µδ + ν δ + δ = ≠

 (39) 

Fig. 5 shows the effect of accounting for the nonlinearity of deformation on various 
properties of prestressed material in the case of uniaxial ( 11x ) initial loading. As in Figs. 3 and 
4, the approximations of the coefficients *

ijklC , calculated while taking into account the elastic 
moduli of II order (Curves 1), II and III orders (Curves 2), and II, III and IV orders (Curves 
3), are presented. The number 0 indicates the approximations (39) linear with respect to initial 
deformation. 
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a)               b) 

 
c)               d) 

 
e)               f) 

Fig. 5. The effect of accounting for nonlinearity of deformation on the coefficients *
ijklC  in the 

case of uniaxial initial loading 
 

It follows from the Figs. that the sensitivity of the various coefficients *
ijklC  to the 

nonlinearity of the initial deformation is significantly different, but for most of the 
coefficients there exists a region of small deformations in which the nonlinearity can be 
neglected. 
 
7. Conclusions  
When assessing the dynamic, operational and strength characteristics of details made of 
artificial science-intensive and high-tech materials and working under the constant action of 
various kinds of loads, and when solving a wide range of applied problems, as well as 
problems of contact interaction, it is necessary to combine the most accurate accounting of 
material properties with the possibility of obtaining relatively simple and efficient solutions. 

In this paper, within the theory of small deformations superposed on a finite one, a 
consistent linearization for the nonlinear equations of the mechanics of an elastic solid is 
carried out in the rectangular Lagrange coordinate system. The linearization is performed in a 
neighborhood of some initial stress state. We used the representation of the specific strain 
energy in terms of the algebraic invariants of the Green-Lagrange strain tensor, which take 
into account the elastic moduli of III and IV orders. Sufficiently simple and convenient 
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expressions for the linearized equations of motion and the constitutive relations of the 
prestressed medium are derived, which allow one to take into account the nonlinear effects of 
the initial deformation on the elastic properties of the original material. 

On the basis of the linearized constitutive relations obtained, the effect of accounting for 
nonlinearity of the initial deformation on the behavior of elastic coefficients of the originally 
isotropic material is studied for various types of the initial loading. The considerable 
difference in the behavior of the coefficients *

ijklC  for two-, five- and nine-constant material 
models (Curves 1, 2, 3 and 1', 2', 3' in Figs. 3 and 4) is clearly shown. With simple initial 
loadings, for the majority of elastic coefficients there is a region of small deformations in 
which the differences between linear in deformation and nonlinear approximations, which 
take into account higher-order moduli (Curves 0, 2, 3 in Fig. 5; Curves 2, 3 and 2', 3' in 
Figs. 3 and 4), are insignificant. In the case of more complex loadings (Figs. 3b,d and 4b,d), 
the difference in the behavior of the coefficients *

ijklC  becomes significant. Additionally, it has 
been shown that, in order to study the effect of initial loading on the elastic properties of an 
originally isotropic material, even at small deformations, the use of the linear 
approximation (39) is more preferable than the two-constant material model (Fig. 5). 

It should be noted that the appropriateness of accounting for nonlinearity in the 
representation (37), (38) of the coefficients *

ijklC  depends not only on the type of the stress 
state, the values of the initial stresses and the material used, but is largely determined by the 
problem posed and the characteristics studied (for example, characteristics of the wave field, 
parameters of the stress-strain state, characteristics of the dynamic processes). 
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Abstract. The results of investigation of the microstructure of two polycrystalline Ni-Mn-Ga 

alloys subjected to thermo-mechanical treatment by multiple isothermal forging and extrusion 

are presented. Alloy forging at a temperature of 680°C and 700°C leads to the formation of a 

bimodal structure which has large grains of several hundred micrometers surrounded by a 

layer of the fine-grained structure. As the result of the further treatment by extrusion at 710°C 

the volume fraction of the fine-grained structure is increased. At the same time, anisotropy of 

thermal expansion during the martensitic transformation is observed in the alloys in both 

states due to residual tensile stresses introduced in the last stages of treatment. The performed 

investigation shows high potential of the thermo-mechanical treatment for obtaining 

structurally modified Heusler alloys having a sufficient level of functional and service 

properties for practical applications 

Keywords: Heusler alloys, martensitic transformation, thermo-mechanical treatment, 

multiple isothermal forging, extrusion, EBSD, texture, anisotropy 

 

1. Introduction 

In Heusler Ni-Mn-X (X=Ga, In, Sn, Fe, Co, etc.) alloys at the martensitic transformation the 

ferromagnetic shape memory effect and magnetocaloric effect are observed [1-7]. An 

irreversible change by 11% in the geometric dimensions of the sample in the magnetic field of 

1 T [8] is observed in a single-crystal alloy. Significant values of the effects allow referring 

the alloys to promising functional materials. In the polycrystalline state, this value is an order 

of magnitude smaller, which is still enough to manufacture of controlled elements in various 

actuators and microelectronics. At the same time, a big disadvantage of polycrystalline 

samples is accumulation of the dislocations and other defects at the repeated martensitic 

transformation. It leads to a sharp embrittlement and destruction of the alloy. Accordingly, to 

increase the fatigue property of the alloy, it is required to obtain a structure with a lower 

frailty by formation of an impediment for origination and growth of cracks.  

The thermo-mechanical treatment (TMT) is one of the most effective ways to influence 

the structure of metals and alloys. Especially it is achieved by using methods of large plastic 

deformations, such as high pressure torsion [9-12], rolling [13-17], and deformation by 

upsetting [18, 19]. However these methods allow obtaining the workpiece only of limited 

size, mainly in the form of thin tapes or plates. 
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The authors successfully develop the method of the plastic deformation of Heusler 

alloys by the multiple isothermal forging (MIF) [20, 21]. The advantage of this method is 

obtaining a bulk billet of the processed material with sufficiently large internal stresses in the 

volume of the workpiece. It is known being necessary to form a crystallographic texture and 

tensile-compressive stresses at the treatment of the alloys by various methods. It enhances the 

anisotropy of a change in sample’s dimensions during martensitic transformation. This 

increases the ferromagnetic effect of shape memory. For this reason, drawing is performed at 

the last stages of forging. It means that forging is carried out only in two directions and the 

workpiece is elongated in one direction.  

The extrusion is another way to obtain a sharp texture in material. However, the 

treatment of Heusler alloys in the as-cast state does not lead to significant changes in the 

microstructure. Therefore, it is necessary to prepare the structure of the billet prior to 

extrusion. It was carried out by MIF. The paper presents the comparative analysis of the 

microstructure of the Heusler alloy subjected to two types of treatment: forging as-cast state 

and complex treatment by forging and follow extrusion. For investigation the Ni2MnGa 

alloys were chosen. It is a well-studied system and may be considered as a model object. In 

these alloys all kinds of physical properties at the martensitic transformation are studied and 

analyzed. The results of our investigation will allow us to correlate them with other Heusler 

Ni-Mn-X (X=Ga, In, Sn, Fe, Co, etc.) alloys. 

 

2. Material and methods 

Two Ni-Mn-Ga alloys for the investigation were prepared by the arc-melting method under 

argon atmosphere. The elemental composition was analyzed by the energy dispersive X-ray 

spectroscopy on a scanning electron microscope TESCAN Vega 3 SBH. The first alloy 

marked as Ga16/6 has the composition Ni54.1Mn19.6Ga24.6Si1.7, the second alloy marked as 

Ga17/3 - Ni52.9Mn21.1Ga24.6Si1.5. It should be noted that two alloys with different composition 

(~1%) were compared. However, it is known that such difference in composition leads only to 

a slight difference in the martensitic transformation temperature, and physical properties are 

not changed significantly.  

Presence of Si in the alloy is explained by its diffusion from the quartz glass during 

vacuum remelting. The detailed information about this procedure is described in the previous 

works [20, 21]. The Ga16/6 alloy in the as-cast state was subjected to TMT by MIF at 680°C, 

and Ga17/3 alloy in the as-cast state was subjected to complex TMT by MIF at 700°C with 

the following extrusion at 710°C. The temperature of the martensitic transformation was 

determined by measuring of temperature dependence of thermal expansion. The 

measurements were performed on the samples of 1 mm×1 mm×7 mm by the dilatometer 

based on differential transformer. The microstructure of the alloys was investigated by 

scanning electron microscope TESCAN Mira 3 LMH in the backscattered mode. EBSD 

analysis was carried out on this microscope with Channel 5 software. Accelerating voltage 

was 20 kV. Multiple isothermal forging was carried out on the machine of complex loading 

Schenck Trebel RMC 100. Forged alloy was also extruded on a special tool, in which the 

output circular section has a transition 10 mm→8 mm with the extrusion ratio of 1.6. 

 

3. Results 

3.1. Temperature dependence of the thermal expansion of Ga16/6 alloy after 

multiple isothermal forging. The temperature dependence of thermal expansion of Ga16/6 

subjected the thermo-mechanical treatment by MIF at 680°С is presented in Fig. 1. The 

drawing of the workpiece at the latest stages of forging should form a crystallographic texture 

and tensile stresses, which results in the anisotropy of properties. Therefore the sample for 

measuring was cut along the drawing axis of forged workpiece. Heating and cooling of the 
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sample was carried out in the temperature range -100°C ÷ -20°C. As it can be seen, at the 

martensitic transformation a sharp anisotropy of thermal expansion is observed. In the process 

of direct martensitic transformation, the sample is abruptly reduced by 0.13%. During the 

reverse martensitic transformation, this deformation is recovered. Typical martensitic 

transformation temperatures have the following values: MS= ‒78°C; MF= ‒89°C; AS= ‒77°C; 

AF = ‒65°C. The length changing during heating and cooling in other intervals occurs 

according to the anharmonic law.  

 

 
Fig. 1. Temperature dependence of the thermal expansion of Ga16/6 alloy along drawing axis 

after MIF at 680°С 

 

Thus, the established anisotropy of thermal expansion at the martensitic transformation 

confirms the formation of deformation texture and tensile-compressive stresses during 

forging. In the process of drawing of the workpiece in the last stages of the MIF the residual 

compressive stresses are formed normal to the axis of the treatment. As shown earlier [22, 23] 

the anisotropy of the thermal expansion of the Heusler Ni2MnGa alloy is subjected to the 

formation of a preferential orientation of the martensitic twins at the phase transformation. At 

the same time, for the formation of such structure, it is necessary to have both a 

crystallographic texture and residual compressive or tensile stresses in the crystal lattice. 

3.2. Temperature dependence of the thermal expansion of Ga17/3 alloy after 

complex treatment by forging and extrusion. The temperature dependence of thermal 

expansion of Ga17/3 subjected the complex thermo-mechanical treatment by MIF at 700°С 

and the following extrusion at 710°С is presented in Fig. 2. The sample for measuring, as well 

as the forged alloy, was cut along the treatment axis from the central part of the workpiece. 

Measurement was carried out in the field of martensitic transformation. An abrupt change of 

the geometric dimensions of the sample is observed at the phase transformation. A reduction 

of the length by 0.05% is observed at the direct transformation. The sample of alloy subjected 

only to forging has a similar nature. The strain is recovered at the reverse transformation. The 

length changing during heating and cooling in other intervals occurs according to the 

anharmonic law. Typical martensitic transformation temperatures have the following values: 

MS= ‒85°C; MF= ‒109°C; AS = ‒99°C; AF = ‒74°C. There are breaks of the heating and 

cooling curves at the martensitic transformatiom. The reason is transformation in different 

phases: the big grains phase and the small grains phase. And it is known than thermo-
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mechanical treatment of Heusler alloy leads to a shift of the martensitic transformation to low 

temperatures [24].  

 

 
Fig. 2. Temperature dependence of the thermal expansion of Ga17/3 alloy along the extrusion 

axis after MIF at 700°С and extrusion at 710°С 

 

3.3. Microstructure of Ga16/6 alloy after forging. The microstructure of the forged 

alloy in the parallel section to treatment axis is shown in Fig. 3 a.  
 

 
Fig. 3. Microstructure of Ga16/6 alloy after MIF: a - in BSE mode; b - EBDS image in IPF 

coloring mode, c - misorientation profile by line painted on EBSD map 
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The image is obtained by scanning electron microscope in BSE mode. As a result of the 

treatment by MIF the as-cast structure with a grain size of 200-400 µm is transformed into a 

bimodal structure in which the large grains of about 100-200 µm are surrounded by a fine-

grained structure. The formation of new grains on the boundaries is occurred in the process of 

treatment by the mechanism of discontinuous dynamic recrystallization. In the result the areas 

with fine-grained structure in the border zones are formed. A clear contrast between the grains 

of the fine-grained structure indicates high-angle misorientations between the grains. There is 

a characteristic contrast in the body of large grains, which indicates presence of large residual 

stresses or substructure. Thus, the necessary stresses are concentrated in large grains, which 

must perform the functional assignment (changing the size of the alloy sample).  

The EBSD analysis was carried out for the purpose of more detailed analysis of 

orientations, texture and residual stresses in the treatment alloy. A local area of 

0.36 mm×0.16 mm with the step size of 0.4 µm is presented in Fig. 3 b. The map of 

orientations is shown in IPF coloring mode. The nature of the results corresponds to the data 

obtained in the study in the BSE mode. There is a clear color grain contrast in the fine-grained 

structure. In the large grain the elongated curved shape with different contrast is observed. 

The Misorientation Profile was used for the detailed analysis changes in orientation along a 

line in the body of the large grains. It is indicated in Fig. 3 b by a straight line. The Profile is 

shown in Fig. 3 c. The histogram shows the orientation of points relative to the first point 

rather than the previous one. It can be seen that the last points of the profile are disoriented 

relatively to the first at angles of about 15°. Thus, the EBSD analysis data correlates with the 

results of the microstructure analysis in the BSE mode. 

A EBSD map of the entire section of the workpiece with the area of 2.2 mm×9.8 mm 

and the step size of 3 µm is made for the analysis of the crystallographic texture. It allows 

evaluating the structure of the entire volume of the workpiece. A map of crystallographic 

orientations in IPF coloring mode is shown in Fig. 4 a. It is seen that the nature of the 

structure is the same throughout the section of the workpiece. In general, the structure with 

bimodal grain distribution is homogeneous for the workpiece. The Pole Figures (PF) are 

calculated from the EBSD data for the analysis of the crystallographic texture. At the same 

time, the large and the small grains are divided into separate subsets by software for 

separation of their textures. The PF for large grains is shown in Fig. 4 b, the PF of fine grain 

structure is shown in Fig. 4 c. The PF are presented for the {100} and {111} planes, since it 

most fully reflects the nature of the texture of the cubic lattice. Of course, the standard 

analysis of the crystallographic texture of the large grains is not sufficient for the statistical 

sampling. However, despite the presence of some localized maxima it is still clear that a 

significant texture is absent. In case of fine-grained structure, at least three localized maxima 

are observed in the central part, the upper and lower poles of the stereographic plane. These 

maxima correspond to the same orientation of the cubic unit cell of the crystal. At the same 

time, there are no localizations at the points of these maxima for the PF of the coarse grains. 

This nature of the orientation allows us to conclude that there is the crystallographic texture of 

the fine-grained phase. Thus, in the MIF process, the orientation of the large grains has not 

changed. As a result of intermittent dynamic recrystallization, new fine grains have received a 

slight texture.  
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Fig. 4. EBDS analysis of Ga16/6 alloy after MIF: a - EBDS image in IPF mode, b - Pole 

Figures for small grains, c - Pole Figures for big grains 
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3.4. Microstructure of Ga17/3 alloy after forging and extrusion. The microstructure 

study after complex treatment (MIF + Extrusion) was performed in the plane along the 

extrusion axis. The image of the microstructure in BSE mode is presented in Fig. 5 a. It shows 

that the microstructure after the complex treatment is similar to the microstructure after 

forging. The large grains with a size of 100-200 µm are surrounded by the fine-grained 

structure. The fine-grained structure is characterized by a fairly clear contrast between 

neighboring grains. The boundaries are straight and thin. This indicates a high-angle 

misorientation of the grains. In the body of large grains there are areas without clear 

boundaries and having weak diffuse contrast. It indicates the presence of residual stresses and 

substructures. The main difference of the structure after the complex treatment is the increase 

of the volume fraction of the fine-grained structure. The layer of small grains has the width 

about 10 grains. Thus, the extrusion leads to an increase in the volume fraction of the fine-

grained structure.  

 
Fig. 5. Microstructure of Ga17/3 alloy after MIF and extrusion: a - in BSE mode; b - EBDS 

image in IPF mode, c - misorientation profile by line painted on EBSD map 

 

An EBSD analysis was performed for the purpose of a more detailed analysis of the 

orientations, texture and internal stresses in the treatment alloy. The map for a section of 

0.35 mm×0.35 mm with the step size of 0.7 µm is shown in Fig. 5 b. The data are presented in 
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IPF coloring mode. The EBSD data confirmed the results of the analysis of the structure in 

BSE mode. The fine-grained structure also has high-angle misorientations. The substructure 

of coarse grain is confirmed by the misorientation profile marked in the grain body and 

indicated in Fig. 5 b. The histogram is presented in Fig. 5 c. The histogram shows the 

orientation of points relative to the first point rather than a previous one. The extreme points 

of the profile are misoriented by 11°.  

The EBSD analysis along the extrusion axis was performed at the entire section of the 

workpiece to evaluate the crystallographic texture in the material. The data for area of 

2.1 mm×8.4 mm with the step size of 3 μm are shown in Fig. 6 a.  
 

 
Fig. 6. EBDS analysis of Ga17/3 alloy after MIF and extrusion: a - EBDS image in IPF mode, 

b - Pole Figures for small grains, c - Pole Figures for big grains 
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The metallographic texture is absent. There is a slight stretching of the grains along the 

treatment axis only in the edge areas. The large grains are equiaxial in the central part of the 

workpiece. The structure has a slight heterogeneity over the cross section of the workpiece. 

The Pole Figures of {100} and {111} planes were constructed throughout the orientation map 

for the analysis of the crystallographic texture. As in case of the forged state, the data for large 

grains and for the fine-grained structure were separated by the software. The Pole Figures for 

large grains are shown in Fig. 6 b, for the fine-grained structure in Fig. 6 c. Despite some 

localized maxima for the family of {100} planes located on the stereographic plane the 

texture is not evident because the statistical data for such a number of large grains is not 

enough. The localized maxima of one crystallographic direction are observed for the fine-

grained structure. Thus, the fine-grained structure has a single-component crystallographic 

texture. 

 

4. Conclusions 

After the thermo-mechanical treatment by multiple isothermal forging and the complex 

treatment by forging and subsequent extrusion the studied Heusler alloys show the anisotropy 

of the properties at the martensitic transformation. An abrupt length changing of  

about 0.05-0.13% was observed at the phase transformation in the samples cut along the 

deformation axes. The anisotropy of the thermal expansion is resulted due to both the 

treatment texture and the residual tensile stresses in the treated samples. The jump at the 

phase transformation in treatment states is lower than in as-cast state, in which it may reach 

0.35%. It is suggested that the low jump occurs due to the low texture after the treatment and 

insufficient strain at both forging and extrusion. Therefore, in order to enhance the texture 

sharpness, it is necessary to increase the number of canting at the forging and the strain at the 

extrusion. The undoubted advantage of the proposed approach for Ni2MnGa alloys is forming 

of bimodal structure after the thermo-mechanical treatment by forging and forging with 

subsequent extrusion. In such structure, the original large grains of 100–200 µm are 

surrounded by the fine-grained structure. The stability of the functional properties of Heusler 

alloys with multiple cycles of the martensitic transformation should be higher due to the phase 

stresses relaxation and retardation of defects accumulation and microcracks initiation. 

Moreover, the additional treatment by extrusion provides volume fraction increase of the 

small grains. It enhances the relaxation ability of the alloy. Correspondingly, further increase 

of the strain should enhance both the anisotropy of properties and the cyclic strength of the 

alloy more by increasing the structure bimodality. 

To sum up, the studies have shown a high potential of the thermo-mechanical treatment 

for obtaining the structurally modified Heusler alloy having a sufficient level of functional 

and service properties for the practical application. 
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Abstract. This paper describes the results of a laboratory study into the high-temperature 
surface oxidation and decarburization of eutectoid steel performed using thermal gravimetric 
analysis which makes it possible to understand the steel surface oxidation kinetics in non-isothermal 
conditions as the steel specimen is continuously heated to a specified temperature. An exponential 
relationship is obtained between the heating temperature and the iron loss in steel.  
A relationship is established between the heating temperature applied and the surface 
oxidation rate observed in a eutectoid steel specimen. It is shown that when the temperature of 
the specimen is raised from 900 to 1000°С, it leads to a triple increase in the surface oxidation 
rate, whereas the temperature increase to 1200°С results in an eightfold increase in the surface 
oxidation rate. It is noted that, within the temperature range of 720-950°С, the phase 
transformations observed are accompanied with intensified scale formation and surface 
carbon depletion. Using the emission spectrometry technique, the concentration of carbon is 
determined in the surface layer in relation to the heating temperature and time. The results 
obtained indicate that eutectoid steel is subjected to an intense surface decarburization at the 
temperatures of 600-1200°С. 
Keywords: eutectoid steel, thermal gravimetric analysis, differential scanning calorimetry, 
oxidation, decarburization 
 
 
1. Introduction 
Nowadays high-carbon steel wire rod is in demand on the world market for the production of 
high-strength rebar stabilized ropes, which are the basis of modern effective construction 
technologies for the manufacture of precast concrete with pre-tensioning of reinforcement, as 
well as structures with subsequent tension of reinforcement on concrete. Among the various 
types of prestressed reinforcement, including smooth and profiled reinforcing wire and rod 
reinforcement, reinforcing ropes occupy a special place, which is caused by the combination 
of their properties unattainable for other types of reinforcement.  

The raw material for their production is a high-carbon wire rod, obtained in modern 
high-grade rolling mills. Production of high-strength ropes is a complex technological process 
with a high metal consumption coefficient. Therefore, the metal intended for production of 
the specified products shall conform to the rigid requirements imposed to its quality. 

When producing wire rods, quality parameters are strongly influenced by processes in 
continuous furnaces before rolling. Such processes include decarburization and the iron loss in 
steel, which affect the steel quality during a forming operation, as well as finished steel 
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products [1,2,24-26]. Heating of steel billets before hot rolling in furnaces causes intensive 
development of scale formation, depletion of surface layers with carbon and redistribution of 
alloying elements in the surface layers. At the same time, the resistance of metal to alternating 
loads, which is typical for ropes, is determined by the depth of the carbonized layer, that is, 
the actual difference between the microstructure on the surface and the structure of the base 
metal. 

Decarburization by heating occurs as a result of the interaction of oxidizing gases with 
carbon, which is in a solid solution or bound to iron carbides. Decarburization rate is 
determined mainly by the process of bilateral diffusion, which occurs under the influence of 
the difference in the gradient of media. On the one hand, decarbonizing gases come to the 
surface layers of the metal, and on the other – the resulting gaseous products containing 
carbon, move in the opposite direction. In this case, carbon from the inner layers of the metal 
diffuses into the surface layer. Therefore, decarburization and scale formation, occurring on 
the metal surface, in most cases are considered together. The evolution of steel rope structures 
and technologies of their production is due to the constant desire to increase the strength and 
durability, by strengthening the cold deformation or heat treatment. 

When the metal is deformed by cold drawing, by pulling the rebound rolled through a 
system of monolithic dies, the maximum stresses are concentrated on the surface of the rolled 
metal. Therefore, in the manufacture of high-quality range of high-carbon rebound rolled it is 
necessary to ensure a minimum and uniform depth of decarburization on the surface of the 
wire rod. To solve such problems, fundamental concepts of decarburization, diffusion 
saturation and oxidation processes are needed, which occur in parallel with decarburization in 
metals and alloys due to their contact with various gases. 

Steel surface oxidation and decarburization issues are rather deeply analyzed and 
theoretically evaluated, in particular, formation features of a scale phase composition and 
decarburization of metals and alloys have been thoroughly studied [3-13,28,29]. A general 
survey of high temperature oxidation in metals and alloys, demonstrating how different 
environmental conditions and chemical composition of the alloys determine the mode of 
oxidation process is presented in [14].  

Principles governing the oxidation of metals are formulated in [15]. It was shown that 
theories which have been proposed to explain the growth of thin oxide films at low and 
intermediate temperatures are based on different rate-limiting processes such as electron 
transfer at the metal-oxide or oxide-gas interface, ion or electron migration through the oxide 
under the influence of electrical potential gradients or chemical potential gradients and either 
with or without space-charge effects and ion transfer at the oxide-metal or oxide-gas interface. 
These theories lead to inverse or direct logarithmic, parabolic, cubic, quartic or linear 
equations for oxide growth. 

However, despite this, these studies remain relevant at the present time, due to the fact 
that the technology of obtaining wire rod, remain unresolved a number of important issues 
related to improving the quality and expansion of the range of finished products, which to 
some extent depend on the relationship of phase and structural transformations with the 
processes of scale resistance and decarburization in carbon wire rod. 

