
ISSN 1605-2730 

MATERIALS PHYSICS 
AND MECHANICS 

Vol. 32, No. 3, 2017 



MATERIALS PHYSICS AND MECHANICS 
 

Principal Editors: 
Dmitrii Indeitsev 

Institute of Problems of Mechanical Engineering 
of the Russian Academy of Science (RAS), Russia 

Andrei Rudskoi 
Peter the Great St.Petersburg Polytechnic University, Russia 

Founder and Honorary Editor: Ilya Ovid'ko (1961-2017) 
Institute of Problems of Mechanical Engineering   
of the Russian Academy of Sciences (RAS), Russia 

Staff Editors: 
Anna Kolesnikova 

Institute of Problems of Mechanical Engineering   
of the Russian Academy of Sciences (RAS), Russia 

Alexander Nemov 
Peter the Great St.Petersburg Polytechnic University, Russia 

Editorial Board: 
E.C. Aifantis 

Aristotle University of Thessaloniki, Greece 
S.A. Kukushkin 

Institute of Problems of Mechanical Engineering (RAS), Russia 
K.E. Aifantis 

University of Florida, USA 
T.G. Langdon 

University of Southampton, U.K. 
U. Balachandran 

Argonne National Laboratory, USA 
V.P. Matveenko 

Institute of Continuous Media Mechanics (RAS), Russia 
A. Bellosi 

Research Institute for Ceramics Technology, Italy 
A.I. Melker 

Peter the Great St.Petersburg Polytechnic University, Russia 
A.K. Belyaev 

Institute of Problems of Mechanical Engineering (RAS), Russia 
Yu.I. Meshcheryakov 

Institute of Problems of Mechanical Engineering (RAS), Russia 
S.V. Bobylev 

Institute of Problems of Mechanical Engineering (RAS), Russia 
N.F. Morozov 

St.Petersburg State University, Russia 
A.I. Borovkov 

Peter the Great St.Petersburg Polytechnic University, Russia 
R.R. Mulyukov 

Institute for Metals Superplasticity Problems (RAS), Russia 
G.-M. Chow 

National University of Singapore, Singapore 
Yu.V. Petrov 

St.Petersburg State University, Russia 
Yu. Estrin 

Monash University, Australia 
N.M. Pugno 

Politecnico di Torino, Italy 
A.B. Freidin 

Institute of Problems of Mechanical Engineering (RAS), Russia 
B.B. Rath 

Naval Research Laboratory, USA 
Y. Gogotsi 

Drexel University, USA 
A.E. Romanov 

Ioffe Physico-Technical Institute (RAS), Russia 
I.G. Goryacheva 

Institute of Problems of Mechanics (RAS), Russia 
A.M. Sastry 

University of Michigan, Ann Arbor, USA 
D. Hui 

University of New Orleans, USA 
A.G. Sheinerman 

Institute of Problems of Mechanics (RAS), Russia 
G. Kiriakidis 

IESL/FORTH, Greece 
N.V. Skiba 

Institute of Problems of Mechanics (RAS), Russia 
D.M. Klimov 

Institute of Problems of Mechanics (RAS), Russia 
R.Z. Valiev 

Ufa State Aviation Technical University, Russia 
G.E. Kodzhaspirov 

Peter the Great St.Petersburg Polytechnic University, Russia 
K. Zhou 

Nanyang Technological University, Singapore 

“Materials Physics and Mechanics” Editorial Office:  
Phone: +7(812)591 65 28 E-mail: mpmjournal@spbstu.ru Web-site: http://www.mpm.spbstu.ru 

International scientific journal "Materials Physics and Mechanics" is published by Peter the Great St.Petersburg Polytechnic University in 
collaboration with Institute of Problems of Mechanical Engineering of the Russian Academy of Sciences in both hard copy and electronic 
versions.  
The journal provides an international medium for the publication of reviews and original research papers written in English and focused on the 
following topics: 

• Mechanics of nanostructured materials (such as nanocrystalline materials, nanocomposites, nanoporous materials, nanotubes, quantum
dots, nanowires, nanostructured films and coatings). 

• Physics of strength and plasticity of nanostructured materials, physics of defects in nanostructured materials.
• Mechanics of deformation and fracture processes in conventional materials (solids).
• Physics of strength and plasticity of conventional materials (solids).

Owner organizations: Peter the Great St. Petersburg Polytechnic University; Institute of Problems of Mechanical Engineering RAS. 

Materials Physics and Mechanics is indexed in Chemical Abstracts, Cambridge Scientific Abstracts, 
Web of Science Emerging Sources Citation Index (ESCI) and Elsevier Bibliographic Databases (in particular, SCOPUS). 

© 2017, Peter the Great St. Petersburg Polytechnic University 
© 2017, Institute of Problems of Mechanical Engineering RAS 

http://www.ipme.ru/e-journals/MPM/index.html
http://www.ipme.ru/ipme/labs/he/indeng.htm
http://www.ipme.ru/index.html
http://www.ipme.ru/index.html
http://www.ipme.ru/index.html
http://www.ipme.ru/index.html
http://www.ipme.ru/index.html
http://nano.materials.drexel.edu/


 
 
 

 
 
 

МЕХАНИКА И ФИЗИКА МАТЕРИАЛОВ 
 

Materials Physics and Mechanics 
 
 
 
 
 
 
 
 
 

Том 32, номер 3, 2017 год 
 
 
 
 
 
 
 
 
 
 
 

Учредители: 
ФГАОУ ВО «Санкт-Петербургский политехнический университет Петра Великого» 

ФГБУН «Институт проблем машиноведения Российской Академии Наук» 



Редакционная коллегия журнала 
Главные редакторы: 

д.ф.-м.н., чл.-корр. РАН Д.А. Индейцев 
Институт проблем машиноведения Российской Академии Наук 

(РАН) 

д.т.н., академик РАН А.И. Рудской 
Санкт-Петербургский политехнический университет 

Петра Великого 
 

Основатель и почетный редактор: д.ф.-м.н. И.А. Овидько (1961-2017) 
Институт проблем машиноведения Российской Академии Наук (РАН) 

 
Ответственные редакторы 

д.ф.-м.н. А.Л. Колесникова 
Институт проблем машиноведения Российской Академии Наук 

(РАН) 

к.т.н. А.С. Немов 
Санкт-Петербургский политехнический университет Петра 

Великого 
 

Международная редакционная коллегия:  
 

д.ф.-м.н., проф. А.К. Беляев 
Институт проблем машиноведения РАН, Россия 

Prof., Dr. E.C. Aifantis 
Aristotle University of Thessaloniki, Greece 

д.ф.-м.н. С.В. Бобылев 
Институт проблем машиноведения РАН, Россия 

Dr. K.E. Aifantis 
University of Florida, USA 

к.т.н., проф. А.И. Боровков 
Санкт-Петербургский политехнический у-т Петра Великого, Россия 

Dr. U. Balachandran 
Argonne National Laboratory, USA 

д.ф.-м.н., проф. Р.З. Валиев 
Уфимский государственный технический университет, Россия 

Dr. A. Bellosi 
Research Institute for Ceramics Technology, Italy 

д.ф.-м.н., академик РАН И.Г. Горячева 
Институт проблем механики РАН, Россия 

Prof., Dr. G.-M. Chow 
National University of Singapore, Singapore 

д.ф.-м.н., академик РАН Д.М. Климов 
Институт проблем механики РАН, Россия 

Prof., Dr. Yu. Estrin 
Monash University, Australia 

д.т.н., проф. Г.Е. Коджаспиров 
Санкт-Петербургский политехнический у-т Петра Великого, Россия 

Prof., Dr. Y. Gogotsi 
Drexel University, USA 

д.ф.-м.н., проф. С.А. Кукушкин 
Институт проблем машиноведения РАН, Россия 

Prof., Dr. D. Hui 
University of New Orleans, USA 

д.ф.-м.н., академик РАН В.П. Матвеенко 
Институт механики сплошных сред РАН, Россия 

Prof., Dr. G. Kiriakidis 
IESL/FORTH, Greece 

д.ф.-м.н., проф. А.И. Мелькер 
Санкт-Петербургский политехнический у-т Петра Великого, Россия 

Prof., Dr. T.G. Langdon 
University of Southampton, UK 

д.ф.-м.н., проф. Ю.И. Мещеряков 
Институт проблем машиноведения РАН, Россия 

Prof., Dr. N.M. Pugno 
Politecnico di Torino, Italy 

д.ф.-м.н., академик РАН Н.Ф. Морозов 
Санкт-Петербургский государственный университет, Россия 

Dr. B.B. Rath 
Naval Research Laboratory, USA 

д.ф.-м.н., чл.-корр. РАН Р.Р. Мулюков 
Институт проблем сверхпластичности металлов РАН, Россия 

Prof., Dr. A.M. Sastry 
University of Michigan, Ann Arbor, USA 

д.ф.-м.н., чл.-корр. РАН Ю.В. Петров 
Санкт-Петербургский государственный университет, Россия 

Prof. Dr. K. Zhou 
Nanyang Technological University, Singapore 

д.ф.-м.н., проф. А.Е. Романов 
Физико-технический институт им. А.Ф. Иоффе РАН, Россия  

д.ф-м.н. Н.В. Скиба 
Институт проблем машиноведения РАН, Россия  

д.ф.-м.н., проф. А.Б. Фрейдин 
Институт проблем машиноведения РАН, Россия  

д.ф-м.н. А.Г. Шейнерман 
Институт проблем машиноведения РАН, Россия  

  
 

Тел.: +7(812)591 65 28 E-mail: mpmjournal@spbstu.ru Web-site: http://www.mpm.spbstu.ru 
 
Тематика журнала 
Международный научный журнал "Materials Physics and Mechanics" издается Санкт-Петербургским политехническим 
университетом Петра Великого в сотрудничестве с Институтом проблем машиноведения Российской Академии Наук в 
печатном виде и электронной форме. Журнал публикует обзорные и оригинальные научные статьи на английском языке по 
следующим тематикам:  
• Механика наноструктурных материалов (таких как нанокристаллические материалы, нанокомпозиты, нанопористые 

материалы, нанотрубки, наноструктурные пленки и покрытия, материалы с квантовыми точками и проволоками).  
• Физика прочности и пластичности наноструктурных материалов, физика дефектов в наноструктурных материалах.  
• Механика процессов деформирования и разрушения в традиционных материалах (твердых телах). 
• Физика прочности и пластичности традиционных материалов (твердых тел).  
Редколлегия принимает статьи, которые нигде ранее не опубликованы и не направлены для опубликования в другие 
научные издания. Все представляемые в редакцию журнала "Механика и физика материалов" статьи рецензируются. 
Статьи могут отправляться авторам на доработку. Не принятые к опубликованию статьи авторам не возвращаются. 
 

Журнал "Механика и физика материалов" ("Materials Physics and Mechanics") включен в систему цитирования 
Web of Science Emerging Sources Citation Index (ESCI), SCOPUS и РИНЦ. 

 
 2017, Санкт-Петербургский политехнический университет Петра Великого 
 2017, Институт проблем машиноведения Российской Академии Наук

http://www.ipme.ru/indexr.html


Contents 

Investigation of the influence of strain induced junction disclinations on hardening 
and nucleation of cracks during plastic deformation of polycrystals…………………………………..237-242 
V.V. Rybin, V.N. Perevezentsev, J.V. Svirina 

Micropolar media with structural transformations – theory illustated by an example problem……243-252 
W. H. Müller, E.N. Vilchevskaya 

Mechanical properties of nanostructured titanium with bioactive titanium-organic nanocoating…...253-257 
E.G. Zemtsova, N.F. Morozov, B.N. Semenov, R.Z. Valiev, V.M. Smirnov

Dynamic strength properties of an ultra-fine-grained aluminum alloy under tension conditions…...258-261 
A.D. Evstifeev, A.A. Chevrychkina, Y.V. Petrov 

Nucleation and growth mechanisms of CdTe thin films on silicon substrates  
with silicon carbide buffer layers…………………………………………………………………………262-271 
A.A. Koryakin, S.A. Kukushkin, A.V. Redkov

On influence of shear traction on hydraulic fracture propagation……………………………………..272-277 
A. M. Linkov 

Elastomer composites based on filler with negative coefficient of thermal expansion: 
experiments and numerical simulations of stress-strain behaviour……………………………………278-287 
S.N. Shubin, A.G. Akulichev, A.B. Freidin 

Fabrication of p-type transparent oxide films with delafossite structure by sol-gel processing………288-292 
E.V. Shirshneva-Vaschenko, L.A. Sokura, T.G. Liashenko, E. Podlesnov, V.E. Bougrov, A.E. Romanov 

Application of quantum-chemical modeling results in experimental investigations  
of silicone composites…………………………………………………………………………………...…293-297 
H.H. Valiev, V.V. Vorobyev, Yu.N. Karnet, Yu.V. Kornev, O.B. Yumaschev 

Experimental verification of postulate of isotropy and mathematical modeling  
of elastoplastic deformation processes following the complex angled nonanalytic trajectories……….298-304 
V.G. Zubchaninov, A.A. Alekseev, E.G. Alekseeva, V.I. Gultiaev 

Testing of steel 45 under complex loading along the cylindrical screw trajectories of deformation….305-311 
V.G. Zubchaninov, V.I. Gultiaev, A.A. Alekseev, V.V. Garanikov, S.L. Subbotin 

Validation of the mathematical model of isotropic material using parametric optimization  
of its physical and mechanical characteristics…………………………………………………...……….312-320 
A.I. Borovkov, O.I. Klyavin, O.I. Rozhdestvenskiy, M.V. Aleshin, A.N. Leontev, S.P. Nikulina,  
K.S. Ivanov, A.P. Okunev 

On using quasi-random lattices for simulation of isotropic materials…………………………………..321-327 
Vadim A. Tsaplin, Vitaly A. Kuzkin 

Review of the computational approaches to advanced materials simulation in accordance  
with modern advanced manufacturing trends…………………………………………………………...328-352 
A.V. Shymchenko, V.V. Tereshchenko, Y.A. Ryabov, S.V. Salkutsan, A.I. Borovkov 

On one class of applied gradient models with simplified boundary problems………………………….353-369 
S.A. Lurie, Р. A. Belov, Y.O. Solyaev, E.C. Aifantis 

Comparison of adaptive algorithms for solving plane problems of classical and cosserat elasticity….370-382 
M.A. Churilova, M.E. Frolov 

Finite element modelling of the mitral valve repair using an implantable leaflet plication clip……....383-392 
M. D. Stepanov, O.S. Loboda, Y. V. Novozhilov, N. V. Vasilyev 



Содержание 

Investigation of the influence of strain induced junction disclinations on hardening 
and nucleation of cracks during plastic deformation of polycrystals…………………………………..237-242 
V.V. Rybin, V.N. Perevezentsev, J.V. Svirina 

Micropolar media with structural transformations – theory illustated by an example problem……243-252 
W. H. Müller, E.N. Vilchevskaya 

Mechanical properties of nanostructured titanium with bioactive titanium-organic nanocoating…...253-257 
E.G. Zemtsova, N.F. Morozov, B.N. Semenov, R.Z. Valiev, V.M. Smirnov

Dynamic strength properties of an ultra-fine-grained aluminum alloy under tension conditions…...258-261 
A.D. Evstifeev, A.A. Chevrychkina, Y.V. Petrov 

Nucleation and growth mechanisms of CdTe thin films on silicon substrates  
with silicon carbide buffer layers…………………………………………………………………………262-271 
A.A. Koryakin, S.A. Kukushkin, A.V. Redkov

On influence of shear traction on hydraulic fracture propagation……………………………………..272-277 
A. M. Linkov 

Elastomer composites based on filler with negative coefficient of thermal expansion: 
experiments and numerical simulations of stress-strain behaviour……………………………………278-287 
S.N. Shubin, A.G. Akulichev, A.B. Freidin 

Fabrication of p-type transparent oxide films with delafossite structure by sol-gel processing………288-292 
E.V. Shirshneva-Vaschenko, L.A. Sokura, T.G. Liashenko, E. Podlesnov, V.E. Bougrov, A.E. Romanov 

Application of quantum-chemical modeling results in experimental investigations  
of silicone composites…………………………………………………………………………………...…293-297 
H.H. Valiev, V.V. Vorobyev, Yu.N. Karnet, Yu.V. Kornev, O.B. Yumaschev 

Experimental verification of postulate of isotropy and mathematical modeling  
of elastoplastic deformation processes following the complex angled nonanalytic trajectories……….298-304 
V.G. Zubchaninov, A.A. Alekseev, E.G. Alekseeva, V.I. Gultiaev 

Testing of steel 45 under complex loading along the cylindrical screw trajectories of deformation….305-311 
V.G. Zubchaninov, V.I. Gultiaev, A.A. Alekseev, V.V. Garanikov, S.L. Subbotin 

Validation of the mathematical model of isotropic material using parametric optimization  
of its physical and mechanical characteristics…………………………………………………...……….312-320 
A.I. Borovkov, O.I. Klyavin, O.I. Rozhdestvenskiy, M.V. Aleshin, A.N. Leontev, S.P. Nikulina,  
K.S. Ivanov, A.P. Okunev 

On using quasi-random lattices for simulation of isotropic materials…………………………………..321-327 
Vadim A. Tsaplin, Vitaly A. Kuzkin 

Review of the computational approaches to advanced materials simulation in accordance  
with modern advanced manufacturing trends…………………………………………………………...328-352 
A.V. Shymchenko, V.V. Tereshchenko, Y.A. Ryabov, S.V. Salkutsan, A.I. Borovkov 

On one class of applied gradient models with simplified boundary problems………………………….353-369 
S.A. Lurie, Р. A. Belov, Y.O. Solyaev, E.C. Aifantis 

Comparison of adaptive algorithms for solving plane problems of classical and cosserat elasticity….370-382 
M.A. Churilova, M.E. Frolov 

Finite element modelling of the mitral valve repair using an implantable leaflet plication clip……....383-392 
M. D. Stepanov, O.S. Loboda, Y. V. Novozhilov, N. V. Vasilyev 



INVESTIGATION OF THE INFLUENCE OF STRAIN INDUCED 

JUNCTION DISCLINATIONS ON HARDENING AND NUCLEATION 

OF CRACKS DURING PLASTIC DEFORMATION OF 

POLYCRYSTALS 
V.V. Rybin, V.N. Perevezentsev, J.V. Svirina* 

Mechanical Engineering Research Institute of RAS, 85 Belinsky str., 603024 Nizhny Novgorod, Russia 

*e-mail: j.svirina@mail.ru

Abstract. An influence of elastic field of strain induced junction disclinations on hardening and 
nucleation of a micro-crack in a head of edge lattice dislocations pile-up is considered. 
Computer simulation method is used to calculate critical external stress for plastic shear 
propagation throw a force barrier induced by junction disclination. A qualitative explanation is 
given for the experimentally observed essential growth of the flow stress at sufficiently large 
plastic deformations. It is shown that the appearance of junction disclinations suppress 
nucleation of micro-cracks according to the mechanism of pile-up head dislocations confluence 
proposed by Stroh [1]. 
Keywords: strain induced junction disclination, plastic deformation, hardening, crack 
nucleation 

1. Introduction
The difference in crystallographic orientations of polycrystal grains leads to their unequal 
plastic strains under loading. As a consequence it leads to the appearance of rotational type 
linear mesodefects in triple junctions and on the ledges of grain boundaries [2,3]. These 
mesodefects, called strain induced junction disclinations, generate powerful field of elastic 
stresses that essentially influences on plastic flow and fracture of polycrystals. However, up to 
now the main attention of researchers has been focused on the study of the role of strain induced 
junction disclinations in fragmentation phenomenon (i. e. subdivision of uniformly oriented 
initial grains of polycrystal into strongly misoriented regions, viz., fragments during large 
plastic deformation) [3,4]. The influence of strain induced junction disclinations on strain 
hardening and fracture of polycrystals remains less investigated [5,6].  

