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A metric, describing the field due to bodies in stationary rotation about their 
axes and compatible with a stationary electromagnetic field, has been studied in the 
present paper. Using the Lie symmetry reduction approach, we have herein examined, 
under continuous groups of transformations, the invariance of field equations due to 
rotation in General Relativity, which are expressed in terms of a coupled system of 
partial differential equations. We have exploited the symmetries of these equations to 
derive some ansatz leading to the reduction of variables, where the analytic solutions 
are easier to obtain by considering the optimal system of conjugacy inequivalent 
subgroups. Furthermore, some solutions are considered by using numerical methods 
due to complexity of reduced ordinary differential equations.
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Изучена метрика,  которая описывает гравитационное поле, создаваемое  
телами при стационарном вращении вокруг своих осей, совместимая со ста-
ционарным электромагнитным полем. При этом, используя метод понижения 
симметрии групп Ли, мы изучили инвариантность (относительно непрерыв-
ных групп преобразований) уравнений поля, вызванного вращением, в общей 
теории относительности. Преобразования приводят к связанной системе диф-
ференциальных уравнений с частными производными. Мы воспользовались 
симметрией этих уравнений, для того чтобы достичь некоторых упрощений, 
приводящих к сокращению числа переменных, когда аналитические решения 
легче получить, если рассмотреть оптимальную систему  сопряженных неэк-
вивалентных подгрупп. Кроме того, часть решений получена с применением 
численных методов, в связи со сложностью обыкновенных дифференциальных 
уравнений даже сниженного порядка. 
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Introduction

General Relativity describes phenomena 
on all scales in the Universe, from compact 
objects such as black holes, neutron stars and 
supernovae to large-scale structure formations 
such as those involved in creating the distribu-
tion of clusters of galaxies. For many years, 
physicists, astrophysicists and mathematicians 
have striven to develop techniques for unlock-
ing the secrets contained in Einstein’s theory 
of gravity. More recently, solutions of Einstein 
field equations have added their expertise to 
the endeavor. Those who study these objects 
face a daunting challenge that the equations are 
among the most complicated in mathematical 
physics. Together, they form a set of coupled, 
nonlinear, hyperbolic-elliptic partial differen-
tial equations that contain many thousands of 
terms.

The gravitational field due to a rotating body 
was firstly attempted by Thirring who used Ein-
stein field equations in the linear approxima-
tion and showed that a rotating thin spherical 
shell produces near its center forces similar to 
the Coriolis and centrifugal forces of classical 
machines. Later on, this work has been revised 
by Bass and Pirani [1] who supplemented the 
energy tensor of incoherent material by a term 
representing the elastic interaction between the 
particles of the shell. Bach considered the field 
due to a slowly rotating sphere by successive 
approximations taking the Schwarzschild solu-
tion as his zeroth approximation. Special cases 
of stationary fields have been considered by 
Lanczos [2] who applied the results to cosmo-
logical problems.

Lewis [3] found the field due to a rotating 
infinite cylinder and thus obtained two different 
methods of successive approximations for con-
structing solutions of a more general type which 
behave in an assigned manner at infinity and 
on a surface of revolution enclosing the rota- 
ting matter to which the field is due. Clark tried 
to solve the empty gravitational field equations, 
using successive approximations, with forms of 
gμν appropriate to the gravitational field of s ro-
tating body. This introduction provides a sam-
ple of the idea that these equations have been 
a subject of extensive and intensive study both 
by mathematicians and physicists. For a de-

tailed study of exact solutions of Einstein field 
equations, the reader may refer to Stephani et 
al. [4]. Recent years have been dedicated to 
studying the field equations of General Relativ-
ity for their solutions [5 – 16], these solutions 
are important in the sense that they represent 
the physical models in an analytical manner.

In the present paper, we have considered 
a metric [3] which is supposed to describe the 
field due to bodies in stationary rotation. Fur-
ther in this case we furnished a consistent set 
of partial differential equations for determining 
gμν in the empty space-time. It is shown that 
by using a selective form of gμν, the problem of 
solving four equations in three unknowns has 
been reduced to a system of two partial dif-
ferential equations in two unknowns and then 
Lie group analysis is applied to generate vari-
ous symmetries of this coupled system of par-
tial differential equations, which are then used 
to identify the associated basic vector fields of 
the optimal system for systematic study of the 
group invariant solutions admitted by the sys-
tem.

Nature of field equations

The following metric described the field 
due to bodies in stationary rotation about their 
axes

2 2 2 2

2

( )( )exp 2 –

 2 ,

ds d dz Cd

Ddt Ed dt

= − λ ρ + φ +

+ + φ

where λ, C, D and E are functions of ρ and z 
only.