Among known methods of oxidation kinetics of metals and alloys in different gas 
medium, in addition to a conventional gravimetric method, a widely used technique is a 
thermogravimetric method, as the simplest and most reliable one. A method showing good 
results is a thermal gravimetric analysis (TG), applied together with differential thermal 
analysis (DTA) and differential scanning calorimetry (DSC), and particularly recommended 
as reflecting to the fullest extent all the processes occurred during specimen heating and 
cooling, and ensuring good comparability of results [16,30]. However, having analyzed 
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literary studies, we found no thermoanalytical studies on eutectoid steel. This paper aims at 
the thermal analysis of eutectoid steel surface oxidation and decarburization kinetics. 

 
2. Methods 
The study was conducted on the eutectoid steel specimen, whose chemical composition is given in 
Table 1. Microstructure of eutectoid steel is presented in Fig. 1. 
 
Table 1. Eutectoid steel chemical composition, % wt. 
С Si Mn S P Cr Ni V Al 
0.82 0.33 0.59 0.0020 0.0031 0.022 0.032 0.0015 0.0010 
 

The examined high-carbon steel has the following mechanical properties: time 
resistance to rupture MPa  1205В =σ , conditional yield strength MPa 8902,0 =σ  relative 
elongation 10δ  = 9 %, relative contraction ϕ = 31 %. The structure of the studied samples is a 
plate perlite. The size of the pearlite colonies is 4...8 µm. Cementite is represented mainly by 
lamellar form. The interplate distance inside the pearlite colonies in steel reaches a maximum 
of 0.12 µm. 

 
 

Fig. 1. Microstructure of high carbon steel 0.8 %C 
 

The laboratory study was performed using the STA Jupiter 449 F3 simultaneous 
thermal analyzer. It ensures both a differential scanning calorimetry and a thermal gravimetric 
analysis of a specimen at the same measurement, providing a possibility to compare results of 
TG and DSC directly and eliminate effects of material non-uniformity, specimen preparation 
and measuring conditions [17,27]. 

DSC has been used to fix a temperature difference, which is in proportion to a 
difference in a heat flow between a reference (an empty crucible for STA) and a sample in 
another crucible from the same material. TG has been used to measure changes in the 
specimen weight, depending on temperature at specific controlled conditions. 

To carry out experiments, we have cut disc specimens, 3 mm in diameter and 1 mm 
high, ground the surface with an abrasive paper SiC 1200 grit, and degreased with acetone. 
Weight of the specimens amounted to 55-56 mg. Measurements were performed in corundum 
crucibles. Before analyzing, the device was calibrated with reference to melting temperatures 
of pure metals. A temperature measurement error did not exceed ± 0.1°C. During the studies a 
specimen weight was continuously controlled with an electronic microbalance. Its design 
ensures a fixed position of the hanging specimen relative to a furnace chamber, when 
measuring weight. Precision of weighing was ± 0.01 mg. 
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Thermal curves of the specimens were recorded at a speed of 10°C/min in a flow of 
argon (protective gas – 10 cm3/min, working gas – 20 cm3/min) within a temperature range of 
30-1000°С and 30÷1200°С in an argon/air mixture. Such mixture meets requirements for 
equipment operation: the balance receives argon as protective gas (10 cm3/min), which is then 
supplied to the furnace and mixed with air as working gas (20 cm3/min). A total flow rate of 
argon and the mixture was 30 cm3/min. Before measuring the specimen in an argon flow, a 
specimen holder of DSC together with the crucibles was pre-heated to 1000°С, in an air flow 
– to 1200°С. When the specimen was installed and the crucible was put on the specimen 
holder, the furnace was tightly closed and heated as stated in the above. TG and DSC curves 
were automatically fixed. Data obtained were processed by Netzsch Proteus Analysis 
software.  

To study surface decarburization, specimens (30 mm long and 11 mm in diameter) were 
put into a high-temperature chamber electric furnace of the PL 20/12.5 type, preheated to a set 
temperature, held within a specified period (10 and 30 min) at a constant temperature (600, 
800, 1000, and 1200°С) and cooled down with the furnace. Carbon content in a surface layer 
was calculated as per standards АSТМ Е415-08, АSТМ Е1086-08, АSТМ Е1009-95 by the 
SpectroMAXx optical emission spectrometer. 
 
3. Results and Discussion 
It is known [18] that to develop the surface decarburization process, gas atmosphere of the 
furnace during heating should not produce an intense oxidation effect. Carbides of  
IVa-Via group metals are particularly vulnerable to the effects of oxygen impurities, and its 
dissolution in their lattice is accompanied by depositing carbon and a relevant metal [19,20]. 
Thus, a thermal analysis of eutectoid steel surface oxidation and decarburization was 
performed in inert (argon) and oxidizing (air) atmosphere. 

Figure 2 presents a thermogram of the steel specimen subjected to high-temperature 
heating in the weakly oxidizing medium, whose oxidizing gases are oxygen impurities (up to 
0.002 %) and water (up to 0.001 %), occurring in argon (see GOST 10157-79, Table 1). The 
DSC curve shows a deep endothermal effect with a peak value at 744.9°C, evidencing a phase 
transformation of pearlite to austenite (α → γ), and a bend at 930.6°С, corresponding to a 
breakdown and dissolution of carbides in austenite [21,31]. 

The TG curve, starting from 589.6°С, shows a minor increase in the weight of the 
specimen, continuing to 900°С. Within this temperature range, a weight gain amounted to 
0.014 % due to steel oxidation. Steel oxidation is taking place at the same time with 
decarburization, evidenced by weight loss (0.07 %) within a temperature range of  
900-1000°C. The decarburization process is clearly observed at 897.1°С and in an active 
progress to 1000°С. Within this temperature range carbides are broken and dissolved in 
austenite. As a result, Me-C bonds are broken, carbides are dissolved, while forming 
carbon (С) and elements, included in their composition (Fe, Mn, Cr), with their further intense 
oxidation during heating. Carbon oxidation and removal of its oxides into a gas phase 
contribute to some decrease in specimen weight (i.e. decarburization), which can be seen in 
the TG curve. 
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Fig. 2. Thermogram of eutectoid steel specimen continuous heating in argon 

 
Carbon depletion of steel starts from the surface due to oxidation of carbon occurred in 

a heated specimen as iron carbides, with gases in furnace atmosphere. As a rule, a steel outer 
layer is almost fully decarburized, which is proved by results of the below experiment (see 
Table 2). 
 
Table 2. Carbon content on the surface of the eutectoid steel specimen (with a carbon weight 
percent of 0.82 % in an original specimen) at high-temperature heating in the chamber electric 
furnace 

Temperature [°C] Carbon weight percent for the holding time 
10 min. 30 min. 

600 0.81 0.73 
800 0.60 0.51 
1000 0.52 0.448 
1200 0.395 0.212 

 
Regarding the above values of carbon content in the steel surface layer with relation to 

temperature and time, it follows that the surface decarburization process starts at 600°C and 
intensively takes place to 800°С. When the temperature is over 800°С, the process slows 
down to some extent, which is explained by a slower decarburization rate than its oxidation 
rate at 800°С and over, a diffusion rate of carbon towards oxygen is lower than that of 
iron [22]. An almost two-fold increase in a heating period entails a sharp decrease in carbon 
content in the steel surface layer, especially at 1200°С. At temperatures around 600°С a 
eutectoid steel surface decarburization process takes place rather slowly. 

A composition of furnace atmosphere together with temperature and the heating period 
strongly influences both decarburization and oxidation rates. Such processes in an oxidizing 
medium take place much more intense than in a weakly oxidizing medium, which is 
obviously shown in the thermogram of eutectoid steel specimen heating in air. 

It should be noted that when studying steel oxidation processes during heating before 
rolling, a term of loss is often used. The iron loss in steel is a loss in weight (due to oxidation 
of iron, alloying elements, and carbon) of steel after heating [23]. 

The DSC curve (Fig. 3) in a region of over 850-900°С shows significantly intensified 
oxidation, which is characterized by exothermal peaks with maximum values at 
989.0; 1125.3; 1161 and 1185.6°С. The first peak corresponds to the beginning of intensified 
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oxidation (the iron loss in steel) after steel transformation into an austenite state (in a 
temperature range of 720.5-757.3°С) and formation of wustite, and others correspond to 
continued intensification of the iron loss in steel within a temperature range of up to 1200°С. 
 

 
Fig. 3. Thermogram of steel grade 80 specimen continuous heating in air 

 
The TG curve, starting from 900°С, shows a sharp increase in the specimen weight due 

to oxidation of iron and other components. Within this temperature range, at the same time 
with breakdown and dissolution of carbides, alloy oxidation processes are under way, 
resulting in overlapping of effects, while an exothermal effect prevails over endothermal one, 
and the TG curve shows a weight increase only. It usually occurs, when heating steel before 
hot rolling at temperatures above 1100°С, and when burning fuel with excess air. There is an 
exponential relationship between the rate of the iron loss in steel and temperature, which is 
used to determine a critical temperature [21] for iron-carbon alloys. It should be noted that 
such relationship, as a change in weight of a heated specimen (%) in relation to temperature, 
presenting the iron loss, is fixed in the TG curve. A critical temperature for eutectoid steel, 
calculated by the TG curve, amounts to about 929°С; above this temperature oxidation 
processes take place at a high rate. 

By differentiating the TG curve, we obtain the DTG curve (Fig. 4), allowing us to evaluate 
a high-temperature oxidation rate of eutectoid steel. 

 

 
Fig. 4. Relationship between the eutectoid steel oxidation rate and temperature 
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Judging by the DTG curve, the oxidation rate is constant up to 900°С. When 
temperature is over 900°С, it steadily increases and achieves a maximum value at 1000°С, 
and then it starts decreasing almost to 1100°С. Above 1100°С the oxidation rate shows a 
sharp increase. Thus, when the temperature of the specimen is raised from 930 to 1000°С, it 
leads to a triple increase in the surface oxidation rate, whereas the temperature increase to 
1200°С results in an eightfold increase. A maximum temperature of heating steel before rolling 
is usually by 100-150°С lower than a solidus curve for eutectoid steel. This temperature is 
about 1100-1250°С. Therefore, what is important is to follow a minimum steel oxidation rate 
in a temperature range of 1100°С and over. If one is taken as the oxidation rate at 1100°С, at 
1157°С it will increase almost by 1.5 times, at 1185°С – by over twice. Thus, within a 
temperature range of 1100-1250°С, the minimum oxidation rate of eutectoid steel is at 
1157°С. Such temperature is optimum, when heating eutectoid steel before rolling, 
corresponding with literary data given in [21], namely 1120-1160°С for 70-85 steel grades. 

 
4. Conclusions 
1. For the first time, a thermal gravimetric analysis and differential scanning calorimetry have 
been used to study oxidation and decarburization of a eutectoid steel surface within a 
temperature range of 20°С to 1200°С in air and argon. Having analyzed the thermograms 
obtained and identified extreme values of differential curves (TG and DSC), we could 
describe processes, occurring during heating of eutectoid steel. Within a temperature range of 
720-950°С, when heating a eutectoid steel specimen, phase transformations (α → γ) are 
accompanied with intensified scale formation due to formation of wustite and surface carbon 
depletion, resulting from breakdown and dissolution of carbides in austenite. 

2. It is shown that when heating a eutectoid steel specimen in air medium, the iron loss 
in steel is sharply intensified at 989-1000°С, entailing an increase in its weight up to 5 %, at 
1200°С – to 25 %. A minimum oxidation rate of the specimen within a temperature range of 
1100-1200°С is identified at 1157°С. 

3. The thermal analysis results obtained have contributed to changes in temperature and 
time of rolling of eutectoid steel wire rods on hot rolling section mills. 
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Abstract. Multiblock (segmented) copoly(urethane-amide-imide)s containing flexible 
segments of polypropylene glycol (PPG) and rigid segments of bis(urethane-amide-imide) in 
repeating units were obtained and investigated. Copolymers were prepared of PPG terminated 
by 2,4-toluyilene diisocyanate (Mn=2300), 4-chloroformylphthalic anhydride and aromatic 
diamines. Thermal properties of copolymers were analyzed by TGA and DSC methods. The 
mechanical properties of copolymer films were measured by tensile test and DMA method. It 
is shown that copolymers have elastomer properties. The chemical structures of copolymers 
capable of processing by injection molding were determined and the mechanical properties of 
the obtained moldings were estimated. A conclusion was drawn that the studied copolymers 
have the properties of thermoplastic elastomers (thermoelastoplasts). 
Keywords: polyurethanes, polyamide-imides, multiblock (segmented) copolymers, thermal 
stability, glass transition temperature, mechanical properties, films, injection molding, 
thermoplastic elastomers 

 
1. Introduction  
Multiblock (segmented) copoly(urethane-amide-imide)s (PUAI) were first synthesized in the 
1960s with  the purpose of using such polymers as membranes for the pervaporation 
separation of aromatic hydrocarbons from the mixtures of aromatic and aliphatic 
hydrocarbons [1]. Attention was drawn to the thermodynamic incompatibility of phases 
formed by soft (flexible) aliphatic polyester segments and rigid aromatic segments that are 
parts of copolymer chains. However, the dynamic mechanical properties of these copolymers 
were not measured, that is copolymers were not characterized as elastomers. At present, 
interest in multiblock (segmented) PUAI has reappeared due to interest to thermoelastoplasts, 
which are characterized by increased strength and higher operating temperatures compared 
with thermoplastic polyurethanes.  

Polyurethanes are among the commercial elastomers and are used in many technical 
fields. For instance, materials with various mechanical properties from very soft foams to 
resilient elastomers and wear-resistant coatings are obtained on their basis [2]. However, in 
the general case, mechanical properties of polyurethanes begin to degrade noticeably at 
temperatures higher than 80°C, and thermal destruction starts at 200°C [3]. A promising way 
for improving polyurethane elastomer heat resistance and strength is their chemical 
modification, which consists of introducing the fragments of heterocyclic high-temperature 
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resistant polymers into structures of repeating units of polymer chains.  Attention to this 
method of polyurethane modification is paid, for example, in [4-8]. In particular, 
thermoelastoplastic multiblock poly(ether/ester-imide)s and poly(urethane-imide)s have been 
successfully studied in recent years by authors’ research group [9-15]. 

Poly(amide-imide)s have become of industrial importance due to a combination of 
manufacturability and high performance characteristics. Thermoplastic poly(amide-imide)s 
are processed by extrusion and injection molding methods and have excellent thermal and 
mechanical properties [16]. Therefore, it seems expedient to modify thermoplastic 
poly(amide-imides) chemically in order to give these polymers highly elastic properties while 
maintaining the same processing methods.  

Therefore, on the one hand, PUAI should be considered as products of the chemical 
modification of polyurethanes, which have significantly increased molecular mass and length 
of hard segments. On the other hand, they are products of thermoplastic poly(amide-imide)s 
modification. The radicals of aliphatic polyesters are introduced in the structure of their 
repeating units.  

In this article, thermal and mechanical properties of PUAI are investigated in static and 
dynamic test modes. In PUAI chemical structure, there is the same flexible segment 
(polypropylene glycol residue) but hard aromatic segments (bis(urethane)amide-imide 
residues) are varying. It is shown that the studied polymers have elastomers properties and are 
processed by injection molding into thick-walled products. A priori, it was assumed that the 
variations of PUAI properties are determined by an interaction of the rigid aromatic phase and 
the soft aliphatic phasewith the proviso that the phases are thermodynamically incompatible. 
In each case, the choice of the initial aromatic diamine was proved to be crucial for the 
polymer properties.  

 
2. Experimental 
The following reagents were used in polymer preparation: Poly(propylene glycol), tolylene 
2,4-diisocyanate terminated (Mn 2300) (2300TDI), 4-Chloroformylphthalic anhydride 
(CFPA), Tm=66-68°C, m-Phenylenediamine (MPD) Tm=64-66°C, p-Phenylenediamine 
(PPD) Tm=145-147°C, 4,4'-Oxydianiline (ODA), Tm=188-192°C,  
4,4′-(1,3-Phenylenedioxy)dianiline (TPE-R) Tm=116°C, 1,4-Bis(4-aminophenoxy)benzene 
(TPE-Q), Tm=173-177°C, 4,4'-Bis(4-aminophenoxy)biphenyl (BAPB), Tm=197-200°C, 
Bis[4-(4-aminophenoxy)phenyl]sulfone (BAPS), Tm=194-197°C, Polypropylene oxide (PO). 
N-Methyl-2-pyrrolidone (MP) was used as a solvent. All of these substances were purchased 
and have an analytical degree of purity. 2300TDI was used such as bought in Aldrich. 

The following is an example of the preparation of PUAI based on TPE-R, designated 
as (CFPA-2300TDI-CFPA)(TPE-R). 13.39g (5.82 mmol) 2300TDI and 2.45g (11.64 mmol) 
CFPA were placed in a two-necked round-bottom flask equipped with an argon inlet-outlet 
and an overhead stirrer. With constant stirring, contents of the flask were heated according to 
the following regime: 1 h at 75°C, 1 h at 110°C, 30 min at 160°C and 30 min at 180°C. The 
reaction mixture was allowed to cool down to room temperature and 13 ml of MP was added 
into the flask, then contents of the flask were cooled down to -10°C. In the cooled mixture 
(with vigorous stirring), a solution 1.7 g TPE-R in 14 ml MP was added through an addition 
funnel. After that, to bring the concentration of the resulting solution to 30%, 13 ml of MP 
were added into the flask for 5 min. The obtained solution was stirred for 30 min at -10°C and 
for18 h at room temperature. Then, 0.8 ml PO was added into the flask in order to neutralize 
the hydrochloric acid formed during the reaction, by forming chloropropyl alcohol.  

IR (film), cm-1: 3485, 3309 (N-H); 2972, 2932, 2868 (C-H); 1780, 1722 (C=O, imide 
cycle); 1682 (C=O, amid); 1276 (N-C-O); 1089 (C-O-C); 1014, 727 (imide cycle). 

222 I.A. Kobykhno, D.A. Kuznetсov, A.L. Didenko, V.E. Smirnova, G.V. Vaganov, A.G. Ivanov et al.



1H NMR (DMSO-d6, 400 MHz) δ = 10.65, 9.77, 8.53, 8.44, 8.32, 8.09, 7.86, 7.50, 7.45, 7.36, 
7.29, 7.23, 7.10, 6.87, 6.81, 6.72, 6.61, 4.87, 3.41, 3.31, 2.04, 1.20, 1.03  
13C NMR (DMSO-d6, 100 MHz) δ = 166.9, 163.9, 159.2, 158.3, 156.4, 153.5, 152.4, 140.7, 
138. 4, 137.7, 136.9, 135.9, 135.4, 134.8, 134.3, 132.3, 131.2, 130.7, 130.2, 129.6, 127.6, 
124.0, 122.7, 120.1, 119.5, 115.7, 114.4, 112.7, 110.1, 108.1, 75.1, 72.9, 18.4, 17.7 

All other copolymers were prepared in a similar way. The molecular masses Mw of 
copolymers averaged between 130000 – 150000. 

IR spectra were recorded on a Vertex 70V FT-IR (Bruker, Germany) spectrometer 
complected with ATR attachment. 1H and 13C NMR spectra were recorded on Avance 400 
spectrometer (Bruker, Germany), DMSO was used as solvent. The τ5 and τ10 temperature 
indices of the polymer thermal stability were determined by thermal gravimetric analysis 
(TGA) using the TG 209 F1 instrument (NETZSCH, Germany), in argon atmosphere in the 
temperature range of 30-800°C, with a heating rate 10°C/min. Glass transition temperatures 
Tg were determined by differential scanning calorimetry (DSC) on the DSC 204 F1 
instrument (NETZSCH, Germany) in argon atmosphere, with a heating rate 10°C/min. 
Dynamic mechanical analyses (DMA) was performed using the DMA 242 C instrument 
(NETZSCH, Germany) with frequency 1 Hz, strain amplitude 0.1% and a heating rate of 
5°C/min. The stretch curves of film and molding samples were recorded using the universal 
testing system Instron 5940 (Instron, USA) with strain rate 50 mm/min. The samples of 
polymer moldings were prepared by injection molding on the technological complex DSM 
Xplore (Xplore instruments, The Netherlands). To determine the molecular mass, the liquid 
chromatograph "Agilent Technologies 1260 Infinity" was used. 

 
3. Results and discussion 
In the presented article, PUAI were prepared according to the two-step reaction scheme 
known in the literature [15]. The preparation of PUAI is based on two chemical reactions. The 
first –: cyclic anhydrides interact with isocyanates, forming cyclic imides with the elimination 
of carbon dioxide. The second – amides are formed with the elimination of hydrogen chloride 
during the acylation of amines with acid chlorides. Accordingly, in the first stage, 
Poly(propylene glycol), 2300TDI reacted with (CFPA) taken in a double molar excess to 
form the macro monomer CFPA-2300TDI-CFPA which had terminal chloride groups. Then, 
in the second stage, a сhosen aromatic diamine was acylated with macro monomer CFPA-
2300TDI-CFPA to form a desired polymer. Hydrogen chloride released during the formation 
of amide bonds was neutralized with PO. The PUAI preparation was carried out in the one 
pot manner in MP solution without isolation of the intermediate formed CFPA-2300TDI-
CFPA product. 

The PUAIs studied were prepared on the base of 7 aromatic diamines, i. e. only 
diamines were varied in the reaction scheme. Fig. 1 presents the PUAI synthesis  
scheme (Fig. 1) with the chemical structure of chosen diamines. 

As a result, a series of copolymers differing by diamine radicals R was prepared: 
(CFPA-2300TDI-CFPA)(MPD), (CFPA-2300TDI-CFPA)(PPD), (CFPA-2300TDI-
CFPA)(ODA), (CFPA-2300TDI-CFPA)(TPE-R), (CFPA-2300TDI-CFPA)(TPE-Q), (CFPA-
2300TDI-CFPA)(BAPB), and (CFPA-2300TDI-CFPA)(BAPS). 

These polymers have a structure of multiblock (segmented) copolymer, which consists 
of soft aliphatic segments and hard aromatic segments. Aliphatic soft segment length is 
determined by using a TDI 2300. Aromatic hard segment includes amide-imide group, 
urethane group, diamine radical R, urethane group, and amide-imide group, so its length is 
limited by the choice of diamine. Diamine radicals contain from one to four benzene nuclei 
and also there is the isomerism of the position of benzene rings. 
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Fig. 1. Synthesis of the (CFPA-2300TDI-CFPA)(R) 

 

 
Fig. 2. 1H and 13C NMR spectra of (CFPA-2300TDI-CFPA)(TPE-R) 

 
The representative 1H-, 13C NMR and IR spectra of (CFPA-2300TDI-CFPA)(TPE-R) 

were shown in Fig.2-3. 1H NMR method allows analyzing the macromolecular structure by a 
good discrimination of the different imino protons belonging to either urethane or amide 
groups. As is clearly shown in the spectrum recorded for polymer (CFPA-2300TDI-
CFPA)(TPE-R) (Fig. 2), amide NH protons were responsible for a single peak appeared at 
10.65 ppm, whereas urethane NH protons led to a peak at 9.77 ppm that is very characteristic 
for urethane groups within polyurethane macromolecular architectures. In 13C NMR 
spectrum, the region between 150 and 175 ppm showed four very characteristic peaks 
appeared at 153.5, 152.4, 163.9, and 166.9 ppm corresponding to urethane groups, amide 
groups, and imide groups, respectively. Other peaks appeared in this area correspond to  
(C-O-C)-carbon atoms of amide fragment. Signals at 3.41, 3.31 and 1.03 ppm in 1H NMR 
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spectrum and at 75.1, 72.9 and 17.7 ppm in 13C NMR spectrum corresponds to  
H- and C-atoms of polypropylene glycol soft segment. Hereby, qualitative interpretation of 
the NMR spectra fully confirmed the regularity of the proposed macromolecular architecture. 

 

 
Fig. 3. FT-IR spectra of (CFPA-2300TDI-CFPA)(TPE-R) 

 
In IR-spectrum (Fig. 3), a band with an absorption maximum of 1722 cm-1 corresponds 

to C=O valence vibrations in imide cycles and urethane groups in the indicated spectrum. The 
arm at 1682 cm-1 refers to the C=O vibrations in amide groups. Absorptions at 1780, 727 cm-1 
which are respectively responsible for the symmetric C=O oscillations and out-of-plane 
vibrations of imide cycles prove their presence in the polymer under investigation. Wide 
absorption bands in the 3300-3500 cm-1area characterize N-H groups. The presence of 
absorption maximum at 1276 cm-1 (N-C-O group) confirms the presence of urethane bridges. 
The group of bands from 2850 to 3000 cm-1 refers to the C-H valence vibrations of the 
aliphatic segment, which the absorption at 1089 cm-1also applies to, relating to ether groups. 

