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A metric, describing the field due to bodies in stationary rotation about their
axes and compatible with a stationary electromagnetic field, has been studied in the
present paper. Using the Lie symmetry reduction approach, we have herein examined,
under continuous groups of transformations, the invariance of field equations due to
rotation in General Relativity, which are expressed in terms of a coupled system of
partial differential equations. We have exploited the symmetries of these equations to
derive some ansatz leading to the reduction of variables, where the analytic solutions
are easier to obtain by considering the optimal system of conjugacy inequivalent
subgroups. Furthermore, some solutions are considered by using numerical methods
due to complexity of reduced ordinary differential equations.
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O PELLEHUX YPABHEHUN TPABUTALLUOHHOIO MNOJIA,
CO34AHHOIO BPALLAKOLWWUMUCA TEJTAMMU,
B OBLLLEX TEOPUU OTHOCUTEJIbHOCTU
B. Kymap', J1. Kayp?
'Konnegy OanaHana aHrno-seanueckor (DAV) cnctembl 06pa3oBaHus,
r. MaHapu (XapbsiHa), r. MaHapu, Nuaus;

HCTUTYT MH MaLMOHHbIX TexHonorumn Jxxenu, r. Honga, NHama
2NHC opmMa ofo e Ho n

MN3yyeHna MeTpuka, KOTOpasi OMKUCHIBAET TPaBUTAIIMOHHOE TOJIE, CO3/aBaeMoe
TeJaMu TIPU CTAllMOHApHOM BpallleHWM BOKPYTI CBOMX OCEi, COBMECTHMMasl CO CTa-
IIMOHAPHBIM 3JIEKTPOMArHUTHBIM T0JieM. [1pu 3TOM, MCITOIb3ysI METOJ TTOHVKEHMS
CUMMETpMU Tpynn JIKM, Mbl M3YyYWJIM MHBAPUAHTHOCTb (OTHOCUTEJIBHO HEIPEPhIB-
HBIX TPYyNI IIpeoOpa3oBaHUii) ypaBHEHWI MOJIsI, BBI3BAHHOIO BpallleHUeM, B OOIIei
Teopuu oTHocuTeabHOCTU. [IpeoOGpa3oBaHust MPUBOST K CBSI3aHHOM cucTeme aud-
epeHIMaTbHBIX YPAaBHEHUI C YaCTHBIMU ITPOM3BOAHBIMU. MBI BOCIIOJIb30BaIUCh
CHUMMETPMEI 3TUX YpaBHEHWIA, IJISI TOTO YTOOBI JTOCTUYb HEKOTOPBIX YIPOLUECHUI,
MPUBOISILMX K COKPAILIEHHWIO YMCIa IIEPEMEHHbBIX, KOIa aHAJIMTUYECKUE PELICHMS
JIerye IOJIyYUTb, €CJAUM PACCMOTPETh ONTUMAJIBHYIO CHUCTEMY COMNPSDKEHHBIX HEDK-
BUBAJIEHTHBIX moarpymn. Kpome Toro, 4acTb pelleHMIl MOJy4eHa C IMPUMEHEHUEM
YUCJIEHHBIX METOJIOB, B CBSI3U CO CJIOXXHOCTHIO OOBIKHOBEHHBIX TU((hepeHINATBHBIX
YPaBHEHMI JaXe CHUXKEHHOTO TOPSI/IKa.

KiroueBbie ciioBa: o0111ast TEOPUST OTHOCUTEIBHOCTH; 3JIEKTPOMATHUTHOE T10JI€; METO/I IIOHMXKEHUST CUM-
MeTpuu rpynmn JIu; To4HOe pelieHne

Ccpuika npu mutupoBanun: Kymap B., Kayp JI. O penieHuu ypaBHeHUI IpaBUTAIIMOHHOTO TOJISI, CO3-
JAHHOTO BpAalllaIOIIMMUCS TeJIaMU, B 0011Iei TEOpUU OTHOCUTEIbHOCTH // HaydyHO-TeXHUYeCKHe BETOMOCTU
CIIoI'TTY. ®usuko-marematnyeckue Hayku. 2017. T. 10. Ne 4. C. 124—133. DOI: 10.18721/JPM.10410
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Introduction

General Relativity describes phenomena
on all scales in the Universe, from compact
objects such as black holes, neutron stars and
supernovae to large-scale structure formations
such as those involved in creating the distribu-
tion of clusters of galaxies. For many years,
physicists, astrophysicists and mathematicians
have striven to develop techniques for unlock-
ing the secrets contained in Einstein’s theory
of gravity. More recently, solutions of Einstein
field equations have added their expertise to
the endeavor. Those who study these objects
face a daunting challenge that the equations are
among the most complicated in mathematical
physics. Together, they form a set of coupled,
nonlinear, hyperbolic-elliptic partial differen-
tial equations that contain many thousands of
terms.