Following Lewis [3], we have made use of 
canonical coordinates in the sense of Weyl. 
The choice of these coordinates is possible 
only in matter free space as it can be easily 
verified by a procedure similar to that of Synge. 
Consequently, in domains occupied by matter, 
the canonical coordinates cannot be used. In 
canonical coordinates we have

2 2,CD E+ = ρ

and therefore the expressions for the Einstein 
tensor are given by:

2 2
1 1 1 1 2 2 2

11 22 2

33 11 22 11

2 21
22 1 1 1 2 2 22

44 11 22 11

2 21
22 1 1 1 2 2 22

34 1

,
4

2
exp  2

2

3
 ( ) ,

2

2
exp  2

2

3
 ( ) ,

2

2
exp  

( )
(

2
2

)

( )
( )

( )
(

C D E C D E
G G

G C C

C C
C C D E C D E

G D D

D D
D C D E C D E

G E

λ + − −
= − = − −

ρ ρ

− λ
= − λ + λ +




+ − + + + + 
ρ ρ 

− λ
= λ + λ −




− +

+

− + + + 
ρ 

− λ
= −

−

ρ

λ 1 22 11

2 21
22 1 1 1 2 2 22

2 1 2 1 2 2 1
12 2

3
 ( )

2

2
,

)

,

4

E

E E
E C D E C D E

C D E E C D
G


+ λ −




− + − + + + 
ρ ρ 

λ + +
= −

−

−
ρ ρ

(1)

(2)

(3)



126

Научно-технические ведомости СПбГПУ. Физико-математические науки. 10(4) 2017

2
33 44 34

1
( ), 3, 4jS G G G j= ± − =

ρ
.

Thus, in this case the other two eigenvalues 
are equal and opposite. In fact, the eigenvalues 
are k, –k, m, –m, where

2 2
22 12

2
33 44 34

exp( 2 ) ( ),

1
( ),

k G G

m G G G

= − λ +

= −
ρ

and if we further assume that k = m, the 
eigenvalues become k, k, –k, –k, which 
characterize an electromagnetic field.

The field equations for empty space-time. 
The field equations, in terms of a coupled sys-
tem of partial differential equations, for empty 
space-time, corresponding to Eq. (1) are given 
by
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From Eqs. (9) and (10), the condition of 
integrability can be easily verified for above 
system of partial differential equations. Also 
from Eqs. (9) and (10), we obtain
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Also Eq. (15) is consistent with Eqs. (11) 
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where the lower suffixes 1 and 2 after the un-
known functions imply partial differentiation 
with respect to ρ and z respectively.

Now we have considered the determination 
equation

0.G sgµν µν− =

We found that two of the eigenvalues of 
Gµν with respect to gµν are given by

1
2 2 2
22 12exp( 2 )( ) , 1, 2,is G G i= − λ + =

and the other two are given by following 
equation:

2 2
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1
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ρ

where R is the curvature scalar. 
It is clear from Eqs. (5) and (6) that, in 

general, two eigenvalues of Gµν  are equal and 
opposite while the other two are different. 
Therefore, metric (1) in canonical coordinates 
cannot represent a perfect fluid distribution. 
But if we do not consider the canonical coor-
dinates then all the eigenvalues of the Einstein 
tensor are different in general. Thus, in this 
case metric (1) can be utilized to describe the 
space time in the domains occupied by mat-
ter. 

In case of an electromagnetic field, we have 
R = 0, therefore, Eq. (6) gives

(3)
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originally advocated by the Norwegian 
mathematician Sophus Lie in the beginning 
of the 19th century, are widely applied to 
investigate nonlinear differential equations for 
constructing their exact and explicit solutions. 
Considering the tangent structural equations 
under one or several parameter transformation 
groups is the basic idea of Lie symmetry analysis. 
It has been shown that Lie symmetry analysis 
has been effectively used to seek exact and 
explicit solutions to both ordinary differential 
equations (ODEs) and partial differential 
equations (PDEs). There are a lot of papers 
and many excellent books [15 – 24] devoted to 
such applications.

In the present section, we have performed 
Lie group classification of Eqs. (20) and (21). 
That is, we have furnished all the possible forms 
of Lie point symmetries, admitted by Eqs. 
(20) and (21), and then constructed symmetry 
reductions and group-invariant solutions using 
the optimal system of subalgebras of the Lie 
algebras of the equations.