As indicated previously, all the studied PUAIs were prepared in the solutions in MP. 
Strong elastic PUAIs films were formed by watering method. PUAI film tensile tests were 
carried out. The values of tensile strength, elongation at break, and the modulus of elasticity 
of polymers are given in Table 1. 

 
Table 1. Mechanical properties of polymer films 
Polymer Tensile test 

Tensile strength (MPa) Elongation at break (%) Initial modulus (MPa) 
MPD 1.43±0.2 116±20 1.42±0.2 
PPD 0.91±0.1 81±12 2.72±0.6 
ODA 1.37±0.2 60±9 8.39±2.6 
TPE-R 0.52±0.1 141±20 0.77±0.2 
TPE-Q 0.43±0.1 28±8 5.58±1.7 
BAPB 1.63±0.4 144±50 1.80±0.2 
BAPS 3.21±0.7 340±86 1.16±0.1 
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In all series of polymers tested, there was no clear dependence of the polymer 
mechanical properties on the number of benzene rings in the structure of the initial diamine. 
Nevertheless, it should be noted that in the case of bridged diamines, the highest values of 
elongation at break (340%) and tensile strength (3.21 MPa) were obtained for (CFPA-
2300TDI-CFPA) polymer (BAPS), which has oxygen and sulfone bridge groups in the hard 
segment. There is also an effect of isomerism of the position of benzene rings in the hard 
segments in the case of MPD and PPD polymers. A polymer based on the MPD diamine is 
characterized by greater elongation at break and tensile strength values and a lower value of 
the modulus of elasticity compared to a PPD based polymer. This effect may be due to the 
fact that in the case of MPD the meta-position of the amino groups in the diamine structure 
causes a larger set of macromolecular conformations in PUAI as compared to the case of 
PPD with the para position of the amino groups. 

Thermal stability of polymers is determined by the processes of their thermal 
decomposition. PUAI thermal stability was evaluated by means of thermal gravimetric 
analysis (TGA) method. The temperatures corresponding to 5% and 10% mass loss (τ5, τ10) of 
the samples at heating were considered as indices of thermal stability. The values of τ5, τ10 and 
mass residua at 800°C are given in Table 2. 

TGA curves are shown in Fig. 4. Vertical section of the curve in the region around 
400°C should be associated with the thermal degradation of aliphatic soft segments of the 
polymers. The sloping portion in the region from 450°C to 800°C can be associated with 
thermal degradation of aromatic hard segments of polymers. It is indicated that, in general, 
PUAI thermal stability is weakly dependent on the diamine structure, apparently thermal 
destruction processes begin with chemical bonds in the polyether radical. However, it can be 
noted that two polymers are significantly distinguished from the other polymer studied. The 
(CFPA-2300TDI-CFPA)(MPD) copolymer has the highest thermal stability (τ5=312°C, 
τ10=344°C), and the (CFPA-2300TDI-CFPA)(TPE-R) copolymer has the lowest thermal 
stability (τ5=272°C, τ10=298°C). It is reasonable to assume that the phase interactions 
(interpenetration of the phases) formed by the soft and hard segments are manifested with 
different intensity in the considered cases.  

 
Fig. 4. TGA curves for copolymers 

 
The mechanical properties of the PUAI films in the dynamic test mode were measured 

by means of dynamic mechanical analysis (DMA) method. The temperature dependences 
curves of the storage modulus (E'), the loss modulus (E") and the angle of mechanical losses 
(tgδ) were recorded. Typical DMA curves for PUAI on the TPE-R base are shown in Fig. 5a. 
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First, attention is drawn to the fact that the maxima on the E', E" and tgδ on temperature 
dependences are observed in the negative centigrade temperature range. Secondly, these 
curves have areas corresponding to the practical independence of the values of modulus from 
temperature, the so-called plateaus of rubber elasticity. It should be noted that the observed 
effects are typical for multiblock (segmented) copolymers. As it can be seen from Fig. 5a, the 
plateau of rubber elasticity extends to 280°C, i.e. the sample is in highly elastic state at 
temperatures, at which polyurethanes are almost completely destructed. Besides, it is 
reasonable to assume that  the significant difference in the values of the maxima on the E" and 
tgδ temperature dependence curves is a consequence of the interaction between the soft and 
hard phases. In the case of the polymer (CFPA-2300TDI-CFPA)(TPE-R), the thermogram 
(Fig. 5b) on the first scan indicates the melting of the crystalline phase in the region around 
60°C, and in the second scan no traces of recrystallization were detected. That means, in our 
opinion, that DSC method revealed the processes of melting of the microcrystalline phase 
formed by the aliphatic polyesters segments. 

 

 
(a)      (b) 

Fig. 5. DMA (a) and DSC (b) curves for polymer (CFPA-2300TDI-CFPA)(TPE-R) 
 

The glass transition temperature (Tg) copolymers was determined using two methods: 
DSC (Fig. 5b) and DMA (Fig. 5a). In the case of DMA, it should be noted that the Tg values 
were determined as the temperature of maximum on the temperature dependence of tg δ, as 
well as of E". Experimental values of Tg of the investigated PUAI are presented in Table. 2. 

Among the studied polymers (Table 2), a special place is occupied by MPD based 
polymer, which is characterized by the lowest Tg value. In other cases, both according to DSC 
and DMA data, Tg values decrease with the increase of number of benzene rings in the hard 
aromatic segments. In addition, in MPD - PPD cases, the effects of isomerism of the position 
of the amide bonds connected to the benzene rings is found, and in TPE-R - TPE-Q cases, 
the effects of isomerism of bridging oxygen atoms connecting the benzene rings take place. 
These effects are due to the chemical structure of the initial diamines. So, the Tg of MPD 
based sample is significantly lower than PPD based analogues (-65.3°C vs. -49.3°C, 
according to DSC data). In contrast, the Tg of the meta-(aminophenoxy) derivative TPE-R is 
slightly higher than that of the case of the para-(aminophenoxy)derivative TPE-Q (-43.9°C 
vs. -47.1°C, according to DSC data and -30°C vs. -36°C according to the MTA data). It 
should be assumed that in the cases investigated by us the effect of segmental motion 
defreezing in the aliphatic polyester chains, which are part of the domains that form the soft 
phase, appears at temperatures exceeding Tg. The presented data allow suggesting that 
conformational transitions in hard segments are among the factors affecting segmental 
motions in the chains that form the soft phase. 

Multiblock copoly(urethane-amide-imide)s with the properties of thermoplastic elastomers 227



Table 2. Thermal properties of copolymers 
Polymer DSC DMA TGA 

Tg (°C) Tm (°C) ΔH (J/g) Tg (°C) 
by E” 

Tg (°C) 
by tg δ 

τ5 (°C) τ10 
(°C) 

mass 
residua 
(%) 

MPD -65.3 63 13.65 -81 -56 312 344 12.57 

PPD -49.3 - - -69 -45 290 313 15.49 

ODA -50.1 50.9 7.99 -75 -51 300 326 14.44 

TPE-R -43.9 56.4 10.2 -59 -30 272 298 15.37 

TPE-Q -47.1 56.9 6.73 -72 -36 295 326 15.14 

BAPB -44.6 45.8 6.33 -65 -41 297 326 10.75 

BAPS -44.6 41.5 5.58 -68 -37 295 330 12.18 

 
The first-scan DSC curves (for example, Fig. 5b) indicate the presence of first-order 

phase transitions in the investigated copolymers. Table2 shows the experimental values of Tm 
(the melting temperature) and ΔH (the melting enthalpy) of the copolymers. It is reasonable to 
assume partial crystallization of soft segments. Attention is drawn to the fact that the values of 
ΔH in the cases of MPD and TPE-R based copolymer are appreciably higher in comparison 
with other copolymers. As mentioned above, copolymers of MPD based and TPE-R based 
contain in their structure benzene rings with substituents in the meta-position, which cause 
greater freedom of segmental movements in the hard phase. The observed effects confirm the 
assumption that conformational transitions in the hard segments are among the factors 
affecting segmental motions in the segments forming the soft phase. 

It turned out that the prepared polymers can be processed by the equipment used for 
thermoplastics processing. Thick-walled products in the form of shoulder blades were made 
from the prepared polymers by pressure casting method. These moldings were exposed to the 
tensile test. Typical stress-strain curves are shown in Fig. 6, and the test results are shown in 
Table 3. 

 

 
Fig. 6. Stress-Strain curves for polymer molding 
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Table 3. Mechanical properties of polymer moldings 
Polymer Tensile strength (MPa) Elongation at break (%) Initial modulus (MPa) 

MPD 0.11±0.03 385±39 0.35±0.1 
PPD 0.65±0,2 163±20 0.44±0,3 

TPE-R 0.66±0,2 176±27 0.40±0,2 
TPE-Q 0.58±0,2 205±32 0.54±0,2 
BAPB 0.28±0,1 53±18 0.42±0,1 

 
Results of tensile tests of the moldings indicate that the elongation at break increased in 

comparison with the film samples in the case of MPD, PPD, TPE-R and TPE-Q based 
copolymers. All studied moldings had lower modulus of elasticity as compared with the film 
samples. The tensile strength of MPD, PPD and BAPB based copolymers decreased 
significantly, and tensile strength of TPE-R based and TPE-Q-based polymers slightly 
increased within the accuracy. The observed effects can be explained by the domain 
restructuring during the processing of polymers in the viscous-flow state. 

Among the studied moldings, the most interesting is a MPD based sample, because it 
has the maximum elongation at break (385%), while the initial polymer has high thermal 
stability (τ 5 = 312°C) and the lowest glass transition temperature (Tg = -65.3°C by DSC and 
Tg = -56°C by tgδ). 

 
4. Conclusion  
Multiblock (segmented) copoly(urethane-amide-imide)s containing flexible segments of 
polypropylene glycol (PPG) and rigid segments of bis(urethane-amide-imide) in repeating 
units were synthesized and analyzed by 1H-, 13C NMR and IR spectroscopy. Thermal and 
mechanical properties of synthesized copolymers were studied by TGA, DSC, DMA and 
tensile tests.  

Glass transition temperature (Tg) of all obtained copolymers lies in the negative 
temperature range on the Celsius scale and, depending on the polymer structure, varies from -
65°C to -44°C (by DSC). Copolymers have relatively high thermal stability, τ5~300°С (by 
TGA) and are characterized by the presence of a plateau of rubber elasticity in wide 
temperature range under conditions of dynamic tests.  

The investigated multiblock (segmental) copoly(urethane-amide-imide)s have 
thermoelastoplastic properties and can be processed by conventional equipment for 
thermoplastics processing, for example by pressure casting method. The moldings, which 
were made from copolymers, are characterized by tensile elongation values of the order of 
hundreds of percent.  
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Abstract. The paper shows the possibility of using composite materials for design and 

production of tractor hoods. A method for calculating thermal loads with allowance for 

convection and radiation in the underhood space and its application in thermoelastic 

calculation were developed. The results of the most thermoelastic calculation of the hood, 

taking into account its composite structure and using aeroelasticity approaches, are presented; 

the paper shows necessity to allow for thermal loads when designing a hood of a composite 

material. Application of the method described in this paper allowed calculating the hood 

deformation under constant thermal loads and showed the advantages of using a composite 

material. 

Keywords: optimization, polymeric composite materials (PCM), aerodynamics, radiation, 

convection, thermoelasticity and aeroelasticity 

 

 

1. Introduction 

Mathematical modeling and calculations using aeroelasticity approaches (aeroelasticity or FSI 

Fluid-Structure Interaction – interaction of a fluid or a gas with a mechanical structure) [1], 

for designing structures and mechanisms in combination with the opportunity of using 

modern materials for their production allow significantly reducing the time of design and 

manufacturing of the final product. Besides, such an approach is used to solve the problem of 

product optimization in terms of reducing material consumption and minimization of 

consequences of possible critical situations, particularly connected with using polymeric 

composite materials, the thermal and mechanical characteristics of which can be selected by 

changing the number of layers, the laying angle, and the monolayer material. 

Composite materials became widespread due to their lightness, wear resistance, 

durability, low heat conduction, and the possibility to give them any shape. A tractor hood 

made of polymeric composite materials (PCM) is 40% lighter than made of steel. Besides, 

composite materials provide the necessary rigidity, which helps to avoid a great change in the 

shape of the product and the effect of this change on other parameters, for example, on the 

aerodynamics of the underhood space [2].The possible use of PCM in the structure of the 

tractor roof is considered in paper [3], in which its high durability efficiency is shown. PCM 

attract many researchers and developers to studying their characteristics when using in 

various areas [4], however, most works in this area neglect the influence of temperature due to 

the considerable complexity of the necessary coherent calculation, and determining the 

thermal and thermodynamic properties of a composite material is not always possible. There 

emerges a need to create a method for calculating thermal loads and transferring these loads to 

thermoelastic calculation to determine the hood deformation. 
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This paper considers the situation of emergency operation of a tractor engine 

turbocharger with composite panels. During emergency operation, the turbocharger becomes 

very hot, which significantly increases the temperature of the underhood space and due to 

heat exchange and radiation, the hood heats up strongly, which can cause its significant 

deformations. In its turn, such heating can affect the temperature inside the cab and the work 

of the tractor in general. Aerodynamics of the underhood space without heat exchange is 

considered in many papers, for example paper [5]. The finite element calculation of the 

underhood space with elements of the cooling system not taking radiation into account is 

considered in paper [6]. Thus, in many works, the strain-stress state calculation of a hood of a 

composite material is made but without allowance for conjugate heat transfer, for example in 

works [7, 8]. In contrast to the above-mentioned works, calculations in this paper are made 

taking into account the role of heat-mass exchange (heat conduction and radiant heat transfer). 

Analyzing the air flow nature in the underhood space with allowance for heat exchange 

and radiation and applying the thermal and aeroelasticity approach for transferring thermal 

loads make it possible to calculate the hood deformation and, further, develop approaches for 

minimizing thermal loads in the case of an emergency.  

 

2. Formulation of the problem 
For aerothemodynamic and thermoelastic calculation, a simplified model of a tractor, is 

considered as an object of study. To calculate the strain-stress state, the shell model of the 

hood was used, which is shown in Fig. 1. 

 

 
Fig. 1. Shell model of the hood 

 
The calculation of aerodynamic characteristics was made at the tractor speed of 

300 m/s. The temperature of ambient air was 300 K, the temperature of the engine 

turbocharger was taken equal to 1200 K, the temperature of the cylinder heads was 420 K.  

Due to a large difference in the temperatures between ambient air and the turbocharger, 

radiant heat transfer should be taken into account. To calculate the heat exchange by 

radiation, the Stefan-Boltzmann law for gray body radiation is used: 

    (     )
    (1) 

   is heat radiation from the border, 

      is temperatures of the bodies, 

   is a emissivity of the body, describes the deviation of body radiation from an absolute 

black body, 

   is Stefan-Boltzmann constant.  

The Lambert law, which describes the amount of energy radiated by area element     in 

the direction of element    , is also applied (Fig. 2). 

                            
 

 
(     )

     (2) 
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Fig. 2. Illustration of the Lambert law 

 

With regard to the finite elements method or volumes, the general balance for the i-th 

element of the surface has the form [9]: 

        
          ∑      

 
            

      , (3) 

    is the absorption coefficient of the i-th area element, 

    is radiation flux upon the i-th element area from the rest, 

    is effective radiation (emitted and reflected) of the k-th element area, 

    is the reflection coefficient of the k-th element area, 

     is angle coefficients from the Lambert law.  

The numerical calculation of the strain-stress state problems and aerodynamics was 

made using the ANSYS software package. In both calculations, stationary calculations were 

made to calculate the values sought. The strain-stress state problem was solved in a 

geometrically nonlinear formulation [10]. To demonstrate the difference between the linear 

and nonlinear formulations, let us consider the case of uniaxial stretching of a sample with 

initial area   with constant force   (Fig. 3). 

 

 
Fig. 3. Uniaxial stretching 

 

True deformation is the result of the summation of infinitesimal deformations along the 

strain path of the sample: 

      ∫
  

 

    

 
   (  

  

 
). (4) 

In the case of  
  

 
  , the expression for small deformations is obtained as it follows: 

       
  

 
. (5) 

True stresses are the ratio of applied force Р to the cross-sectional area at the given 

moment of deformation   , i.e.       
 

  
 . In the case of small deformations, when     , 

       
 

 
 . Since                    . Which is very important when fracture criteria 

based on stresses are used [11]. 
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3. Aerodynamic calculation 

Due to the complexity of the geometry of the considered flow area, a Hexa-Core type finite 

element model with a boundary layer of 3 elements was created. The total number of elements 

in the computational domain amounted to 3.5 million. Aerodynamic calculation was 

performed by the control volume method with the ANSYS Fluent software package. The 

equations of continuity, conservation of momentum and energy were solved, and the air was 

considered an ideal gas, i.e. the constitutive equation has the form: 

  
  

  
 , (6) 

where   is molar mass of air,   is universal gas constant.  

Since the average Reynolds number for the given geometry is quite large,          , 

the flow inside the hood is turbulent, i.e. it is not stationary [11]. To describe such flows in a 

stationary formulation, the Navier-Stokes equations, Reynolds-averaged, are used. The 

disadvantage of this approach is the necessity of closure of the set of Reynolds equations, 

which is commonly called the establishing of additional relations – the models of turbulence. 

In our case, the Spalart-Allmaras turbulence model serves as such a model [12]. The choice of 

this model is determined by its good numerical stability and the presence of only one 

equation, which significantly speeds up the calculation in comparison with models with two 

equations [11, 12]. Approximation in the initial equations was carried out by the method of 

second-order accuracy in space. The connection between the velocity vector and pressure 

components was made using the semi-implicit method for the equations with the connection 

by pressure – SIMPLE. To simulate the radiant heat transfer, the Discrete Ordinates model 

was used [13]. Based on work [14] and the Kirchhoff radiation law, the PCM absorption 

coefficient was taken to be constant and equal to 0.6. 

As a result of the aerodynamic calculation for the hood, a temperature field was 

obtained, which is subsequently used to calculate the strain-stress state (Fig. 4). 

 

 
Fig. 4. Temperature field obtained for the hood 

 

4. Mechanical testing of the composite material 

For manufacturing the tractor hood, a foreign polymeric composite material (PCM) has been 

selected: Metyx glass mat, Metycore 600M/250PP1/600M with a binding substance based on 

polyester resin Dugalak Depol CP-700. To determine the physicomechanical properties of the 

composite material, its actual tests were carried out. 
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Tests of the samples given in Fig. 6 were carried out using the Zwick//Roell Z050 

testing machine according to the method described in GOST 11262-80 "Plastics. Stretching 

test method". The actual conditions of the tests are given in Table 1. Photographs of the test 

are given in Fig. 5. Three samples of the material were tested. 

 

 
Fig. 5. Appearance of the produced samples of the selected material 

 

Table 1  Test conditions 

Parameter Value 

Testing machine Zwick//Roell Z050 

Date of tests 29.11.2017 

Test location OOO «Thermotechnology» laboratory 

Environmental temperature 23С 

Relative humidity 55 % 

Loading speed 10000 N/min 

 

 
Fig. 5. Material sample in the clips of the testing machine 

 

Figure 6 shows a photograph of the material samples after the tests. 
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Fig. 6. Destroyed samples after testing 

 

As a result of the performed tests, "strain-stress" curves were obtained for the tested 

samples, one of them for sample A2 is presented in Fig. 7. 

 

 
Fig. 7. "Strain-stress" curve of sample A2 

 

5. Calculation of the strain-stress state of the hood made of PCM 

According to the results of the tests, a mathematical model of the material was created. The 

physicomechanical properties of the presented material are given in Table 2. The 

thermodynamic properties are taken from [14]. 

 

Table 2. Physicomechanical properties of the material 

Protocol parameter Value 

The elasticity modulus of the monolayer under uniaxial tension 6.7 GPa 

The elasticity modulus of the monolayer under uniaxial 

compression 

5.5 GPa 

Poisson’s ratio 0.35 

The stress limit of the monolayer under uniaxial tension 46 MPa 

The stress limit of the monolayer under uniaxial compression 40 MPa 

 

This composite is an isotropic material, which means it has equal elasticity moduli and 

thermal expansion coefficients in each direction. To calculate the strain-stress state, a finite 

element model of the hood was created; sampling was done with the Shell elements 5 mm 

thick with the total number of elements equal to 250 thousand. The calculation was performed 

in the ANSYS software package in the Mechanical module. The previously obtained 
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temperature field was transferred from the ANSYS Fluent module. The SHELL181 element 

type, which allows for final deformations, was used for the calculation. 

 

6. Calculation results 

During the calculations, a temperature field was obtained, which later was used to calculate 

the strain-stress state of the hood made of PCM. The displacements field for the hood in real 

scale is presented in Fig. 8. 

 

 
Fig. 8. Displacement field, mm 

 

The maximum deviation is 23.82 mm which is approximately equal to 5 thicknesses of 

the hood. Such deformation is significant and can affect the aerodynamics of the underhood 

space. The maximum stresses at the fixing points exceeded, which means the destruction of 

the material at the attaching points. It can be seen that due to large deformations and partial 

destruction of the material, the necessity allow for such stresses at the design stage emerges. 

In order to avoid the material destruction, it is suggested to increase thickness of PCM 

in the fixing points. Also, a possible solution to this problem will be a decrease in the PCM 

absorption coefficient, since the main contribution to the temperature field in this calculation 

is made by radiation, it is enough to change the color of the final product. 

It is worth noting that when making the bonnet of classic materials, for example, 

aluminum, the material destruction will start to occur not only in fixing points but also in the 

points closest to the turbocharger. It is connected to the high heat conduction of classic 

materials, which gives higher thermal loads. 

 

7. Conclucion 

A method has been developed for the calculation of the tractor hood made of PCM with 

allowance for the influence of thermal loads due to the emergency operation of the engine 

turbocharger, and it has been shown that it should be used when designing tractor hoods. 

During the aero- and thermodynamic calculations, the temperature field was obtained and 

during the thermoelastic calculation – the displacement field. 

It has been shown that the hood deformation under the action of thermal loads is 

significant and can affect the aerodynamics of the underhood space and the material integrity 

in the fixing points of the hood to the body. This result will enable creating a procedure of 
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optimization of the underhood space to minimize the displacement field or thermal loads, and 

therefore, the stress field at the fixing points.  

The obtained results showed the following advantages of PCM over classic materials: 

low weight, durability not inferior to classic materials, lower thermal loads due to low heat 

conduction, and ease in optimization. This gives reasons to consider high applicability of 

composite materials for the production of tractor hoods.  
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Abstract. In a multi-objective formulation with criteria such as the maximal deformation of 
the elastic object to be protected and maximal forces created by protection devices, a new 
class of optimal vibration protection problems is considered. A general approach to solving 
these problems based on results of modern control theory using linear matrix inequalities 
technique is presented. An example of a solution of two-criteria problem for a high-storey 
building under seismic disturbances is given. 
Keywords: optimal vibration isolation, multi-criteria problem, linear matrix inequalities, 
Germeyer convolution 
 
 
1. Introduction 
The problems of calculating and designing devices that provide effective protection of 
complex structures, instruments, equipment, and the man himself from the harmful effects of 
vibrations and at the same time possessing limited dimensions continue to be in focus of 
attention of scientists and engineers [1-6]. Such devices in engineering practice are called 
vibration isolators. It is known [7] that it is convenient to consider the problem of vibration 
protection as a task of automatic control in which the vibration isolator acts as a controller. 
Among the main indicators characterizing vibration isolators we usually refer to the values 
that determine the maximum course of this device and the maximum deformations or stresses 
that arise in the object to be protected. As a rule, the choice of a suitable vibration isolation 
device is a certain trade-off between these two most important indicators, i.e. the smaller the 
maximum stroke of the vibration isolation device, the greater the maximum deformations and 
vice versa. Taking into account this circumstance, it seems expedient to state a two-criteria 
problem in which it is required to synthesize the control (to choose a vibration isolation 
device) minimizing the above criteria in Pareto sense. It is quite possible that when several 
vibration isolation devices are involved in the protection of an object, then it is appropriate to 
consider a multi-criteria problem instead of two-criteria one. In the article, a general approach 
to multi-criteria vibration protection problems for multi-mass elastic objects based on modern 
control theory is presented. As an example, two-criteria problem of seismic protection of a 
high-rise building is discussed in detail, in which it is required by selecting vibration isolator 
to minimize in Pareto sense the maximum of maximal intersectional deformations and 
maximal displacement of the building relative to the foundation. This problem is complicated 
by the fact that the external seismic disturbance is not known in advance, so the synthesis of 
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the vibration isolation device is performed as the "worst" (the most dangerous) case from a 
certain class of disturbances. 
  