The gravitational field due to a rotating body
was firstly attempted by Thirring who used Ein-
stein field equations in the linear approxima-
tion and showed that a rotating thin spherical
shell produces near its center forces similar to
the Coriolis and centrifugal forces of classical
machines. Later on, this work has been revised
by Bass and Pirani [1] who supplemented the
energy tensor of incoherent material by a term
representing the elastic interaction between the
particles of the shell. Bach considered the field
due to a slowly rotating sphere by successive
approximations taking the Schwarzschild solu-
tion as his zeroth approximation. Special cases
of stationary fields have been considered by
Lanczos [2] who applied the results to cosmo-
logical problems.

Lewis [3] found the field due to a rotating
infinite cylinder and thus obtained two different
methods of successive approximations for con-
structing solutions of a more general type which
behave in an assigned manner at infinity and
on a surface of revolution enclosing the rota-
ting matter to which the field is due. Clark tried
to solve the empty gravitational field equations,
using successive approximations, with forms of
8., appropriate to the gravitational field of s ro-
tating body. This introduction provides a sam-
ple of the idea that these equations have been
a subject of extensive and intensive study both
by mathematicians and physicists. For a de-

tailed study of exact solutions of Einstein field
equations, the reader may refer to Stephani et
al. [4]. Recent years have been dedicated to
studying the field equations of General Relativ-
ity for their solutions [5 — 16], these solutions
are important in the sense that they represent
the physical models in an analytical manner.

In the present paper, we have considered
a metric [3] which is supposed to describe the
field due to bodies in stationary rotation. Fur-
ther in this case we furnished a consistent set
of partial differential equations for determining
8., in the empty space-time. It is shown that
by using a selective form of f the problem of
solving four equations in three unknowns has
been reduced to a system of two partial dif-
ferential equations in two unknowns and then
Lie group analysis is applied to generate vari-
ous symmetries of this coupled system of par-
tial differential equations, which are then used
to identify the associated basic vector fields of
the optimal system for systematic study of the
group invariant solutions admitted by the sys-
tem.

Nature of field equations

The following metric described the field
due to bodies in stationary rotation about their
axes

ds® = —exp(QL)(dp? + dz?) — Cd? +
+ Ddt* + 2Edddt,

where A, C, D and E are functions of p and z
only.

Following Lewis [3], we have made use of
canonical coordinates in the sense of Weyl.
The choice of these coordinates is possible
only in matter free space as it can be easily
verified by a procedure similar to that of Synge.
Consequently, in domains occupied by matter,
the canonical coordinates cannot be used. In
canonical coordinates we have

CD + E?* = p?, (2)

(1

and therefore the expressions for the Einstein
tensor are given by:
2
11— 22 — 2
p 4p

5 3
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+ Gy —%-F%(CIDI +E12 +GC,D, +E22)j,

=2
Gy = exp (T)(w(?m +hy) = Dy - 3)

- D, +ﬂ—§—€(qq +E}+C,D, + Ef)j,
P 2p

-2
Gy = exp %(—21‘:(7&11 +Ap) - By -

- Ey +£—;—€(C1Dl +E} +C,D, + Ef)j,
P 2p

p 4p?

G =-

b

where the lower suffixes 1 and 2 after the un-
known functions imply partial differentiation
with respect to p and z respectively.

Now we have considered the determination
equation

‘Gw - 5g,,|=0. (4)

We found that two of the eigenvalues of
GMV with respect to g, are given by

1
s, = exp(-20)(G5 + G3)2,i=1,2, (5

and the other two are given by following
equation:

s> + Rs —pi2 = (GG -GH) =0 (6)

where R is the curvature scalar.

It is clear from Egs. (5) and (6) that, in
general, two eigenvalues of G, are equal and
opposite while the other two are different.
Therefore, metric (1) in canonical coordinates
cannot represent a perfect fluid distribution.
But if we do not consider the canonical coor-
dinates then all the eigenvalues of the Einstein
tensor are different in general. Thus, in this
case metric (1) can be utilized to describe the
space time in the domains occupied by mat-
ter.