In the framework of classical physics of dislocations, an increase of flow stress during 
plastic deformation is usually associated with an increase of a density of lattice dislocations 
distributed over the volume of grains, as well as with the interaction of dislocations with high 
angle grain boundaries and dislocation subboundaries [7]. However, physical models of 
hardening based on these assumptions do not explain the essential growth of plastic flow 
stresses up to values of 3 2~ 10 10 G− −÷ (G is the shear modulus) at the true strain values 0.2ε > . 
In our opinion, it is possible to explain this experimental fact taking into account that the elastic 
fields of junction disclinations retard the motion of lattice dislocations providing plastic 
deformation of the body of grains. In present paper computer simulation method is used to 
investigate the conditions for the propagation of plastic shear carried out by both individual 
dislocations and pile-up of edge dislocations motion through a force barrier of junction 
disclination.  

Materials Physics and Mechanics 32 (2017) 237-242 Received: November 2, 2017
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Besides, experimental studies show that at large plastic strains the change of fracture 
mechanisms take place. The nucleation of microcracks occurs according to the disclination 
mechanism [8], while classical Stroh's mechanism [1] of microcrack initiation in the head of a 
retarded pile-up of edge dislocations take no place. In this work the limitation of Stroh’s model 
for large plastic deformations is explained by the influence of strain induced junction 
disclination.   

2. Description of the model
Let us consider a junction of three grains plastically deformed up to a strain iε  (i = 1, 2, 3) 
(See Fig. 1.). The difference of plastic strains of adjacent grains leads to the appearance of 
additional misorientations on the grain boundaries N Nj j j j∆ ∆= × ⋅Θ ε (j = 1, 2, 3). Their 
values are determined by the values of plastic deformation jumps i∆ε  at the j-th grain boundary 
and the orientation of the unit vector of the normal to the boundary N j . 

Fig. 1. Schematic plot of grain boundary triple junction. 

The difference of additional misorientations on different grain boundaries leads to the 
appearance of a linear defect of the rotational type, i.e. junction disclination with a strength 

j
j
∆=∑ω Θ , in the triple junction. Strain induced junction disclination generate field of elastic

stresses that influences on the motion of lattice dislocations providing plastic deformation of 
the grains body. Further consideration of the model will be performed for two dimentional (2D) 
case for simplification. 

Let edge dislocation with the Burgers vector 1b s ib b= =  move in a slip plane placed at 
some distance y=h from the wedge junction disclination in the grain G1. 

The disclination act on a probe dislocation in a given slip plane 1n with a force 

xf σ bxy
∆ ∆= , where 

( )
( )

2
2sin

22

ϕσ Dω
yx

xyDωxy −=
+

−=∆ , (1) 

( )D G 2 1π ν= − , ν is a Poisson ratio, φ is an angle in polar coordinate system [9]. 
As seen from (1), this force is positive to the left of the disclination (x <0) and negative 

to the right of it (x> 0). Thus, in the region x < 0 the external stress force xy
ext ext

xf bσ=  and 
disclination force acting on the dislocation are co-directed, and in the region x> 0 these forces 
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are directed oppositely. Therefore in the region x > 0 the moving dislocation is retarded by the 
elastic field of disclination. It is easy to note that a stable equilibrium takes place only if 

ext *

сσ σ< , where *

с Dω 2σ =  is equal to maximum shear stress of the disclination (on the ray φ=450 
in polar coordinates). Thus, the condition for plastic shear propagation carried out by the motion 
of a single dislocation takes a form ext *

сσ σ≥ . Basing on this result, for typical values of the 
disclination strength 0.017 0.034ω ≈ ÷  rad, the flow stress should be of the order of
( ) 22 4 10 G−÷ ⋅ . However, this value can be smaller if plastic shear is carried out by a motion of 
group of dislocations. 

In the case ext *
сσ σ<  a single dislocation is stopped by the force barrier of junction 

disclination, but the emission of new dislocations by a source located in the slip plane leads to 
the formation of the dislocation pile-up, which creates an additional force acting on the head 
dislocation facilitating the shear propagation. Let us analyze the conditions for the plastic shear 
propagation through the disclination force barrier using computer simulation method [10]. 

The motion of dislocations was considered in a quasi-viscous approximation. The 
equation of motion for k-th dislocation of the pile-up in the slip plane y = h was written in the 
form: 

(k) (k)V Mb xy
Σ= σ  (2) 

Here: (k)V  is the dislocation velocity, xy

ext disl

xy xy xy

Σ ∆= + +σ σ σ σ  is a total field of elastic stress 

including external stress ext
xyσ , internal stresses caused by disclination ( )2 2

xy D xh x h∆ ω= − +σ

and dislocations pile-up ( )
i k

1disl

xy k iDb x x −

≠

= −∑σ   ( p1 i N 1≤ ≤ − ), Np is a number of dislocations 

in the pile-up, M is a dislocation mobility. 
The formation of the pile-up were performed by sequential emission of positive 

dislocations by a source located on the left side of the grain G1. Each subsequent m + 1 
dislocation was emitted when other previously emitted m dislocations of the pile-up reach 
equilibrium state in order to avoid the influence of the dynamic effects [11] on the motion of 
dislocations and the configuration of the pile-up. 

After emitting of the m + 1 dislocation a new equilibrium pile-up configuration was 
calculated. Calculation of each configuration (the coordinates of the dislocations) was carried 
out by the method of sequential time iteration providing sufficiently small dislocation 
displacements for a given mobility M. The equilibrium configuration of the pile-up was 
determined from the condition that the forces acting on each dislocation of the pile-up were 
equal to zero. The condition for the plastic shear propagation were determined as the conditions 
under which the pile-up loss stability and its head dislocation leaves the pile-up and moves to 
a sink on the right side of the grain. 

3. Results and discussion
Let us consider the influence of the external stress on the equilibrium configuration of the pile-
up containing a given number of dislocations. The results of numerical calculation of the pile-
up configuration for ten dislocations in the slip plane located at a distance h = 1 μm from the 
junction dislocation for different values of the external stress are shown in Fig. 2. The axial 
symmetry of the elastic stresses field of wedge disclination leads to the fact that in the absence 
of the external stresses ( ext 0σ = ) the dislocation pile-up is located symmetrically with respect 
to the plane passing through the disclination line perpendicular to the slip plane of the 
dislocations (Fig. 2a). As the external stress extσ  increases, the dislocation pile-up displaces as 
a whole and its shape becomes more asymmetric (Fig. 2b). Finally, when the external stress 
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extσ  becomes greater than a certain critical one c 0.0145Dσ = , the pile-up becomes unstable, 
its head dislocation leaves the crystal. 

Fig. 2. Equilibrium configuration of the edge dislocations pile-up near disclination  
0.04ω =  rad : (a) ext 0σ = ; (b) c 0.01Dσ = ; (c) remaining part of the pile-up when the head 

dislocation left the crystal at ext 0.015Dσ = . 

At the same time, the remaining dislocations of the pile-up rearrange into a new 
equilibrium configuration (Fig. 2c). It is obvious that an emission of a new dislocation by 
dislocation source will lead to the repeating of this process. 

The results of calculations for the dependence of the critical shear stress on the number 
of dislocations in the pile-up for various values of h are shown in Fig. 3.  

Fig. 3. The dependence of the critical external shear stress on the number of dislocations in 
the pile-up. 

It is seen that for a fixed number of dislocations in the pile-up the value cσ  increases with 
the increase of the distance between the slip plane and disclination. Thus, when the plastic 
deformation is localized in certain  slip planes, the greatest hardening effect from the elastic 
fields of disclination is achieved not near the grain boundary, but far from it. 

It follows from the analysis that this type of dislocation pile-ups caused by junction 
disclinations accumulating during plastic deformation may exist in the body of grains in the 
absence of any visible physical barriers located in the slip plane. 

One of the distinguishing features of this type of pile-ups is that they do not disappear 
under unloading.  

Let us consider now the influence of junction disclinations on the nucleation of cracks at 
the head of the pile-up of edge dislocations stopped by the grain boundary oriented at an angle 
of 300 to the х axis (Fig.4). In the absence of disclinations ( 0ω = ) the classical scheme for 
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crack initiation according to the Stroh’s model takes place. In this model the crack nucleation 
occurs at cσ σ>  where cσ  is the value of stress at which two head dislocations of the pile-up 
come to a distance cd 2r< , where cr ~ b  is the radius of the dislocation core. 

Fig. 4. Schematic plot of the crack nucleation at the head of edge dislocations pile-up. 

For a given external stress, the crack nucleation is possible only when the number of 
dislocations in the pile-up is greater than a certain critical one (curve 2 in Figure 5.) Note that, 
as Stroh showed, at cσ σ>  the action of the external stress is sufficient to move the largest part 
of the remaining dislocations of pile-up into a crack that makes possible the initiation of a 
Griffith’s crack. 

Fig. 5. The dependence of critical number of dislocations in the pile-up on the external stress 
at junction disclination strength 0.01ω =  (curve 1) and at 0ω = (curve 2), h=1µm. 

The results of computer simulation show that junction disclination supress the crack 
nucleation. The confluence of the head dislocations of pile-up occurs at a greater number of 
dislocations than in the Stroh model. The dependence of the critical number of dislocations at 
the typical disclination strength 0.01ω =  rad is shown in curve 1 in Fig. 5 for h=1µm. 
Obviously, this effect can be neglected only for very large external stress values ext Dω 2σ >> . 
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4. Conclusion
Basing on the results of the analysis the following conclusion can be summarized: 
• A physical mechanism of hardening associated with the accumulation of disclination in triple
junctions of high angle grain boundaries at large plastic deformation is developed. 
• An existence of special type dislocation pile-ups forming at large plastic deformation in the
absence of any visible physical barriers in the body of grains is predicted. 
• Strain induced junction disclinations suppress cracks nucleation in the head of dislocations
pile-up. 
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Abstract. This paper is concerned with a model for an extended theory of micropolar media. 
The extension concerns the balance for the tensor field of the moment of inertia, which in 
contrast to previous theories contains a production term. This term becomes important if the 
micropolar material undergoes structural changes. In the present case we consider an 
assemblage of hollow spheres, which due to a transient temperature field contract or expand. 
This leads to a true field for the tensor of the moment of inertia varying in space and time. For 
this situation the production term can be calculated numerically. In addition, the temporal and 
spatial change of the macroscopic inertia field influences rotational motion. Based on a 
numerical solution for the balance of spin we study the evolvement of angular velocity in space 
and time. The importance of the presence of a volume couple density is stressed and its physical 
realization will be discussed. 
Keywords: micropolar media, production of microinertia, balances of angular momentum and 
spin, volume couple. 

1. Introduction and outline to the paper
Generalized Continuum Theories (GCTs) have gained the attention of the materials science 
community for a long time. Their idea is to capture the behavior of high performance materials 
with an inner structure and internal degrees of freedom. Applications range from the small to 
the large scale and involve solids as well as liquids. Concrete examples are manifold and can 
be found in light-weight aerospace and automotive structures, liquid crystal panels, and well as 
micromechanics and microelectronic gadgets. One of the GCTs is the so-called micropolar 
theory, which emphasizes the aspect of inner rotational degrees of freedom of a material [1]. 
This theory seems particularly promising for applications to soils, polycrystalline and 
composite matter, granular and powder-like materials, and even to porous media and foams. 

Continuum mechanics of solids is typically formulated in the Lagrangian way, a.k.a. 
material description, where the concept of an indestructible “material particle” prevails, 
identifiable by its reference position. Hence a bijective mapping for describing the particle’s 
path through three-dimensional space in time uniquely can be used. Note that this requires the 
neighboring material particles to remain “close” to each other during the motion. Furthermore 
note that a material particle in the continuum sense is composed of myriads of atoms or 
molecules, so that statistical fluctuations play no role in a macroscopic continuum. Furthermore 
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there is no exchange of the atoms and molecules between material particles: The mass of a 
material particle is conserved. 

Traditionally this concept is also used in micropolar theory [1,2]. One may say that the 
corresponding material particle consists of a statistically significant number of subunits on a 
mesoscopic scale, for confusion often also called “particles.” Now, if the Lagrangian idea of a 
material particle is followed, the material particles must stay together during the motion and 
there should be no exchange of subunits between them. Also note that within the material 
description of a micropolar continuum, each material point is phenomenologically equivalent 
to a rigid body, such that its microinertia does not change [2]. 

However, there is a catch. As an example consider a granular medium which is milled. 
This effects the material particle, because its subunits will be crushed. They will change their 
mass and their moment of inertia and, what is more, during the milling process there might even 
be an exchange of crushed subunits between neighboring material particles, which are then no 
longer material in the original sense. Consequently, on a macroscopic scale the moments of 
inertia will change as well. It is for that reason that the authors of [3] have departed from the 
idea of following the Lagrangian way and turn to the Eulerian perspective (a.k.a. spatial 
description) instead. Originally the Eulerian description stems from fluid mechanics. It does not 
impose strict constraints on the motion of mass-conserved material points. Rather it embraces 
the idea of an open system, allowing a priori for exchange of mass, momentum, energy, moment 
of inertia, etc., between the cells of the Eulerian grid. 

Moreover, the authors in [3] proposed a kinetic equation for microinertia (the field of the 
local inertia tensor), which in contrast to former theories contains a production term. For a better 
understanding of this new concept they also present an underlying mesoscopic theory. Their 
idea is to connect information on a mesoscale by taking the intrinsic microstructure within a 
spatial grid cell into account with the macroscopic world, i.e., with the balances of micropolar 
continua in combination with suitable constitutive equations. 

These new ideas have been illustrated by several examples in previous papers [3-5], in 
particular: (a) A homogeneous mix of pressurized hollow spherical particles undergoing a 
uniform change of external pressure so that their diameter and moment of inertia changes; 
(b) Particles of type (a) but initially inhomogeneously distributed in an isothermal atmosphere 
subjected to a barometric pressure distribution falling down and thereby transporting a flux of 
into new observational points; (c) Changes of anisotropy due to reorientation of initially 
randomly oriented ellipsoidal particles; (d) Fragmentation of spherical particles in a crusher, 
analytically as well as numerically. What has been missing so far were examples that show the 
impact of a changing moment of inertia onto rotational motion. 

Therefore, in this paper we will, first, present the foundations of the extended continuum 
approach to micropolar media and make a few remarks regarding the underlying mesoscopic 
interpretation. In particular, we will motivate and explain the necessity for a kinetic equation 
describing the temporal development of the field for the moment of inertia. Second, we will 
study the change of the state of rotation of a homogeneous mix of pressurized hollow spherical 
particles undergoing a nonuniform change of external temperature affecting their moment of 
inertia. Note that within the classical framework of micropolar theory a change of temperature 
would not influence rotation. However, within the to-be-presented theory changes in 
temperature will influence the inertia tensor and hence couple to rotational speed. 

The paper will conclude with an outlook of how the developed models can be used for 
complex engineering applications, which will require a fully numerical investigation. In this 
context the problems studied so far may provide a first orientation. 
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2. Theoretical background
If we refrain from taking an interaction between linear and angular kinetic energies into account, 
the objective of micropolar theory is to determine the following thirteen primary fields: (a) the 
scalar field of mass density,  , tρ x ; (b) the vector field of linear velocity,  , tx ; (c) the 
symmetric, second rank, positive definite specific moment of inertia tensor field,  , tJ x , in 
units of m2; and (d) the spin (a.k.a. angular velocity) field,  , tω x , in all points, x , and at all 
times, t , within a region of space, ,B  which can be either a material volume, i.e., it consists 
of the same matter at all times, or be a region through which matter is flowing. 

The determination of these fields relies on field equations for the primary fields. The field 
equations are based on balance laws and need to be complemented by suitable constitutive 
relations. In regular points these macroscopic balances read as follows: 
• balance of mass:
δ 0
δt
ρ ρ+ ⋅ =∇  , (1) 

• balance of momentum:
δ =
δt

ρ ρ∇⋅ +σ f , (2) 

• balance of moment of inertia and coupling moment of inertia tensors:
δ
δ Jt

+ × − × =
J J ω ω J  , (3) 

• balance of spin:
δ =
δt

ρ ρ×⋅ + × ⋅ ∇ ⋅ + +
ωJ ω J ω μ σ m , (4) 

with 
( ) ( ) ( ) ( )δ · d ·

· ·
δ dt t

= + w ∇ , (5) 

denoting the substantial (a.k.a. material) derivative of a field quantity, and ( )d · dt  being the 
total time derivative including the mapping velocity w  of the observational point. Moreover, 
σ  is the (non-symmetric) Cauchy stress tensor, f  is the specific body force, J  (a second 
rank symmetric tensor) is the production related to the moment of inertia tensor, J ; μ  is the 
couple stress tensor, :σ σ  ε  is the Gibbsian cross applied to the (non-symmetric) Cauchy 
stress tensor (where “ ” is supposed to denote the outer double scalar product), ε  being the 
Levi-Civita tensor, and m  refers to the specific volume couple density. 