2. Problem statement 
There is considered the mechanical system consisting of material points connected to each 
other and to the object, called the base (foundation), by elastic and dissipative elements. It is 
assumed that the mechanical system is subjected to uncontrolled disturbances and the control 
forces. The mechanical system is described by linear differential equations  

, (0) 0, (0) 0,Mq Rq Kq Pv Qu q q+ + = + = =                                      (1) 
where n-dimensional vector q  are generalized coordinates of material points forming the 
system, , ,M R K  are symmetric matrices that determine the inertial, dissipative and elastic 
properties of a mechanical system, ( )v v t=  is a vector function of uncontrolled external 
disturbances, u  is a vector of control forces. To estimate the quality of the transient and 
vibration processes in the system we introduce the functionals  

2

0

2

( ) sup
max {sup ( )}

, 1,..., ,i

k
itk

v L
J u

z t
i N

v
≥

∈
= =  (2) 

where k
iz  is the k-th component of the i-th vector controlled output of the system which are 

scalar linear combinations of generalized coordinates q , velocities q  and control forces u , 

2
v is 2L -norm of external disturbance, i.е. the square root of the integral in the range from 0 

to ∞  of the squared modulus of the vector function ( )v t . In essence, this form of 
representation of functionals makes it possible to estimate the maximum deformations and 
maximum forces in various elements of the mechanical system in the absence of specific data 
on external disturbances. The main goal of the vibration protection for this mechanical system 
is to form control forces of state-feedback type, i.e. as a linear combination of generalized 
coordinates and velocities to decrease the values of the above functionals. As a rule, it is 
impossible to define the control forces that would result in a "simultaneous" reduction of all 
functionals, so it is expedient to formulate multi-criteria problem consisting in finding control 
forces providing such a trade-off between the values of functionals that each of them cannot 
be reduced without increasing at least one of the remaining. In problems of vibration 
protection such a statement of the problem seems quite natural, since the reduction of 
deformations in certain parts of the system leads to an increase in force and vice versa.  

This formulation of the optimization problem is called multi-criteria one, and the 
solutions to be being obtained (the feedback coefficients in the control law) are called Pareto 
optimal. It should be noted that obtaining solutions to multi-criteria problems and 
constructing Pareto optimal solutions is still one of the most difficult mathematical problems 
in the theory of optimization and optimal control.  

 
3. Method of solving the multi-criteria optimal control problem  
To solve the stated problem, we use the results of [8-10], in which the functionals introduced 
above are treated as generalized operator 2H - norms of a linear system. Introducing the 
notation  ( , )T T Tx q q=  , the system (1) is rewritten in the form of a controlled linear system 

, (0) 0,v ux Ax B v B u x= + + =  (3) 
where matrices , ,v uA B B  are formed from matrices , , , ,M R K P Q  by the following way  

1 1 1 1
0 0 0

, , .n n
v u

I
A B B

M K M R M P M Q− − − −

    
    

     
= = =  
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The control u will be represented in a state-feedback form, i.e. in the form u x= Θ , the 
system (3) can be written as follows 

( ) , (0) 0,vx A x B v x= Θ + =  (4) 
where the matrix of a closed-loop system ( ) .uA A BΘ = + Θ  Controlled output z  of the 
system (4) is represented in the form  

( ) ( )z Cx Du C D x C x= + = + Θ = Θ  
with scalar m  components ( ) ( ) ( ) ( ) , 1, ,k k k kz C x D u C x k m= + = Θ =  . According to the 
results of [8], the following relation holds 

2
*

0 1 2
max

2

sup
max {sup (t)}

( ) ( ( ) ( ))
k

tk T

v L
J

z
d C Y C

v
≥

∈
=Θ = Θ Θ , (5) 

where maxd  denotes the maximal diagonal entry of the matrix, and the symmetric non-
negative definite matrix *Y  is a unique solution to the Lyapunov matrix equation 

( ) ( ) 0.T T
v vA Y YA B BΘ + Θ + =  (6) 

Thus, the algorithm for calculating the functional ( )J Θ  is as follows: specify gain 
matrix ,Θ  solve the Lyapunov matrix equation (6) and find matrix *Y  and finally find a 
maximal diagonal entry of matrix *( ) ( ).TC Y CΘ Θ  Further, it is required to find the gain 
matrix ,Θ  such that minimizes the right-hand side of expression (5). Such procedure turns out 
to be rather difficult to perform, especially in cases when the number of elements of the 
matrix Θ  is sufficiently large. In papers [10, 11] an alternative and very effective method for 
solving this problem based on the use of linear matrix inequalities [12] is proposed. It turns 
out that in order to find the required matrix Θ  minimizing the functional (5) it is sufficient to 
solve the following problem: to minimize the scalar variable 2γ  under constraints expressed 
by linear matrix inequalities  

( ) ( )

( ) ( ) 20, 0,

1, ,

T T T k T T k T
u u v

T k k
v

AY YA B Z Z B B Y YC Z D
B I C Y D Z

k m
γ

   
     

  

+ + + +< ≥
− +

= 2

 (7) 

with respect to the matrices ,Y Z  and the scalar variable 2γ . This optimization problem is 
effectively solved numerically by using a standard interior-point method of the SeDuMi and 
YALMIP tools of the MATLAB package. As a result, the matrices * *,Y Z  and the required 
gain matrix Θ = 𝑍𝑍∗𝑌𝑌∗−1 are found. 

Let us now consider the multi-criteria optimal control problem with N  criteria 
1 1( ) , , ( ) .N Nz C x z C x= Θ = Θ  

The problem consists in finding the Pareto optimal solutions, i.e. gain matrices 
{ }arg min ( ), 1, , ,iP J i N

Θ
Θ = Θ = …  (8) 

minimizing the vector criterion with components   

2

0

2

sup ,
max {sup (t)}

( ) , 1, , , 1, ,
k
itk

i i
v L

J
z

i N k m
v

≥

∈
=Θ = =2 2  

where im  is a total number of the components of the vector output .iz  To solve this problem 
we apply the Germeyer convolution [13], the utilization of which is described in [11] in 
detail, and form a new scalar objective function from the functions ( )iJ Θ  

Multi-criteria problems for optimal protection of elastic constructions from vibration 241



{ }
1

( ) max ( ) / ,i ii N
J Ja a

≤ ≤
Θ = Θ  (9) 

where iα  are arbitrary positive numbers. Now we state the problem of minimizing the 
function ( )Jα Θ  with respect to the elements of the matrix Θ  for any set of parameters iα . If 
the controlled output of the system is represented as ( ) ,z C x= Θ  where 

( )1 1
1 1( ) ( ) ( )

TT T
N NС С Cαα − −Θ = Θ Θ , then the minimization problem of ( )Jα Θ  is reduced to 

minimizing the maximal diagonal entry of the matrix ( ) ( )TC YCΘ Θ : 

maxmin ( ( ) )), ( ) ( ) 0.T T T
v vd C YC A Y YA B B

Θ
Θ Θ Θ + Θ + =  (10) 

In terms of linear matrix inequalities, the problem takes the following form [10]: 
minimize 2γ  under linear matrix inequalities  

( ) ( )

( ) ( ) 2 20, 0,

1, , , 1, ,

T T T k T T k T
u u v i i

T k k
v i i i
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i N k m
α γ

  
     
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+ + + +
< ≥

− +
= =2 2

 (11) 

with respect to the matrices ,Y Z  and the scalar variable 2γ . According to [10], solving 
optimizing problems for positive parameters iα , we obtain a set of solutions that obviously 
contains the solution of the original multi-criteria problem, i.e. Pareto set.    
 
4. Optimal isolation of a high-storey building from seismic excitation 
Consider the problem of optimal isolation of a high-storey building from seismic excitation. A 
mechanical system that simulates the oscillations of a high-storey building under seismic 
action on the foundation is a chain of material points (floors of the building) connected in 
series by dissipative and elastic elements, herewith one of the two extreme points of the chain 
being connected by means of a vibration isolator to the base (Fig. 1). After reduction to 
dimensionless form (see, for example, [14, 15]), the mathematical model of such a system has 
the following form 

(t) , (0) 0, (0) 0,K K pv quξ β ξ ξ ξ ξ+ + = + = =    (12) 
where ( )1, , тcolξ ξ ξ=   are coordinates of the material points with respect to the base the 
movement of which is defined by the coordinate 0ξ  with respect to an inertial reference 
frame, 0(t) ( )v tξ= −   is the external disturbance up to the sign coinciding with the acceleration 
of the base, u  is the control force created by a vibration isolator (in particular, 

0 1 0 1( )u k cξ ξ= − +   for the passive isolator or ( )0 1 0 1 2 1( )u k cξ ξ α ξ ξ= − + + −  for the simple 
hybrid isolator); β  is a positive parameter characterizing the dissipative properties of a 
mechanical system, a positive definite symmetric matrix K  and vectors p  and q  are defined 
as follows: 

1 1 0 0 1 1
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0 0 0 1 1 1 0
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Fig. 1. Schematic representation of the n-storey building as a multi-mass elastic system 
 

We reduce the system (12) to the canonical form of a controlled system (3), assuming 

( ) ,
TT Tx xx =    

1 10 0 0
, , .n n n n n

v u
I

A B B
K K p qβ
× × ×    

    
     

= = =
− −

 (14) 

Functionals characterizing the quality of vibration isolation of a multi-mass elastic 
system are chosen in the following form 

{ }
2 2

0 2 1 0 10 1
1 2

2 2

max sup ( ) ( ) , ,sup ( ) ( )sup ( )
( ) sup , ( ) sup .t t n nt

v L v L

x t x t x t x tx t
J u J u

v v
≥ ≥ −≥

∈ ∈

− −
= =

2
 (15) 

The first functional characterizes the maximal displacement of the first floor relative to 
the base and the second one determines the maximum deformation of the multi-mass system. 
The control problem is to find the gain matrix ,Θ  i.e. parameters of the state-feedback control 
(vibration isolator) that minimize functionals (15) in Pareto sense. We note that the 
functionals under consideration have the following property: the choice of the feedback 
parameters leading to a decrease in one of them, for example, the maximum displacement of 
the first floor relative to the base implies an increase in the value of the other functional 
determining the maximum deformation of the system (high-storey building).      

The results of solving the two-criteria problem for 10, 0.1n β= =  are presented. First 
we consider the case, which we will call the "ideal vibration isolator", when the measurement 
of the total state of the controlled system is available, i.e. in the formation of feedback, both 
the coordinates and velocities of all the material points of the mechanical system involve. In 
Fig. 2, curve 1 represents a set of Pareto optimal values of functionals 1 2{ , }J J  for the 
indicated case. Obviously, in practice it is hardly possible to measure the total state of a 
mechanical system, however, the solution obtained allows one to obtain a lower bound for the 
optimal values of the functionals. Then let us consider the case when the feedback is formed 
on the basis of the current value of the variable 1x  and the rates of its change (the variable 

11x ). In fact, this case corresponds to a passive vibration isolator with elastic and damping 
elements. In Fig. 2, curve 2 above the "limit" curve 1 corresponds to the Pareto optimal values 
of the functionals 1 2{ , }J J  in the class of passive vibration isolators. Two more curves 3 and 
4, shown in Fig. 2 correspond to the cases when an "active" component is added to the passive 
vibration isolator, that is, the displacement of the second floor relative to the first one (curve 
3) and additionally displacement of the fourth floor relative to the third one (curve 4) is 
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additionally measured. The analysis of these curves shows that the "active" vibration isolators 
(curves 3 and 4) are not much better than the passive isolator (curve 2), but all these three 
isolators are noticeably inferior to the "ideal vibration isolator" (curve 1). 

 

 
Fig. 2. Pareto set on the plane of the criteria for different types of vibration isolators 

 
5. Conclusion 
The article deals with multi-criteria problems for optimal protection of elastic objects from 
vibration. The generalized operator 2H − norms of a system of differential equations that 
describe the dynamics of an object to be protected from external disturbances belonging to a 
given class are chosen as criteria. A general scheme for solving the multi-criteria optimal 
control problem based on the Germeyer convolution and linear matrix inequalities technique 
is proposed. Two-criteria problem of optimal vibration isolation of a high-storey building 
from seismic excitations is solved. Pareto set on the plane of the criteria is constructed. The 
"ideal" Pareto optimal isolator and optimal ones of active and passive types are compared. It 
is shown that the "active" vibration isolators are not much better than the passive ones, but all 
these isolators are noticeably inferior to the "ideal" vibration isolator. 
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Abstract. Results presented in this paper demonstrate the process of material models 
development for automotive structural steels in order to implement it into the SUV digital 
twin. Developed digital twin is capable to simulate vehicle crash impact in the same way as 
full-scale test but among of many parameters it needs correctly defined material models. One 
of the most difficult things to develop is failure models which simulate the behavior of real 
material correctly. Usually standard approach considers using only stress-strain curves for 
several strain rates that does not follow the requirements of advanced model of digital twin. 
Implementing of damage theory based GISSMO failure description into the vehicle model, 
especially for high strain rates, leads to achieving good correlation with full-scale crash tests. 
Also it helps to improve digital twin’s quality and speed up overall process of vehicle 
developing. As a result of research this paper demonstrated the difference of simulations 
between usual and improved material models 
Keywords: damage, GISSMO, digital twin, vehicle, crash test, triaxiality 

 
 

1. Introduction. Computer simulation of car collisions with different barriers (so-called crash 
tests) became standard procedure in set of activities to improve passive safety of vehicle 
structure. Increasing requirements to complex technical systems on the one hand, and 
increasing computing power, on the other hand led to a “digital twin” concept in modeling 
based on high quality mathematical model included thousands of input parameters [1]. Digital 
twins can provide an opportunity of obtaining accurate information about related real objects 
and their behavior. Consequently, mathematical model that digital twin is based on should 
represent behavior of real object with acceptable accuracy, and one of the basic components 
of this concept is correctly defined mathematical model of material which related part is made 
of. 

Vehicle collision is a process which includes large high-speed deformations that often 
leads to failure of vehicle parts. Failure changes stress-strain state of vehicle body elements 
and their location after impact. These facts explain that fracture should be taken into account, 
but modeling it according to classical mechanics approach leads to significant increase of 
computational efforts.  

Alternative approach consists of using phenomenological damage-based failure criteria, 
one of which called GISSMO (acronym of Generalized Incremental Stress-State damage 
Model) was proposed and developed by Neukamm et al. [2,3,4], and recently implemented 
into commercial finite-element code LS-DYNA. This model is based on incremental damage 
accumulation that depends on a failure curve which is a function of the current stress state. 
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Furthermore, GISSMO includes the evolution of instability measures based on a critical 
strain, and this feature helps to take into account behavior of steel with better accuracy. 
Brief description of fracture curve obtaining was provided by F. Andrade et al. [4]. 
Description of GISSMO development for dual-phase sheet steel was presented by 
J. Effelsberg et al. [5] and by Andrade et al. [6]. Herein presented a process of GISSMO 
developing for low-carbon automotive structural steel. 
 
2. Description of GISSMO model. Detailed description of the model was provided by 
Andrade et al. [6]. Therefore, only brief description and most important equations are 
provided herein. 

In the late 1960's and 1970's several authors provided contributions showing 
dependency of the fracture strain of notched sample upon notch radius [7]. As a result, the 
new stress-state indicator called triaxiality was proposed, defined as: 
𝜂𝜂 = 𝜎𝜎𝑚𝑚

𝜎𝜎𝑒𝑒𝑒𝑒
= − 𝑝𝑝

𝜎𝜎𝑒𝑒𝑒𝑒
, (1) 

where σm means stress and σeq – equivalent stress defined as: 

𝜎𝜎𝑒𝑒𝑒𝑒 = �1
2

[(𝜎𝜎1 − 𝜎𝜎2)2(𝜎𝜎1 − 𝜎𝜎3)2(𝜎𝜎2 − 𝜎𝜎3)2]. (2) 

A phenomenological scalar quantities D called damage measure and F called instability 
measure are introduced as: 
𝐷̇𝐷 = 𝑛𝑛

Λ(𝐿𝐿𝑒𝑒,𝜂𝜂)𝜀𝜀𝑓𝑓(𝜂𝜂)𝐷𝐷
�1−1 𝑛𝑛� �𝜀𝜀̇𝑝𝑝, (3) 

𝐹̇𝐹 = 𝑛𝑛
𝜀𝜀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝜂𝜂)𝐹𝐹

�1−1 𝑛𝑛� �𝜀𝜀̇𝑝𝑝, (4) 
where n – damage exponent, 𝜀𝜀𝑝𝑝- accumulated plastic strain,  𝜀𝜀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝜂𝜂) and 𝜀𝜀𝑓𝑓(𝜂𝜂) – critical 
strain curve and failure curve, respectively, both are functions of triaxiality η. Λ(𝐿𝐿𝑒𝑒 ,𝜂𝜂) – 
regularization function for spurious mesh dependence compensation: 

Λ(𝐿𝐿𝑒𝑒 ,𝜂𝜂) =

⎩
⎪
⎨

⎪
⎧

𝛽𝛽𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝜂𝜂 ≤ 0
�𝛼𝛼(𝐿𝐿𝑒𝑒)−𝛽𝛽𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒

1/3
� 𝜂𝜂 + 𝛽𝛽𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 0 < 𝜂𝜂 ≤ 1/3

�
𝛼𝛼(𝐿𝐿𝑒𝑒)−𝛽𝛽𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

1/3 �𝜂𝜂+𝛽𝛽𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝛽𝛽𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

. (5) 

Herein 𝛼𝛼(𝐿𝐿𝑒𝑒) – monotonically decreasing function of finite element size, factors 𝛽𝛽𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 
and 𝛽𝛽𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 defined as: 
𝛽𝛽𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 = 1 − [1 − 𝛼𝛼(𝐿𝐿𝑒𝑒)](1− 𝑘𝑘𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒), (6) 
𝛽𝛽𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 1 − [1 − 𝛼𝛼(𝐿𝐿𝑒𝑒)](1− 𝑘𝑘𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏), (7) 
where 𝑘𝑘𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 and 𝑘𝑘𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 vary from 0 to 1. Coupling of damage and stress is considered 
as [8]: 
𝜎𝜎 = (1 − 𝐷𝐷�)𝜎𝜎�,  (8) 
where 𝜎𝜎� – undamaged stress tensor, 𝐷𝐷� – damage that take place when strain localization arise 
and given by: 

𝐷𝐷� = �
0,                      𝑖𝑖𝑖𝑖 𝐹𝐹 < 1

�𝐷𝐷−𝐷𝐷𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
1−𝐷𝐷𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

�
𝑚𝑚

 𝑖𝑖𝑖𝑖 𝐹𝐹 = 1 . (9) 

Herein 𝐷𝐷𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is accumulated damage when F = 1 and m is so called fading exponent. 
Finally, GISSMO model assumes defining several parameters: curves 𝜀𝜀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝜂𝜂), 𝜀𝜀𝑓𝑓(𝜂𝜂) 

and 𝛼𝛼(𝐿𝐿𝑒𝑒), factors 𝑘𝑘𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 and 𝑘𝑘𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, and exponents m and n. This provides more flexibility 
during calibration procedure, but, on the other hand, this procedure becomes more complex 
and difficult. 
 

Developing of phenomenological damage model for automotive low-carbon structural steel for using... 247



3. Experimental testing. The purpose of experiments is to determine failure curve. At first, 
force-extension curves for specimens of several types were obtained as a basis for calibration 
of material model. Four types of specimens were manufactured, each types corresponds to 
certain triaxiality value. Also, standard proportional specimen for obtaining hardening curve 
and basic material data (yield stress, elongation, etc.) was made. Specimens and their 
dimensions are schematically presented on Fig. 1. Thickness of steel sheets is 1.5 mm. 
 

 
Fig. 1. Testing specimens sketches 

 

 
Fig. 2. Hardening curve of tested steel 
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Tensile testing performed by universal testing machine Zwick/Roell Z100 with 
extensometer mounted on sample to minimize measurement error. All tests were performed at 
room indoor temperature, with nearly quasistatic conditions (strain rate was about 10-3s-1). 
Testing of standard proportional specimen resulted in obtaining basic material parameters: 
Young's modulus, yield stress, tensile strength and elongation. Hardening curve is presented 
on Fig. 2. Force-extension curves for failure curve samples presented on Fig. 3. 

Usually, five types of specimens are processed, including biaxial tension. In this 
research we used four types and developed an approximation for boundary triaxiality value of 
0.667. It saved resources spent on experimental testing and kept appropriate accuracy level. 

 
4. Finite element modeling of tests. Calibration of model parameters. Full-scale tests 
presented in previous section were simulated with finite element modeling technique using 
commercial code LS-DYNA. Geometry of the sample repeats the shape of real samples. 
Sample is modeled with shell finite elements, the same as in the case of vehicle crash test 
modeling. Firstly, tests were performed with finite element size 1.5 mm in the central part of 
sample, and then regularization carried out that allowed using 5 mm finite element mesh. 
Elastic-plastic behavior of material defined using *MAT_024 card, GISSMO parameters 
defined with *MAT_ADD_EROSION card. Sample is fixed at one side by setting 
translational and rotational degrees of freedom equal to zero. At the other side, slightly 
increasing velocity applied which allows minimizing inertia effects and guaranteeing quasi-
static conditions. Calibration parameters m and n for GISSMO input curves were also 
identified. Failure curve identified using iterative technique of comparing simulation results 
with corresponding experimental results. Obtained failure curve is presented on Fig. 3. 
 

 
Fig. 3. Obtained failure curve for GISSMO input 

 
Obtained force-extension curves for both experimental and virtual tensile tests are 

presented on Fig. 4. 
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Fig. 4. Force-Displacement curves for four sample types 

 

 
Fig. 5. Comparison of tensile testing results for standard proportional sample 
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5. Model validation. Validation of calibrated GISSMO model is conducted using sample 
model that did not take part in calibration process (see Fig. 1, standard proportional sample). 
Results are represented on Fig. 5. Comparing results of experimental and virtual testing one 
can see that GISSMO provide acceptable representation of sample failure. Little divergence 
between two curves shows that some additional calibration may be done, and this is a 
question for further investigation. 

It should be mentioned that the localization occurs in two stages: firstly, when 
localization begins, one can see a decrease of sample width, and, secondly, the thickness 
become to decrease. Thus, second stage of localization can be modeled only concerning fully 
three-dimensional formulation. But in the case of vehicle collisions modeling this couldn’t be 
done at the moment, because of high computational efforts requirements. So, keeping in mind 
restrictions of shell elements, material with defined GISSMO provided good results. 

Validated GISSMO damage model was implemented into a detailed FE model of 2016 
four-door passenger SUV that includes the full functional capabilities of a suspension, a 
driveline and steering subsystems. The “digital twin” includes all the necessary parameters for 
prediction of object behavior during any physical interaction of the related real vehicle [9]. 
Deformed SUV body with standard material models that do not include difficult damage 
behavior is presented on figure 5, deformed SUV body with GISSMO defined presented on 
Fig. 6. On the figure 6 one can see the frame taken from full-scale test at the same 
millisecond.  

 

 
Fig. 6. Deformed SUV body FE model with standard material models 

 

 
Fig. 7. Deformed SUV body FE model with calibrated GISSMO damage model defined 
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Fig. 8. Deformed SUV body, full-scale test 
 

Results of simulation of detailed full-scale vehicle model shows that GISSMO model 
helped to achieve values of floor panel and motor shield deformation that have high 
correlation with real crash test. 
 
6. Summary and conclusions. GISSMO model provides researcher with possibility to model 
failure of structure with acceptable accuracy level and without increasing of computing time 
for simulation. Input parameters set provides user with wide range of possibilities for model 
calibration. Typical automotive low-carbon structural steel was investigated in this research, 
failure and critical strain curves were received, calibration parameters such as damage 
exponent were defined.  

Developed GISSMO model was validated using standard tensile sample and showed 
high level of correlation with experimental data. Calibrated GISSMO model was implemented 
into full-scale SUV FE model. Comparing experimental and simulation results showed that 
material model with defined GISSMO demonstrates acceptable representation of real object 
behavior, and, thus may be used for creating vehicles "digital twins". 
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Abstract. An elastic half-space with a two-layered coating is considered. The upper layer is 
homogeneous while the lower layer is assumed to be made of a functionally graded material. 
Elastic moduli of the interlayer vary with depth according to arbitrary differentiable functions. 
The half-space is indented by a rigid conical punch. Approximated analytical expressions for 
the contact stresses are obtained using the bilateral asymptotic method. Expressions for the 
subsurface stresses and displacements are obtained in the form of some quadratures. 
Numerical results illustrating difference between the stress distributions for one- and two-
layered coatings are presented. 
Keywords: contact, indentation, conical punch, two-layered coating, functionally graded 
interlayer, elasticity, analytical methods 
 
 
1. Introduction 
The paper continues the study of contact mechanics of coatings reinforced with a functionally 
graded (FG) interlayer which was started by the authors in papers [1,2]. Such a structure of 
coatings may occur as the result of oxidation of a FG coating or may be created to obtain 
certain properties. For example, a coating consisting of an antifriction polymer composite 
attached to the load-bearing skeleton made of metal with complex nonmonotonic variation of 
elastic moduli is used to increase operating time and reduce wear of rails and wheel sets [3]. 
Most of the papers in the field of contact mechanics for FG materials address the case then the 
whole coating is made of a FG material [4–7]. Guler and Erdogan [4] analysed normal contact 
of a rigid punch and an elastic half-plane with FG coating with exponential variation of shear 
modulus. Ke, Wang, Liu and Zhang used piecewise linear approximation of the shear 
modulus to study 2D and axisymmetric contact of elastic solid with FG coating with arbitrary 
variation of elastic moduli. They also used similar approach to consider contact problems in 
more complicated formulations, for instance, thermoelastic frictional contact is considered 
in [7]. Coatings with FG interlayers have received less attention in research. Liu et al. [8] and 
Vasiliev et al. [2] considered torsion of an elastic half-space with a coating reinforced with a 
FG interlayer. Indentation of such a solid by a rigid flat-ended circular punch [1] and 
spherical punch [9,10] was also studied earlier. Guler et al. [11] considered a thin film bonded 
to a FG coating with exponentially varying elastic moduli on an elastic substrate. 
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It has to be mentioned that methods for solution of contact problems for solids with FG 
coatings or piecewise homogeneous coatings or elastic layer on a rigid foundation are pretty 
similar. A regular asymptotic method was successfully used for thick coatings by Vorovich 
and Ustinov [12] and Zelentsov [13]. Methods based on the Wiener–Hopf factorization were 
effectively used for coatings (or layers) of small thickness, for instance, in [13,14]. The 
orthogonal polynomial method [15] and collocation method [16] are traditionally used to 
solve contact problems for intermediate thicknesses of the coating (layer). The generalized 
image method was developed and used by Fabrikant to solve several contact problems 
in [17–19].  