In case of an electromagnetic field, we have
R =0, therefore, Eq. (6) gives
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J V(GGy -G3p),j =34, ()

Thus, in this case the other two eigenvalues
are equal and opposite. In fact, the eigenvalues
are k, —k, m, —m, where

k = exp(-2M(G, + G),
1
5 (GG - G3),

and if we further assume that & = m, the
eigenvalues become k, k, —k, —k, which
characterize an electromagnetic field.

The field equations for empty space-time.
The field equations, in terms of a coupled sys-
tem of partial differential equations, for empty
space-time, corresponding to Eq. (1) are given
by

O | =

®)

m =

A, CD +E}

Ay Ay —— ==L 12 L, )]
p 2p
A, GC,D,+E}

My Ay + =222 22 2, (10)
p 2p

Ay = —4L(C1D2 + G D, +E12 +E22), (11)
P

Cll +C22_Q+£2X
p (12)
x (C,D; +CyD, + E} + E5) =0,
PP (13)
x (C,D, + C,D, + E} + E5) =0,
[ (14)

x (C,D, + C,D, + E} + E}) = 0.

From Egs. (9) and (10), the condition of
integrability can be easily verified for above
system of partial differential equations. Also
from Egs. (9) and (10), we obtain

C,D, +C,D, + E} + E?)
(1 1 2p22 1 2 ’(15)

Ay +hy =

_ (_C]Dl + C2D2 - E12 + E22)
= 4 .
Also Eq. (15) is consistent with Egs. (11)

M

(16)
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and (16). Thus, the problem of solving Egs.
(2), (9) — (14) is reduced to determining C, D
and E from (2), (12), (13) and (14) and then A
will be given by Eqgs. (11) and (16).
We made the substitutions as follows:
C = pexp(—n)cos 0, D = pexp(u) cos 0,

E =psin6 (17)

where |1 and 6 are functions of p and z.
Consequently, Egs. (12), (13) and (14) are
reduced to

COS B(py + iy + L — 2 tan 6(, 6 + p1,0,) +
)

+sin 6(0,, +922+9—’— (18)
[
~2sin 0cos B(u; +u3) =0,
COS By + gy + 1 — 2 tan 6(, 6 + p1,0,) -
)
—sin 6(0;; + 0,, +9—1— (19)
)

— 2sin 0 cos O(u? +p3) = 0,
O _ 2,2y _
0, +0,, + — —sinBcos O(u; + uy) =0.(20)
p

From Egs. (18) and (19) we obtain, in view
of Eq. (20), the single equation:

Hip + Hp +% —tan 6y, 6, + p,0,) =0, (21)

and Egs. (11) and (16) lead to the following
equations:

1
A = - %(9? + 03 — cos? G(ul2 -13)), (22)
P

Ay = %(0052 Opip; — 6,6,). (23)

Thus, the problem of solving four equations
in three unknowns has been reduced to a sys-
tem of partial differential equations consisting
of two Egs. (20) and (21) in two unknowns 6
and p. Also we can determine C, D and F by
using the expressions of C, D and E in Eq. (17)
and then A can be determined from Egs. (22)
and (23).

Solutions of field equations

It is well-known that the Lie symmetries,

originally advocated by the Norwegian
mathematician Sophus Lie in the beginning
of the 19th century, are widely applied to
investigate nonlinear differential equations for
constructing their exact and explicit solutions.
Considering the tangent structural equations
under one or several parameter transformation
groups is the basic idea of Lie symmetry analysis.
It has been shown that Lie symmetry analysis
has been effectively used to seek exact and
explicit solutions to both ordinary differential
equations (ODEs) and partial differential
equations (PDEs). There are a lot of papers
and many excellent books [15 — 24] devoted to
such applications.

In the present section, we have performed
Lie group classification of Egs. (20) and (21).
That is, we have furnished all the possible forms
of Lie point symmetries, admitted by Egs.
(20) and (21), and then constructed symmetry
reductions and group-invariant solutions using
the optimal system of subalgebras of the Lie
algebras of the equations.

The classical Lie method [18] has been
applied to Egs. (20) and (21) by considering
the one-parameter Lie group of infinitesimal
transformations in p,z, 0, E'(p,2), EX(p,2),
n'(p,z) and n’(p,z). This transformation
leaves invariant the following set:

S = {G(P’ Z), M(P, Z):Al (99 H) = Oa
AZ (67 l"l) = 0}5
of the solutions of Egs. (20) and (21), where

(24)

A =0 +0, +ﬂ—sin6cose(uf + 1),
p
(25)
Ay =iy T Hp + %— tan 6(u;6; + 11,6,).