Additional information on this extended set of equations can be found in [3-5]. 
Nevertheless, since Eq. (3) is non-standard several comments are in order. In its present form it 
was introduced for the first time in [3]. There is a precedent relation to it called “conservation 
of microinertia” in [2], pg.15. Note that this equation does not contain a production term, J . 
On the macroscopic continuum level this new term must be interpreted suitably. In [3] it was 
referred to as a constitutive quantity characteristic of the to-be-processed material. However, a 
deeper analysis shows that this is not as clear cut as we would wish it to be. Indeed, in [4] 
evidence was provided that it also takes process characteristics into account. On a more general 
note it must be asked as to whether Eq. (3) is truly a balance equation, because its counterpart 
in [2] is a purely kinematic relation. Therefore, one could be tempted to characterize it as a 
kinetic equation for J , which would turn all of Eq. (3) into a constitutive relation. On the other 
hand, in view of Eq. (1), which balances translational inertia, i.e., mass, it is equally tempting 
to interpret (3) as a balance of rotational inertia. 
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One of the purposes of this and other of our papers [4,5] is to present explicit relations 
for J , always in context with illustrative problems. Typically such relations are based on a 
mesoscopic model which is then applied on the macroscopic level. We shall illustrate this 
approach in the next sections. It should also be said that for certain situations it is possible to 
give additional explanations for the necessity of occurrence of a production of inertia. For 
example in [5] in was embedded in a mixture theory and related to reaction rates and excess 
velocities. In [7] statistical mechanics based on the transfer equation procedure introduced by 
Irving and Kirkwood was used in order to relate it to the effect of the non-material transport of 
rotational inertia on a microscopic scale through an open system. May it suffice to say that 
situations where the particle number and the associated moment of inertia (but not the mass) 
change require us to look at the problem from the Eulerian point-of-view (a.k.a. spatial 
description) and not from the Lagrangian one (a.k.a. material description). An example (the 
crusher) is presented in [4]. However, in the case study of this paper, this distinction is not 
necessary. Here the change of rotational inertia is based on internal shape changes as we shall 
now proceed to explain. 

3. A model problem: Turning heat conduction into space-varying rotational motion
The general problem is as follows. We consider a medium consisting of empty hollow elastic 
spheres homogenously distributed within a one-dimensional region [ ]0,x L∈ . Their initial
inner and outer radii are iR  and oR , respectively. However, the temperature of this medium 
changes within time from an initially constant value iniT  because reservoirs kept at temperatures 

0T  and lT  are attached at positions 0x =  and x l=  of the region, respectively. The 
development of temperature, T , is therefore governed by the following initial boundary value 
problem: 

( ) ( ) ( )
2

ini 02
0

, , , 0 , 0, , , l
T TD D T x t T T x t T T x l t T
t x cυ

κ
ρ

∂ ∂
= = = = = = = =

∂ ∂
, (6) 

where D  is thermal diffusivity, κ  thermal conductivity, 0ρ  the (constant) mass density of the 
medium, and cυ  specific heat at constant volume. According to [8], Sect. 3.4 the solution to this 
problem in dimensionless form is given by: 

( ) ( ) ( ) ( ) ( )2 20
0 0

1

cos π2, sin π exp π
π

l
l

n

T n T
T x t T T T x n x n t

n

∞

=

−
= + − + − +∑ (7) 

( ) ( ) ( )2 2

1

1 cos π2 sin π exp π
π n

n
n x n t

n

∞

=

−
−∑ , 

with 2
ini, ,x x l t D l t T T T= = = . It is assumed that the temperature is instantaneously 

adopted by the linear elastic spheres. In order to find the current inner and outer radii, ir  and 

or , respectively we have to solve the problem of thermal expansion of a hollow linear elastic 
sphere when subjected to a uniform temperature change. The solution for a free, fully radially 
symmetric expansion is: 

( ) ( )i ini i io ni o,1 1 1 1r T T R r T T Rα α   = + − = + −    . (8) 
Now recall that the current specific moment of inertia tensor of a hollow sphere with 

corresponding inner and outer radii is isotropic and given by: 
5 5

o i
3 3

o i

2,
5

r rJ J
r r
−

= =
−

IJ . (9) 
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Hence: 

( )
52 2

0 ini 0 o
i

o
3: 2 11 1 , , :

5 1
RJ J T T J R
R

βα β
β

− = + − = =  −
. (10) 

We now argue that after homogenization the macroscopic field for the tensor of inertia 
stays isotropic, ( ) ( ), ,t J t= IJ x x  (hence the second term on the left of Eq. (4) vanishes), and 

is given by the last relation where the normalized temperature T  is replaced by the expression 
shown in Eq. (7). Turning to Eq. (3) we are now in a position to specify the production for the 
moment of inertia, if we assume that the translational velocity vanishes, = 0  (see Eq. (5)): 

( )( ) ( )
0 in n 0 2i 0 i i

,
, , :, 21 1J J J

T x t
T T x t T J

t
J

t
D
l

χ χ χ α χ α = + −
∂∂

= ≡ = ∂ ∂
I . (11) 

How does this affect the development of translational and angular velocities? For an 
answer we turn to the macroscopic balances of linear and angular momentum shown in Eqs. 
(2/4). There are no body forces (we ignore gravity), = 0f , the stress tensor is zero (we consider 
the medium to be “dust”), = 0σ , the translational velocity is initially zero. Then Eq. (2) is 
telling us that it stays zero, = 0 . Regarding the balance of angular momentum (4) we assume 
that the couple stress tensor vanishes, = 0μ , and initially start with a constant volume couple 
density different from zero, 0 zm=m e , 0 const.m = , ze  being the unit normal in z-direction. 
Hence ( , ) zx tω=ω e  and 

0=
( , )
m

t J x t
ω∂
∂

. (12) 

This differential equation can be solved numerically so that we obtain an angular velocity 
field = ( , )x tω ω  different from zero decreasing or increasing in space and time. We conclude 
that if the temperature changes in space and time due to the presence of external heat reservoirs, 
the moment of inertia will change accordingly, and we may harvest “good” macroscopic 
rotational energy by using this “heat engine,” provided there is an agent of transfer in terms of 
a non-vanishing (constant) specific volume couple density 0m . Note that even if the 
temperature remained totally constant we would obtain a homogeneously distributed angular 
velocity increasing linearly in time as follows, 

( ) 0

0

= mt t
J

ω , (13) 

if we assume it initially to be zero. 

Fig. 1. Model of an electrically polarized sphere. 
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But how do we realize specific volume couples, at least theoretically? Unfortunately the 
pertinent literature on micropolar solids is rather taciturn regarding this issue. In [9] we read 
“Ordinarily, we expect gravitational or electromagnetic fields to produce the forces [f and m] ... 
The question of how best to describe the effects of electromagnetic fields is not so easily settled. 
It is of some importance since they are observed to influence the orientation of liquid crystals.” 
And in [10] we hear: “But the modern notion of volume couple, a continuum density of torque, 
is more elusive having, it is true, no direct physically visible realization ... But what about a 
density of magnetic couple, a thing that also played an important role in the construction of 
wide classes of GCM [Generalized Continuum Mechanics] with nonsymmetric Cauchy stress 
tensor? ...” Indeed, the theory of nematic crystals, which are perceived as electric dipoles, 
provides a clue. Imagine, we manage to polarize the spheres electrically as indicated in Fig. 1. 
The net charge, q q+ −+ , would be zero. Now we apply a constant external electric field, 

0 0 xE=E e , in negative x-direction. The total Coulomb force, and therefore (after 
homogenization) the body force (in x-direction), would vanish. However, the moment couple 
acting on the sphere would not. Rather it points in z-direction and is given by: 

( )o 0 o 0 o 02 cos zq q qR E tϕ+ −= × − × =M R E R E e , (14) 
q being the magnitude of the dipole charge. Similar reflections can be found in [11]. Hence in 
this model the volume moment couple density is time-dependent as follows: 

( )0
0

cos d
t t

z
t

m t tω
=

=

= ∫m e , 
0 o 0

p

2 qm R E
m

= (15) 

provided ( )0 0ϕ = . pm  is the mass of one particle. In this case the balance of angular 
momentum (12) would change to: 

( ) ( ) ( )0
0

,
, cos , d

t t

t

x t
J x t m x t t

t
ω

ω
′=

′=

∂
′ ′=

∂ ∫ . (16) 

This can be rewritten as 
2

0 0

1J J
t m t m t

ω ωω
   ∂ ∂ ∂

= − −   ∂ ∂ ∂   
, (17) 

a differential equation leading to oscillating motion as to-be-expected. 
In summary we may say that the harvesting of rotational energy becomes possible because 

of the presence of a specific volume couple density, i.e., because of an electric field, and the 
amount of harvesting in a point of space depends on the development of the temperature field 
therein. 

4. Results and discussion
We choose the following normalized temperature values for our numerical simulations of the 
developing temperature profile: 0 0.5T = , 2.0lT = . Fig. 2 shows the development of temperature 
at three dimensionless times, 0.001t =  (blue), 0.01t =  (red), and 1.0t =  (green), according 
to Eq. (7) where infinity was replaced by max 100n = . The transition to the stationary linear 
temperature profile becomes quite obvious. These profiles are then used in Eq. (10) in order to 
calculate the temporal development of the moment of inertia, J , for ini 0.5Tα = . For this large 
value we get a certain departure from linearity, even at 1.0t = : Fig. 3. The two plots are very 
similar. As to-be-expected the moment of inertia decreases if temperature goes down and vice 
versa. 
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Fig. 2. Temperature profiles. Fig. 3. Development of local moment 
of inertia. 

The reason for the changing moment of inertia is presented in Fig. 4. It shows the temporal 
development of the normalized productions of moment of inertia, 0χ χ χ= , Four positions are 
examined at 0.1x =  (blue), 0.5x =  (red), 0.9x =  (green), and 1 3x =  (magenta). The latter is 
the position for which 1T =  after an infinite time (see Eq. (7)). As demonstrated in Fig. 3 the 
spheres shrink for small values of x  (and expand for large ones), so that the moment of inertia 
decreases (and increases) accordingly, first fast and, as time goes on, slower and slower. The 
production behaves accordingly. The effect is less pronounced around the position 1 3x =  
where the normalized temperature is close to one and only little change of moment of inertia 
occurs. For all cases the effect vanishes completely for t →∞  when the size of the spheres 
hardly changes any more. 

Fig. 4. Productions of moment of inertia at various positions (see text) over time. 
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Fig. 5. Angular accelerations at various times over position and vice versa. 

Now we turn to the balance of angular velocity for the case of a constant volume couple 
density, m0, as shown in Eq. (12). In normalized form it reads: 

( )
2

0
0

0 0

2

i
0

in
1= , , 1,

( , )
1m l JJ

t J x t J D
T

J
Tω ωω ω

ω
α + −

∂
= =

∂ = = . (18) 

The angular accelerations are shown in Fig. 5. On the left they are presented in normalized 
form as a function of position at times 0.001t =  (blue), 0.01t =  (red), and 1.0t =  (green). On 
the right they are shown as a function of time for various positions at 0.1x =  (blue), 0.5x =  
(red), 0.9x =  (green), and 1 3x =  (magenta). Several features are remarkable: (i) After a certain 
while the accelerations assume constant values no matter which position is studied. (ii) 
Positions left of 1 3x =  show normalized accelerations greater than one, because the 
temperatures and, correspondingly, the moments of inertia go down and vice versa. (iii) For 
positions left of 0.5 the accelerations reach a maximum. A numerical integration of Eq. (18) 
yields the angular velocities as functions of time shown in Fig. 6 for a temporally constant 
volume couple density. Again four positions are examined at 0.1x =  (blue), 0.5x =  (red), 

0.9x =  (green), and 1 3x =  (magenta). It rotates slightly faster than the angular velocity 
obtained for the case of a constant moment of inertia, which according to Eq. (13) is ( ) =t tω . 
This case is shown as a black dashed line. As it should be material points on the left of 1 3x =  
rotate faster and those which are on the right rotate slower, because they gain a smaller or larger 
moment of inertia, respectively. 

Fig. 6. Angular velocities at various positions. 
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Fig. 7. Periodic movement of dipoles under a constant electric field at different locations. 

Fig. 7 shows numerical solutions of the differential equation (17) in dimensionless form: 
22 2

0

0

1 , m lJ J
t t t J D

ω ωγ ω γ
 ∂ ∂ ∂   = − − =    ∂ ∂ ∂     

, (19) 

with a periodically volume couple density at positions 0.1x =  (blue), 0.9x =  (green), and 
1 3x =  (magenta). All curves were calculated with the same initial conditions, ( ),0 0.4xω = , 

( ),0 0.0x tω∂ ∂ =  and for 1.5γ = . The periodic motion is clearly visible. The durations of the 
period are influenced by location. 

5. Conclusions and outlook
In this paper we first repeated the extended balance equations for a micropolar medium allowing 
for structural transformations. As a recently introduced feature these included a balance for the 
moment of inertia tensor with a production density. The case of hollow spheres was considered, 
which under the influence of a one dimensional temperature field would change their moment 
of inertia in space and time due to thermal expansion and contraction. This model of structural 
change allowed to calculate the production of the moment of inertia in the extended set of 
micropolar balance equations. Results for the moment of inertia varying in space and time were 
used to study the evolvement of an angular velocity field. This necessitated a specific volume 
couple density to be present. An attempt was made to interpret this quantity based on a 
mesoscopic model of electrically polarized particles under the influence of an external electric 
field inducing a moment couple because of the Coulomb force. 

In the future the authors will continue to explore the fully coupled set of equations for a 
micropolar medium. Whilst even the simplified one-dimensional examples presented so far 
required a numerical approach it is to be expected that the numerical effort for that will increase 
considerably. 
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Abstract. We present here the results of the study of mechanical properties of the 
nanostructured titanium samples fabricated by means of the severe plastic deformation that has 
titanium organic brush-like nanostructures on the surface. Based on the mechanical properties 
of the samples, we established for the first time that the gas-phase ALD synthesis at 200-400 °C 
of titanium organic nanocoatings with height of 220 nm and the distances between 
nanostructures up to 200 nm does not lead to deterioration of the mechanical properties of the 
nanostructured titanium.  
Keywords: nanostructured titanium; equal channel angular pressing; brush-like nanostructure; 
titanium organic nanocoating; mechanical properties.  

1. Introduction
The traditional metallic biomaterials reached the limit of the durability. These materials must 
correspond to the definitive requirements to be used as the medical pieces. They must be 
bioactive and biocompatible and also the materials should have high mechanical durability, 
especially under the cyclic loads that is important for the long-term usage of the produced 
medical pieces. 

Currently, titanium and its alloys are known as the most successful materials for the 
fabrication of orthopedic and dental implants [1]. 

Currently, nanostructured metallic titanium (nanotitanium) is intensively studied [2, 3]. 
This material has better mechanical properties as compared with the pure titanium.  

Particularly, severe plastic deformation of titanium and its alloys by means of equal 
channel angular pressing (ECAP) is used for the fabrication of nanotitanium with ultimate 
tensile strength higher than 1000 MPa [2, 4]. Due to the sufficiently high mechanical durability 
of pure titanium, we can avoid the addition of toxic additives. Titanium and nanotitanium are 
not toxic. However, additional surface modification is required for improvement of the 
biomedical properties of the titanium implant.  

There are the several approaches for the improvement of survival rate of metal implant 
that are based on the application of the specific bioactive and biocompatible coatings [5-10]. 
However, chemical action of the reagents on the material surface at 200-400 °C can lead to the 
change of the mechanical properties of nanotitanium. Despite the fact that to date the 
mechanical properties of nanotitanium are studied in detail, there is no information about the 
influence of the chemically fabricated coatings (e.g. by Atomic Layer Deposition – ALD [11]) 
at high temperatures on the mechanical properties and the structure of nanotitanium. 

The goal of this work was to study the influence of the brush-like titanium-organic 
nanocoatings on the titanium on the mechanical properties of the nanotitanium samples. 
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2. Experimental
The most important characteristics of the bulk material (metal) are its microstructure and 
mechanical properties. Given the above, certification of the microstructure of experimental 
samples was performed. The average size of nanotitanium grains was determined; mechanical 
tensile tests and fatigue tests were conducted. 

To determine the effect of nanostructured brush-like coatings on the set of mechanical 
characteristics of experimental samples of nanotitanium, we prepared the samples with coatings 
and without coatings. Nanotitanium samples were prepared at the same conditions from the 
long ingot of the nanostructured Grade 4 titanium obtained by ECAP-Conform prrocessing with 
subsequent drawing [2, 3]. 

Table 1. Structural characteristics of the nanotitanium samples with brush-like titanium-organic 
nanocoatings (samples 1-3) according to AFM and SEM. 

Name Sample 

Synthesis conditions nanotitanium 1 2 3 
Temperature of the nanotitanium surface 

i  °C
- 300 400 400 

Synthesis temperature, °C - 200 200 200 
Number of the treatment cycles, n - 20 15 20 

Nanostructures size (width along X axis), nm - 50-100 50-100 50-100 

Nanostructures height (Rz), nm - 7-36 15-35 50-220 
Distance between nanostructures (S), nm - 50-100 50-100 75-200 

On the surfaces of the nanotitanium prepared for mechanical tests for stretching and 
fatigue strength, we synthesized brush-like titanium-organic nanocoatings [12].  

The coatings were synthesized according to the conditions listed in the Table 1. 
The nanostructures were coated using ALD - method [13-15].  
According to Atomic Force microscopy (AFM) the surface of initial titanium support 

after such treatment is characterized by low roughness – average cluster height is ~1 nm. 
The coatings were synthesized using the gas phase setup that provided the ALD reactions 

in the Ar gas stream. 
Titanium tetrachloride (TiCl4) and propargyl alcohol (HC≡C-CH2-OH) were used as the 

reagents. Their vapors were transferred into the reactor by the argon stream at 200 °C. Before 
the synthesis, the nanotitanium plates were preheated in argon at 300 or 400 °C.  