The classical Lie method [18] has been 
applied to Eqs. (20) and (21) by considering 
the one-parameter Lie group of infinitesimal 
transformations in , , , ,zρ θ µ  1( , ),zξ ρ  2( , ),zξ ρ  

1( , )zη ρ  and 2( , ).zη ρ  This transformation 
leaves invariant the following set: 

1 2{ ( ) ( ) ( , , , : ) ( ) 0}0 , ,, ,S z z≡ θ ρ µ ρ ∆ θ µ µ == ∆ θ

1 2{ ( ) ( ) ( , , , : ) ( ) 0}0 , ,, ,S z z≡ θ ρ µ ρ ∆ θ µ µ == ∆ θ

of the solutions of Eqs. (20) and (21), where
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The associated Lie algebra of infinitesimal 
symmetries is the set of vector fields of the 
form

1 2 1 2 .
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The set S∆ is invariant under the one-
parameter transformations provided that
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where Pr(2)(Γ) is the second prolongation of the 
vector field Γ, which is explicitly given in terms 

and (16). Thus, the problem of solving Eqs. 
(2), (9) – (14) is reduced to determining C, D 
and E from (2), (12), (13) and (14) and then λ 
will be given by Eqs. (11) and (16). 
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From Eqs. (18) and (19) we obtain, in view 
of Eq. (20), the single equation:
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and Eqs. (11) and (16) lead to the following 
equations:
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Thus, the problem of solving four equations 
in three unknowns has been reduced to a sys-
tem of partial differential equations consisting 
of two Eqs. (20) and (21) in two unknowns θ  
and .µ  Also we can determine C, D and E by 
using the expressions of C, D and E in Eq. (17) 
and then λ can be determined from Eqs. (22) 
and (23).

Solutions of field equations

It is well-known that the Lie symmetries, 
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of 1 2 1, ,ξ ξ η  and 2.η  
After determining the infinitesimals of Eqs. 

(20) and (21), the similarity variables are de-
rived by solving invariant surface conditions

1 2 1
1  0,zρ≡ ξ θ + ξ µ − η =Φ

1 2 2
2  0.zρ≡ ξ θ + ξ µ − η =Φ

The symmetries under which Eqs. (20) and 
(21) are invariant can be spanned by the fol-
lowing three linearly independent infinitesimal 
generators:

1 2 3 , ,= = .=z
z z

Γ Γ Γ
∂ ∂ ∂ ∂

ρ +
∂ρ ∂ ∂ ∂θ

It is easy to verify that Γ1, Γ2 and Γ3 are 
closed under the Lie bracket. So we can see 
that the generator of the invariant group Γ of 
Eqs. (20) and (21) constructs three-dimension-
al Lie algebra, which is spanned by the basis 
Γ1, Γ2 and Γ3. Thus, we have the correspond-
ing one-parameter group of symmetries of Eqs. 
(20) and (21):

1 : ( ) (exp( ) ,(exp( ) ,, , , , ),G zz →θ ρρ µ θ µ 

2 : ( ) (, , , , ),, exp( ) ,G zz → ρρ θ µ θ µ

3 : ( ) ( , , exp( ) ,, , , ,( .x )e p( )zG p z→ ρρ θ µ θ µ 

We can see that G1 is a space translation, G2 
is a time translation and G3 is a scaling transfor-
mation. We have used the subalgebraic struc-
ture of symmetries (28) to construct an optimal 
system [19] of one-dimensional subgroups. The 
optimal system yields only the following sym-
metry combinations: 

1 3 2 3 3( ) ,( ) ,( ) ,i ii iiiΓ + βΓ Γ + αΓ Γ

where α  and β  are arbitrary constants.
Symmetry reductions. In this subsection, 

we have derived symmetry reductions of Eqs. 
(20) and (21) associated with the vector fields 
in the optimal system (28) by using similarity 
variables and further attempted to furnish exact 
solutions

1 3( ) .i Γ + βΓ

Corresponding to this vector field, the form 
of the similarity variable and similarity solution 
are as follows: 
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z
ρ

ζ = θ ρ ζ µ β +=ρ ζ=

Substituting the expressions of similarity 
variable and similarity solution into Eqs. (20) 
and (21) yields the following system of reduced 
ODEs:
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In this case because of the complexity of 
reduced system (31), the following two particu-
lar cases have been worked out.

Ca s e  I. By considering ( ) 0,F ζ =  we found 
that metric (1) is reduced to static axially sym-
metric metric of Weyl in canonical coordinates 
and system (31) becomes

2 2 02 .G G G G′′ ′ ′′ ′ζ + + βζ − ζ =−ζ

Solving Eq. (32), we obtained the solutions 
as follows: 
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β
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where c1 and c2 are arbitrary constants and Ei  
is the exponential integral.