The present paper addresses indentation by a rigid conical punch. The major difference 
from the results obtained in [4–11] is that the solution of integral equation of the problem is 
constructed in an approximated analytical form using the bilateral asymptotical  
method [20,21] while in [4–11] it is obtained numerically using collocation technique. The 
solution obtained in the paper is asymptotically exact for small and large values of relative 
coating thickness. 
 
2. Statement of the problem 
Let us consider an elastic half-space with a two-layered coating. The upper layer is 
homogeneous and has thickness h1 while the lower layer (interlayer of the media) has 
thickness h2 and made of a functionally graded material. Let us use a cylindrical coordinate 
system r, φ, z where z axis is normal to the coating surface and passes through the center of 
the punch. Lamé parameters of the half-space vary according to the following:  
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where H=h1+h2 is thickness of the coating, Μ1(z), Λ1(z) are arbitrary positive continuously 
differentiable functions. Here and after, superscripts 0, 1 and 2 correspond to the upper layer, 
to the interlayer and to the substrate, respectively.  

A rigid conical punch is indented in the surface of the coated half-space by a normal 
centrally applied force P that causes elastic deformation of the half-space. Outside the contact 
area the surface is stress-free. The scheme of the contact is presented in the Fig. 1. 

Let us introduce following notations: δ is the displacement of the punch, a is the radius 
of the contact area, α is the half slope of the cone, χ is the contact depth which satisfy 
following relation: aχ=aχot . The coating and the substrate are assumed to be glued 
without sliding. Therefore, the boundary conditions are: 

). ( ),(0  ,0  :0 1000 ararwarz zzr ≤+−=>=== −χδστ  (2) 
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.   ,  ,  ,: 21212121 uuwwHz zzzrzr ====−= σσττ  (4) 

The function to be determined is the contact normal pressure under the punch. To 
determine the radius of the contact region it is necessary to use an additional condition 
following from the continuity of the contact stress at the contact boundary: 

.0)(,  ),(0 =≤−== aparrp aazzσ  (5) 
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Fig. 1. Statement of the contact problem for an arbitrary functionally graded interlayer 
 

The linear constitutive equations for an isotropic material are: 
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3. Solution of the problem 
The problem is reduced to the solution of a following dual integral equation: 
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This process was described in details in [26]. The following dimensionless variables 
were used above: 
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L(u) is the compliance function which is calculated numerically from a two-point 
boundary value problem for a system of ordinary differential equations with variable 
coefficients [1], E and v are Young's modulus and Poisson’s ratio, P*(γ) is the Hankel 
transform of the dimensionless contact pressure. The solution of the integral equation (7) was 
constructed earlier [22] by using the bilateral asymptotic method [20]. For that purpose, the 
following approximation for the compliance function was used: 
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Therefore, the solution of the integral equation has the form: 
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The contact stresses on the surface are determined by the formula: 
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where )sinh()cosh(),,( zyzxzyxF += . Constants Ci and Di (i=1,…, N) are the solution of 
the following system of linear algebraic equations: 
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Displacements of the punch are obtained as a function of the relative coating thickness λ 
in the following form: 
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Using (8) and (6) the following expressions for the displacements and stresses at 
internal points of the coated half-space are obtained: 
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The following notations for the quadratures were used above: 
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Here U*(γ,z0),W*(γ,z0) and their derivatives with respect to z0 are calculated numerically 
from the similar two-point boundary value problem for a system of ordinary differential 
equations with variable coefficients as the compliance function [1].  

 
4. Numerical results 
Let us consider the silicon substrate with the Young’s modulus E = 146 GPa and the 
Poisson's ratio ν=0.22 and let the coating properties vary linearly from the pure nickel 
(E=203 GPa, ν = 0.31) on the surface to the pure silicon at depth. In addition, let us also 
consider the case when the coating was oxidized near its surface. As a result of oxidation a 
thin layer of NiO is occurred (E = 90 GPa, ν = 0.21). Some details of the creation and 
research of such a coating-substrate system, as well as the values of the elastic moduli, can be 
found in [23]. 

As it has been obtained earlier [1], the presence of the oxide upper layer sufficiently 
changes the compliance function. In particular, it has been shown that if the thickness of the 
oxide layer is small (h1<0.2H) then the compliance function has nonmonotonic variation. 

Figures 2a and 2b contain graphs of the distribution of relative contact stresses  
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for Ni/Si and NiO/Ni/Si in assumption that the Ni layer is oxidized to 5% of its thickness, i.e. 
h1 = 0.05H. The relative contact stresses are more convenient for analysis because they have 
no singularities at r0=0 and r0=1. To calculate numerical results, the approximations of 
compliance functions by the expression (9) were constructed with the relative error less than 
0.15%. That allows us to be confident in the high precision of the obtained numerical results. 
 

 
                                      a                                                                              b 

Fig. 2. Distribution of the relative contact pressure for Ni/Si (a) and NiO/Ni/Si (b)  
 

An important difference between the Ni and NiO/Ni coatings lays in the value of the 
"softness" parameter β. It is β=0.683<1 for Ni and β=1.63>1 for NiO/Ni. This parameter 
largely influences the distribution of the contact stresses in the vicinity of r0=0 and r0=1 
especially for thin coatings [24]. As it can be seen from Fig. 2, the contact stresses near the 
points r0=0 and r0=1 decrease for NiO/Ni coating and increase for Ni coating, in comparison 
with the non-coated half-space. As λ→0 the contact stresses at any fixed value of r0 tend to 
unit monotonically, for Ni coating, or nonmonotonically, for NiO/Si coating. This fact is the 
consequence of the similar behaviour of the corresponding compliance functions. 

 
5. Conclusion 
The indentation of an elastic half-space with a coating reinforced with a functionally graded 
interlayer by a rigid conical punch was studied. The distribution of the contact stresses for 
Ni/Si and NiO/Ni/Si was illustrated. It was shown that the presence of a thin oxide layer 
sufficiently changes the distribution of the contact stresses, especially near the central and 
boundary points of the contact region. The results of the paper can be easily generalized to the 
case of piezoelectric materials using recent results [25,26].  
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Abstract. The contact problem on frictional sliding of a rigid body over a coating's surface is 
considered. During sliding, frictional heating and wear of the coating takes place at the 
contact interface. A piezoelectric interlayer is placed between the coating and the rigid 
substrate, which edges are perfectly bonded to the substrate and to the lower boundary of the 
coating. Electrodes are located at the edges of the interlayer, being connected to the control 
circuit and subjected to electric potential difference. Solutions of the problem were 
represented in form of the Laplace convolutions. They allow to determine relationship 
between electric current in the interlayer and main parameters of the contact: temperature, 
contact stresses, displacements, coating's wear. Also the obtained solutions show that one can 
alter contact parameters by changing the potential difference on electrodes of the interlayer.  
Keywords: wear, sliding contact, thermoelasticity, piezoelectricity, coating, piezoelectric 
interlayer 
 
 
1. Introduction  
Operation of high-speed vehicles, industrial equipment, etc. is accompanied by an increase in 
loads in the frictional joints of machines and mechanisms, accelerated wear of working 
surfaces, their heating, the emergence of critical situations. The problem of creating frictional 
surfaces that meet the increased operational requirements is often solved by the use of 
coatings for various purposes: anti-friction, anti-corrosion, thermal insulation, etc. It has been 
experimentally established that an increase in the relative velocity between the working 
surfaces of tribotechnical devices with coatings generates a rapid increase in temperature and 
contact stress, indicating the development of thermoelastic instability of the sliding frictional 
contact [1–8].  

Piezoelectric sensors are widely used for monitoring the parameters of the sliding 
frictional contact. Mechanics of indentation of piezoelectric material was considered  
in [9-11]. However, the fragility and thermal sensitivity of piezoceramics does not allow 
placing piezoelectric sensors near the contact. Thermoelastic problems on a rigid body 
frictional sliding over the surface of an elastic coating with piezoelectric interlayer but 
without wear were considered previously in [12,13].  

In the present work, in order to study the possibilities of indirect monitoring of the level 
of coating wear, contact stresses and temperature, a transient thermoelastic/electroelastic 
problem is considered on the sliding contact of a rigid plate over a surface of an elastic 
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coating equipped with a heat-insulated piezoelectric layer that allows monitoring the main 
parameters of contact and wear of the coating. 

 
2. Problem statement 
The rigid half-plane I slides with constant speed V over the surface of the elastic coating A 
with thickness h, bonded by its lower boundary to the electroelastic thermally insulated 
interlayer B with thickness H (Fig. 1). Polarization vector of the piezoelectric material is 
normal to the boundaries of the interlayer. By its lower boundary the interlayer is bonded to 
the rigid substrate in the form of the half-plane II. During sliding, the half-plane I penetrates 
the coating by normal to its surface. Sliding of the thermally insulated rigid half-plane I is 
performed with account for Coulomb friction and wear of the coating. Thermal flux generated 
by friction on the contact interface is directed to the coating A. Boundaries of the 
electroelastic interlayer B are covered with electrodes with applied potential difference. At the 
initial moment, displacements and their velocities in the coating and the interlayer are zero, 
and the initial temperature of the coating is also zero. 

 

 
Fig. 1. Contact geometry 

 
According to the given formulation, all main physical parameters of the problem, 

namely temperature, stresses, displacements, electric induction and electric intensity, do not 
depend on the horizontal coordinate. In this case, behavior of the thermoelastic coating A is 
described by system of differential equation of thermoelasticity together with heat equation 
[14] at zero initial conditions 
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where ),( tzu , ),( tzw  are the vertical and horizontal displacements, ),( tzT  is the temperature, 
µ , ν , α , κ  are, respectively, the shear modulus, Poisson's ratio, linear thermal expansion 
coefficient and thermal diffusivity of the coating A material. The Duhamel – Neumann 
relationships define the connection between stresses, displacements and temperature 

T
z
u

zz α
ν−
ν+µ

−
∂
∂

ν−
ν−µ

=σ
21

)1(2
21

)1(2 ,     
z
w

xz ∂
∂

µ=σ , (2) 

where ),( tzzzσ , ),( tzxzσ  are the normal and tangential stresses in the coating. 
Behavior of the electroelastic interlayer B is described by system of differential equations of 

electroelasticity of a piezoceramic material polarized in the direction of z axis [15] at zero initial 
conditions 
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where ),(1 tzu , ),(1 tzw , ),( tzψ  are, respectively, the vertical and horizontal displacement and 
the electric potential inside the interlayer B. Mechanical stresses and electric intensity in the 
piezoceramic interlayer are taken in form 

z
e

z
uc E

zz ∂
ψ∂

+
∂
∂

=σ 33
1

33
1 ,     

z
wc E

xz ∂
∂

=σ 1
44

1 ,     
z
ue

z
D S

z ∂
∂

+
∂
ψ∂

e−= 1
3333 , (4) 

where ),(1
zz tzσ , ),(1 tzxzσ  are normal and tangential stresses in the interlayer, Ec33 , Ec44  are the 

elastic moduli measured at constant electric field, S
33ε  is the dielectric permittivity measured 

at constant deformation, 33e  is the piezoelectric modulus of the interlayer B.. 
Mechanical, temperature and electric boundary conditions of the formulated quasi-static 

problem on sliding contact are written as follows: 
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where f  is the friction coefficient, V  is the sliding velocity, K  is the thermal conductivity of 
the coating A material, )(t∆  is the depth of the half-plane I indentation into the elastic 
coating, 2 )(0 tV  is the potential difference applied to the interlayer B electrodes. 

The Archard's relationship [5-7] is taken as the wear model in (5): 
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where *K  is the coefficient between the work of frictional forces and the amount of removed 
material. 

The electric current 0I  through the piezoelectric interlayer B, divided by the cros-
section area, is determined from the equation 
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Horizontal displacements ),( tzw  are determined from vertical displacements ),( tzu  
when latter are known.   
 
3. Exact solution of the problem 
By using the Laplace integral transform [16] the solution of quasi-static initial boundary value 
problem on the sliding contact (1)–(9) was written in the form of the Laplace convolutions 
containing the vertical displacement )(t∆  of the sliding half-plane I and the potential 
difference )(0 tV  on the piezoelectric interlayer B electrodes: 
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κ= ttt /~ , { }κκ +∞+∞−ζ=Γ dtidti ,:  is the contour of integration, where d  is chosen in  
a way that all isolated singularities of the integrands in (19) would be placed left to the 
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The analysis shown that some of the obtained quadratures exist only in generalized 
sense [17]. After isolating the generalized component of the formula, the solutions of the 
problem taken the following form: 
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)()()( 0 tVttV θ−∆=∆ , and )(tV∆  in (27) is given by )()()( 0 tVttV
 θ−∆η=∆ . 

Formulas (22)–(27) made it possible to effectively investigate behavior of the obtained 
solution at small t  and determine effect which the problem parameters have on contact 
temperature and stresses, and also on the electric current in the interlayer. As it can be seen 
from (21), decrease in elastic modulus or increase in thickness of the piezoelectric interlayer 
will lead to increase of the parameter η . According to (22), it will lead to a decrease in the 
contact temperature. From (23) it can be seen that increase of applied potential difference 

)(0 tV  will lead to the elastic expansion or shrinkage of the piezoelectric interlayer, depending 
on the sign of )(0 tV . Formula (27) indicates that the electric current in the interlayer is 
sensitive to the indentation rate )(t∆  and to the applied potential difference rate )(0 tV . 
Further, the influence of )(t∆  and )(0 tV  depends on magnitude of dimensionless parameter 

wk , connected to the coating wear )(tuw , and dimensionless parameter V̂ , which itself is 
proportional to friction coefficient f, sliding velocity V, thermal expansion coefficient α  and 
elastic modulus µ  of the coating material and other parameters of the problem. 

Note that contour quadratures for 0
1 ,, Izzzz σσ  do not depend on the coordinate z . 

Moreover, the stresses zzσ  in the coating A and 1
zzσ  in the interlayer B coincide. 

The investigation of integrands in (28) shows that they are all meromorphic in the 
complex plane of the integration variable η+ξ=ζ i  and have only poles as their isolated 
singularities. To effectively calculate the contour quadratures, it is necessary to investigate 
and determine poles of the integrands. The calculation of contour quadratures in (28) using 
the residue theorem, similarly to [7,8,12,13], allows one to construct an effective solution for 
any ),0( ∞∈t . 

  
4. Effective solution of the problem 
For the contour integrals (28) to exist, the integrands should decay by the power law at 
infinity ∞→ζ || . Analysis of the integrands (28) gave the following asymptotic estimations at 

∞→ζ ||  
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Let us take into account the integrands behavior at infinity (29), their meromorphity in 
the complex plane and consider all of their poles kζ  ,1,2,...0=k  to be simple. Then, to 
effectively calculate integrals (28), the complex analysis methods [18] can be used, giving the 
formulas 
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where the integrand poles kζ  are sorted by their absolute values: ......10 ≤ζ≤≤ζ≤ζ k  The 
index a  takes one of the symbols: ,,, σuT Iu ,, 11 σ . 
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By substituting (30) to (22)–(28) the problem solution was obtained in the form of 
series over the poles kζ  ,1,2,...0=k , effective at 0>t  
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The horizontal displacements ),( tzw , ),(1 tzw  and the electric potential ),( tzψ  are given, 
respectively, by equations (13), (16) and (17). The tangential stresses ),( tzxzσ  and the coating 
wear )(tuw  are determined by the boundary condition (5). The formulas (31)–(36) use 
functions from (22)–(27) and (30) and the following notation 
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5. Numerical analysis of the obtained solution 
The solution of the thermoelastic quasi-static problem on coating wear was obtained above. 
Here, the numerical analysis of the obtained solution is conducted for the temperature ),( txT , 
wear )(tuw  (5), (32), mechanical stress ),( txzzσ  (33) and electric current through the 
piezoelectric interlayer )(0 tI  (36). Let h01,00 =∆  be the maximum penetration of the elastic 
coating by the rigid half-plane I be, and the indentation law )(t∆  have the form 

)()( 0 tHt ∆=∆ , (37) 
where )(tH  is the Heaviside function. Let us also consider the potential difference )(0 tV  
between the piezoelectric interlayer electrodes to be equal zero. Then the mechanical 
interaction will be only responsible for the current through the piezoelectric interlayer. 

Let us consider effect of the sliding velocity V  on the main contact parameters: the 
temperature ),( thT  (17), the contact stress ),()( thtp xxσ−=  from (19), the coating wear 

),()()( thuttuw +∆=  from (18) and the electric current )(0 tI  from (22). The elastic coating is 
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made of the aluminum alloy with the following thermomechanical properties: μ = 36.0 GPa, 
ν = 0.35, κ = 33.5 ∙ 10−6 m2/s, α = 18.4 ∙ 10−6 1/K, K = 111 W/(m⋅K), h = 0.5 mm, f = 0.15, 

12* 105.7 −⋅=K m2/N. The piezoelectric interlayer is made of the PZT-4 piezoceramics with 
the following electromechanical properties: H = 0.01 mm, Ec33 = 115 GPa, 33e = 15.1 C/m2, 

,635 033 εε =S  where 12
0 1085.8 −⋅=ε  F/m is the vacuum permittivity. The rigid half-plane is 

pressed into the coating to the depth h01.00 =∆  = 0.05 mm and continues to slide over its 
surface with the constant velocity V, wearing the coating out. The wear process is considered 
to be finished at t = tw, when the contact stress become negligible compared to its peak value 
( %1)(max/)(%100

),0(
=⋅

∞∈
tptp

tw ). The time tw is called the time of coating wear by  

an amount 0∆ . 
The effect of the sliding velocity V on the main characteristics of the contact is 

illustrated by Figs. 2–5 presenting the plots of )(tuw , ),( thT , )(tp , )(0 tI . The curves 
marked by 1 are calculated for V = 50 mm/s ( =V̂ 0.2 ), marked by 2 are for V = 100 mm/s 
( =V̂ 0.4), 3 for V = 150 mm/s ( =V̂ 0.6). It can be seen from Fig. 2 that the bigger sliding 
velocities leads to the larger maximal temperature ),(max

],0[max
w

thTT
tt∈

=  at the contact interface. 

The larger temperatures are responsible for the greater coating wear rate (Fig. 3). At the same 
time, the peak contact stresses )(max

],0[max
w

tpp
tt∈

=  are almost independent on the sliding 

velocity V (Fig. 4). The electric current )(0 tI  through the piezoelectric interlayer (Fig. 5) 
achieves significant magnitude during the narrow time interval after the initial 0=t . But then 

)(0 tI  changes sign, and time dependence of 0I  obtain the same behavior as the contact 
temperature ),( thT . Moreover, the electric current )(0 tI  achieves peak magnitude at the 
same time moments as the contact temperature ),( thT . This allows one to use the electric 
signal from the piezoelectric interlayer electrodes to monitor the temperature on the sliding 
contact. 

 

  
Fig. 2. Contact temperature ),( thT  Fig. 3. Coating wear )(tuw  
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Fig. 4. Contact pressure ),()( thtp zzσ−=   

 

Fig. 5. Electric current )(0 tI  through the unit 
cross-section of the piezoelectric interlayer  

 
The time dependence of the main contact characteristics is quantitatively illustrated by 

the Table 1. The provided data shows that multiplying the sliding velocity V by three one will 
get Tmax multiplied by 2.83, I0 by 2.90 раза, while the coating wear time tw will be the original 
value divided by 4.17. 

 
Table 1. Dependence of the main contact characteristics on the sliding velocity V 

Sliding velocity V, 
mm/s 

Maximal contact 
temperature  

Tmax, s 

Coating wear 
time tw, s 

Peak electric current through the unit 
cross-section of the piezoelectric 

interlayer I0, A/m2 

50 47.2 0.25 3.26 
100 91.0 0.11 6.36 
150 133.7 0.06 9.44 

 
The results above obtained were obtained for a predefined )(t∆  which means 

kinematically imposed loading. In wear contact problems (see, in particular, [19]), it makes 
sense to consider both kinematically and statically imposed loading. In this view, the next 
section also describes the case when a predefined pressure )(tσ  acts on the coating. 
 
6. Contact parameters control 
During the tribological devices operation one may need to control the main contact 
characteristics, such as the contact stress, temperature or coating wear, to prevent failures. 
Above, the formulas were obtained for calculation of the main characteristics of sliding 
contact: the temperature ),( thT , stress ),( thσ  and wear )(tuw , expressed in terms of the 
indentation )(t∆  of the coating by the rigid half-plane I and the potential difference )(0 tV  on 
the piezoelectric interlayer B electrodes. In applications, for example, during the grinding and 
polishing the tool penetration )(t∆  should satisfy some requirements to prevent damage of a 
workpiece. In this view, on need to select the indentation law )(t∆  which will ensure, for 
instance: a) the workpiece load varying in the predefined range or constant, b) the temperature 
of the workpiece surface varying in the predefined range or constant. To fulfill such 
additional requirements like a) or b) occurring in tribological or machining applications, let us 
consider these particular applied problems, which can be formulated as inverse to the main 
problem considered in Section 2.  

The applied problem а) can be formulated as follows. In the conditions of the main 
problem (Section 2) the indentation law )(t∆  of the elastic coating by the half-plane I is need 
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to be determined in a way so the contact pressure ),()( thtp zzσ−=  will be a predetermined 
function of time or constant. Using the formula (12) at hx =  the solution of this problem is 
reduced to the Volterra integral equation [20] 
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where )(tσ  is the predefined function of time, ),(0 thfσ , ),(0 thgσ  are defined by (19), (20). 
The integral equation (38) solution with respect to )(t∆  then can be obtained by the 

Laplace integral transform in the form 

)()~()(
)1(2

)21()( 0

~

0

tVdttht
t

θ+tt−ϕtσ
ν−µ

ν−
−=∆ σκ∫ ,     κ= ttt /~  (39) 

∫
∞

∞−

ζ

σκ
σ ζ

ζ
ζ

π
=ϕ

i

i

t de
hNt

R
i

t
),(

)(
2
1)( . (40) 

Calculation of the contour integral in (27) for )(tσϕ  gives the formula 
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where )(tδ  and )(tH  are, respectively, the Dirac delta function and Heaviside function. 
By substituting (28) to (26), the expression for )(t∆  in terms of )(tσ  is obtained 
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Thus, to make the contact stress develop according to some function )(tσ , one need to 
maintain the indentation law )(t∆  according to formula (42). If the contact stress )(tσ  needs 
to be constant during the wear process, i.e. )()( 0 tHt σ=σ , const=s0 , then the formula (42) 
takes the form 

)()~(ˆ~ˆ)1()()1(
)1(2

)21()( 0

~

0
w0 tVdtVtVktHht

t

θ+











tt−Φ+−−h+σ

ν−µ
ν−

−=∆ ∫ . (43) 

It should be noted that application of the potential difference )(0 tV  to the piezoelectric 
interlayer will result in expansion or shrinkage of the interlayer, so the indentation law )(t∆  
should be changed accordingly to maintain the same )(tσ . 