To be sure, in the repeatability of the results, five samples of each series were tested. 

3. Results and discussion
The microstructure of nanotitanium samples without coating was analyzed by TEM 
(microscope JEOL JEM 2100) (Fig. 1). 

We found that the structure is the mixture of the nanometer-sized grains. There are small 
grains of the size of 60-80 nm with the definitive boundaries with low dislocations density 
inside. Larger grains and fragments, 100-120 nm in size, contain high amount of dislocations. 
Average grains/subgrains size in nanotitanium samples was 100 nm. 

All the mechanical tests were repeated for 5 samples of each series. The samples for the 
stretch tests (with diameter of 3 mm) were prepared according to the GOST 1497-84.  

Strength characteristics of nanotitanium were tested using the universal testing machine 
Instron 5882 at room temperature with the speed of the crosshead of 1 mm/min. The fatigue 
life of the nanotitanium was tested using the universal testing machine Instron 8801. 
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Fig. 1. Nanotitanium microstructure. 

3.1. Mechanical properties of the nanostructured titanium. In order to determine 
mechanical properties of nanotitanium, the tensile tests of cylindrical specimens have been 
carried out. The results of these tests are given in the Table 2, whereas the results of fatigue 
tests – in the Table 3. 

Table 2. Mechanical properties of the nanostructured titanium samples. 

Sample  Temperature T, 
°C 

Conditional 
yield strength 
σ0,2, MPa 

Tensile 
strength σв, 

MPa 

Relative 
elongation, 

 δ, % 
nanotitanium 20 1237 1290 10.9 

Table 3. Fatigue life of the nano titanium experimental samples. 

Sample Temperature 
T, °C 

Number of 
cycles 

Endurance limit  
σ-1, MPa Note 

nanotitanium 20 1×106 590 Not destroyed 

At the initial stage of mechanical testing, extensive hardening of nanotitanium has been 
observed, that is related to increased dislocations density in the material. Further, when the 
deformation degree increases, after reaching of the maximum current, stress decrease is 
observed associated with the formation of neck in the region of strain localization.  

According to the data given in the Table 3, nanotitanium samples without coatings 
withstood 1∙106 loading cycles at the load of 590 MPa without destroying.   

Total load error during the test did not exceed ±3 % at f = 50 Hz. 
In general, for the studied nanotitanium samples without coating the average values of 

the ultimate strength, conventional yield strength and elongation were equal to: σв = 1290 MPa, 
σ0,2 = 1237 MPa and δ = 10,9 %, endurance limit after 106 cycles is σ-1 = 590 MPa. 

3.2. Mechanical properties of nanotitanium with brush-like titanium organic 
coatings on the surface. TEM analysis of the microstructure of nanotitanium with brush-like 
titanium organic coatings is presented on Fig. 2. 

Evidently, synthesis of coatings and thermal treatment of nanotitanium samples while 
coating, does not lead to a change in the size of grains and subgrains in the titanium structure. 
Average grains and subgrains size was 100 nm. However, boundaries for the most crystallites 
become more explicit and the dislocations density inside of the structure elements decreases. 
Such changes of the internal grains structure is called the return of the first kind [15]. It is 
characterized by the redistribution of the crystal lattice defects without formation and migration 
of the sub-boundaries. 
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To study the influence of coatings on mechanical properties of nanotitanium, we 
conducted mechanical tests of cylindrical samples of coated nanotitanium (Table 4). Five 
samples were tested for each series in order to be sure in the repeatability of the results.  

Sample 1 Sample 2 

Sample 3 

Fig. 2. Microstructure of nanotitanium samples with brush-like titanium organic 
coatings on the surface. 

Evidently, the maximum current stress value in coated nanotitanium samples slightly 
decreased (in average, by 24 MPa), whereas relative elongation is increased. 

Table 4. Mechanical properties of nanotitanium with brush-like titanium organic coatings on 
the surface. 

Sample  Temperature Т, 
°С 

Conditional 
yield strength 

 σ0,2, MPa 

Tensile 
strength σв, 

MPa 

Relative elongation  
δ, % 

НМТ 20 1237 1290 10.9 
1 20 1175 1266 11,1 
2 20 1173 1255 11,5 
3 20 1171 1253 11,6 

Comparing to the non-coated nanotitanium, the mechanical behavior of titanium with 
brush-like coatings was rather similar. In all the samples, we observe hardening at the initial 
deformation stage, reaching of maximal yield strength with subsequent softening and 
destroying of the sample. 

All the experimental samples survived after 1∙106 loading cycles (Table 5) at load of 590 
MPa without destroying.   
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Table 5. Fatigue life of nano titanium samples with the brush-like titanium organic surface 
coatings. 

Sample Temperature Т, °С Cycles number, N Endurance limit σ-1, 
MPa Note 

1 20 1×106 590 Not destroyed 

2 20 1×106 590 Not destroyed 

3 20 1×106 590 Not destroyed 

4. Conclusions
In the present work, it was shown that the application of organic titanium nano-coating on the 
surface of nanostructured titanium in gas-phase in the temperature range 200-400 °C does not 
lead to deterioration of the mechanical properties of nanostructured titanium. 
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DYNAMIC STRENGTH PROPERTIES OF AN ULTRA-FINE-GRAINED 

ALUMINUM ALLOY UNDER TENSION CONDITIONS 
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Abstract. Experimental and theoretical analysis of aluminum alloy 1230, subjected to static 
and dynamic tension is presented in the paper. The material was tested in two conditions - initial 
coarse-grained (CG) state and ultrafine-grained (UFG) state. Experimental results were 
processed using incubation time fracture criterion. 
Keywords: dynamic impact, fracture, nanostructured material, strength criterion. 

1. Introduction
Standard tests of construction materials for industrial applications include compression, tensile, 
bending, hardness, and fatigue tests. Such tests ensure, that the production satisfies existing 
safety and reliability rules. But in the case, when conditions are significantly different from 
quasistatic loads, additional tests and calculations are required. As a rule, such additional 
research is required, when material properties in high-rate loading conditions need to be 
assessed. Such loading conditions are typical for airspace and military engineering applications, 
however high-rate testing is also used for civil construction in seismic regions.    

In order to increase strength and reliability of products and parts, designed for use under 
high-rate loading one has to perform experimental and analytic studies of the strength 
characteristics of the material. 

Research in this direction was initiated in the second half of the 20th century. A separate 
direction of science – fracture mechanics was formed. At the same time, despite the fact that a 
large number of experimental and theoretical works in this area was carried out, some crucial 
problems remain unsolved. New materials, such as bulk new nanostructured materials [1, 2, 3], 
generate new problems and require additional research. A lot of research results, presented in 
scientific literature, are aimed at studying of influence of the refined material structure on 
strength and performance properties of the material [4-7]. Data on the study of the behavior of 
the ultrafine-grained materials under dynamic conditions is less frequent. This is partly due to 
the dimensional features of the currently obtained samples of the UFG materials. For example, 
severe plastic deformation (SPD) technique is usually capable of production of disk specimens 
20 mm in diameter and 1-2 mm in thickness. Standard test procedures for such small are not 
applicable. 

Experimental results in this paper were received for a model material – aluminum alloy 
1230 (ASTM).  
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2. Material
The aluminum alloy 1230 was modified using severe plastic deformation by torsion on the 
Walter-Klement high pressure torsion press in order to obtain the refined grain structure. 
Working parameters: pressure - 6 GPa, number of rotations - 10, processing speed - 1 revolution 
per minute. The sample were manufactured at room temperature.  

Measurements of the Vickers microhardness of the samples demonstrated the uniformity 
of the specimens. On average, the microhardness of the samples increased by 87%. 

Several studies of metals and alloys [8-9] have shown, that severe plastic deformation 
substantially increases hardness of the material and, as a rule, the strength characteristics of 
materials. However, the SPD treatment might lead to reduction of plasticity, which can have 
negative effect on the behavior of the material in the dynamic loading range. Thus, multiple 
dynamic experiments are needed in order to determine possible characteristics of the external 
loads. 

3. Experimental Techniques
Experimental studies of the dynamic tension regime were performed on the drop tower machine 
Instron CEAST 9350 at a strain rate up to 102-103 s-1. The main advantage of this equipment 
setup is certified signal capture techniques and an automated test procedure, which reduces the 
error of the experiment. Experiments with quasistatic loads were performed on Shimadzu 
AG-50kNX. 

The tension experiments were carried out on an aluminum alloy for different geometric 
dimensions of flat samples. The first type of the sample gemetry is shown in Fig. 1. The 
dimensions of the specimens correspond to ISO 8256 standard with the length and width of the 
working part equal to 10 mm and 3 mm respectively (Fig. 1, a). The second type of the sample 
geometry was developed considering the dimensional features of the samples obtained by SPD. 
The length and width of the working part are 5 mm and 2 mm respectively (Fig. 1, b). All the 
samples were cut using an electrical discharge machine ARTA 123 PRO with high accuracy 
and brought to a uniform roughness parameter using the polishing machine. 

Fig. 1. Geometry size for samples of type "Sample I" a) and type "Sample II" b). 

In Instron CEAST 9350 data signals are captured automatically using a force sensor and 
a velocity sensor. Fig. 2 shows examples of the stress chronograms for the "Sample II" type 
samples. The signals are quite stable and can be used to determine the threshold characteristics 
of the material under tension. 
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Fig. 2. Stress obtained during tensile test for samples of type «Sample II» for UFG and CG 
materials for different strain rate. 1 – 𝜀𝜀̇ = 304 𝑠𝑠−1 UFG alloy, 2 – 𝜀𝜀̇ = 642 𝑠𝑠−1 UFG alloy, 

3 – 𝜀𝜀̇ = 328 𝑠𝑠−1 CG alloy, 4 – 𝜀𝜀̇ = 640 𝑠𝑠−1 CG alloy. 

4. Results and discussion
Dependence of the threshold stress values for the studied materials on the strain rate are shown 
in Fig. 3. The obtained results demonstrate that the CG alloy has lower strength then the UFG 
alloy. With an increase in the strain rate, a nonlinear increase in the maximum stress value is 
observed for both materials. 

This feature of the behavior of the material at high strain rates can be explained using 
incubation time approach. Incubation time fracture criterion was used for the fracture analysis 
[10, 11]: 
1
𝜏𝜏𝑐𝑐
∫ 𝜎𝜎(𝑠𝑠)

𝜎𝜎𝑐𝑐
𝑑𝑑𝑑𝑑 ≤ 1𝑡𝑡

𝑡𝑡−𝜏𝜏𝑐𝑐
,       (1) 

where 𝑡𝑡 is time, 𝜎𝜎 is the applied stress (linearly increasing with time load), 𝜎𝜎𝑐𝑐 is the ultimate 
strength under static loads, 𝜏𝜏𝑐𝑐 is the incubation time of fracture. The constants 𝜎𝜎𝑐𝑐 and 𝜏𝜏𝑐𝑐 are the 
parameter of the material. 

Correlation between maximum stress and strain rate under tension is shown on Fig.3. 
Theoretical lines are constructed using criterion (1) with the following parameters of the 
material: for the CG alloy 𝐸𝐸 =  72  GPa, 𝜏𝜏𝑐𝑐 = 0.8 µs, 𝜎𝜎𝑐𝑐 = 80 MPa; for UFG alloy E = 72 GPa, 
𝜏𝜏𝑐𝑐  = 4.4 µs, 𝜎𝜎𝑐𝑐 = 200 MPa. A good agreement between the experimental data was obtained for 
different sample sizes and material states.  

Fig. 3. Maximum tension stress versus strain rate. Lines constructed according (1) with 
material parameters: for CG alloy E = 72 GPa, 𝜏𝜏𝑐𝑐 = 0.8 µs, 𝜎𝜎𝑐𝑐 = 80 MPa; for UFG alloy 

E =  2 GPa, 𝜏𝜏𝑐𝑐 = 4.4 µs, 𝜎𝜎𝑐𝑐 = 200 MPa. 
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A direct comparison of experimental data CG and UFG alloy makes it possible to 
determine a significant increase of the strength characteristics of the material after severe plastic 
deformation not only in the quasistatic range of the loading parameters but also in the dynamic 
one. Maximum stress in static regime of tension increased from 80 MPa to 200 MPa. The 
material parameter 𝜏𝜏𝑐𝑐 (dynamic strength) increased from 0.8 µs to 4.4 µs.  

The non-linear increase in strength with increasing of the strain rate and the significant 
change in the strength properties of the material after the SPD processing require a 
comprehensive experimental-theoretical investigation in order to assess applicability of a 
material for certain extreme conditions. 

5. Conclusions
The performed experimental studies show that severe plastic deformation has a significant 
influence on the behavior of the material not only in quasistatic but also in dynamic loading 
regimes. A detailed study of the properties of the material in a wide range of parameters of the 
external action is required. 

The effect of strain rate dependence of maximum stress under tension was investigated 
using incubation time approach. Parameters of materials were found and curves of maximum 
stress under tension were calculated. It was found that the SPD treatment has a great influence 
on strength characteristics of the material in static and dynamic regimes of loading. For the 
UFG aluminum alloy significant increase in strength was observed for a wide range of loads. 

In addition to this, the use of the theoretical approach based on incubation time criterion 
makes it possible to predict behavior of the material for the regimes, that were not 
experimentally investigated. The proposed experimental-theoretical approach to testing of 
nanostructured materials for tensile strength has shown its robustness and can be recommended 
for complex testing of nanostructured materials, which are planned to be used under dynamic 
loads. 
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Abstract. The kinetics of the initial growth stages of cadmium telluride (CdTe) films on silicon 
substrates covered with silicon carbide (SiC) buffer layers grown by the method of 
topochemical substitution of atoms is investigated theoretically. The model based on the 
classical nucleation theory is proposed to depict the CdTe film growth by the method of thermal 
evaporation and condensation in vacuum. The model accounts for the mechanical stresses 
caused by the lattice mismatch and difference of thermal expansion coefficients of CdTe film 
and substrate. The influence of substrate and evaporator temperature on the nucleation 
mechanism and kinetics of the initial growth stages of CdTe film is estimated. The different 
growth regimes of CdTe films on the SiC/Si substrates are discussed, and the optimal growth 
conditions are found. It is shown that the elastic stresses in the CdTe/SiC/Si structure are 
approximately three times lower than the elastic stresses in the CdTe film grown coherently on 
the Si substrate without the SiC buffer layer. This leads to the large difference in the nucleation 
rates of the CdTe films on the SiC/Si substrate and Si substrate. The diagram of the nucleation 
rates of CdTe islands on the SiC/Si depending on the substrate and evaporator temperature is 
presented. 
Keywords: thin film; CdTe; SiC; Si; silicon substrate; silicon carbide buffer layer; growth; 
nucleation; thermal evaporation.  

1. Introduction
At present time considerable efforts of researchers are aimed at study of AIIBVI group 
semiconductors and development of methods for growth of thin films of these materials [1-3]. 
Such semiconductors are of great practical interest and can be used for creation of various 
optoelectronic devices, solar batteries, photodetectors and ionizing radiation sensors [4, 5]. 
Cadmium telluride (CdTe) outstands among the semiconductors of this group, since it is widely 
applied in the solar batteries production [6]. CdTe is used as an absorbing layer because it is a 
direct-band semiconductor with a bandgap of 1.49 eV and has a high absorption coefficient in 
visible range. To create efficient solar batteries, thin CdTe films of high quality grown on 
conductive or semiconductive substrates are needed. This will greatly simplify the production 
of optoelectronic devices, since there is no need to add additional contacts. Materials such as 
indium tin oxide (ITO) [7], indium antimonide (InSb) [8], gallium arsenide (GaAs) [9], silicon 
(Si) [10], and many others [11] are often used as substrates. Silicon has a number of advantages, 
since silicon substrates are widely available and most well developed from a technological point 
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of view. However, various problems arise during the growth of CdTe directly on silicon. The 
film grows polycrystalline [12] often. In case of chemical deposition of thin CdTe films, the 
silicon reacts with precursors and forms Si2Te3, which significantly degrades the properties of 
the resulting structures. In this regard, it was proposed in [13] to use Si substrates with a buffer 
layer of silicon carbide (SiC) formed by the method of topochemical substitution of atoms [14] 
for deposition of CdTe. Silicon carbide does not interact with elements of group VI practically. 
In addition, SiC layer grown by the method of atoms substitution on Si substrate has a number 
of advantages over silicon carbide carved from SiC single crystals. According to [14], the 
feature of SiC epitaxial layer growth by the method of atoms substitution is that an ensemble 
of pores is being formed between the layer and the substrate during the synthesis. As a result, 
the contact area of the silicon substrate and the structure grown on SiC is being significantly 
reduced. Silicon substrates covered by SiC buffer layer that "hangs" above the pores in Si 
become elastically "compliant". They adapt well to growth conditions and nature of the films 
deposited on their surface. As a result, elastic stresses arising due to mismatch of the lattice 
parameters and difference in the thermal expansion coefficients of the substrate and the film 
materials are being significantly reduced. More details on the SiC/Si films obtained by the 
method of topochemical substitution of atoms, theoretical basis of this growth technology and 
the study of SiC/Si samples are presented in the review [14] and original paper [15]. 

There are various methods [16] for deposition of cadmium telluride films, such as 
magnetron sputtering [17], thermal evaporation and condensation in vacuum [18], chemical 
vapor deposition [19], etc. Thermal evaporation in vacuum has a number of advantages, since 
it ensures high deposition rate and does not require high material costs. However, to the best of 
our knowledge, despite a significant amount of experimental works on the growth of CdTe [20, 
21], there is no quantitative theory describing the processes of CdTe formation, which would 
allow estimating of various parameters of the resulting films depending on growth conditions: 
pressures, temperatures. The present paper is a continuation of a series of papers on the growth 
of CdTe on SiC/Si substrates [13] by thermal evaporation and condensation in vacuum, and is 
devoted to the theoretical aspects of the growth of thin CdTe films. In the first part of the paper 
a model of the film growth is developed on the basis of the classical nucleation theory and 
estimates for the parameters necessary for calculations are made: the diffusion lengths of Cd 
and Te adatoms, their lifetimes, equilibrium concentrations and diffusion coefficients. In the 
second part, the calculation results within the framework of the model are compared with the 
experimental data [13] and growth regimes of CdTe under conditions other than in Ref. [13] 
are analyzed. 