The associated Lie algebra of infinitesimal
symmetries is the set of vector fields of the
form

r= §1i+§2i+nli+n2i.
op 0z 00 ou

The set S, is invariant under the one-
parameter transformations provided that

Prd(T)|, =0,

where Pr®(T) is the second prolongation of the
vector field T', which is explicitly given in terms

(26)
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of £, €2 n' and n?’.

After determining the infinitesimals of Egs.
(20) and (21), the similarity variables are de-
rived by solving invariant surface conditions

ch = E.!lep + E.&Zuz _nl = 0’

£'o, +&, —n* =0.

The symmetries under which Egs. (20) and
(21) are invariant can be spanned by the fol-
lowing three linearly independent infinitesimal
generators:

(27)

@,

= pi+zi,l"2=i,l“3=i.

op 07 1574 00

It is easy to verify that ', T', and I, are

closed under the Lie bracket. So we can see

that the generator of the invariant group I' of

Egs. (20) and (21) constructs three-dimension-

al Lie algebra, which is spanned by the basis

I', T, and T',. Thus, we have the correspond-

ing one-parameter group of symmetries of Egs.
(20) and (21):

G, : (p,z,6,1) — (exp(e)p, (exp(€)z, 6, n),
G, 1 (p,2,0,1) = (p,exp(e)z,0,p),  (29)

G; : (p,2,0,1) > (p, z,exp(e)p, (exp(e), n).

We can see that G, is a space translation, G,
is a time translation and G, is a scaling transfor-
mation. We have used the subalgebraic struc-
ture of symmetries (28) to construct an optimal
system [19] of one-dimensional subgroups. The
optimal system yields only the following sym-
metry combinations:

()T, + BLs, (if)T + o5, (iii)Ty,

where o and B are arbitrary constants.

Symmetry reductions. In this subsection,
we have derived symmetry reductions of Egs.
(20) and (21) associated with the vector fields
in the optimal system (28) by using similarity
variables and further attempted to furnish exact
solutions

(28)

(30)

(Or,; +pr;.

Corresponding to this vector field, the form
of the similarity variable and similarity solution
are as follows:

¢ = g 0(p, 2) = F(5), u(p, 2) = Blog z + G(Q).

128

Substituting the expressions of similarity
variable and similarity solution into Egs. (20)
and (21) yields the following system of reduced
ODEs:

CF"+ F +(+2F'¢* -¢p*sin Fcos F —
— 2sin F cos FG?B G’ —sin F cos F’G™ -
— sin Fcos F§G™ =0,
CG"+ G +BL -G -20°G' -

— 2(F'G'tan F + 2C°BF'tan F —

-~ 20F'G'tan F = 0.

(1)

In this case because of the complexity of
reduced system (31), the following two particu-
lar cases have been worked out.

Case 1. By considering F({) = 0, we found
that metric (1) is reduced to static axially sym-
metric metric of Weyl in canonical coordinates
and system (31) becomes

(G"+G +BC-CG"-20*G" =0.  (32)

Solving Eq. (32), we obtained the solutions
as follows:

G(o) = %ln(—2§) - % In(-2C +2) +

+% In(¢ — 1) + ¢ Ei(1, 26) - (33)

- ¢, exp(-2)Ei(l1, 2¢€ - 2) + ¢,,

where ¢, and ¢, are arbitrary constants and Ei
is the exponential integral.

Now, we have obtained solution of Egs.
(20) and (21) for static axially symmetric met-
ric and further by back substitution to original
variables, the exact solution of Egs. (20) and
(21) is given by:

B2 B2
p(p,z)_4ln( - j 4ln( - +2J+

B [B - 1} ‘e [Ei (1, ZED ~ (34
2 z Z
—¢,(exp(-2)Ei (1, 2% - 2] +0y.

In Fig. 1, the picture representation of the
solution (34) is given for B =1,¢, =¢, = 1.

Case II. By putting G(£) =0, metric (1)
is reduced to
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Fig. 1. Picture representation of Coriolis
and centrifugal force solution (34), produced
by rotating spherical shell in General Relativity,
to field Egs. (20) and (21) withp =1, ¢, = ¢, = 1

ds? =—exp(20)(dp? + dz?)-
— pcos 6(d¢* — dt?) + 2psin 0dddt,
and then solving Eq. (31) and reverting back to
the original variables. Thus, we have obtained

the following exact solution of Egs. (20) and
(21):

(35)

0(p, z) = 3 +| —arctan

where ¢, and c, are arbitrary constants.