The inverse problem b) is formulated as follows: in the conditions of the main problem 
(Section 2) the law )(t∆  of the elastic coating indentation by the half-plane I is to be 
determined in a way so the contact temperature )(tT  will be the predefined function of time 

)()( 0 tHTtT = , constT =0 . 
In this case the indentation law )(t∆  is determined from the Volterra integral equation 

which is obtained from (10) at hx =  

)(ˆ1
1),()(),()(

0 0

0
0

0 tT
V
hdthgtVdthft

t t

TT α
ν−
ν+

=tt−θ−tt−∆∫ ∫      0>t , (44) 

where ),(0 thfT , ),(0 thgT  are defined by (19), (20). 
The integral equation (44) solution with respect to )(t∆  is obtained by the Laplace 

integral transform in the following form: 
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Here the functions )(tFk  31−=k  have the following asymptotic properties 
)(O1)(2,1

α+= ttF   at 0→t ,    0>α  (48) 

)(O)(3
β= ttF   at 0→t ,    0>β , 

where βα,  are arbitrary positive numbers. 
In case of )()( 0 tHTtT = , constT =0 , i.e. to maintain the constant contact temperature 

)(tT , the indentation law )(t∆  is given by the formula 
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The functions )(5,4 tF  express the following asymptotic behavior 

)(O1)(4
α+= ttF    at 0→t ,   0>α  (51) 

)(O)(5
β= ttF    at 0→t ,    0>β ,  

where βα,  are arbitrary positive numbers, while the function )(2 tF  is given by (47) and 
satisfies (48). 

Thus, the indentation law )(t∆  can be selected by the required temperature )(tT  using 
the formula (45). For the temperature to be constant )()( 0 tHTtT = , the half-plane I should 
have indentation )(t∆  proportional to 2/1−t  at small 0>t . This fact represent a theoretical 
interests though cannot be directly implemented to the real system in pure form. 

After all, it should be noted that the optimal indentation law )(t∆  may need to account 
more than one parameter of the contact. This require more general problems to be formulated 
and solved rather than one of these particular problems provided here. 

 
7. Conclusion 
The obtained formulas show the possibility of controlling the sliding contact parameters. This 
can be achieved by adjustment either the indentation of the coating by the rigid body or the 
potential difference on the piezoelectric interlayer electrodes. 
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Abstract. The paper establishes a relationship between the indicators of plastic anisotropy 
(coefficient of transverse deformation) and the parameters of the structure of the material. It 
was also investigated the change of crystallography of the structure and anisotropy parameters 
on the example of rolling of Al-1Mn alloy (grade 1400). In general, the results of studies 
indicate a fairly good convergence of the calculated and experimental data, therefore the 
developed models of plastic flow of anisotropic material, taking into account the 
crystallographic orientation of the structure, adequately describe the anisotropy of the 
deformation characteristics of sheet materials. Crystallographic orientations contributing to an 
increase in the coefficients of transverse deformation are established and also leads to the 
creation of transverse isotropy. The conducted studies confirm the principal possibility of 
forming a given crystallographic structure in the sheets which provides an increase in the 
deformation capabilities of the material in the molding process. 
Keywords: plastic anisotropy, crystallographic orientation of the structure, the plasticity 
criterion, the coefficients of transverse deformation, rolling, data storage systems 
 
 
1. Introduction 
A characteristic feature of aluminum alloys is the tendency to form a structure with an 
unfavorable crystallographic orientation in the sheets during rolling, which causes a significant 
anisotropy of deformation characteristics [1]. With the subsequent formation of products from 
such materials occurs the predominant development of deformation in the thickness of the sheet 
and its destruction, the shape and size of the products are distorted, occurs formation of metal 
projections on the edge of the product, the wall thickness of a mechanical component appears 
different at different heights, which ultimately leads to an overestimation of dimensions of a 
work piece and to increasing of constructions weights [2-4]. The proposed solutions to these 
problems are, as usual, reduced to the mechanical account of the anisotropy factor in 
technological calculations and to the recommendations for appropriate adjustment of the shape 
and size of a work piece and tool [5-8,17].  

On the other hand, the above disadvantages of aluminum alloys can be eliminated if the 
rolling purposefully form the crystallography of the structure, taking into account the 
requirements of the subsequent forming processes of blanks in a particular stress-strain 
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state [1,9,24]. However, to solve this problem in technological calculations it is necessary to 
use indicators quantitatively characterizing the crystallographic orientation of the structure. 

To characterize the direction of the predominant development of deformations in the 
plastic flow, deformation anisotropy indicators are widely used, which include Poisson's 
ratios in the plastic region or the coefficients of transverse deformation, which is the ratio of 
logarithmic deformation in width to the deformation along the length of the sample at its 
uniaxial tension [1,18-21]. As can be seen from the definition, although the transverse 
deformation coefficients characterize the plastic anisotropy of the material, they do not take 
into account the physical basis of the anisotropy of the properties, i.e. the crystallographic 
orientation of the structure [25]. That means these indicators do not allow to solve the inverse 
problem, i.e., based on the requirements of plastic forming blanks, to determine the most 
effective composition of the components of the texture, which must be formed in the 
production of structural materials [22]. 

In connection with mentioned above, in this paper the relationship between the values 
of the transverse deformation coefficients and the parameters of the preferred crystallographic 
orientation of the structure is established, as well as the change in the crystallography of the 
structure and anisotropy parameters is studied by the example of the rolling of 
the Al-1Mn alloy [15,16,23]. 

 
2. Theoretical thesis 
Let us use the criterion of plasticity, in the basic equations of which the parameters of the 
structure of materials are introduced [9]: 

( ) ( ) ( ){ 2 2 2
12 11 22 23 22 33 31 33 11

1
22 2 2

12 12 23 23 31 31

1
2

5 5 54 ,
2 2 2

iσ η σ σ η σ σ η σ σ

η σ η σ η σ

= − + − + − +

      + − + − + −             

 (1) 

where iσ  – stress intensity; ijσ  – the components of the stress tensor; (i, j = 1, 2, 3; 1 – the 
direction of rolling, 2 – transverse direction; 3 – the direction of the thickness of the sheet); 

ijη  – generalized anisotropy indicators: 
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 (2) 

A′  – the parameter of anisotropy of the crystal lattice: 
1111 1122

2323
;

2
S SA

S
′ ′−′ =

′
 (3) 

ijklS ′  – elastic constants of the crystal lattice; 

i∆  – parameters of crystallographic orientation of the structure: 
{ } { }

{ }
;hkl uvw hkl uvw

i i
hkl uvw

p∆ = ∆∑  (4) 
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{ }hkl uvwp  – weight fraction of i-th component { }hkl uvw ; { }hkl uvw
i∆  – orientation factor 

of ideal crystallographic orientation { }hkl uvw : 

{ }

( )
2 2 2 2 2 2

22 2 2
;hkl uvw i i i i i i

i
i i i

h k k l l h

h k l

+ +
∆ =

+ +
 (5) 

ih , ik , il  – Miller indices determining the i-th direction in the crystal relative to the 
coordinate system associated with the sample. 

Using the criterion of plasticity (1) and associated flow rule, the equations of connection 
between linear deformations ijε  and stresses ijσ  taking into account the parameters of the 
structure of the material have the form: 
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  (6) 

where iε  – strain intensity: 
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 (7) 

Let's determine the dependence of the ratio of the transverse strain directions in the 
plane of the sheet. Consider stretching a sample which was cut at an angle to the rolling 
direction. In this case, the transverse deformation coefficient is expressed as follows: 

90α
α

α

ε
µ

ε
+= −


, (8) 

where 90αε +   – transverse plastic deformation of compression under linear tension of a flat 

sample; αε  – longitudinal plastic strain of the stretching. Index αµ  varies from 0 to 1. 
The stresses and strains that occur when the specimen is cut at an angle α to the rolling 

direction are related to the following dependences with stresses and strains in the main 
anisotropy axes [10]: 
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 (9) 

2 2
11 22 12cos sin sin cosαε ε α ε α ε α α= + + , (10) 

where ασ  – yield point at linear tension of the sample cut at an angle α to the rolling 
direction. 
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Substituting the expression (10) in (8), taking into account the dependencies (9) and (7) 
after the transformation, we obtain: 
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 (11) 

Using the dependence (11), it is possible to determine the value of the transverse 
deformation coefficient in any direction of the sheet plane, if the generalized anisotropy of the 
material is known. In this case, the expressions for the transverse deformation coefficients in 
the rolling direction, at an angle of 45° to the rolling direction and the transverse direction are 
written as follows: 

21
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η η η

µ
η η η
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η η
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+

 (12) 

 
3. Methods of the experiment 
The studies were conducted on the bullions with a thickness of 400 mm of Al-1Mn alloy, 
which was treated by different thermo-mechanical regimes. Schematic of rolling, indicating 
the mode of annealing, temperature of heating for rolling and degrees of compression during 
hot and cold rolling are shown in Fig. 1. Other parameters were corresponded to the 
conventional rolling technology. At each stage of production samples were selected for x-ray 
structural analysis and mechanical tests. 

Texture measurements in the form of construction of pole figures were carried out on 
samples cut from the middle planes on the thickness of the sheet (one sample for each 
thickness). The plane of shooting of pole figures was parallel to the plane of rolling. Texture 
in the form of incomplete pole figures {111}, {200}, {220}and {311} were measured by the 
method of "reflection" using x-ray diffractometer "Dron-7" (Russian name "Дрон-7") in 
CoKα-radiation. The orientation distribution function (ODF) is calculated from experimental 
pole figures. Based on the obtained ODF, the inverse pole figures were calculated for three 
mutually perpendicular directions in the sample (the normal direction to the rolling plane; the 
rolling direction; the transverse direction). 

Primary crystallographic orientations and their volume fractions were determined by the 
results of cross-section analysis. The criterion for the adequacy of the selection of a set of 
such orientations was the minimum value of the standard deviation between the experimental 
and calculated by the sum of the individual ODF orientations. The orientational factors of the 
texture were then calculated using formulas (4) and (5). Based on the results of texture 
analysis, calculations were performed using the formulas (12) to find the calculated values of 
the transverse deformation coefficients.  

To study the plastic anisotropy, 3 samples were cut for each direction at angles of 0°, 
45° and 90° to the rolling direction. The sizes of samples were chosen according to GOST 
11701-84 (in Russian "ГОСТ 11701-84") and GOST 1497-84 (in Russian "ГОСТ 1497-84") 
depending on the thickness of the sheet. Tests were carried out on an electromechanical 
testing machine Zwick/Roell Z005 with a speed of stretching of 1 mm/min. The Coefficients 
of transverse deformation was calculated in accordance with formula (8). 
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Fig. 1. Scheme of rolling ingots of Al-1Mn alloy 
 

4. Results and their discussion 
As a result of texture analysis, it was found that the heterogeneity of the texture thickness is 
observed in the roll of the Al-1Mn alloy. For the central layer of the non-homogenized ingot 
is characterized by ideal orientation { }139 123 , { }233 133 , { }110 110  (table 1). In the 

surface layer is dominated by orientation type { }127 123 , { }139 123 , { }100 100 . The 
texture is significantly affected by the condition of the ingot before rolling. Thus, in the 
Central layer of the roll, obtained from the non-homogenized ingot, there are mainly 
orientations { }133 110 , { }133 233 , { }124 123 , and in the central layer of the 

homogenized ingot - { }139 123 , { }233 133 , { }110 110 . 
 
Table 1. The change of the preferential crystallographic orientation during rolling of ingots of 
Al-1Mn alloy 

The condition 
of the material 

Basic 
orientations
{ }hkl uvw  

Weight fractions of 
orientations

{ }hkl uvwp  

The coefficients of transverse 
deformation of the orientations, 
µij

cal (defined by formulas (12)) 
µ21 µ1 µ12 

The 
homogenized 
ingot (HI), 
Т=600°С, 
6 hours 

{931}<123> 
{321}<111> 
{521}<012> 
{100}<010> 
{311}<233> 
{110}<001> 

0.1664 
0.1032 
0.0860 
0.0780 
0.0730 
0.0675 

0.166 
0.500 
0.378 
0.500 
0.336 
0.500 

0.204 
0.614 
0.487 
0.142 
0.570 
0.391 

0.284 
0.380 
0.476 
0.500 
0.272 
0.857 

Non-
homogenized 
ingot (NHI) 
(center) 

{321}<139> 
{320}<233> 
{521}<113> 
{953}<132> 

0.1380 
0.0915 
0.0792 
0.0792 

0.500 
0.386 
0.452 
0.446 

0.480 
0.602 
0.447 
0.571 

0.715 
0.340 
0.483 
0.463 
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{332}<203> 
{100}<010> 

0.0732 
0.0704 

0.550 
0.500 

0.603 
0.142 

0.659 
0.500 

Rolling from 
the HI work 
piece, 
Т=550°С, 
εh=75%, 
h=100 mm 
(center) 

{139}<123> 
{233}<133> 
{110}<110> 
{130}<139> 
{113}<233> 
{125}<311> 

0.1040 
0.0949 
0.0663 
0.0660 
0.0657 
0.0440 

0.284 
0.541 
0.857 
0.421 
0.336 
0.452 

0.523 
0.640 
0.391 
0.387 
0.570 
0.447 

0.284 
0.567 
0.500 
0.489 
0.272 
0.483 

Non-
homogenized 
ingot (NHI) 
Т=550°С, 
εh=75%, 
h=100 mm 
(center) 

{133}<110> 
{133}<233> 
{124}<123> 
{110}<223> 
{110}<100> 
{113}<233> 

0.1053 
0.1014 
0.0988 
0.0739 
0.0704 
0.0294 

0.819 
0.474 
0.414 
0.663 
0.500 
0.336 

0.447 
0.635 
0.552 
0.561 
0.391 
0.570 

0.522 
0.432 
0.414 
0.425 
0.857 
0.272 

Non-
homogenized 
ingot (NHI) 
Т=450°С, 
εh=75%, 
h=100 mm 
(center) 

{100}<100> 
{139}<123> 
{113}<233> 
{233}<113> 
{126}<124> 
{110}<100> 

0.1276 
0.1040 
0.1012 
0.0657 
0.0646 
0.0585 

0.500 
0.284 
0.336 
0.574 
0.415 
0.500 

0.142 
0.523 
0.570 
0.551 
0.458 
0.391 

0.500 
0.284 
0.272 
0.727 
0.404 
0.857 

Hot rolled strip 
of metal  
from the HI 
work piece, 
Т=550°С, 
εh=94%, 
h=6 mm 

{100}<100> 
{113}<233> 
{123}<139> 
{139}<123> 
{233}<230> 
{223}<110> 

0.0968 
0.0968 
0.0936 
0.0832 
0.0671 
0.0507 

0.500 
0.336 
0.500 
0.284 
0.550 
0.727 

0.142 
0.570 
0.480 
0.523 
0.603 
0.551 

0.500 
0.272 
0.715 
0.284 
0.659 
0.574 

Hot rolled strip 
of metal  
from the NHI 
work piece, 
Т=550°С,  
εh =94%, 
h=6 mm 

{233}<110> 
{100}<100> 
{123}<139> 
{112}<111> 
{111}<123> 
{110}<111> 

0.1506 
0.1343 
0.1150 
0.0650 
0.0624 
0.0546 

0.727 
0.500 
0.500 
0.500 
0.619 
0.500 

0.551 
0.142 
0.480 
0.614 
0.619 
0.614 

0.574 
0.500 
0.715 
0.380 
0.619 
0.380 

Cold rolled 
strip of metal  
from the NHI 
work piece, 
εh =30%, h=4.2 
mm 

{100}<100> 
{100}<110> 
{139}<123> 
{113}<233> 
{230}<223> 
{110}<533> 

0.1364 
0.0936 
0.0936 
0.0880 
0.0854 
0.0546 

0.500 
0.142 
0.284 
0.336 
0.536 
0.375 

0.142 
0.500 
0.523 
0.570 
0.558 
0.627 

0.500 
0.142 
0.284 
0.272 
0.387 
0.431 

Cold rolled 
strip of metal  
from the NHI 
work piece, 
εh=50%, 
h=3 mm 

{100}<110> 
{113}<233> 
{123}<111> 
{233}<133> 
{110}<111> 
{139}<123> 

0.1100 
0.1056 
0.0832 
0.0657 
0.0624 
0.0520 

0.142 
0.336 
0.500 
0.541 
0.500 
0.284 

0.500 
0.570 
0.614 
0.640 
0.614 
0.523 

0.142 
0.272 
0.380 
0.567 
0.380 
0.284 

Cold rolled {123}<139> 0.1352 0.500 0.480 0.715 
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strip of metal  
from the NHI 
work piece, 
εh=90%, h=0.6 
mm 

{100}<100> 
{233}<110> 
{139}<123> 
{113}<125> 
{359}<130> 

0.1044 
0.0730 
0.0728 
0.0636 
0.0616 

0.500 
0.727 
0.284 
0.548 
0.549 

0.142 
0.511 
0.523 
0.384 
0.401 

0.500 
0.575 
0.284 
0.514 
0.658 

 
Comparing the components of the roll texture obtained at 450 and 550°C, it should be 

noted that the highest rolling temperature contributes to the formation of a clearer texture. 
This is evidenced by a smaller number of preferential orientations in the roll, rolled at 550°C, 
and their higher weight fractions The set of orientations is also different. So in the roll, 
obtained at 450°C, there was a strong orientation { }100 100 . The transverse deformation 
coefficients change accordingly (Table 1). The maximum values of the transverse 
deformation coefficients are observed where the proportions of such orientations prevail, as 
{ }110 110 , { }123 110 , { }110 100 , { }111 123 , { }123 135 , { }123 134 . If the material 

is dominated by the orientation of the type { }100 100 , { }100 011 , { }139 123 { }139 134 , 

{ }113 110 , { }113 233 , then, as can be seen from Table 1, the transverse deformation 
coefficients take minimum values. Alignment of anisotropy coefficients in the plane of rolled 
products is promoted by orientations { }111 123 , { }130 139 , { }233 230 , { }233 133 , 

{ }125 113 , { }124 123 , whereas orientations { }100 100 , { }100 110 , { }110 001 , 

{ }139 123 , { }139 134 , { }133 110 , { }123 135 , { }230 233  causes an increase in the 
plane anisotropy of the properties. 

Further deformation of the roll with a degree of compression of 94% leads to the 
disappearance of orientations { }110 110  and dominance { }100 100  in a strip of the 
homogenized ingot. In the strip of metal obtained from the non-homogenized ingot in addition to 
orientation { }100 001  there is also a strong orientation { }112 111  and { }233 110 . In 
accordance with this, the anisotropy parameters also change. So, for the hot rolled strips of 
metal obtained from the homogenized ingots coefficient 1µ  smaller than 21µ  and 12µ , whereas 
for the hot rolled strips of metal obtained from the non-homogenized ingots the picture is reversed 
(Table 2). 
 
Table 2. Comparison of calculated and experimental values of the transverse deformation 
coefficients of the Al-1Mn alloy 

Research material 

The coefficients of transverse deformation 
defined by formula 

(12) 
defined by formula 

(8) 

21
calµ  1

calµ  12
calµ  exp

21µ  exp
1µ  exp

12µ  
Rolling from the HI 

work piece, Т=550°С, 
εh=75%, h=100 mm 

surface 0.410 0.528 0.365 0.388 0.476 0.496 

center 0.493 0.518 0.433 0.428 0.516 0.466 
Rolling from the NHI 
work piece, Т=550°С, 
εh=75%, h=100 mm 

surface 0.388 0.503 0.377 0.371 0.451 0.377 

center 0.406 0.533 0.433 0.424 0.544 0.494 

Rolling from the NHI surface 0.524 0.494 0.470 0.494 0.497 0.402 
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work piece, Т=450°С, 
εh=75%, h=100 mm center 0.461 0.479 0.472 0.449 0.407 0.450 

Hot rolled strip of metal from the HI work 
piece, Т=550°С, εh=94%, h=6 mm 0.510 0.487 0.506 0.471 0.454 0.472 

Hot rolled strip of metal from the NHI work 
piece Т=550°С, εh=94%, h=6 mm 0.466 0.537 0.471 0.416 0.433 0.474 

Cold rolled sheet, εh=30%, h=4.2 mm 0.362 0.518 0.359 0.341 0.567 0.417 
Cold rolled sheet, εh=50%, h=3 mm 0.362 0.522 0.341 0.305 0.541 0.384 
Cold rolled sheet, εh=90%, h=0.6 mm 0.425 0.493 0.507 0.371 0.463 0.433 

 
Cold rolling with a compression ratio of 30% leads to the appearance of orientations 

{ }100 011 , { }139 123 , which contribute to the reduction of 21µ  and 12µ  in contrast with 

1µ . With cold rolling with a compression ratio of 90%, the weight fractions of the 
orientations increase { }100 001  and { }123 139 , appears a strong orientation { }123 110 . 
As a result, the difference between the anisotropy indices in the sheet plane decreases and the 
value decreases 1µ . 

Verification of the reliability of the obtained models of the relationship of anisotropy 
parameters with the texture characteristics was carried out by comparing the values of the 
transverse deformation coefficients calculated by the formulas (12) and determined by 
mechanical tests of the samples for tension by the formula (8) (Table 2). Differences in 
calculated and experimental values ijµ  do not exceed 10% and are explained by the spread of 

the values of the pole density, and also reflect the fact that exp
ijµ  the anisotropy of the 

specimen deformed by stretching rather than the initial one is characterized. 
In general, the results of studies indicate a fairly good convergence of the calculated and 

experimental data, therefore the models (12) reflect the real anisotropy of the deformation 
characteristics of sheet materials, and the plasticity criterion (1) adequately describes the 
plastic flow of anisotropic material taking into account its crystal structure orientation. 

 
Conclusion 
To obtain the required values of anisotropy in the sheets, it is necessary to increase the weight 
fractions of the corresponding orientations. So, in the studied hot-rolled sheets  
of Al-1Mn alloy orientation { }123 139 , { }111 123 , { }110 100  contribute to the increase 

in the coefficients of transverse deformation and orientation { }100 110 , { }100 001 , 

{ }139 123  - their reduction. To create a transversal isotropy, it is necessary to increase the 

weight fractions of the orientations { }111 123 , { }223 230 , { }233 133  and reduce the 

proportion of orientations { }100 001 , { }139 123 , { }110 011 . 
In general, the studies of the formation of texture components and anisotropy indicators 

at the main stages of rolling, comparison of calculated and experimental values of the 
transverse deformation coefficients confirm the principal possibility of the formation of a 
given crystallographic orientation of the structure in the sheets, the requirements for which 
can be formulated on the basis of the analysis of the processes of forming sheet blanks using 
the plasticity criterion developed by the authors. 

Aluminum is used as a material for manufacturing hard drive sections. Deformation of 
these sections can cause storage system failure. Therefore, this study is of interest to the 
project devoted to the development of software and hardware complex for predicting failures 
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of data storage systems (DSS). This project has been launched in 2017th and is being 
implemented with the financial support of the Ministry of Science and Higher Education of 
Russian Federation. The program complex developing for forecasting of data storage system 
failures is designing within the project. This complex is developing for the data storage 
systems running on the platform "YADRO TATLIN" in various configurations [11-14]. 

The results discussed in this paper can be used to analyze the effect of material 
properties on hard drive vibration. In the future, it is planned to study the properties of the 
material on the probability of deformation and violation of the mechanical properties of data 
storage system components.  
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Abstract. The relationship between the rolling force and the initial thickness of the Al-Mg-Li 
sheet preform for thicknesses of 1.8 mm and 4.8 mm was shown for cold rolling pre-
quenched and artificial aging. Samples with a thickness of 7.3 mm were obtained by hot 
rolling with cooling from the deformation temperature. Thermoanalytical support of the 
rolling process is carried out by the method of temperature analysis based on isothermal 
discrete scanning (IDS) data. It gives the connection of effort with internal temperature 
distributions, which have general patterns of properties, regardless of the complexity of the 
structure and composition of the material. The presence of periodicity and steady-state 
temperatures after IDS makes it possible to partition the results of the temperature scanning of 
the samples into sections. As a result, it is possible to improve the accuracy of estimating the 
effect of the initial thickness of the workpiece on the force for each of the passes during cold 
rolling, without correction for the thermal or technological past. 
Keywords: Al-Mg-Li sheet, cold rolling, temperature analysis 
 
 
1. Introduction 
During developing and introducing into production the technology for rolling sheets of the 
required thickness, thermal analysis (TA) methods have been applied. The heating rate is 
selected according to the registered thermal effects, for example, a thermoanalytical device 
(thermograph) with software control is used for this. The use of DTA (differential thermal 
analysis) allows solving a number of problems, such as determining the temperature and heat 
of phase transformations, determining the heat capacity of substances, determining the 
content of impurities in the substance, and determining the kinetic parameters of the chemical 
reaction. 

However, like all experimental methods, thermal methods are not free of some 
limitations. The rate of change in temperature plays a significant role in the value of the phase 
transformation parameters. Sometimes with the help of rapid heating it is possible to melt the 
sample before its decay, while with slow heating the sample decomposes before melting. To 
approach equilibrium conditions, it is necessary to heat as slowly as possible. At low heating 
rates, it is possible to obtain signals on which the processes occurring in the sample are 
clearly separated, and, the lower the speed, the easier it is to divide them, in DTA, the control 
possibilities are limited here. During IDS (isothermal discrete scanning), the temperature and 
time can be any, and the speed is raised abruptly. Further, the temperature analysis (TmA) 
connects the description of transition structures and changes in the properties of substances 
with joints of temperature intervals [1]. The choice of the IDS method in the study is due to 
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the fact that it can be used to obtain internal distributions of almost any material property, 
regardless of the complexity of the structure of the sample. 