2. Model of the initial stages of CdTe thin film formation on Si/SiC substrate upon
evaporation and condensation 
Usually two-zoned reactor is being used for growth of CdTe films by the method of thermal 
evaporation and condensation in vacuum, in one of the zones of which the powdered cadmium 
telluride is being evaporated, and in the other one condensation of CdTe onto the substrate 
occurs. The principal scheme of the reactor, shown in Fig. 1, was proposed by I.P. Kalinkin and 
his group [22]. We note that this type of the reactor can be used both for the growth of films by 
the method of thermal evaporation in vacuum and for the growth in a quasi-closed volume. In 
the latter case, it is being lowered onto the substrate holder and it completely covers the 
substrate. 

In the evaporation zone sufficiently high temperature 𝑇𝑇𝑔𝑔 is maintained, so that the 
powdered CdTe evaporates by dissociating into Cd and Te2 chalcogen molecules as a result of 
the reaction: 
2𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑠𝑠) = 2𝐶𝐶𝐶𝐶(𝑔𝑔) + 𝑇𝑇𝑇𝑇2(𝑔𝑔) (1) 
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We note that in the general case it is necessary to take into account the fact of the possible 
formation of individual tellurium atoms in vapor that can get onto the substrate. However, 
during thermal evaporation, this process is not very probable and in this study we will not take 
it into account. The mechanisms of evaporation of AIIBVI compounds, to the group of which 
CdTe belongs, are mostly complete described in the monograph [22]. 

After evaporation of CdTe and formation of Cd and Te2 in vapor phase, the process of 
mass transfer through the gas phase towards the condensation zone (in which the substrate is 
located) begins. As a consequence, fluxes of Cd and Te2 onto the substrate appear. Since the 
substrate is maintained at temperature 𝑇𝑇𝑠𝑠, which is lower than 𝑇𝑇𝑔𝑔, the flux of material coming 
to the surface from the vapor exceeds the flux of material evaporating from the substrate. As a 
result, significant supersaturation appears on the substrate, which is sufficient to initiate the 
nucleation of CdTe islands. The nucleation is the main reason for the growth of CdTe film. The 
influence of the growth conditions, in particular, temperature of the evaporator and the substrate 
on possible growth regimes and conditions under which their change occurs will be estimated 
below. 

Fig. 1. Scheme of two-zoned reactor for the growth of CdTe by the method of thermal 
evaporation and condensation in vacuum [22]. 

We note that within the framework of the present model, it is believed that SiC film affects 
the nucleation of CdTe islands through three main parameters: the adsorption energy of Cd and 
Te (we suppose that Te2 molecules are being  completely dissociated into atoms on the surface 
of the substrate); diffusion and, as a consequence, the mobility of Cd and Te adatoms; the field 
of mechanical stress σ, which arises due to the difference in lattice parameters of SiC and CdTe 
and which will be taken into account during calculation of the dependence of nucleation rate of 
CdTe islands on supersaturation. For simplicity in this paper we assume that diffusion lengths, 
lifetimes, and diffusion coefficients of adatoms during the growth of the first cadmium telluride 
layers directly on SiC surface coincide with these parameters on the surface of CdTe, although 
this is certainly not the case in real growth process. However, since the studies of evaporation 
processes of Cd and Te adatoms from the SiC surface are not available yet to the best of our 
knowledge, we are using this approximation, and in the future we will try to estimate these 
parameters from quantum-chemical calculations. We should also note, that increase in the 
thickness of the growing film, leads to rapid decrease in the influence of the existing differences 
in parameters, and since the films of thickness of the order of hundreds nanometers or more are 
of main practical interest, we believe that this assumption is quite reasonable. 
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3. The growth mechanism and nucleation rate of CdTe islands on the SiC/Si substrate
The nucleation rate of CdTe islands is determined by the equation [23] 
𝐼𝐼 = 𝑁𝑁0𝑊𝑊+(𝑛𝑛c) 𝑍𝑍 exp(−Δ𝐹𝐹(𝑛𝑛c)/𝑘𝑘𝑘𝑘), (2) 
where 𝑁𝑁0  is the number of adsorption sites on the substrate, 𝑁𝑁0~1/𝑙𝑙02; 𝑙𝑙0 is the lattice constant 
of SiC, 𝑛𝑛  is the number of Cd atoms in the island (equals to the number of CdTe pairs); 𝑛𝑛c is 
the critical size of island; 𝑊𝑊+(𝑛𝑛c) is the diffusion coefficient in the size space for the island of 
the size 𝑛𝑛c; 𝑊𝑊+(𝑛𝑛c) depends on the island growth mechanism and is of order of the number of 
CdTe pairs that attach to the critical island per second; Δ𝐹𝐹(𝑖𝑖) is the free energy of the island 
formation without the entropy correction; 𝑘𝑘 is the Boltzmann constant; 𝑇𝑇 is the growth 
temperature; 𝑍𝑍 = �−Δ𝐹𝐹′′(𝑛𝑛c) 2𝜋𝜋 𝑘𝑘𝑘𝑘⁄  denotes the Zeldovich factor. The free energy of the 
island formation Δ𝐹𝐹(𝑖𝑖) equals [23] 

Δ𝐹𝐹(𝑖𝑖) = 𝛼𝛼 𝑛𝑛1/2 − (Δ𝜇𝜇 − 𝑤𝑤)𝑛𝑛, (3) 

where 𝛼𝛼 = 2𝜋𝜋1/2 𝛾𝛾(ℎΩ)1/2 for the disk-shaped islands of the radius 𝑟𝑟 and height 𝐻𝐻; 𝛾𝛾 is the 
effective surface energy of the island sides, Ω is the volume of the CdTe pair in solid state; 
Δ𝜇𝜇  is the difference of chemical potential per CdTe pair between the two-dimensional gas of 
adatoms  and bulk solid; Δ𝜇𝜇  = 𝑘𝑘𝑘𝑘 ln( СCdСTe 

 /𝐾𝐾eq), С𝑖𝑖 are the atomic concentrations of Cd 
and Te atoms on the surface of substrate; 𝐾𝐾eq = 𝐶𝐶Cd

eq𝐶𝐶Te
eq is the equilibrium constant of the

chemical reaction Cd + Te → CdTe, 𝐶𝐶𝑖𝑖
eq is the equilibrium concentration of the 𝑖𝑖-th element;

𝑤𝑤 is the elastic energy per CdTe pair produced by the lattice mismatch of the substrate and 
CdTe film. The difference Δ𝜇𝜇 − 𝑤𝑤 is the driving force of nucleation. The supersaturation of 
the two-dimensional gas of adatoms 𝜉𝜉 relates to the difference of chemical potentials Δ𝜇𝜇  by the 
formula Δ𝜇𝜇  = 𝑘𝑘𝑘𝑘 ln(𝜉𝜉 + 1) and, consequently, 𝜉𝜉 = СCdСTe 

 /𝐾𝐾eq − 1. It is noteworthy that in 
our model we assume that the Te2 molecule absorbed on the substrate dissociates into two Te 
atoms. Therefore, the kinetics processes on the substrate (the island formation and growth) are 
governed by the diffusion of Te adatoms (not Te2 molecules) and their interaction with the Cd 
adatoms. We suppose that tellurium in molecular form desorbs easily from the substrate and is 
not involved in the nucleation process of CdTe islands. In the general case, the several possible 
growth mechanisms can be considered. Herein, we focus only on the mechanism mentioned 
above but, in the further studies, we will investigate other possible mechanisms. For instance, 
the Te2 molecule can interact with the Cd adatom and, as a result, the "free" Te adatom is 
produced on the surface. Also, one should consider the possibility of the reaction between the 
Te2 molecule in the vapor phase and two Cd adatoms on the surface [23]. Thus, we suppose 
that the following reaction on the substrate results in the formation of CdTe islands 

𝐶𝐶𝐶𝐶(𝑎𝑎𝑎𝑎) + 𝑇𝑇𝑇𝑇(𝑎𝑎𝑎𝑎) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑠𝑠),  (4) 

where Cd(ad) и Te(ad) are the cadmium and tellurium adatoms, CdTe(s) is the cadmium 
telluride in solid state. It is well known that the critical size of island and nucleation barrier can 
be expressed by the formulas 𝑛𝑛𝑐𝑐 = 𝛼𝛼2/4(Δ𝜇𝜇 − 𝑤𝑤)2 and Δ𝐹𝐹(𝑛𝑛c) = 𝛼𝛼2/4(Δ𝜇𝜇 − 𝑤𝑤)2, 
correspondently. Following to Zeldovich [24], the diffusion coefficient in the size space 𝑊𝑊+(𝑛𝑛) 
can be defined by the formula 

𝑊𝑊+(𝑛𝑛) = −  𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘/𝑑𝑑𝑑𝑑
𝜕𝜕∆F 𝜕𝜕𝜕𝜕⁄  

 ,  (5) 

where 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 is the island growth rate; it depends on the mechanism of material transport. In 
the general case, the different growth mechanisms of islands can be considered depending on 
the substrate temperature [25]. In this paper, we consider the most realistic mechanism that can 
occur at the growth conditions similar to those used in the work [13]. We assume that the island 
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has the shape of the thin disk of the radius 𝑟𝑟 and height 𝐻𝐻. The height 𝐻𝐻 equals to one monolayer 
and is a constant at the nucleation stage of the islands.  Therefore, the radius of island, i.e. its 
lateral size, only changes during the growth. This assumption is reasonable because the number 
of atoms in the islands is usually about ~10-100 at the nucleation stage and the islands have the 
size of ~1 nm [23]. At the initial growth stage, the average distance between islands is much 
larger than their sizes. Therefore, we assume that the island growth is limited by the surface 
diffusion of Cd and Te adatoms at the growth conditions [13]. In this case, we can use the 
following formula for the growth rate of island [25] 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 2𝜋𝜋𝜋𝜋Ω𝑁𝑁0𝐷𝐷CdTe
𝑘𝑘𝑘𝑘 𝑟𝑟 

�𝑟𝑟
𝑟𝑟c
− 1� ,               (6) 

where 

𝐷𝐷CdTe = �∑ 𝜈𝜈𝑖𝑖
2 ln 𝜆𝜆𝑖𝑖 𝑟𝑟c⁄
𝐷𝐷𝑖𝑖𝐶𝐶𝑖𝑖

eq𝑖𝑖=Cd,Te �
−1

    (7) 

is the generalized diffusion coefficient; 𝐷𝐷𝑖𝑖 and 𝜆𝜆𝑖𝑖 are the diffusion coefficient and diffusion 
length of the 𝑖𝑖-th element on the surface, correspondently, such that 𝜆𝜆𝑖𝑖 = �𝐷𝐷𝑖𝑖𝜏𝜏𝑖𝑖 , 𝜏𝜏𝑖𝑖 is the 
adatom lifetime; 𝜈𝜈𝑖𝑖 is the stoichiometric coefficient of  the 𝑖𝑖-th element that corresponds to the 
reaction (4), 𝜈𝜈Cd = 1 , 𝜈𝜈Te = 1; 𝑟𝑟с = 𝛾𝛾  Ω/Δ𝜇𝜇 

 
с is the radius of the critical island. To calculate 

𝑊𝑊+(𝑖𝑖c), we differentiate (3) with respect to 𝑛𝑛 and substitute the derivative in (5) then simplify 
the result using the formula (6). Finally, we obtain the formula [26] 
𝑊𝑊+(𝑖𝑖c) = 2𝜋𝜋𝐷𝐷CdTe 𝑁𝑁0 ,      (8) 
where 

𝐷𝐷CdTe = 𝐷𝐷Cd𝐷𝐷Te𝐶𝐶Cd
eq𝐶𝐶Te

eq

𝐷𝐷Te𝐶𝐶Te
eq ln(𝜆𝜆Cd/𝑟𝑟c)+𝐷𝐷Cd𝐶𝐶Cd

eq ln(𝜆𝜆Te/𝑟𝑟c)
 .     (9) 

Substituting (8) in (2) and calculating the Zeldovich factor, we rewrite the formula (2) for 
the nucleation rate of CdTe islands in the following form 

𝐼𝐼 =  𝑁𝑁02𝐷𝐷CdTe(Δ𝜇𝜇−𝑤𝑤) 
3/2

𝛾𝛾(ℎ𝛺𝛺𝛺𝛺𝛺𝛺)1/2 exp �− 𝛼𝛼2

4𝑘𝑘𝑘𝑘(Δ𝜇𝜇 −𝑤𝑤)
� .   (10) 

Let us estimate the values of the material constants of our model to use the formula (10). 
The adatom lifetime of Cd and Te can be found by means of the formula [25] 

𝜏𝜏𝑖𝑖 = 𝜏𝜏0𝑖𝑖 exp �𝐸𝐸a,𝑖𝑖
𝑘𝑘𝑘𝑘
� ,   (11) 

where 𝜏𝜏0𝑖𝑖~1/𝜈𝜈p,𝑖𝑖, 𝜈𝜈p,𝑖𝑖 is the frequency of normal vibrations of the 𝑖𝑖-th element on the substrate; 
𝜈𝜈p,𝑖𝑖 equals approximately ~1013𝑠𝑠−1[27]; 𝐸𝐸a,𝑖𝑖 is the activation energy of adsorption of the 𝑖𝑖-th 
element. The diffusion coefficient of the Cd and Te adatoms 𝐷𝐷𝑖𝑖 is calculated using the equation 

𝐷𝐷𝑖𝑖 = 𝑙𝑙𝑖𝑖
2 𝜈𝜈t,𝑖𝑖
𝑧𝑧

exp �− 𝐸𝐸d,𝑖𝑖
𝑘𝑘𝑘𝑘
�,    (12) 

where 𝐸𝐸d,𝑖𝑖 is the activation energy of the surface diffusion; 𝑙𝑙𝑖𝑖 is the diffusion jump distance of 
the 𝑖𝑖-th element; we put 𝑙𝑙𝑖𝑖~𝑙𝑙0 for simple estimates; the lattice constant of CdTe 𝑙𝑙0 equals  to 
0.648 nm [28]; 𝜈𝜈t,𝑖𝑖 is the frequency of tangential vibrations of the 𝑖𝑖-th element on the substrate, 
𝜈𝜈t,𝑖𝑖~1013𝑠𝑠−1[28]; 𝑧𝑧 is the number of neighboring sites which the adatom can hop to; 𝑧𝑧 equals 
to 3 for the triangular lattice. 

The activation energy of adsorption 𝐸𝐸a,𝑖𝑖 is estimated using the results of the work [29], 
𝐸𝐸a,Cd~0.5 eV and 𝐸𝐸a,Te~1.5 eV. The activation energy of diffusion 𝐸𝐸d,𝑖𝑖 equals to 
𝐸𝐸𝑑𝑑,Cd~0.17 eV and 𝐸𝐸𝑑𝑑,Te~0.5 eV [30]. After the activation energies were found, it easy to 
estimate the adatom lifetimes and diffusion coefficients according to the formulas (11) and (12). 
The calculated dependences of 𝜏𝜏Cd and 𝜏𝜏Te and, also, 𝐷𝐷Cd and 𝐷𝐷Te on the substrate temperature 
are presented in Fig. 2a. In order to estimate the temperature dependence of the evaporation and 
condensation fluxes of Cd and Te at the vapor-surface interface and, correspondently, the 
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equilibrium concentrations of adatoms, we use the data on the saturated vapor pressure of Cd 
and Te2 over the congruently sublimating crystal of CdTe [22, 31]. According to the work [31], 
the logarithm of the saturated vapor pressure of Te2 molecules equals to log𝑃𝑃𝑇𝑇𝑇𝑇2 = −104/𝑇𝑇 +
6.346, where the temperature 𝑇𝑇 is measured in degrees of Kelvin and the pressure 𝑃𝑃𝑇𝑇𝑇𝑇2 is 
measured in atmospheres. The saturated vapor pressure of Cd is calculated by means of the 
equation 𝑃𝑃𝐶𝐶𝐶𝐶 = 2𝑃𝑃𝑇𝑇𝑇𝑇2 [31]. The flux densities of Cd and Te atoms coming to the substrate from 

the vapor phase are equal to 𝐽𝐽Cd = 𝑃𝑃𝐶𝐶𝐶𝐶/(2𝜋𝜋𝑚𝑚Cd𝑘𝑘𝑘𝑘)1/2 and 𝐽𝐽Te = 2𝑃𝑃𝑇𝑇𝑇𝑇2/�2𝜋𝜋𝑚𝑚Te2𝑘𝑘𝑘𝑘�
1/2

,
correspondently, where 𝑚𝑚Cd and 𝑚𝑚Te2 are the mass of Cd and Te2, correspondently. 

   a         b 
Fig. 2. The dependences of the adatom lifetimes, diffusion coefficients and flux densities of 
Cd and Te atoms on the substrate temperature; (a) the dependences of the adatom lifetimes 
(𝜏𝜏𝐶𝐶𝐶𝐶, 𝜏𝜏𝑇𝑇𝑇𝑇) and diffusion coefficients (𝐷𝐷𝐶𝐶𝐶𝐶, 𝐷𝐷𝑇𝑇𝑇𝑇); (b) the dependences of the flux densities of 

Cd and Te atoms. 

The results of the calculation of 𝐽𝐽Cd and 𝐽𝐽Te  are shown in Fig. 2b. After the flux densities 
are calculated, it is easy to estimate the adatom concentrations using the formula 𝐶𝐶𝑖𝑖 = 𝑛𝑛𝑖𝑖/𝑁𝑁0 =
𝐽𝐽𝑖𝑖𝜏𝜏𝑖𝑖/𝑁𝑁0, where 𝑛𝑛𝑖𝑖 is the surface density of the 𝑖𝑖-th adatom. To determine the value of the 
effective surface energy of island 𝛾𝛾, the results of the work [32] on the surface energy 
calculation of CdTe are used. Thus, we equal 𝛾𝛾 to 0.65 𝐽𝐽 ∙ 𝑚𝑚−2 in the further computations.  