In Fig. 2, the picture representation of the
solution (36) is given for ¢, = ¢, = 1.

Now, we attempt to furnish exact solutions

@), + al;.

For this vector field, the forms of the
similarity variable and the similarity solution
are as follows:

C=p,0(p,2) = F(C),(p,2) = G(C) + vz

Using these forms in Egs. (20) and (21),
we obtain the system of reduced ODEs:

CF"+ F'+¢sin F cos F(o? + G™?) =0,
CF"+G'"-2Ctan FG = 0,

where the prime denotes the differentiation
with respect to the variable C.

Now under this vector field, we are unable
to obtain the nontrivial exact solutions. So
we have used the well-developed numerical
technique to solve the reduced problem. For
this purpose, we have obtained the following
four first-order equations:

(37)

d)’l _
dz - y2s
B, _ [-y, + a’zsin y, cos y, +
dz
+ zaly} siny, cos y, 1y, - 77, (38)
dy, _
dz - y39
Yy _ —Y4 +2pyztany,
dz z ’
with
45 =1.2 45) =0
»,(45) , 1,(45) =0, (39)
y,(45) =0, y,(45) = 0.1.
5_.

Fig. 2. Coriolis and centrifugal force solution (36),
produced by rotating spherical shell in General
Relativity, to field Egs. (20) and (21) with

c,=¢ =1
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a)

15

101

o
5]

Similarity solutions

-15
45 46 47 43 49 50 51 52 53 54 55

Similarity variable (z)

Similarity solutions

45 46 47 48 49 50 51 52 53 54 55
Similarity variable (z)

b)

Similarity solutions

45 46 47 48 49 50 51 52 53 54 55
Similarity variable (z)

0.09

008

007

0.06

005

004

Similarity solutions

0.03

002

0.0 h . h n ) " h "
45 46 47 48 49 50 51 52 53 54 55
Similarity variable (z)

Fig. 3. Numerical solutions to field Egs. (20) and (21) with respect to the reduced IVP (38), (39) when
o? = 5, with the initial value z = 45 at 4 = 0.01; the profiles of y, (@), y, (b), y,(c), y, (d) are presented

The numerical solutions to the initial value
problem (IVP) (38), (39) are depicted above.

In Fig. 3, numerical solutions of field Egs.
(20) and (21) are obtained with respect to the
reduced IVP (38), (39). Now the profiles of
y, and y, show that the solution is periodic,
and the profiles of y, and y, show that the
solution is unbounded and damped oscillatory
respectively.

Now, if we attempt to furnish exact
solutions

(iii) T,

corresponding to this vector field, no such
invariant solution exists.

Discussion and concluding remarks

In the present investigation, we have
successfully implemented Lie symmetry
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reduction to obtain the Lie symmetries
admitted by field equations extracted from a
metric which is supposed to describe the fields
due to bodies in stationary rotation about their
axes. The infinitesimal generators in optimal
system of sub-algebras of the full Lie algebra
of the coupled system of nonlinear partial
differential equations of second order of field
equations are considered. We completely solved
the determining equations for the infinitesimal
generators of Lie groups. Further, the group
classification from the point of view of the
optimal system of non-conjugate sub-algebras
of the symmetry algebra of the nonlinear system
has been performed under the adjoint action
of the symmetry group. The various fields in
the optimal system have been then exploited
to get the reductions of PDEs into ODEs.
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Due to the complexity of reduced ODEs, it
is impossible to obtain the nontrivial exact
solutions, so under the vector field (i)A, + BA,,
particular exact solutions are obtained for field
Egs. (20) and (21). Graphical representation
of solutions (34) and (36) to field Egs. (20)
and (21) described the center forces, similar to
the Coriolis and centrifugal forces of classical
machines, produced by a rotating spherical
shell in general relativity as shown in Figs. 1,
2. Now under the vector field (ii)A, + aAs,
it is again impossible to obtain the nontrivial

exact solutions with respect to the reduced
ODEs (37). So, under this vector field, IVP
is posed for numerical solution. As a result, a
numerical solution is found which is periodic,
unbounded and damped oscillatory as shown
in Fig. 3.
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