Thus, DTA method gives the heat values for the formation and decomposition of 
chemical compounds in the sample, and the IDS method gives the temperature distribution in 
the sample volume. The relationship between DTA and IDS methods is provided by meeting 
the isotemperature requirements for each heating and changing the samples so that the 
previous temperature changes can be cut off from subsequent changes at higher temperatures. 
As a result, they do not overlap. This provides a real distribution of temperature changes in 
the volume of samples and allows a sharp increase in the accuracy of determining the 
characteristic temperatures of single phases, chemical compounds and other parts of the 
material. 

Investigation of the connection between mechanical impacts requires the inclusion of 
two discrete series [2]. The discrete series (Tπ) in the given intervals reflects the process of 
energy absorption by the crystal lattice, is strictly observed in the temperature periods, and is 
used to divide the obtained data into regions for analysis. The discrete series (Tσ) in the 
indicated intervals shows the changes in the volume of the sample as a reaction of the 
mechanical impact: 
(Tπ) 171.5; 514.5; 857.5; 1200.5; 1543.5; …°С; 
 

(Тσ) 0; 343; 686; 1029; …°С. (1) 
IDS reflects the dynamics of modifications of structures in places of thermal effects and 

a change in density as the distribution of phases in the volume of the sample, which depend 
on temperature and external force. Previously, the utility of complex analysis using DTA and 
IDS methods was shown. They actually work as independent elements of one measuring 
system [3, 4]. 

The purpose of the article is to investigate the relationship between the rolling force and 
the initial thickness of Al-Mg-Li sheets. Samples with a thickness of 1.8 mm and 4.8 mm 
were obtained by cold rolling, passed quenching and artificial aging. Sheet samples with a 
thickness of 7.3 mm thickness were obtained by hot rolling with cooling from the temperature 
of hot deformation [8 – 13]. All samples are rolled on a KVARTO K220-75/300 laboratory 
mill with an electronic force measuring system with piezoelectric sensors glued to the stand of 
the stand. The IDS method was implemented in a simplified version, in order to take into 
account the influence of time, each sample was heated to a certain temperature before cold 
rolling and kept in the furnace for one, two or three minutes. 

 
2. Determination of the correspondence between the periodicity of plastic deformation 
and the periodic grid of stationary temperatures 
Classical concepts of plastic deformation are based on the fact that in the process of 
increasing the degree of deformation, dislocation defects accumulate. The greater the degree 
of plastic deformation, the more defects must contain a deformable crystal and, consequently, 
more elastic energy. However, there is an analogy between the process of energy absorption 
by the crystal lattice during plastic deformation and the process of metal heating. In either 
case, there is a critical value of the energy. In the first case, this distortion of the crystal lattice 
to a pseudocrystalline value in local volumes, and in the second case, a change in the heat 
content of the metal due to the absorption of additional energy by the crystal  
lattice [5, 14 – 16]. 

During rolling, the directional action of the deforming forces causes a rotation of the 
grains and their crystallographic axes along the direction of maximum deformation in the 
polycrystalline body. It is precisely the rotations of the grains and their crystallographic axes 
with rotational plasticity that are accompanied by a change in the symmetry of the order 
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parameter. They are associated with cardinal structural transformations, which reduce the 
critical level of elastic energy absorbed by the crystal lattice [6, 17 – 20]. 

Defining a change in the symmetry of the order parameter, and knowing the symmetry 
of the original structure for phase transitions of the second kind, one can find changes in the 
symmetry of the crystals during phase transitions associated with structural instability. 
A measure of the change in the symmetry of the order parameter is the measure of the 
stability of the system i∆  and the values of the generalized "golden" proportion represented in 
the form of discrete sequence: 

i∆ = 0.618; 0.465; 0.380; 0.324; 0.285; 0.255; 0.232; 0.213. (2) 
Such a change in the symmetry is localized at the appropriate temperatures and 

correlates to the second discrete series (1), which must agree with another discrete series of 
gold sections. It is to be developed, since the increase in grain size during IDS is quite short-
term and refers to individual phases, and the others are not yet activated. Increasing the 
temperature causes the reverse process of reducing the grain size and causes a change in the 
rolling forces relative to the temperature of IDS [21]. 
 
3. Results of field research 
The first investigated cold-rolled Al-Li-Mg sheet with a thickness 1.8 mm. From it 
preliminary samples were cut with a width of 30 mm and a length of 50 mm in an amount of 
28 pieces for subsequent cold rolling on a laboratory rolling mill KVARTO K220-75 / 300. 
Before rolling, each sample was heated to a certain temperature by IMD method and stored in 
a thermograph for one minute. Each sample after individual heating according to the mode of 
IDS method was rolled in four passes with fixation of the values of thickness and rolling 
force. The results are summarized in four lines corresponding to each pass (Table 1). Based 
on the results of Table 1, the graphs of the dependence of the rolling force on the temperature 
of the IDS were plotted (Figs. 1, 2, 3 and 4). The numbers next to the red marks indicate the 
thickness of the sample after each rolling pass. 

 
Table 1.The results of cold rolling of samples with thickness 1.86 mm in four passes 

№ Sample, 
original 

thickness. 
IDS 

temperature, 
°C 

Pass 
cold 

rolling 

Thickness, 
mm 

Force, 
kN 

№ Sample, 
original 

thickness. 
IDS 

temperature, 
°C 

Pass 
cold 

rolling 

Thickness, 
mm 

Force, 
kN 

Sample 1, 
1.83 mm, 

25°C 

1 1.59 10.1 Sample 15, 
1.84 mm, 

425°C 

1 1.58 10.6 
2 1.2 13.7 2 1.26 25.8 
3 0.91 41.5 3 0.91 48 
4 0.58 101.8 4 0.59 91.8 

Sample 2, 
1.84 mm, 

50°C 

1 1.6 11.2 Sample 16, 
1.84 mm, 

450°C 

1 1.57 6 
2 1.27 15.2 2 1.26 29.3 
3 0.93 52.4 3 0.9 55.4 
4 0.59 101.2 4 0.57 92.6 

Sample 3, 
1.83 mm, 

100°C 

1 1.6 15.5 Sample 17, 
1.84 mm, 

475°C 

1 1.57 11.1 
2 1.27 19.2 2 1.26 23.7 
3 0.92 43.9 3 0.9 49.3 
4 0.58 99.6 4 0.58 90.5 

Sample 4, 
1.85 mm, 

1 1.6 18.3 Sample 18, 
1.85 mm, 

1 1.58 15.2 
2 1.27 11.8 2 1.26 29.8 
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№ Sample, 
original 

thickness. 
IDS 

temperature, 
°C 

Pass 
cold 

rolling 

Thickness, 
mm 

Force, 
kN 

№ Sample, 
original 

thickness. 
IDS 

temperature, 
°C 

Pass 
cold 

rolling 

Thickness, 
mm 

Force, 
kN 

150°C 3 0.92 48.4 500°C 3 0.9 54.6 
4 0.57 95.3 4 0.56 91.5 

Sample 5, 
1.83 mm, 

175°C 

1 1.6 19.5 Sample 19, 
1.84 mm, 

525°C 

1 1.57 15.2 
2 1.28 17.2 2 1.26 27.3 
3 0.93 51.6 3 0.9 56.6 
4 0.59 103.8 4 0.57 93 

Sample 6, 
1.84 mm, 

200°C 

1 1.59 13.4 Sample 20, 
1.84 mm, 

550°C 

1 1.58 11.5 
2 1.27 17.5 2 1.25 25.2 
3 0.92 48.8 3 0.89 49.4 
4 0.52 102.3 4 0.55 87.2 

Sample 7, 
1.85 mm 
225°C 

1 1.6 8.2 Sample 21, 
1.84 mm, 

575°C 

1 1.58 6.3 
2 1.28 21.3 2 1.25 21.1 
3 0.92 48.4 3 0.9 55 
4 0.59 103.2 4 0.57 85.6 

Sample 8, 
1.83 mm, 

250°C 

1 1.59 17.3 Sample 22, 
1.84 mm, 

600°C 

1 1.57 10.8 
2 1.27 19.1 2 1.25 20.7 
3 0.91 50.5 3 0.9 58 
4 0.59 102.8 4 0.57 93.3 

Sample 9, 
1.85 mm, 

275°C 

1 1.59 11.3 Sample 23, 
1.83 mm, 

625°C 

1 1.6 15.5 
2 1.26 24.2 2 1.27 27.1 
3 0.92 55.5 3 0.9 59 
4 0.58 96.9 4 0.57 91.7 

Sample 10, 
1.83 mm, 

300°C 

1 1.58 7.3 Sample 24, 
1.84 mm, 

650°C 

1 1.58 16.3 
2 1.27 27.3 2 1.25 23.9 
3 0.92 57 3 0.91 60.3 
4 0.58 94.6 4 0.57 89.3 

Sample 11, 
1.84 mm, 

325°C 

1 1.59 9.1 Sample 25, 
1.85 mm, 

675°C 

1 1.6 17.2 
2 1.27 24.4 2 1.26 34.7 
3 0.91 54.8 3 0.91 60.8 
4 0.58 100.9 4 0.58 94.6 

Sample 12, 
1.83 mm, 

350°C 

1 1.59 12.7 Sample 26, 
1.83 mm, 

700°C 

1 1.62 19.9 
2 1.26 19.3 2 1.28 34.1 
3 0.9 53.1 3 0.92 64.4 
4 0.58 86.6 4 0.57 92 

Sample 13, 
1.83 mm, 

375°C 

1 1.57 14 Sample 27, 
1.85 mm, 

725°C 

1 1.57 12.2 
2 1.25 17.7 2 1.25 27.1 
3 0.9 52.3 3 0.9 58.2 
4 0.57 85.6 4 0.57 88.6 

Sample 14, 
1.83 mm, 

400°C 

1 1.57 18 Sample 28, 
1.83 mm, 

750°C 

1 1.57 13 
2 1.25 22 2 1.24 23.5 
3 0.9 43.3 3 0.89 53.6 
4 0.56 85.3 4 0.57 89.1 
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According to temperature analysis, graphic support is mandatory. Tabular 
representation is necessary for technological correction of cold rolling passes. Therefore, here 
are two options. This is the advantage of physicochemical analysis. In this case, according to 
four figures with an enlarged scale on the vertical, an important fact is revealed. 
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Fig. 1. The dependence of the rolling force on the temperature of the IDS (1) samples at the 

first pass 
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Fig. 2. The dependence of the rolling force on the temperature of the IDS (2) samples at the 

second pass 
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Fig. 3. The dependence of the rolling force on the temperature of the IDS (3) samples at the 

third pass 
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Fig. 4. The dependence of the rolling force on the temperature of the IDS (4) samples at the 
fourth pass 
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At the first pass, the heating by the IDS method could not be done, heating, even at high 
temperatures, does not promote the rolling. And further increase in the load on the second and 
third pass, on the contrary, requires an increase in effort [22 – 24]. Only in the fourth pass, 
when the average force has doubled, the temperature effect gives an effect. In all cases, the 
lines have active kinks. These places of probable discontinuities near stationary temperatures 
are called "orthogonal" areas and they are strictly tied to the temperature axis. The imposition 
of discrete series gives the following. For 171.5°С, there is an "orthogonal" section of the 
transition through the value of Tp, as required by TmA, and for 514.5 °С it is "orthogonal" for 
loads at the fourth pass. For the second series, the "orthogonality" of 343°С and 686°С is also 
observed for the second pass, but there is a maximum at 686°С. This indicates the stability of 
the fragments of the structure, so this mode is not recommended. Increased effort on the aisles 
has not yet been substantiated [25]. 

The second investigated cold-rolled Al-Li-Mg sheet with thickness 5.3 mm. Samples of 
30 mm wide and 50 mm long were also cut out of it in an amount of 18 pieces. Before rolling, 
this group was divided into two parts: 10 pieces and 8 pieces. In each lot, the individual mode 
of IDS was tested with its temperature and holding time in a thermograph for two or three 
minutes (Tables 2, 3). According to the results of Tables 2 and 3, the graphs of the 
dependence of the rolling force on the temperature of the IDS were  
plotted (Fig. 5,6 and 7,8). 

 
Table 2. Results of cold rolling of the first batch of samples with a thickness 5.3 mm for two 
passes 

№ Sample, 
original 

thickness. IDS 
temperature, 

°С 

Pass 
cold 

rolling 

Thickness, 
mm 

Force, 
kN 

№ Sample, 
original 

thickness. 
IDS 

temperature, 
°С 

Pass 
cold 

rolling 

Thickness, 
mm 

Force, 
kN 

№ 1 IDS 
330°С 3.0 min, 

4.83 mm 

1 2.84 121 № 2 IDS 
350°С 

3.0 min,  
4.86 mm 

1 2.95 96.5 

2 1.41 236.3 2 1.54 185.8 

№ 3 IDS 
520°С 3.0 min, 

4.85 mm 

1 2.82 78.7 № 4 IDS 
670°С 

3.0 min,  
4.85 mm 

1 2.84 83.9 

2 1.52 193 2 1.5 184.7 

№ 5 IDS 
695°С 3.0 min, 

5.2 mm 

1 3.43 - № 6 IDS 
750°С 

3.0 min, 
4.80 mm 

1 3.15 72.1 

2 1.9 - 2 1.72 107.8 

№ 7 IDS 
800°С 3.0 min, 

5.2 mm 

1 3.2 85.3 № 8 IDS 
840°С  

3.0 min, 
4.81mm  

1 3.65 85.3 

2 1.67 103 2 - - 

№ 9 IDS 
865°С 3.0 min, 

4.93 mm 

1 3.75 103.9 № 10 IDS 
900°С  

3.0 min, 
4.85 mm 

1 4.1 65.1 

2 2.17 75.1 2 - - 
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Samples of thickness 5.3 mm at high forces show the work of the second series (1) 
343°С, 646°С and 514.5°C separates the intervals and shows that the volume of the sample is 
stably differentiated into plastic regions with respect to temperature. The use of such 
exaggerated efforts justifies the confidence of the TmA theory, but technologically for large 
thicknesses of the sample the effort should be lower, and the number of passes will 
increase [26]. At the first pass there are higher temperatures, so that the second interval will 
represent a fully 857.5°C rise shows the phase discontinuity related to the joint of the two 
regions forming different volumes in terms of stability. 
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Fig. 5. The dependence of the rolling force on the temperature of the IDS (1) of the samples 

of the first batch with thickness of 5.3 mm at the first pass 
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Fig. 6. The dependence of the rolling force on the temperature of the IDS (1) of the samples 

of the first batch with thickness of 5.3 mm at the second pass 
 

The rolling of the second batch shows that in the intervals between the selected loads 
there are transformations of the transition structures. Obviously, the formation of the 
dominant region can be established, the maximum at 646°C, and with increasing force, the 
maximum is more pronounced while in the first batch it has a clearly "orthogonal" form [27]. 

The nature of the change in the rolling forces, taking into account the influence of the 
thickness of the Al-Li-Mg sheet sample, shows that the necessary individual choice of 
cobbing of the samples along the rolling passes is in good agreement with the series (1) of 
stationary temperatures of the thermal and force nature of the processes. This was clearly seen 
before the connection with discrete series was established in [7, 28 – 30]. In the next paper, it 
was assumed that when rolling samples at different thicknesses, registering thermal effects, 
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one can determine those modes of passages that were not previously available and had 
limitations on the fragmentation limit. To complete the real picture of the structural changes 
in Al-Mg-Li material, data on the texture are needed that will link the conditions for 
regulating the anisotropy of properties and the amorphization regimes in the border regions of 
the structural elements of the sample. In other words, the thermal effect can be accurately 
rationed as a disturbing factor, which causes the development of local structure dynamics. 
This serves as the basis for applying the methods of physics of granular  
materials – stereoisomeric parametrization of the structure, which are universal in the sense of 
addressing structures at different scales [9, 31]. 
 
Table 3. Results of cold rolling of the second batch of samples with a thickness of 5.3 mm in 
two passes 

№ Sample, 
original 

thickness. IDS 
temperature, °С 

Pass 
cold 

rolling 

Thickness, 
mm 

Force, 
kN 

№ Sample, 
original 

thickness. 
IDS 

temperature, 
°С 

Pass 
cold 

rolling 

Thickness, 
mm 

Force, 
kN 

№ 1 IDS 800°С 
1.5 min,  
4.85 mm 

1 
3.13 87.6 № 2 IDS 

740°С 
2.0 min, 
4.87 mm 

1 
3.17 91.9 

2 1.66 124.7 2 1.65 132 

№ 3 IDS 710°С 
2.0 min,  
4.82 mm 

1 3.15 91.5 № 4 IDS 
680°С 

2.0 min, 
4.84 mm 

1 3.14 89.6 

2 1.67 124.1 2 1.65 126.2 

№ 5 IDS 650°С 
2.0 min,  
4.85 mm 

1 3.17 98.3 № 6 IDS 
590°С 

2.0 min, 
4.84 mm 

1 3.15 93.8 

2 1.7 147 2 1.67 124.9 

№ 7 IDS 620°С 
2.0 min,  
4.85 mm 

1 3.14 88.2 № 8 
IDS560°С 
2.0 min, 
4.85 mm 

1 3.17 96.5 

2 1.65 120.7 2 1.66 124.5 
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Fig. 7. The dependence of the rolling force on the temperature of the IDS (1) of the samples 

of the second batch with thickness of 5.3 mm at the first pass 
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Fig. 8. The dependence of the rolling force on the temperature of the IDS (2) of the samples 

of the second batch with thickness of 5.3 mm at the second pass 
 

4. Conclusions 
Taking into account the influence on the rolling force of the initial thickness of the Al-Mg-Li 
sheet sample gives reliable guidelines for the search for the optimal rolling mode for sheet 
materials. It is also possible to use this approach for other initial thicknesses by means of a 
certain recalculation in terms of the change in the symmetry of the order parameter and the 
selection of the IDS modes, depending on the displacement to the stationary temperatures and 
temperatures of the power series. 

The results obtained serve to select the mode of preliminary thermal activation by the 
IDS method. This greatly simplifies the processing of results in connection with the 
connection to the intervals of stationary temperatures and improves the accuracy of the impact 
evaluation. 

The presence of a periodic dependence of the rolling force of the samples on their 
temperature, the IDS, can be used to quantify the parametrization of the participation of local 
quasi-liquid structures that affect the plasticity of the deformed material, as was previously 
established for granular materials. 
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Abstract. This paper studies propagation of non-stationary axially symmetrical kinematic or 
electromagnetic disturbances applied on the surface of a ball. To this end, linear equations of 
motion of an elastic ball together with Maxwell equations are used as well as linearized 
generalized Ohm law and Lorentz force equation. The required functions are expanded in 
series in terms of Legendre and Gegenbauer polynomials. Laplace integral time 
transformation and expansion of coefficients of series into power series in small parameter 
linking mechanical and electromagnetic properties of the medium enabled finding recurrent 
sequence of boundary value problems with respect to components of mechanical and 
electromagnetic fields. The solution of each problem is represented in the form of generalized 
convolution of functions corresponding to previous members of the recurrent sequence with 
Green functions. 
Keywords: Green functions, electromagnetic disturbances, linear equations of motion of 
elastic ball, Ohm law 

 
 

1. Introduction 
Currently, the issues of considering coupled fields of mechanical and other nature, such as 
electromagnetic, are becoming increasingly important in various engineering problems. 
However, coupled problems of electromagnetic and mechanical fields inside conductors have 
not been enough studied at present. The relevance of this topic is beyond doubt, since the 
coupled fields are used in many areas of modern technology: electroacoustic, radio 
engineering, automatic systems. At the same time, mathematical modeling of the conjugate 
fields interaction is often simpler and more better visualized than physical experiment [1]. 
The only solutions are known is for piezoelectrics in the non-stationary formulation for a 
sphere. In this paper, we consider the propagation problem of electromagnetoelastic non-
stationary two-dimensional waves inside isotropic conducting sphere under the influence of 
surface electric or mechanical disturbances.  

Statements of non-stationary problems of electromagnetic elasticity are given in [2]. 
Solutions of corresponding uncoupled problems will be natural necessary components of this 
problem. The article [3] studies two-dimensional non-stationary electromagnetic fields 
induced by specific displacement field in a ball. The publication [4] investigates non-
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stationary process of axially symmetric deformation of elastic ball under volumetric forces. 
In [5] the coupled problem of electromagnetoelasticity for the spherical cavity located in the 
infinite isotropic conductor is solved. In contrast to the listed articles, in publications prior to 
those reviewed, as a rule, the connection of conjugate fields occurs through physical relations. 
Traditionally, solutions were built numerically and numeric-analytically. The numerical 
results of electroelasticity are known for canonical geometry bodies made of piezoelectric 
materials. In particular, the existence and uniqueness theorems for generalized solutions of 
coupled non-stationary two-dimensional electroelasticity problems was proved in [6] for some 
canonical geometry domains. In addition, the problem for a hollow piezoceramic finite length 
cylinder polarized along the radius was numerically solved in [7] and [8]. Moreover, in [8] 
more efficient numerical method for finding solutions was proposed. Analytical and numeric-
analytical solutions of electroelasticity for piezoceramic cylinder are described in detail in [9, 
10]. Similar problems of coupled electroelasticity for the thick-walled piezoelectric sphere 
were considered in [11, 12]. Moreover, in [12] the algorithm of finding an analytical solution 
is described. To find the analytical solutions for non-stationary problem, effective method is 
expansion in a series by the inverse parameter of the Laplace transform. It allows us to find 
solutions of the problem at small time intervals. Such approach in one-dimensional 
formulation was demonstrated in [13] by the example of electromagneto-thermoelastic 
spherical cavity. The present article offers further development of the results of recent three 
studies, now as applied to an electromagnetic elastic ball where mechanic and electromagnetic 
fields are coupled by Lorentz force acting as volumetric force in motion equation, and 
generalized Ohm law [14]. This problem has also practical applications of investigation of 
electromagnetic and mechanic fields, for instance in non-destructive inspections, as well as in 
designing electronic devices using conductor and conductive coating in harsh operational 
conditions. 

 
2. Statement of problem 
Consider a homogeneous isotropic conductive ball of radius 1r  with a center at point O  at the 
boundary of which there are preset kinematic or electromagnetic conditions ( , ,r θ ϑ  is 
spherical coordinate system where 0, 0 ,r ≥ ≤ θ ≤ π − π < ϑ ≤ π ): 

( ) ( ) ( )
1 1 1

1 1 01, , , , ,
r r r r r r

u U v V E eθ= = =
= τ θ = τ θ = τ θ . (1) 

They are complemented by the boundary condition of the medium stress-strain 
components and the electromagnetic field. The initial electromagnetic field is assumed to be 
stationary, radial and satisfies the conditions ( )0 0 0 0, 0, 0rE E r E Hθ= ≡ ≡  (hereinafter zero 
indices indicate the initial condition). At the initial moment of time the ball is in undisturbed 
state (dots label the time derivatives): 

0 0 0 0 0 0 00 0 0
0r ru u v v E E E E H Hθ θτ= τ= τ= τ= τ= τ= τ=τ= τ= τ=

= = = = = = = = = =    , 

where u  and v  are radial and tangential displacements, rE  and Eθ  - components of electric 
field vectors; H  is a non-zero component of magnetic field vector. 

Resulting from the motion equations, Maxwell equations and generalized Ohm law, 
closed coupled equation system with assumed axially symmetric motion will have the 
form [2]. The obvious type of the corresponding system of the equations is given in [5]. To 
non-dimension sizes entered in work [4], in the system of the equations for a cavity for the 

considered sphere the ratio is added: 1rr
L
′

= . At the same time, in designations which are used 

in [5] and further: t  is time; rj  and jθ  are radial and tangential densities of current; eρ  is the 
density of surface charges; kF  are non-zero radial and tangential components of Lorentz 
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forces; c , 1c  and 2c  are speed of light and speed of propagation of strain-stress and shear 
waves; λ  and µ  are elastic Lame constants; ε  and eµ  are coefficients of dielectric and 
magnet permittivity; σ  is coefficient of electric conductivity; L  and E∗  are some specific 
linear size and electric field intensity. 