The mechanical stress 𝜎𝜎 produced during the growth of the CdTe film on the SiC/Si 
substrate is estimated by means of the analysis of the Raman spectrum of the CdTe/SiC/Si 
structure [13]. The Raman measurements performed at room temperature [13] show that the 
Raman shift 𝜔𝜔 of the E(TO) phonon peak has the value of about 141 cm−1. According to the 
work [33], the Raman shift 𝜔𝜔0 of this peak of the CdTe crystal in the unstressed state has the 
value of about 140 cm−1. The value of the mechanical stress 𝜎𝜎 in the CdTe/SiC/Si structure is 
estimated by means of the formula derived in the work [34], (𝜔𝜔 − 𝜔𝜔0)/𝜔𝜔0 = 𝑘𝑘𝑘𝑘, where 
𝑘𝑘 ≈ −(0.36 ± 0.1) cm−1/100 MPa. Thus, the CdTe film grown on the SiC/Si substrate has 
the residual compressive stress of about 200-400 MPa. Note that at the growth temperature the 
value of the mechanical stresses can be higher or lower than the calculated value depending on 
the presence of misfit dislocations, lattice mismatch and difference of thermal expansion 
coefficients of CdTe film and substrate during the growth process [35]. However, in this paper, 
we assume that the mechanical stress in the volume of CdTe film equals approximately 
~300 MPa. During the heteroepitaxy growth, the island-substrate interface is often 
semicoherent. Therefore, the effective mechanical stress is lower than that in the volume of 
CdTe film. Our estimates show that its value is about 120-150 MPa. It is also important to note 
that in the case of CdTe growth on the Si substrate the residual stress is several times higher, 
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about 0.6-1.0 GPa [36]. Moreover, the use of the nanopatterned substrates does not lead to the 
relaxation of CdTe film on the Si substrate [36]. 

As a result, the model allows the estimation of the values of the parameters of the CdTe 
film growth on the SiC/Si substrate at the growth conditions [13]. At the substrate temperature 
𝑇𝑇𝑆𝑆 = 500 ℃, the Cd adatom lifetime equals 𝜏𝜏Cd~ 2 ∙ 10−10 s. The Te adatom lifetime is much 
larger, 𝜏𝜏Te~ 6 ∙ 10−4 s (Fig. 2a). The estimates of the equilibrium concentrations of adatoms, 
𝐶𝐶Cd
eq and 𝐶𝐶Te

eq, show that their ratio equals 𝐶𝐶Cd
eq/𝐶𝐶Te

eq ~ 10−7 . Such a large difference in the
adatom lifetime and equilibrium concentrations is caused by the difference in the binding 
energies of Cd and Te adatoms with the substrate. The binding energy of Cd adatom is 
approximately three times less than that of Te adatoms. As the material source, the CdTe 
powder heated up to the temperature of 𝑇𝑇𝑔𝑔 = 580 ℃ was used in the work [13].  The calculated 
values of the flux densities of Cd and Te atoms coming to the substrate at 𝑇𝑇𝑔𝑔 = 580 ℃  equal, 
correspondently, 𝐽𝐽Cd~ 7 ∙ 1021 m−2s−1 and 𝐽𝐽Te~ 5 ∙ 1021 m−2s−1. Note, the values of 𝐽𝐽Cd and 
𝐽𝐽Te are very close to the value of the flux density of CdTe molecules at the same temperature 
𝑇𝑇𝑔𝑔 obtained experimentally in the work [22]. The concentration of Cd and Te adatoms at such 
fluxes equal 𝐶𝐶Cd~ 10−7 and 𝐶𝐶Te~ 1. The values of 𝐶𝐶Cd and 𝐶𝐶Te correspond to a very large value 
of the supersaturation 𝜉𝜉. In the real growth process, such a large excess of adatoms will be 
consumed rapidly by the growing islands. This will lead to the decrease of the supersaturation 
down to the regular value of 𝜉𝜉 ~ 0.1. It can be shown that 𝐷𝐷Te𝐶𝐶Te

eq ln( 𝜆𝜆Cd/𝑟𝑟c) ≫
𝐷𝐷Cd𝐶𝐶Cd

eq ln( 𝜆𝜆Te/𝑟𝑟c) (equation (9)) in the considered temperature range. Consequently, the
growth of the CdTe film is limited by the diffusion of Cd adatoms on the substrate and the 
equation (9) can be represented in the following form 𝐷𝐷CdTe ≈ 𝐷𝐷Cd𝐶𝐶Cd

eq/ ln( 𝜆𝜆Cd/𝑟𝑟c). The elastic
stresses due to the lattice mismatch between the SiC/Si substrate and CdTe film cause the 
decrease of the driving force of nucleation compared to the case of unstrained structure. The 
value of this decrease equals ~15% that corresponds to 𝑤𝑤 ~ 0.048 eV  per atom. As a result, 
the nucleation rate decreases by three orders of magnitude. However, in the case of nucleation 
on the Si substrate the driving force is several times lower because the value of the mechanical 
stresses is several times larger. Our calculations show that the nucleation rate of CdTe islands 
on the Si substrate is several orders of magnitude lower than the nucleation rate on the SiC/Si 
substrate. Therefore, the formation of the CdTe film is much easier on the SiC/Si substrate than 
on the Si substrate. 

4. Diagram of the nucleation intensity of CdTe nuclei on the SiC/Si surface. Conditions of
optimal epitaxial growth of the CdTe films on SiC/Si 
Using the formula (10), it is possible to estimate the nucleation rate 𝐼𝐼(𝑇𝑇𝑔𝑔,𝑇𝑇𝑠𝑠) for different 
temperatures of the evaporator 𝑇𝑇𝑔𝑔 and the substrate 𝑇𝑇𝑠𝑠. Fig. 3 demonstrates a diagram of the 
relative intensity of the CdTe islands nucleation on SiC/Si substrate in 𝑇𝑇𝑔𝑔 and 𝑇𝑇𝑠𝑠 axes. The color 
corresponds to the value 𝐼𝐼(𝑇𝑇𝑔𝑔,𝑇𝑇𝑠𝑠)/𝐼𝐼(580 ℃, 500 ℃), i.e. to the ratio of the intensity of the 
islands nucleation calculated from the formula (10) for the temperatures 𝑇𝑇𝑔𝑔 and 𝑇𝑇𝑠𝑠 to the 
intensity of the islands nucleation under the growth conditions of the paper [13]. Note that the 
use of such a relative value is convenient in view of the fact that the growth mechanism of the 
CdTe film under the conditions of the paper [13] has already been determined experimentally 
and the film growth rate is known to be about 0.3–0.5 μm/s. Comparing the values 𝐼𝐼(𝑇𝑇𝑔𝑔,𝑇𝑇𝑠𝑠) and 
𝐼𝐼(580 ℃, 500 ℃), it is possible to estimate the regimes and rate of CdTe film growth under 
other conditions as well. Thus, in Fig. 3 one can distinguish 5 characteristic regions with 
different rates of CdTe nucleation. It is expected that in the region I (see Fig. 3), the mechanism 
of CdTe film growth will be similar to that observed in the experiment [13]. In the region II 
corresponding to much lower values of the supersaturation and more equilibrium conditions of 
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the film growth, one can get epitaxial layers of high quality. However, it should be taken into 
account that the growth rate in this case will be much lower. In this regard, if the vacuum is not 
sufficiently high in the system, the concentration of other substances which present in the gas 
phase in the reactor will be higher in the resulting CdTe film. 

Fig. 3. Dependence of the relative intensity of nucleation  𝐼𝐼(𝑇𝑇𝑔𝑔,𝑇𝑇𝑠𝑠) of CdTe islands on 
evaporator temperature and substrate temperature. The normalization was carried out on the 

nucleation intensity under the experimental conditions of paper [13]. 

Moreover, taking into account the small supersaturation and the extremely low nucleation 
rate, a change of the film growth regime for the two-dimensional growth due to the diffusion 
of adatoms to the growth steps or to the exit points of screw dislocations is possible. In the 
region III large supersaturations are observed and the nucleation intensity significantly exceeds 
the values corresponding to [13]. The growth in such non-equilibrium conditions can lead to 
the appearance of polycrystals. In addition, significant supersaturation can lead to the 
development of morphological instability and increase of surface roughness [37, 38]. The 
region IV corresponds to nucleation rates comparable to [13], but the growth occurs at high 
substrate temperatures. As a result, the diffusion length of adatoms of cadmium and tellurium 
becomes smaller, which can also contribute to the development of roughness at scales 
comparable to the diffusion lengths of adatoms [37]. An advantage of the region IV is higher 
partial pressures of Cd and Te2 in the reactor and, as a consequence, lower concentrations of 
impurities in the film. In the region V, vice versa, the partial pressures of cadmium and tellurium 
are small, and a large concentration of impurities can be observed. However, the diffusion 
lengths of the adatoms in this region are much larger, which can lead to smoothing of the 
roughness with a short spatial wavelength [37]. 

5. Conclusions
The process of cadmium telluride film growth on SiC/Si substrates by the method of thermal 
evaporation and condensation in vacuum is considered. The model for the formation and growth 
of CdTe film is developed on the basis of the classical nucleation theory, which takes into 
account the influence of mechanical stresses that arise in CdTe due to difference in the 
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parameters of crystalline lattices of the film and the substrate. It is shown that the presence of 
elastic stresses reduces effective difference of chemical potentials for Cd and Te by ~ 15 %, 
which corresponds to ~ 0.048 eV per atom. Such a decrease in the difference of chemical 
potentials has a significant effect on the nucleation rate, and as a consequence, on the growth 
mechanism of thin films. Estimates of the mechanical stresses arising in CdTe films grown on 
SiC/Si and Si substrates showed that in the case of coherent coupling between the film and the 
substrate in CdTe/SiC/Si heterostructure elastic stresses are of the order of ~0.2-0.3 GPa, 
whereas in CdTe/Si heterostructure the elastic stresses will be ~ 0.6-1GPa, which are 
approximately three to four times higher. Such a difference in the elastic stresses significantly 
affects the activation barriers for CdTe nucleation on Si substrate with a buffer layer of SiC and 
on pure Si substrate without a buffer layer. The main constants determining the nucleation rate, 
namely the lifetimes of Cd and Te adatoms are calculated, as well as the generalized adatom 
diffusion coefficient, which determines the growth rate of CdTe islands. On the basis of these 
data, a theoretical diagram of the nucleation rate of CdTe nuclei on SiC/Si surface in the 
temperature range of the evaporator 560-610 °C and of the substrate 450-520 °C was calculated. 
The various growth regimes of the film are discussed. It is shown that change in the temperature 
of the substrate/evaporator by 10 °C can lead to a sharp (up to several orders) change in the rate 
of nucleation, which significantly affects the mechanism and growth rate of thin film, impurity 
concentration, degree of crystallinity and, ultimately, quality of the grown CdTe films. 
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Abstract. The paper concerns with the problem important for proper simulation of hydraulic 
fractures. Its objective is to answer the recently raised question: Can we neglect the impact of 
the hydraulically induced shear stress when using the elasticity equation, which connects the 
fracture opening with the net-pressure? The estimations, given in the paper, show that the 
answer is “Yes”. The impact can be confidently neglected. Its influence is well beyond physical 
significance, computational abilities of computers and practical applications of HF.   
Keywords: hydraulic fracture, shear traction, elasticity equation. 

1. Introduction
It is well known that viscous shear is the main force resisting to fluid flow in a narrow channel 
of a given small width. Meanwhile, in hydraulic fracture (HF) problems, the width itself 
depends on the deformation of the channel walls and it is zero at the contour of a propagating 
fracture. In these problems, the width is defined by the deformation of embedding rock; it is 
found from the elasticity equation connecting the channel width (opening in this case) with the 
tractions on the channel (fracture) surfaces.  

Starting from the pioneering paper by Spence and Sharp [21], the shear traction, entering 
the elasticity equation, has been neglected in all papers on HF (e.g. [1-8, 10, 13, 15, 19-21, 23]). 
However, recently [24] it has been suggested that the shear traction is to be included into the 
elasticity equation, as well. An example of self-similar solution, given by the authors, shows 
that the input of the shear term is 10%, at most. Still, the question arises, if it is reasonable 
always to neglect this input when simulating HF propagation?  

The objective of the present paper is to answer the question. We estimate the input of the 
shear term into the elastic response of embedding rock in HF problems. It is shown that for 
values of input parameters, typical in HF practice, the influence of the shear term discussed is 
far-beyond practical significance and computational abilities of modern computers. 

2. Problem formulation
The problem formulation is conventional (e.g. [1-8, 10, 13, 15, 19-21, 23]) except for the only 
difference: the shear traction is accounted for in the elasticity equation. Below we use the 
formulation employing the fundamental speed equation [9, 12] and the particle velocity [13] 
rather than the flux (see also [14-17, 23]). Consider the plane strain problem for a straight 
fracture driven by a viscous fluid, studied, for instance, in the papers [1, 13, 21, 23, 24]. The x-
axis is located along the fracture in the propagation direction. The y-axis is directed to the left 
of x. The quite general power law describes the fluid velocity across the opening:  
𝜎𝜎𝑥𝑥𝑥𝑥 = −𝑀𝑀(𝛾̇𝛾sign𝑦𝑦)𝑛𝑛sign𝑦𝑦, (1) 
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where 𝜎𝜎𝑥𝑥𝑥𝑥 is the shear stress; 𝑛𝑛 and 𝑀𝑀 are, respectively, the behavior and consistency indices; 

𝛾̇𝛾 = 2𝜀𝜀𝑥̇𝑥𝑥𝑥; 𝜀𝜀𝑥̇𝑥𝑥𝑥 = 1/2 �𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝑣𝑣𝑦𝑦
𝜕𝜕𝜕𝜕
� is the shear strain rate; 𝑣𝑣𝑥𝑥, 𝑣𝑣𝑦𝑦 are the components of the fluid 

velocity. For a Newtonian fluid, 𝑛𝑛 = 1 and 𝑀𝑀 = 𝜇𝜇 is the dynamic viscosity. 
For a narrow channel, the flow is assumed to be of the Poiseuille type, predominanatly 

in-plane and steady. Then the out-of-plane component 𝑣𝑣𝑦𝑦 is neglected in (1) as compared with 
𝑣𝑣𝑥𝑥, while the movement equation of the Navier-Stokes type yields  
𝜎𝜎𝑥𝑥𝑥𝑥(𝑦𝑦) = −𝑖𝑖∗𝑦𝑦, (2) 
where 𝑖𝑖∗ = −𝜕𝜕𝜕𝜕/𝑑𝑑𝑑𝑑 is the pressure gradient taken with the minus sign (𝑖𝑖∗ > 0). Equation (2) 
implies linear distribution of the shear stress along the channel width w: 
𝜎𝜎𝑥𝑥𝑥𝑥 = − 𝑦𝑦

𝑤𝑤/2
𝜏𝜏, (3) 

where 𝜏𝜏 is the shear traction on the lower shore (𝑦𝑦 = −𝑤𝑤/2) of the channel. Using (3) in (2) 
gives (e. g. [22]): 
𝜏𝜏 = 1

2
𝑤𝑤𝑖𝑖∗ (4) 
On the other hand, using (2) in (1) and integration provide the profile of the velocity 

𝑣𝑣𝑥𝑥(𝑦𝑦). The latter, being averaged over the cross-section, yields the conventional average 
particle velocity 𝑣𝑣 = ∫ 𝑣𝑣𝑥𝑥(𝑦𝑦)𝑑𝑑𝑑𝑑𝑤𝑤/2

−𝑤𝑤/2 /𝑤𝑤 (e.g. [15]): 

𝑣𝑣 = 𝑤𝑤 �𝑤𝑤
𝜇𝜇′
𝑖𝑖∗�

1/𝑛𝑛
, (5) 

where 𝜇𝜇′ = 2 �2 2𝑛𝑛+1
𝑛𝑛
�
𝑛𝑛
𝑀𝑀. For a Newtonian fluid, 𝜇𝜇′ = 12𝜇𝜇. In view of (4), equation (5) may

be re-written in terms of the shear traction as  
𝜏𝜏 = 𝜇𝜇′

2
�𝑣𝑣
𝑤𝑤
�
𝑛𝑛

(6) 
The fracture propagation speed 𝑣𝑣∗, by the speed equation is 𝑣𝑣∗ = lim

𝑟𝑟→0
𝑣𝑣, where 𝑟𝑟 is the 

distance from the fluid front. For a continouos particle velocity 𝑣𝑣, this infers that in the near-
front zone, equation (6) becomes:  
𝜏𝜏 = 𝜇𝜇′

2
𝑣𝑣∗𝑛𝑛

𝑤𝑤𝑛𝑛 (7) 
Neglect, as usual, the lag (e.g. [1, 13, 21, 23, 24]). Then the propagation speed 𝑣𝑣∗, being 

finite and non-zero, equation (7) implies that near the fracture contour, the shear traction 
behaves as 𝜏𝜏 = 𝑂𝑂 � 1

𝑤𝑤𝑛𝑛�. It is singular, because the opening w goes to zero at the fracture contour.  
To the moment, the elasticity equation, defining the opening, hasnot been employed. 

When accounting for the shear traction, from the classical solution by Muskhelishvili’s [18],  it 
follows (e.g. [11]): 
𝑝𝑝(𝑥𝑥) = 𝐸𝐸′

4𝜋𝜋 ∫
𝜕𝜕𝜕𝜕/𝜕𝜕𝜉𝜉−2𝑘𝑘𝜏𝜏𝜏𝜏(𝜉𝜉)/𝐸𝐸′

𝑥𝑥−𝜉𝜉
𝑑𝑑𝑑𝑑 𝑥𝑥∗

−𝑥𝑥∗
, (8) 

where 𝐸𝐸′ = 𝐸𝐸/(1 − 𝜈𝜈2) is the plane-strain elasticity modulus, 𝐸𝐸 is the Young’s modulus, 𝜈𝜈 is 
the Poisson’s ratio, 𝑥𝑥∗ is the fracture half-length, 𝑘𝑘𝜏𝜏 = 1−2𝜈𝜈

1−𝜈𝜈
 is the factor depending merely on 

the Poisson’s ratio. For physically significant values of the latter (0 ≤ 𝜈𝜈 ≤ 0.5), the factor 𝑘𝑘𝜏𝜏 
never exceeds 1; it equals to zero when 𝜈𝜈 ≤ 0.5 and it reaches its maximal value 1 when 
 𝜈𝜈 = 0. For commonly used value 𝜈𝜈 = 0.3, it is 0.531.  