Now, we have obtained solution of Eqs. 
(20) and (21) for static axially symmetric met-
ric and further by back substitution to original 
variables, the exact solution of Eqs. (20) and 
(21) is given by:
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In Fig. 1, the picture representation of the 
solution (34) is given for 1 21, 1.c cβ = = =

Cas e  II. By putting ( ) 0,G ζ =  metric (1) 
is reduced to

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)
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2 2 2

2 2

( )( )  exp 2  

 cos 2 sin ,( )

ds d dz

d dt d dt

=− λ ρ −

− ρ ρ+ θ−θ φ φ

+

and then solving Eq. (31) and reverting back to 
the original variables. Thus, we have obtained 
the following exact solution of Eqs. (20) and 
(21):

3
2

2

2

2

42

1
( , ) arctan

1

4

1
3

z c

z

z
c

z

  
  
  
θ ρ = + − + 
   ρ

+        
  ρ    +        ρ  + +      
   

where c3 and c4 are arbitrary constants.
In Fig. 2, the picture representation of the 

solution (36) is given for c3 = c4 = 1. 
Now, we attempt to furnish exact solutions

2 3( ) .ii Γ + αΓ

For this vector field, the forms of the 
similarity variable and the similarity solution 
are as follows:

, , ,( ) ( ) ( , ( .) )z F z G zζ = ρ θ ρ = ζ µ ρ = ζ + γ

Using  these forms in Eqs. (20) and (21), 
we obtain the system of reduced ODEs:

2 2cosi s ( ) 0,nF F F F G′′ ′ ′ζ + + ζ α + =

2 0t n ,a FGF G′′ ′ζ + − ζ =

where the prime denotes the differentiation 
with respect to the variable .ζ

Now under this vector field, we are unable 
to obtain the nontrivial exact solutions. So 
we have used the well-developed numerical 
technique to solve the reduced problem. For 
this purpose, we have obtained the following 
four first-order equations:

1
2

22
2 1 1

2 2 1
4 1 1 2

1
3

4 4 2 4 1

,

[ sin cos

 sin cos ] ,

,

2 tan
,

dy
y

dz
dy

y z y y
dz

z y y y y z

dy
y

dz
dy y y y z y
dz z

−

=

= − + α +

+ α ⋅

=

− +
=

with

y1(45) = 1.2, y2(45) = 0, 

y3(45) = 0, y5(45) = 0.1.

Fig. 1. Picture representation of Coriolis  
and centrifugal force solution (34), produced  

by rotating spherical shell in General Relativity,  
to field Eqs. (20) and (21) with β = 1, c1 = c2 = 1

Fig. 2. Coriolis and centrifugal force solution (36), 
produced by rotating spherical shell in General 

Relativity, to field Eqs. (20) and (21) with  
c3 = c4 = 1

(35)

(36)

(37)

(38)

(39)
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a) b)

The numerical solutions to the initial value 
problem (IVP) (38), (39) are depicted above.

In Fig. 3, numerical solutions of field Eqs. 
(20) and (21) are obtained with respect to the 
reduced IVP (38), (39). Now the profiles of 
y1 and y2 show that the solution is periodic, 
and the profiles of y3 and y4 show that the 
solution is unbounded and damped oscillatory 
respectively.

Now, if we attempt to furnish exact 
solutions 

(iii) Γ3,

corresponding to this vector field, no such 
invariant solution exists.

Discussion and concluding remarks

In the present investigation, we have 
successfully implemented Lie symmetry 

reduction to obtain the Lie symmetries 
admitted by field equations extracted from a 
metric which is supposed to describe the fields 
due to bodies in stationary rotation about their 
axes. The infinitesimal generators in optimal 
system of sub-algebras of the full Lie algebra 
of the coupled system of nonlinear partial 
differential equations of second order of field 
equations are considered. We completely solved 
the determining equations for the infinitesimal 
generators of Lie groups. Further, the group 
classification from the point of view of the 
optimal system of non-conjugate sub-algebras 
of the symmetry algebra of the nonlinear system 
has been performed under the adjoint action 
of the symmetry group. The various fields in 
the optimal system have been then exploited 
to get the reductions of PDEs into ODEs. 

Fig. 3. Numerical solutions to field Eqs. (20) and (21) with respect to the reduced IVP (38), (39) when  
α2 = 5, with the initial value z = 45 at h = 0.01; the profiles of y1 (a), y2 (b), y3 (c), y4 (d) are presented 

c) d)
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Due to the complexity of reduced ODEs, it 
is impossible to obtain the nontrivial exact 
solutions, so under the vector field 1 2( ) ,i Λ + βΛ  
particular exact solutions are obtained for field 
Eqs.  (20) and (21). Graphical representation 
of solutions (34) and (36) to field Eqs. (20) 
and (21) described the center forces, similar to 
the Coriolis and centrifugal forces of classical 
machines, produced by a rotating spherical 
shell in general relativity as shown in Figs. 1, 
2. Now under the vector field 2 3( ) ,ii Λ + αΛ  
it is again impossible to obtain the nontrivial 

exact solutions with respect to the reduced 
ODEs (37). So, under this vector field, IVP 
is posed for numerical solution. As a result, a 
numerical solution is found which is periodic, 
unbounded and damped oscillatory as shown 
in Fig. 3.
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