 
3. Expansion in series over angle 
Let the required functions, similar to work [5] be represented in form of series in terms of 
polynomials of Legendre ( )nP x  and Gegenbauer ( )3 2

1nC x−  [15]. Taking the functions of 
displacement and magnetic field strength as primary unknown variables, after Laplace time 
transform τ  (when s  is its parameter; index L  designates a transform domain) and using the 
fact that as shown in [16], even in one-dimensional case the solution of corresponding 
boundary value problem has Bessels functions with indices depending on the parameter of the 
Laplace transformation. Obviously, for this reason it is impossible to find a solution 
analytically. To this reason, we represent the required functions in power series in small 

parameter 
( )

2

α
4 λ+2μ

E∗=
ε

π
. Index n  treats decomposition coefficients on Legendre and 

Gegenbauer polynomials, m  - to decomposition coefficients in the following series: 

( ) ( ) ( )

( ) ( ) ( )

0 0 0

0 0 0

, , , , , ,

, , , , , .

m m m
n nm n nm n nm

m m m

m m m
n nm rn rnm n nm

m m m

u u r v v r H H r

r E E r E E r

∞ ∞ ∞

= = =

∞ ∞ ∞

θ θ
= = =

= τ α = τ α = τ α

r = r τ α = τ α = τ α

∑ ∑ ∑

∑ ∑ ∑
              (2) 

Substitution of these series to the system of the equations on coefficients of series of 
decomposition of required functions on Legendre and Gegenbauer polynomials [5] will lead 
to a recurrent sequence of system of equations with respect to limited functions 

( )2
00 110 00 ;L Ls u l u=  (3) 

( ) ( ) ( )2
0 110 0 0, 1 0, 1, , 0, 1 ;L L L L

m m u r m ms u l u g E n m− −= + = ≥r  

2 2
0 0 0 ;L L

e r m e ms E s u= − r  ( )
( )2

0 0
0 2 , ( 0, 0)

L
e mL

m

r uss n m
rr

∂ r
+ γ r = − = ≥

∂
;

( )2 2 2 ,L L L L
e e nm n nm e H nm nms H H sl u vη = ∆ + η ;  (4) 

( ) ( ) ( ) ( )2 2
0 11 0 12 0 0 21 0 22 0, ;L L L L L L

n n n n n n n n n ns u l u l v s v l u l v= + = +      (5) 

( ) ( ) ( )
( ) ( ) ( ) ( )

2
11 12 , 1 , 1

2
21 22 , 1 , 1

, ,

, , 1, 1 ;

L L L L L
nm n nm n nm u rn m n m

L L L L L
nm n nm n nm v n m n m

s u l u l v g E

s v l u l v g E H n m

− −

θ − −

= + + r

= + + ≥ ≥
 

( )
( )

( ) ( )

2 2
0

2 2
0

1 ,

1
;

L
nmL L

e nm e e nm

L L L
e rnm nm e e nm

rH
s E s v

r r
n n

s E H u
r

θ

∂
η + γ = − − η r

∂
+

η + γ = − η r

 (6) 

( ) ( ),L L L
nm n nm nms sl u vρ+ γ ρ = − , ( )1, 1n m≥ ≥  (7) 

with the following boundary value conditions: 
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( ) ( ) ( ) ( )
1 1

0 1 0 10 , 1L L L L
n n n nr r r r

u U s n v V s n
= =

= ≥ = ≥ ;  (8) 

( ) ( )
1 1 1

0 0, 1 , 0 1, 1L L L
nm nm nmr r r r r r

u v n m v n m
= = =

= = ≥ ≥ = ≥ ≥ ;

( )
( ) ( ) ( )

1

1

0 2
0 1 01

1 , 1
L
n L L L

e n n r r
r r

rH
h V s e s n

r r =
=

∂
 = −h ≥ ∂

; (9) 

( )
( ) ( ) ( )

1

0 0
1 0 1, 1 , , ,

L
nm L

e

r r

rH
n m h v e s v s e

r r
=

∂
= ≥ ≥ = r + + γ

∂
 (10) 

where ( ) ( )1 0L
nU s n ≥  и ( ) ( )1 01, ( ) 1L L

n nV s e s n ≥  - images on Laplace of coefficients of 
decomposition on series on Legendre and Gegenbauer polynomials according to the right parts 
in (1). 

 
4. Integral expression of solutions 
Pursuant to [3], let the solutions of the boundary value problems (4), (9), (10) with known 

right-hand parts, as well as functions L
nmEθ  and L

rnmE  in (6) be written as follows: 

( ) ( ) ( ) ( ) ( ) ( )
1

2
0

0

, , , , , ,
r

c c
nm e e Hun nm Hvn nmH r G r u G r v d τ = −η r ξ ξ ξ τ + ξ ξ τ ξ ∫           (11) 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1

1

0
0

0 0
0

1
, , , , , ,

, , , , , , ,

r
c c

rnm e Hun nms Hvn nms

r
c c

nm e nms e Hun nms Hvnr nms

n n
E r G r u G r v d

r

E r r v r r u r v dθ

+
 τ = − r ξ ξ ξ τ + ξ ξ τ ξ 

 τ = r τ + r ξ G ξ ξ τ + G ξ ξ τ ξ 

∫

∫
          (12) 

here 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 2

1 2

1 2

, , , ,

, , , ,

, , , ,

, , , ,

c c c
Hun Hn Hn

c c c
Hvn Hvn Hvn

c c c
Hunr Hun Hun

c c c
Hvnr Hvn Hvn

G r G r H r G r H r

G r G r H r G r H r

r r H r r H r

r r H r r H r

 ξ = ξ ξ ξ − + ξ − ξ 
 ξ = ξ ξ ξ − + ξ − ξ 

G ξ = G ξ ξ − + G ξ − ξ

G ξ = G ξ ξ − + G ξ − ξ

 

 

where ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 2, , , , , , , , , , , , ,c c c c c c c
Hun Hun Hvn Hvn Hvn Hvn Hnr r G r G r r r G rG ξ G ξ ξ ξ G ξ G ξ ξ  - 

rational functions of the arguments ,r ξ  . In the formulas (11), (12) and later on ( )H ξ  is 

Heaviside function with the additional lower index s  indicating the result of application of 
operator to such function (asterisk means time convolution) 

( ) ( ) ( )sf f e f−γττ = τ − γ ∗ τ . 
Notably, the kernels of these integral representations were obtained in quasi-static 

approximation ( 0eη = ). 
As the problems (9), (11), (14) were thoroughly studied in the publication [3], [17], 

further on in boundary value conditions (1) let us assume that 
( ) ( )1 1, 0, , 0U Vθ τ ≡ θ τ ≡ . 

Then these problems become homogeneous. Therefore, their solutions are trivial: 
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( ) ( )0 0, 0, , 0 ( 0)n nu r v r nτ ≡ τ ≡ ≥ . 
The solution of "mechanical" part of the problems (9) – (16) with known right-hand 

pars in accordance with the conclusions of the publication [4] is also represented in integral 
form: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1

1 1

, 1 , 1
0 0

, 1 , 1
0 0

, , , , , , , ,

, , , , , , , ;

r r

nm uun un m uvn vn m

r r

nm vun un m vvn vn m

u r G r f d G r f d

v r G r f d G r f d

− −

− −

τ = ξ τ ∗ ξ τ ξ + ξ τ ∗ ξ τ ξ

τ = ξ τ ∗ ξ τ ξ + ξ τ ∗ ξ τ ξ

∫ ∫

∫ ∫
            (13) 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1

1 1

, 1 , 1
0 0

, 1 , 1
0 0

, , , , , , , ,

, , , , , , , ,

r r

nm uun un m uvn vn m

r r

nm vun un m vvn vn m

u r r f d r f d

v r r f d r f d

− −

− −

τ = Π ξ τ ∗ ξ τ ξ + Π ξ τ ∗ ξ τ ξ

τ = Π ξ τ ∗ ξ τ ξ + Π ξ τ ∗ ξ τ ξ

∫ ∫

∫ ∫





              (14) 

where 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

, 1 0 , 1 0 , 1

, 1 0 , 1 0 , 1

, , , ,

, , , ,

, , , , , , , , , ,

, , , , , , , , , .

un m e rn m n m

vn m e n m n m

uun uun uvn uvn

vun vun vvn vvn

f E E

f E E H

r G r r G r

r G r r G r

− − −

− θ − −

ξ τ = r ξ ξ τ + ξ r ξ τ

ξ τ = r ξ ξ τ − γ ξ ξ τ

Π ξ τ = ξ τ Π ξ τ = ξ τ

Π ξ τ = ξ τ Π ξ τ = ξ τ

 

 

                                         (15) 

An explicit form of kernels in (13) is specified in [5]. It is omitted here because of its 
awkwardness. 

The function nmρ  being part of (15), according to (7), is defined as follows: 

( ) ( ) ( ) ( )0 0, , ,nm e nms e nmsr r u r r′r τ = −r τ − r χ τ ,  
where: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )
( ) ( )

1 1

, 1 , 1
0 0

2

2

, , , , , , , ,

, , , , , , , ,

11, .

r r

nm un un m vn vn m

un n uun vun vn n uvn vvn

n
n n n

r r f d r f d

r G G r G G

r u n n
u v

r rr

− −χ τ = Χ ξ τ ∗ ξ τ ξ + Χ ξ τ ∗ ξ τ ξ

Χ ξ τ = χ Χ ξ τ = χ

∂ +
χ = +

∂

∫ ∫
 

The meaning of the newly introduced function ( ),n u vχ  is a coefficient of series 
expansion in terms of Legendre polynomials by coefficient of volumetric expansion for 
displacement field with components u  and v . 

The relations (11) – (14) are m -recurrent sequence of relations with respect to 
coefficients of series Legendre and Gegenbauer polynomials and (2) for displacements, 
strengths of electric and magnetic fields, as well as charge densities. As if follows from the 
publication [4], the following equations will be the initial conditions for such sequence: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2
0 0 0 1 01 01

0 1 01 0 1 01 0

, 0, , 0 ( 0), , ,

1
, , , 1 , , 0,

c
n n n e Hn n n

c c
rn Hn n n Hn n n

u r v r n H r G r e e

n n
E r G r e E r r e n r

r θ

τ ≡ τ ≡ ≥ τ = −η γ τ + τ  
+

τ = − τ τ = G τ ≥ r τ ≡



               (16) 

where 

300 Vladimir A. Vestyak, Leonid A. Igumnov, Dmitriy V. Tarlakovsky



( ) ( )1 1
11

n
c
Hn n

rG r
n r −=
+

, ( )
1

1 1
1

.
n

c
Hn n

rr
r

−

−Γ =  

Based on the resultant components of displacement field and electromagnetic field one 
can obtain coordinates of the vector of current density by using the general system of the 
equations from [14]. 
 
5. Example 
Assume that radius of a ball is 1 2r = , and its material has the following non-dimensional 
parameters: 42,04; 0,111 10 ;e

−η = η = ⋅ 5,06; 0,0806γ = α = , where 100 /E w m∗ = . The 
electrical field has the following initial parameters: 0 01, 2eE r= r = . The strength of 
electrical field on the cavity boundary has the form: 01 sine += −τ θ , ( )H+τ = τ τ , which 
corresponds to the following coefficients of expansion in series right parts of equalities (1): 

( )001 00, 0 2 .ne e n+= −τ ≡ ≥  Therefore, only coefficients of the series on Legendre and 
Gegenbauer polynomials with number 1n =  will be distinct from-zero.  

The calculations were made by relations (11) - (16) with taking account of the terms of 
series (2) of order 3α . The integrals in recurrent relations were found numerically. Figure 1 
demonstrate dependencies of coefficients of series Legendre polynomials with number 1n =  
for displacements (y-axis) on radius r : solid lines indicate the moment of time 0,2τ = , 
dashed lines, 0,3τ = , and dash-and-dot, 0,4τ = . 

Similar relation H  is a non-zero component of magnetic field vector, but with respect 
of time τ  are depicted in Fig. 2: solid lines indicate point 0,5r = , dashed, 1r = , and dash-
and-dot, 1,5r = . 

 

  
Fig. 1. 1u  vs. radius r  Fig. 2. 1110H ⋅  vs. time τ  

 
6. Conclusions 
The algorithm for solving the coupled electromagnetoelasticity problem for conducting sphere 
allows us to find the mechanical and electromagnetic components of the problem at any point 
of the ball at an arbitrary instant time under the action of surface mechanical or 
electromagnetic disturbances. Mathematical modeling of the proposed problem allows us 
clearly and without the expensive physical experiment to see the mutual influence of the 
electromagnetic and mechanical fields. The constructed exact solution may have applications 
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for predicting the behavior of conductor materials in various tasks of modern technology such 
as electroacoustics, automation, microelectronics. 
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Abstract. Microtubules are filamentous intracellular structures that are responsible for 

various kinds of movements in all eukaryotic cells. The dynamic assembly and disassembly of 

microtubules and the mechanical properties of these polymers are essential for many key 

cellular processes such as spermatogenesis and the processes of neurons. Mathematical and 

computational modeling, especially coupled mechanochemical modeling, has contributed a lot 

to understand their dynamics. However, it has remained a great challenge to reduce the 

critical discrepancies, which exist between the experimental observations and modeling 

results. During this research, the small scaling parameter of the nonlocal Euler-Bernoulli 

beam theory is analyzed to demonstrate the free vibration problem of microtubules. 

Keywords: microtubules, nonlocal parameter, finite element, Euler-Bernoulli beam theory 

 

 

1. Introduction 
Fifty years since the discovery of tubulin [1], the microtubules are studied as dynamic 

polymers of tubulin subunits that underpin many vital cellular processes for example cell 

division and migration. Microtubules are polarized structures, with their minus end anchored 

at the centrosome and plus end, free in the cytoplasm (or interacts with other organelles). 

Microtubules (MTs) are the active filaments and play key roles in the cells, such as 

maintaining the biological functioning of cells (cell division and cell motility), resisting 

thermal or mechanical perturbations from the environments and other sturctural 

functions [2, 3]. MTs are protein filaments which are made up of α and β tubulin and form a 

closed tube (by assembling into linear proto-filaments). The structure of these polymers is 

infact the key to their function (see Fig. 1). The linear proto-filaments provide a uniform 

substrate for motor protein movement and the helical structure makes the polymers more rigid. 

It is believed that each tubulin is composed of 4300 atoms and has a mass of 55 kDa [4]. 

The computer-assisted differential-interference-contrast microscopy gives high contrast 

results and makes it possible to see even very small objects such as single microtubules, 

which have a diameter of 0.025 μm, less than one-tenth the wavelength of light. The 

individual microtubules were recently studied by many researchers (see [5] and the references 

therein). Osborn et al. [6] was one of the pioneers in this field, he with his research group 

studied the microtubules structure using immunofluorescence and the electron microscopy. In 

all such studies, it is difficult to distinguish between the single microtubule from the bundle of 

several ones due to the blurry effects caused by diffraction. 
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Fig. 1. Microtubules(green), actin filaments (red) [7] 

 

Different microtubules configurations exist based on the number of protofilaments. 

Microtubules are typically formed by 13 protofilaments, however, this is a relatively flexible 

property of tubulin assembly and the number of protofilaments in a microtubules observed 

in-vivo and in-vitro conditions may vary. The protofilaments can connect with 2-4 length of 

monomers and make a spiral shape [8, 9]. 

Microtubules are filaments and are found in bent and buckled state within a eukaryotic 

cell. They provide structural support along with necessary motility to the cell, and are 

essential to regulate the mechanics of cell division. To understand how microtubules perform 

their functions, it is necessary to explore their mechanical properties [10]. Recently, the 

nonlocal continuum mechanics has been used extensively to model the nanostructures and 

biostructures such as microtubules and DNA [11, 12]. However, the recognition of the scaling 

parameter in the nonlocal theory, which plays an important role in such studies, did not 

receive much attention. Civalek et al. [13] studied small-scale effects on deflection and 

frequencies of microtubules and used the carbon nanotube scale parameter instead of 

microtubules. 

In this study we used quantitative technique to measure the parameters which may help 

to understand the properties of microtubules and to provide the mechanical information about 

microtubules. In this work, we have used the nonlocal Euler-Bernoulli beam theory as well as 

the finite element approach to explore the molecular dynamics of the microtubules. We have 

provided a unique approach for the first time to evaluate the interaction energy and force 

between the tubulins, natural frequencies and the important scaling parameter    .  

Nomenclature 

u Axial displacement 

   transverse displacement 

   
  extensional strains 

   bending strains 

 ̅  applied axial compressive force 

   moment 

Biophysical analysis of microtubules nonlocal beam theory 305



f(x,t) axial forces 

μ nonlocal parameter 

I second moment of area 

(u,w,φ) terms of displacement 

   natural frequency 

  length of beam 

 

2. Materials and Methods 

Nonlocal Euler-Bernoulli beam theory. The Euler-Bernoulli beam equation has been 

a representative model for the control of systems governed by partial differential equations 

(PDEs). The nonlocal Euler-Bernoulli beam theory has been employed by Lei et al. [14] to 

establish the governing equations of motion for the bending vibration of nanobeams. They 

used a transfer function method (TFM) to obtain closed-form and uniform solution for the 

vibration analysis of Euler-Bernoulli beams with different boundary conditions. Here in this 

article, we will use the technique to study the structural properties of microtubules. 

Euler-Bernoulli beam theory (EBT) is based on displacement: 

    (   )   
   

  
  , (1) 

          (   ), (2) 

where u and    are the axial and transverse displacements. 

Strain of the Euler-Bernoulli beam theory is: 

   
  

  

  
  

    

   
    

     , (3) 

   
  

  

  
     

    

   
, (4) 

where    
  and    are the extensional and bending strains. 

The expression for the principle of virtual displacement is given as: 

∫ ∫ [
  (

  

  

   

  
 

   

  

    

  
)    

    

    

     

    
      

 

                  ̅    

  

    

  

]
 

 

 

 
       , (5) 

where f(x,t) is the axial force and q(x,t) is the transverse distributed forces,  ̅  is the applied 

axial compressive force. 

For 0<x<L, Euler–Lagrange equations is: 
  

  
     

   

   , (6) 

    

   
   

 

  
(  ̅̅ ̅̅    

  
)    

    

   
   

    

      
. (7) 

The conditions at the two boundaries (x=0) and (x=L) are given as: 
            

          
   

  
  ̅    

  
   

    

        

 
   

  
                

, (8) 

where    is the equivalent to shear force. 

 

3. Nonlocal Theories 

Eringen [15] showed that in an elastic continuum, the stress field at a point x depends on the 

strain field at the that point and at other points of the body. Thus, the nonlocal stress tensor σ 

at point x is defined as: 

  ∫  (        ) (  )    
 

 
, (9) 
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where t(x) is the classical stress tensor at point x and the  (        ) represents the 

nonlocal modulus,        and    are the distance and material constant respectively. The 

material constant depends on internal and external characteristic lengths. 

However, the integral constitutive relations can be written as: 

(        )      
   

 
, (10) 

where    is the material constant,   is internal characteristic length and   is external 

characteristic length. 

Calculation of stress. For homogeneous isotropic beams, the nonlocal relation in Eq. 

(10) can be written as: 

     
     

         , (11) 

     
     

                 
   . (12) 

The nonlocal behavior is negligible in the thickness direction.   is Young’s modulus 

and   is shear modulus.    is nonlocal parameter. 

The axial force–strain relation is given by: 

   
   

         
 , (13) 

  ∫   
 

 
             ∫      

 

 
. (14) 

Next we will consider    and    only for the Euler-Bernoulli beam theory. So, the 

constitutive relations are expressed as: 

    
    

   
     . (15) 

In this equation,   is the second moment of area about Y-axis. 

Calculations for displacement. In all beam theories, the equations of motion can be 

expressed in terms of the displacements (u,w,φ). So, this will be done using force-deflection 

and moment-deflection relationships in Eq. (13) and Eq. (15) and replacing the stress 

resultants in the equations of motion 

For the first derivative of the axial force   from Eq. (6) and Substituting into Eq. (13), 

we obtain: 

    
  

  
  (  

   

      
  

  
). (16) 

Substituting   from Eq. (16) into the equation of motion Eq. (6) 
 

  
(  

  

  
)     

   

      (
   

     
   

      ). (17) 

Euler-Bernoulli beam theory. Substituting the second derivative of   from Eq. (7) 

into Eq. (15), we obtain 
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 . (18) 

Substituting    from Eq. (18) into Eq. (6): 
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Analytical solution of vibration of simply supported beams. For the simply 

supported beams, the boundary conditions are: 

                                           (20) 

to satisfy the boundary conditions; 

 (   )  ∑      
   

 
      

     (   )  ∑      
   

 
      

   . (21) 

Using Eq. (21) into the equation of motion (19), we obtain 

(    ̅ (
  

 
)    

 (     (
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for any  , where 
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      (
  

 
)  (23) 

The natural frequencies are given by 

  
  

 

    
(
  

 
)            (

  

 
)  (24) 

Substituting       (  is the density and   is the section area) and with an 

assumption that all mass is in the center of beam     , one can obtain frequency using 

Eq. (24). 

 

4. The Molecular Dynamics 

The structure alpha-alpha, alpha-beta, beta-alpha and beta-beta dimers have been studied 

using HADDOCK. HADDOCK (High ambiguity driven docking approach) [15] is a useful 

package to find proteins structures and calculating intermolecular energy of proteins. The 

intermolecular energy contain of some special energies like electro-static energy, van der 

Waals energy and etc. Using MD simulation, the potential energies can be find. 

GROMACS 4.5.3 software [16] with the GRO-MOS96 43a1 force field was used to perform 

the simulation using the methods of molecular dynamics and energy minimization. For 

non-bond interactions Cut-offs distance of 1 nm was calculated and the time step was set to be 

2fs for all MD simulations. The structure box unit was 18nm*9nm*8nm after energy 

minimization. The box was filled with water molecules. Na+ ions were added to each solution 

To balance the negative charge of the dimer. For 50 ps and sing external heat bath, the entire 

system was heated up to 300K. then, the monomers pulled 0.01 nm/ps and the interaction 

energy was calculated for 200 ps (pulling molecular dynamic simulation). Finally, potential 

energy-displacement diagram of alpha-alpha, alpha-beta, beta-alpha and beta-beta tubulin was 

obtained and the data were plotted and fitted with a third order polynomial (see Fig. 2). the 

derivative of the energy function can result force-displacement function. We can then obtain 

the derivative of the energy function and the force-displacement with the help of this data. 

 

 
Fig. 2. Force displacement diagram between the α−β, β−α, α−α and β−β tubulins 

 

FEM Generated Results. Our results show that each tubuin has 4300 atoms and each 

microtubule composed of 100 tubulins (for 0.1 m length microtubule with 13 protofilaments). 

thus, evaluating the properties of microtubules using molecular dynamic simulation is a 

challenging task. considering structural mechanics model alpha and beta tubulins were 

modeled as two spheres with 55 KDa weight which were connected with a nonlinear spring 
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(see Fig. 3). In Fig. 4, we can see the 13 protofilaments and 3start-helix, the dimensions for 

simulation are elaborated in Fig. 4. 

 

 

Fig. 3. Structural model of tubulins connected by springs 

 

 
Fig. 4. schematic diagram for the simulation dimensions of microtubules 

 

The natural frequency is the frequency with which the system oscillates when it is 

disturbed. In this section natural frequency of microtubule is achieved using finite element 

method. Schematic of 6 mode shapes is provided in Fig. 5. Obtaining scale parameter After 

substituting obtained natural frequencies from FEM into nonlocal equations, we obtained 

scale parameters for microtubules. Fig. 6 depicts the nonlocal parameters for microtubules, 

with values obtained in the range of 4050 nm. Heireche et al. [18] used the Timoshenko beam 

model to obtain the vibrational characteristics of microtubules by considering small scaling 

parameter in their work. The nonlocal Timoshenko beam theory has also been used by Gao 

and Lei [19], to study the mechanical behaviors of microtubules. The parametric value which 

they used was in the range of 30 to 70 nm. Therefore the approach we have discussed in this 

article is more appropriate since it provides a more accurate interval for the parametric values 

(40 to 50 nm). 
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Fig. 5. Six natural frequency modes 

 

 
Fig. 6. Natural frequencies of microtubules obtained by FEM and by nonlocal theory 

 

5. Conclusions 

During this research, the small scaling parameter of the nonlocal Euler-Bernoulli beam theory 

is obtained for the free vibration problem of microtubules. For this aim, three steps were 

considered: In first step, interaction energy for all dimers (4 categories) was calculated using 

the molecular dynamic simulation. Potential energy and force-distance diagrams for these 

dimers were obtained. The computational cost of this step cannot be denied. The reason is that 

every tubulin has 4300 atoms and for each category, docking, minimization, NVT and NPT 

equilibrium and pulling MD should be done. We aim to reduce such computational cost in 

future work. In second step, the analysis was based on finite element method. A single sphere 

with 55 KDa weight was considered to mimic the tubulin, these were assumed to be 

inter-connected with a nonlinear spring. Finally, the mechanical model of microtubules was 

used to calculate natural frequencies of microtubules. The molecular mechanics model was 

used in this step, such models may prove to be helpful in finding mechanical and physical 
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properties of cell components more rapidly. Finally, using classical mechanics theories 

especially nonlocal Euler- Bernoulli beam theory, small scaling parameter is obtained for the 

free vibration problem of microtubules. Reasonably convergent results were obtained for the 

scale parameter of microtubules. This work was a multi-disciplinary work between 

mechanical engineering, biology, physics and mathematics. These results can prove to be 

helpful in further studies on the microtubules and their role in eukaryotic cells. We aim to 

extend this work in future using more robust solvers. 
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