As mentioned, in all the papers on HF, except for the paper [24], the term 2𝑘𝑘𝜏𝜏𝜏𝜏(𝜉𝜉)/𝐸𝐸′, 
which includes the shear traction, is neglected. Our objective is to compare the input of this 
term into the net-pressure 𝑝𝑝(𝑥𝑥) with that of the term 𝜕𝜕𝜕𝜕/𝜕𝜕𝜉𝜉 conventionally accounted for.    

3. Comparison of conventional and shear terms
The reltive input of the shear traction into the net-pressure, as compared with that of the 
conventional term 𝜕𝜕𝜕𝜕/𝜕𝜕𝜉𝜉, is given by the ratio   
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𝑅𝑅𝜏𝜏 = − 2𝑘𝑘𝜏𝜏𝜏𝜏(𝑥𝑥)
𝐸𝐸′𝜕𝜕𝜕𝜕/𝜕𝜕𝑥𝑥

(9) 
The compared terms are greatest in the near tip zone, where the both of them are singular. 

In this zone 𝜕𝜕𝜕𝜕/𝜕𝜕𝑥𝑥 = −𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕, where 𝑟𝑟 is the distance from the tip, and equation (7) is 
applicable. Then the ratio (9) becomes:  
𝑅𝑅𝜏𝜏 = 𝑘𝑘𝜏𝜏

𝜇𝜇′
𝐸𝐸′

𝑣𝑣∗𝑛𝑛

𝑤𝑤𝑛𝑛𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑
(10) 

Estimations of 𝑅𝑅𝜏𝜏 for toughness, viscosity and leak-off dominated regimes may employ 
well-known asymptotics for these regimes (e.g. [4, 7, 8, 10, 15, 21]). Commonly the 
asymptotics of the opening are of the form 
𝑤𝑤 = 𝐴𝐴𝑤𝑤𝑟𝑟𝛼𝛼  (11) 
where explicit formulae for the factor 𝐴𝐴𝑤𝑤 and the exponent 𝛼𝛼 are given in the cited papers. Then 
𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 = 𝛼𝛼𝛼𝛼/𝑟𝑟, and (10) becomes  
𝑅𝑅𝜏𝜏 = 𝑘𝑘𝜏𝜏

𝜇𝜇′
𝐸𝐸′

𝑣𝑣∗𝑛𝑛

𝛼𝛼𝐴𝐴𝑤𝑤𝑛𝑛+1𝑟𝑟𝛼𝛼(𝑛𝑛+1)−1 (12) 
Consider the regimes studied in [24], which are (i) viscosity dominated, and (ii) toughness 

dominated.  
(i) Viscosity dominated regime. In this case, 𝛼𝛼 = 2/(𝑛𝑛 + 2) and  

𝐴𝐴𝑤𝑤 = 𝐴𝐴𝜇𝜇(𝑡𝑡𝑛𝑛′𝑣𝑣∗)1−𝛼𝛼, (13) 
where 𝐴𝐴𝜇𝜇 = [(1 − 𝛼𝛼)𝐵𝐵(𝛼𝛼)]1/(𝑛𝑛+2), 𝐵𝐵(𝛼𝛼) = 𝛼𝛼

4
cot [𝜋𝜋(1 − 𝛼𝛼)], 𝑡𝑡𝑛𝑛′ = (𝜇𝜇′/𝐸𝐸′)1/𝑛𝑛. Then

𝛼𝛼(𝑛𝑛 + 1) − 1 = 𝑛𝑛/(𝑛𝑛 + 2), and substitution (13) into (10) yields: 

𝑅𝑅𝜏𝜏 = 𝑘𝑘𝜏𝜏
1

𝛼𝛼𝐴𝐴𝜇𝜇𝑛𝑛+1
�𝑡𝑡𝑛𝑛′𝑣𝑣∗

𝑟𝑟
�
𝑛𝑛/(𝑛𝑛+2)

(14) 

Consider, for certainty, a Newtonian fluid (𝑛𝑛 = 1).  
Then 𝛼𝛼 = 2/3, 𝐴𝐴𝜇𝜇 = 21/335/6 = 3.1473, 𝑡𝑡𝑛𝑛′ = 𝜇𝜇′/𝐸𝐸′ = 12𝜇𝜇/𝐸𝐸′. Using these values in (13) and 
substitution into (14) gives:  

𝑅𝑅𝜏𝜏 = 0.1514 𝑘𝑘𝜏𝜏 �
12𝜇𝜇
𝐸𝐸′

𝑣𝑣∗
𝑟𝑟
�
1/3

(15) 
For the values 𝜇𝜇 = 10−7MPa∙s, 𝐸𝐸′ = 2.5 ∙ 104MPa, typical for HF (e.g. [1, 3, 5, 10, 15]), 

equation (15) becomes 𝑅𝑅𝜏𝜏 = 0.5503 ⋅ 10−4 𝑘𝑘𝜏𝜏 �
𝑣𝑣∗

𝑟𝑟
�
1/3

. Take the maximal value 𝑘𝑘𝜏𝜏 = 1 and
quite a large value of the fracture propagation speed 𝑣𝑣∗ = 0.1 m/s (360 m/hour). Then equation 
(15) implies that the input of the shear traction 𝜏𝜏(𝑥𝑥) reaches 1% of the input of the conventional 
term −𝜕𝜕𝜕𝜕/𝜕𝜕𝑥𝑥, that is R grows to 0.01, only at the distance 𝑟𝑟 from the tip less than 1.67 ∙ 10−8 
m. This shows that the input of the shear traction reaches the level of 1% only at the distance
of atomic sizes. Surely, it is beyond physical significance, computational abilities of computers 
and practical applications of HF.  

(ii) Toughness dominated regime. In this case, 𝛼𝛼 = 2/3,  𝐴𝐴𝑤𝑤 = �32
𝜋𝜋
𝐾𝐾𝐼𝐼𝐼𝐼
𝐸𝐸′

, where 𝐾𝐾𝐼𝐼𝐼𝐼 is the 

critical stress intensity factor. Then equation (12) reads: 

𝑅𝑅𝜏𝜏 = 2𝑘𝑘𝜏𝜏
𝜇𝜇′
𝐸𝐸′
�� 𝜋𝜋

32
𝐸𝐸′
𝐾𝐾𝐼𝐼𝐼𝐼
�
𝑛𝑛+1

𝑣𝑣∗𝑛𝑛𝑟𝑟(1−𝑛𝑛)/2 (16)

For a Newtonian fluid (𝑛𝑛 = 1), equation (16) becomes: 

𝑅𝑅𝜏𝜏 = 2𝑘𝑘𝜏𝜏
𝜋𝜋
32

𝜇𝜇′
𝐸𝐸′
� 𝐸𝐸′
𝐾𝐾𝐼𝐼𝐼𝐼
�
2
𝑣𝑣∗  (17)

As known (e.g. [7, 8, 15]), the toughness dominated regime occurs when 

�𝐿𝐿𝜇𝜇/𝐿𝐿𝑘𝑘�
1/2

≪ 1, where 𝐿𝐿𝑘𝑘 = 32
𝜋𝜋
�𝐾𝐾𝐼𝐼𝐼𝐼
𝐸𝐸′
�
2
, 𝐿𝐿𝜇𝜇 = 𝑡𝑡𝑛𝑛′ 𝑣𝑣∗. Thus, for the toughness dominated regime,

�𝜋𝜋
32

𝜇𝜇′
𝐸𝐸′
𝑣𝑣∗

𝐸𝐸′
𝐾𝐾𝐼𝐼𝐼𝐼

≪ 1. Being squared, the inequality becomes square stronger 𝜋𝜋
32

𝜇𝜇′
𝐸𝐸′
� 𝐸𝐸′
𝐾𝐾𝐼𝐼𝐼𝐼
�
2
𝑣𝑣∗ ≪ 1.
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When used in the right hand side of (17), it implies that 𝑅𝑅𝜏𝜏 ≪ 1. This means that in the 
toughness dominated regime, the input of the shear traction into elasticity equation is negligible, 
as well.  

Comment on self-similar solution with exponentially growing injection rate. The paper 
[24] contains an example, which served authors to illustrate the input of the shear traction in 
the elasticity equation. To employ a self-similar solution, the authors assumed exponential 
growth of the injection rate. They considered a fracture driven by a Newtonian fluid (𝑛𝑛 = 1). 
From the numerical results, shown in figures 7 and 8 of this paper, it appears that for regimes 
with large toughness, the influence of the shear term is indistinguishable. This agrees with the 
conclusion above for such a regime. However, in the case of the viscosity dominated regime, 
for which 𝐾𝐾𝐼𝐼𝐼𝐼 = 0, the calculated injection pressure is about 10% greater if the shear term is 
taken into account (Fig. 8a of the paper). This result disagrees with the estimation (15) for the 
viscosity dominated regime. According to this estimation, such influence of the shear term may 
occur merely for very high values of the fracture propagation speed 𝑣𝑣∗.  

Thus, it is reasonable to estimate the physical speed 𝑣𝑣∗ for the example of the paper [24]. 
Below we employ the notation of this paper and the definitions of the normalized and self-
similar quantities given in its equations (53) and (84)-(87). These definitions imply that the 
physical injection rate 𝑞𝑞0(𝑡𝑡) and the physical speed 𝑣𝑣∗(𝑡𝑡) of the fracture propagation are:  

𝑞𝑞0(𝑡𝑡) = 1
𝑡𝑡𝑛𝑛
𝑞𝑞0���𝑒𝑒2𝛼𝛼𝛼𝛼/𝑡𝑡𝑛𝑛 , 𝑣𝑣∗(𝑡𝑡) = 𝑣𝑣(𝑡𝑡, 𝑙𝑙) = 1

�𝑡𝑡𝑛𝑛
�𝑞𝑞0����
𝑡𝑡𝑛𝑛
𝑒𝑒2𝛼𝛼𝛼𝛼/𝑡𝑡𝑛𝑛 𝑣𝑣�0

�𝐿𝐿0
 , (18) 

where 𝑡𝑡𝑛𝑛 = 2𝜋𝜋𝜋𝜋/𝐸𝐸′, 𝑀𝑀 = 𝜇𝜇′ = 12𝜇𝜇, 𝐸𝐸′ = 𝐸𝐸/(1 − 𝜈𝜈2), 𝐿𝐿0 = �𝑣𝑣�0/𝛼𝛼, 𝑣𝑣�0 = 𝑣𝑣�(1) is the self-
similar propagation speed; the factor 𝑞𝑞0��� and the exponent 𝛼𝛼, characterizing the intensity of the 
flux, are assigned values. The authors of the paper [24] set 𝛼𝛼 = 1/3; the values of 𝑣𝑣�0 = 𝑣𝑣�(1) 
of the self-similar propagation speed are defined by Fig. 7b of their paper. From this figure it 
appears that for the viscosity dominated regime, when 𝐾𝐾𝐼𝐼𝐼𝐼 = 0, the self-similar propagation 
speed is approximately 𝑣𝑣�(1) = 0.625. Then 𝐿𝐿0 = 1.369 and 𝑣𝑣�0/�𝐿𝐿0 = 0.5341. The 
parameter 𝑞𝑞0��� characterizes the influx at a specified time instant 𝑡𝑡0. If at an instant 𝑡𝑡0 the influx 
has a value 𝑞𝑞0𝐻𝐻𝐻𝐻, typical for practice of hydraulic fracturing (𝑞𝑞0(𝑡𝑡0) = 𝑞𝑞0𝐻𝐻𝐻𝐻), then equations 
(18) become:  

𝑞𝑞0(𝑡𝑡) = 𝑞𝑞0𝐻𝐻𝐻𝐻𝑒𝑒2𝛼𝛼(𝑡𝑡−𝑡𝑡0)/𝑡𝑡𝑛𝑛, 𝑣𝑣∗(𝑡𝑡) = 0.5341�
𝑞𝑞0𝐻𝐻𝐻𝐻
𝑡𝑡𝑛𝑛

𝑒𝑒𝛼𝛼(𝑡𝑡−𝑡𝑡0)/𝑡𝑡𝑛𝑛  (19) 

For the typical values 𝜇𝜇 = 10−7 MPa∙s, 𝐸𝐸′ = 2.5 ∙ 104 MPa (e.g. [1, 3, 5, 10, 15]), the 
definitions of 𝑡𝑡𝑛𝑛 for 𝛼𝛼 = 1/3 yields 𝑡𝑡𝑛𝑛 = 3.016 10-10 s, 𝛼𝛼/𝑡𝑡𝑛𝑛 = 1.10 ∙ 109 1/s. Then for the 
typical influx 𝑞𝑞0𝐻𝐻𝐻𝐻 = 0.5 ∙ 10−4 m2/s (e.g. [3, 5]), the speed defined by the second of (19) is   
𝑣𝑣∗(𝑡𝑡) = 688 ∙ exp [(𝑡𝑡 − 𝑡𝑡0)1.10 ∙ 109] m/s.  

Therefore, the solution of the example, considered in the paper [24], implies that if at 
some time instant 𝑡𝑡 = 𝑡𝑡0 the influx has a typical order of 10−4 m2/s, then at this instant the 
propagation speed 𝑣𝑣∗ is of order km/s. Such a speed is much greater than values typical in 
practice of HF: normally the propagation speed is four orders less. Even more extraordinary is 
that during a very short time interval 𝑡𝑡 − 𝑡𝑡0 = 10−8 s after 𝑡𝑡0, the propagation speed exceeds 
the speed of light 𝑐𝑐 = 3 ∙ 108 m/s. Therefore, the example corresponds to quite exotic, to say 
the least, problem. This explains why the authors of the paper [24] obtained non-negligible 
influence of the shear term in the elasticity equation on the calculated injection pressure (some 
10%) for the viscosity dominated regime.    

4. Reason of different results
It remains to clarify why the authors of the paper [24] came to the different conclusions on the 
impact of the shear stress? They inferred these conclusions by considering the ratio 𝜏𝜏/|𝑝𝑝| in the 
line of Spence and Sharp [21].  
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For the magnitude of the pressure |𝑝𝑝|, the asymptotic equation is (e.g. [15]): 
|𝑝𝑝| = 𝐸𝐸′𝐴𝐴𝑤𝑤𝐵𝐵(𝛼𝛼)𝑟𝑟𝛼𝛼−1  (20) 
where 𝛼𝛼 and 𝐵𝐵(𝛼𝛼) are defined as in equation (13). By using (20) and equation (7) for the shear 
traction, we obtain for the ratio 𝜏𝜏/|𝑝𝑝|: 
𝜏𝜏

|𝑝𝑝| = 𝛼𝛼
2𝐵𝐵(𝛼𝛼)

𝜇𝜇′
𝐸𝐸′

𝑣𝑣∗𝑛𝑛

𝛼𝛼𝐴𝐴𝑤𝑤𝑛𝑛+1𝑟𝑟𝛼𝛼(𝑛𝑛+1)−1 (21) 
Equation (21) is analogous to equation (12) for the ratio 𝑅𝑅𝜏𝜏. The only difference between 

(12) and (21) is in the factors 𝑘𝑘𝜏𝜏 and  𝛼𝛼
2𝐵𝐵(𝛼𝛼)

 on the right hand sides. Consider the case of zero 
toughness (𝐾𝐾𝐼𝐼𝐼𝐼 = 0), for which the impact of the shear traction is maximal. Then for a 
Newtonian fluid, considered in [24], = 2/3 , 𝐵𝐵(𝛼𝛼) = 1/(6√3 ), 𝛼𝛼

2𝐵𝐵(𝛼𝛼)
= 2√3. Hence, similar 

to (12), the factor in (21) is of order 1. Consequently, using (21) implies the same conclusions 
as those above.  

Unfortunately, the authors of the paper [24] have not derived equation (7), which provided 
us with quantitative estimations. Not having this equation, they formally tended 𝑟𝑟 to zero when 
considering the ratio 𝜏𝜏/|𝑝𝑝|. Clearly, the ratio goes to infinity, what leads to an illusion that the 
shear stress should be accounted for in the elasticity equation. This explains the reason of 
erroneous claims made in the cited paper on the impact of the shear traction and on the viscosity 
dominated regime.  

5. Conclusion
The estimations, given for the impact of the shear term in the elasticity equation on the net-
pressure, show that it can be confidently neglected when solving practical problems of hydraulic 
fracturing. Its influnce is well beyond physical significance, computational abilities of 
computers and practical applications of HF.  
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ELASTOMER COMPOSITES BASED ON FILLER WITH NEGATIVE 

COEFFICIENT OF THERMAL EXPANSION: EXPERIMENTS AND 
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Abstract. We consider composites made of hydrogenated nitrile butadiene rubber (HNBR) and 
particles of zirconium tungstate (ZrW2O8). We focus on finite element (FE) modelling of a finite-
strain mechanical behaviour of the composite and validation of the numerical simulation against 
experiments. Based on examination of composite microstructure by scanning electron 
microscope and optical analysis of particle images, realistic representative volume elements 
(RVE) of microstructure are generated taking into consideration the particles circularity and 
size distributions. Then FE simulations are performed to study the influence of the 
microstructure and matrix-filler interface conditions on the mechanical properties of the 
composites. It is assumed that the mechanical behaviour of rubber is non-linear, while the 
tungstate particles are modelled by a linear elastic material. The FE simulations reproduce 
uniaxial compression tests. Two types of interface condition between matrix and particles are 
simulated: a perfect adhesion and absence of adhesion. Corresponding stress-strain curves are 
constructed. Comparison with experiments shows that the real stress-strain curves for pre-
loaded samples path within intervals given by the modelling, i.e. pre-loading leads to partial 
damage of bonding between matrix and particles. 
Keywords: elastomer composite, representative volume element, effective stress-strain curve, 
damage, debonding. 

1. Introduction
In the paper, the mechanical behaviour of composites consisting of hydrogenated nitrile 
butadiene rubber (HNBR) and particles of zirconium tungstate (ZrW2O8) that exhibits negative 
coefficient of thermal expansion (CTE) is studied. The fillers with low thermal expansivity 
provide an opportunity to reduce the thermal shrinkage of the composite in cooling [1, 2]. It is 
especially relevant in sealing applications for equipment operated at low temperatures. It is 
known that CTE of rubber is at least an order of magnitude higher than that of steel (see, for 
instance, [3]). Due to this fact, an elastomer seal compressed in its groove at room temperature 
may lose interference with the mating part after cooling and, thus, form a leak path for the 
contained fluid [1, 4]. In the previous work [1], we investigated analytically based on 
assumptions of linear elasticity how the volume fraction and the shape of the filler particles 
affect thermo-elastic properties, and, thus, the sealing performance of the composite. We also 
analysed the micro-stress at the particle-matrix interface caused by the seal squeeze and showed 
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that debonding may occur. 
It is well known, that damage at the filler-matrix interface might significantly impact the 

mechanical behaviour of composites. This problem has been studied experimentally, 
analytically and numerically by many researchers. Particularly, particle-matrix debonding is 
experimentally investigated for elastomeric specimens containing one (e.g. [5]) or an array of 
rigid spherical particles (e.g. [6, 7, 8]). Analytical treatments provide a suitable approach to 
model debonding for idealized relatively simple composite microstructure and have well-
known limits related to the non-linear behaviour of elastomer matrix, large deformation, high 
volume fraction, etc. A review of analytical modelling approaches together with a discussion 
on the limits of models could be found in [9]. On the other hand, numerical simulation allows 
to bridge the gap between analytical models and the real behaviour of composites with 
complicated microstructure (see an interesting discussion of this question in [10], where 
comparison between two methods is given). In some studies, a plane-strain assumption is used 
to model composites with circular particles distributed periodically (e.g. [11]) or randomly (e.g. 
[6, 10, 12, 13, 14, 15, 16]) and a composite with randomly distributed polygons (e.g. [15]). 
More appropriate three-dimensional models with randomly distributed spherical inclusions are 
researched in recent studies (e.g. [7, 15, 17, 18, 19, 20, 21]). However, to the authors’ 
knowledge, there are no numerical studies focusing on debonding of ellipsoidal particles in 
composites with random microstructure. 

In the present study, we focus on finite element (FE) modelling the large-strain 
mechanical behaviour of the HNBR-ZrW2O8 composite and validation of the numerical 
simulation against experiments. A multi-scale material modelling approach is used. Based on 
the optical analysis of particles images and microstructure images obtained by scanning 
electron microscope (SEM), realistic representative volume elements (RVE) of the 
microstructure are generated by using a novel algorithm developed in [22]. In the generated 
RVE, the shapes of the inclusions are approximated by prolate ellipsoids distributed randomly 
inside the RVE. The particle circularity and size distributions are taken into account. Then, the 
generated RVEs are transferred into ABAQUS [23] for subsequent non-linear finite element 
simulation to find out the overall mechanical properties of the composites. In the modelling 
approach, it is assumed that the mechanical behaviour of rubber is non-linear and described by 
the Marlow model [24]. The stiffness of ZrW2O8 is greater than that of rubber by a factor of 
1000, therefore a linear behaviour of the filler material is assumed. The FE simulations are 
performed to reproduce uniaxial compression tests. Special attention is paid to the influence of 
the adhesive layer between matrix and particles on the effective mechanical properties. 

The paper is structured in the following way. At the beginning, the material details and 
performed experiments are described. Next section is aimed to detail the RVE generation 
process for the FE simulation of the composites microstructure. Finally, simulation of uniaxial 
compression tests is performed for two limiting cases of the matrix-particle interface with 
perfect bond and no-adhesion. The stress-strain response given by simulations and experiments 
are then compared. 

2. Materials and test methods
Composites of HNBR filled with various amount of zirconium tungstate up to 40 vol.% are 
prepared. The elastomer matrix material is based on HNBR with 96 % saturated polybutadiene 
with 36 % acrylonitrile content. A zirconium tungstate powder is obtained for the experiments 
from Alfa Aesar and used as a filler in HNBR [2]. The matrix material composition and 
manufacturing process of the composites were described in detail earlier in [2]. The 
microstructure of the composites is examined by scanning electron microscope (SEM) and 
optical microscopy. In addition, the filler particle size and circularity distributions are measured 
using a Malvern G3 Particle size analyser based on optical analysis of images of dispersed 
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particles at objective magnifications of 50, 10 and 2.5 [2]. 
The mechanical properties of the composite materials are investigated in a uniaxial 

compression mode using a Netzsch-Gabo Eplexor 150 DMTA machine with a 1.5 kN load cell 
and parallel plate specimen holders. For the experiments, button-shape specimens with 
20 mm diameter and 10 mm height are produced by compression moulding. Smaller specimens 
of 10 mm diameter and 6 mm height are also employed due to the increased level of stiffness 
in HNBR with a high volume fraction of ZrW2O8. Silicone grease lubrication was employed to 
minimise barrelling. The investigated range of nominal compressive strains is 10-20 % which 
is relevant for rubber seals. The loading is performed stepwise with a nominal-strain step length 
of 5 % followed by a 3-hours stress relaxation period as in [25]. Prior to the experiments, the 
specimens were pre-treated with 4 full deformation cycles in order to minimise the Mullins 
effect [26] and left unloaded for at least 24 hours to restore the original shape. 

3. Geometrical model of the microstructure
In order to accurately simulate the composite mechanical data, an adequate mathematical 
description of the actual filler inclusions in the composites is required. In the present work, we 
approximate the shape of the particles by prolate ellipsoids, see an example in Fig. 1. Despite 
the particles embedded into the HNBR matrix do not exactly resemble ellipsoids, such shape 
approximation can be justified by Hill’s theorem [27]. The theorem suggests that a slightly 
uneven form of the particle surface has a minor effect on the overall elastic properties and, 
thereby, can be ignored (see discussion of this question in [28]). 

Fig. 1. The composite microstructure [2] and ellipsoidal approximation of the particle shape. 

The microscopical image analysis of the particles enables to deduce their shape. In the 
analysis process, 3D particles are captured as a 2D image and two shape parameters are 
extracted from examination: circle equivalent (CE) diameter and circularity. CE diameter is the 
diameter of circle with an equivalent area in the 2D image. The particle circularity represents 
“closeness” of the particle shape to a perfect circle. The circularity is defined as follows: 

,/4 2PAyCircularit π=  (1) 
where A is the particle area; P is the particle perimeter. In case of the ellipsoidal approximation, 
the particle area is given by 

,abA π=  (2) 
where a and b are the semi axes of ellipse. The ellipse perimeter could be calculated with help 
of the Ramanujan’s approximation [29] 

))3)(3()(3( bababaP ++−+=π . (3) 
By substituting (2) and (3) into (1) and introducing aspect ratio ba /=γ , we obtain the 

following equation 
.))3)(13()1(3/(4 2++−+= γγγγyCircularit  (4) 

Equation (4) could be solved numerically for each value of circularity. 
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The particle size distribution obtained by the image analysis is shown in Fig. 2a and 
marked by a dotted line. The filler particles size takes values between 0.3 (defined by the 
instrument detection limit) and 12 μm. This interval is divided into 12 sections of equal length 
in order to create a geometrical model of RVE. The diameter of the particles is assumed to be 
constant in each of these sections. Thus, the non-linear distribution is approximated by a piece-
wise linear function, given as a solid line in Fig. 2a. The same procedure is applied to the aspect 
ratio distribution, see Fig.  2b. 

a)  b) 
Fig. 2. Particle circle equivalent (CE) diameter (a) and aspect ratio (b) distributions. Dotted 
lines represent the results of the particle image analysis, solid lines show piece-wise linear 

approximations. 

It should be noted, that the particle shape analysis procedure does not allow to get both 
size and aspect ratio for each particle, i.e. it yields the overall distribution. Therefore, the 
following stochastic technique is applied to create a geometrical model of RVE. In accordance 
with the graphs shown in Fig. 2, two element arrays are created. The number of elements in the 
arrays is equal to the number of particles. The first array is supplied with values of the particle 
diameter in accordance with the particle size distribution (for instance, if an RVE consists of 
100 particles, then 12 particles have a diameter of 0.5 μm and the first 12 elements of the array 
equal to 0.5 μm). The same method is used to fill the second array with values of the particle 
aspect ratio. Then, both arrays are combined randomly (for instance, the 25th element of the 
first array is combined with the 73rd element of the second array). Thus, the size and the shape 
of the particles can be considered stochastic. As an example, Fig. 3 illustrates an RVE with 100 
particles for 17.3% and 35.8% of volume fraction. In the work, a novel algorithm for generation 
of (RVE) with randomly-oriented ellipsoidal filler particles of high volume fraction [22] is 
utilised. 

a) b) 
Fig. 3. Examples of RVEs containing 100 particles with the size and shape distributions 

which correspond to the optical analysis of particle images. The volume fractions of filler are 
17.3% (a) and 35.8% (b). 
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4. Effective mechanical properties
In addition to the filler inclusions, an accurate representation of the matrix behaviour is also 
necessary to obtain the effective properties and match the experimental stress-strain curves. It 
is assumed that the matrix material is incompressible with a non-linear behaviour described by 
the Marlow model [24]. The model is independent of the second strain invariant and based on 
the spline interpolation of the stress-strain data enabling exact representation of the stress-strain 
curve of rubber-like materials. An experimental stress-strain curve for uniaxial compression of 
the HNBR with a fitted line given by the Marlow model is shown in Fig. 4. The stiffness of 
ZrW2O8 is much larger than that of rubber (e.g. by a factor of 1000), therefore a linear behaviour 
of the filler material is assumed with the Young’s modulus of 88.3 GPa and the Poisson’s ratio 
of 0.3 [30]. 

Fig. 4. Experimental stress-strain curve of the HNBR at uniaxial compression fitted by the 
Marlow model. 

For finite element modelling, three RVEs for each volume fraction are created. Quadratic 
tetrahedral elements with hybrid formulation [23] are used for meshing. The averaged element 
size is equal to 0.05 in relation to the RVE edge. Averaged numbers of nodes and elements are 
about 300 000 and 200 000, respectively. The examples of FE models are shown in Fig. 5. 

a) 

b) 
Fig. 5. Examples of FE models of RVEs containing 100 particles with the volume fractions of 

filler 17.3% (a) and 35.8% (b). 

0
0.5

1
1.5

2
2.5

3
3.5

4

0 0.1 0.2 0.3 0.4 0.5

N
om

ina
l 

str
es

s, 
M

Pa

Nominal strain

 Experimental data
 Marlow model

x1

x2

x3

x1

x2

x3

282 S.N. Shubin, A.G. Akulichev, A.B. Freidin



The mechanical response of each RVE is not strictly isotropic because the finite number 
of particles is simulated. Therefore, we perform simulation of compression in three orthogonal 
directions, and then the results are averaged. For the compression in x1 direction, the following 
boundary conditions (5) are applied: 

;0,0,:;0,0,0:0 1312
0
111131211 ==−====== σσσσ uuLxux  

;0,0,~:;0,0,0:0 2312222231222 ======== σσσσ uuLxux  (5) 
,0,0,~:;0,0,0:0 2313333231333 ======== σσσσ uuLxux  

where 0
1u  is the applied displacement; 2

~u  and 3
~u  are unknown displacements defined during 

simulation, i.e. periodicity conditions are applied at faces Lx =2  and Lx =3 . To obtain full 

stress-strain curves, the problem is solved with several linearly increasing values of 0
1u . As a 

result, we get stress and strain distributions for each value of 0
1u . The macroscopic stress and 

strain are then defined as the spatial averages (6): 

.1)(*,1)(* 11
0
11111

0
111 ∫∫ ==

VV

dV
V

udV
V

u εεσσ  (6) 

Thus, the effective stress-strain curve in compression in x1 direction is defined 
parametrically. The average stresses and strains in two other orthogonal directions are defined 
in the same manner. 

For each volume fraction, stress-strain curves are obtained for three variants of RVE. The 
averaged stress-strain curves for both volume fractions are given in Fig. 6 with 95% confidence 
intervals together with experimental data. Experiments are performed for both filler volume 
fractions. As it can be seen, FE solutions yield higher values of stiffness in comparison with the 
experimental data for both volume fractions. This difference could be explained by damage of 
the interface between matrix and particles due to cycling pre-loading to large deformations. 
Such debonding, as it will be demonstrated below, in turn results in a considerable decrease in 
the composite stiffness. 

a) b) 
Fig. 6. Stress-strain diagrams at uniaxial compression of HNBR-ZrW2O8 composites: FE 
analysis (FEA) and experimental data. The volume fractions of filler are 17.3% (a) and  

35.8% (b). 

5. Impact of particle-matrix interface on the effective mechanical properties
In the previous section, the matrix and particles are assumed to be perfectly bonded (i.e. the 
matrix and particles have shared nodes in the FE implementation). It might not be easy to 
achieve such conditions in real composites, if the interface is damaged at the production stage 
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or after pre-loading, especially to large deformations. It is well known, that the composite 
becomes softer when there is no adhesion between the matrix and its reinforcing particles. The 
interface, thus, plays a crucial role in the robustness of the final product. Therefore, this effect 
should be taken into account in large-strain applications. 

Let us assume that adhesion is lost. To simulate the damaged interface, a contact 
interaction without friction between matrix and particles is applied. As in the previous section, 
compression in three orthogonal directions is modelled for various realizations of RVE with 
17.3 and 35.8 vol.% of the filler inclusions. The deformed shapes of RVEs at various applied 
displacements are depicted in Fig. 7 and 8. It is clear, that the particles detach from matrix in 
the directions orthogonal to the compression direction manifesting voids occurring in the 
particle-matrix interfaces. The void growth progressively takes place with increasing 
longitudinal compressive deformation. Fig. 9 illustrates the results of FE simulations averaged 
over 3 simulation tests. Evidently, the FEA modelling results provide an interval which enclose 
the experimental data. Thus, it could be concluded, that the interface between particles and the 
matrix is partially damaged in the studied pre-loaded specimens which is manifested in a 
significant decrease of stiffness. For instance, the stress response in the composite with 35.8 
vol.% of filler with intact interface subjected to the nominal compressive strain of 0.175 is about 
two times greater than that in the composite with a damaged interface. Comparison of 
experimental and modelling results shows that the level of interface damage depends on the 
volume fraction. For 17.3 vol.% of the filler, the experimental stress-strain curve is between the 
bounds given by FE simulations, while for 35.8 vol.%, experimental data are closer to the 
modelling results with no-adhesion. The point is that higher filler volume fraction leads to a 
higher stress level at particle-matrix interfaces, and, therefore, a higher damage level of the 
interfaces. 

It should be noted that the performed FE simulation gives the lower and upper bounds for 
the effective finite-strain properties of the composite: the upper bound corresponds to a perfect 
particle-matrix interface is considered, while the damaged interface provides the lower bound. 
The proposed approach is important for the industrial applications of composites giving a range 
of the effective properties. Hence, the performance of composites could be analysed taking 
various levels of debonding into account. Note also, that estimation of the damage level in the 
composite (at least qualitatively) is possible if compare experimental results with the theoretical 
bounds of stiffness at finite strains with the ideal and fully damaged interfaces. 

Fig. 7. The original and deformed shapes of RVE with 17.3 vol.% of filler due to uniaxial 
compression in x1 direction. 
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Fig. 8. The original and deformed shapes of RVE with 35.8 vol.% of filler due to uniaxial 
compression in x1 direction. 

a) b) 
Fig. 9. Stress-strain diagrams at uniaxial compression of HNBR-ZrW2O8 composites: FE 

analyses (FEA) for two the types of interaction between matrix and particles (Perfect interface 
and No-adhesion) and experimental data (Test 1, 2). The volume fractions of filler are 17.3% 

(a) and 35.8% (b). 

6. Summary and concluding remarks
The paper aims to study the mechanical behaviour of composites made of hydrogenated nitrile 
butadiene rubber (HNBR) and particles of zirconium tungstate ZrW2O8 prepared with various 
tungstate volume fractions. Microstructure of the composites was studied by scanning electron 
microscope (SEM), and the particle shape parameter distributions were computed using optical 
analysis of the images of dispersed tungstate particles. The composites were subjected to 
cycling pre-loading to remove the Mullins effect prior to the main mechanical experiments. 

The behaviour of the composites was studied at uniaxial compression experimentally and 
simulated by a micro-mechanical approach using finite element method (FEM). In the work, a 
novel algorithm for generation of representative volume element (RVE) with randomly-oriented 
ellipsoidal filler particles of high volume fraction was utilised. Based on measured size and 
aspect ratio distributions, three RVEs containing 100 randomly distributed ellipsoidal particles 
were generated for both 17.3% and 35.8% of filler volume fractions and further used in FE 
simulations. The non-linear stress-strain behaviour of HNBR was accurately reproduced by the 
Marlow model, while rigid particles were assumed linear elastic. Two limiting cases of a contact 
interaction between matrix and particles were considered: a perfect interface and the absence 
of the adhesive bonding between filler and matrix. 

The investigation of the mechanical behaviour of the composites began with an 
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assumption that the interfacial layer between particles and matrix is intact. We showed that the 
FEM predictions of the effective stress-strain curves do not correspond to the experimental data 
for the composites: the FE simulations yield a stiffer response than the real composite material 
actually exhibits. We believed that the reason of the material softening is debonding of the filler 
inclusions from the matrix due to the cycling pre-loading performed before the uniaxial 
compression tests. As we had showed earlier [1], mechanical loading could lead to a large strain 
at the interface between particles and matrix, therefore the cycling loading could have damage 
the interface. In order to verify this hypothesis, interaction between matrix and particles was 
changed to the “no-adhesion” condition. For this interaction model, FE simulation demonstrates 
a decrease of the effective stiffness of the composites. Two limiting cases of the interface 
modelling provide bounds for real effective properties of the composites at finite strains. It was 
also shown that the damage level increases with increasing filler volume fraction. 

In the modelling approach, it was assumed that all particles are either perfectly interacted 
with the matrix or debonded from the matrix. For further investigation of the problem, it would 
be interesting to incorporate the cohesive-zone model [31, 32] to simulate the damage 
accumulation process in the filler-matrix interface with progressive deformation and also 
cycling loading. It should also be noted that the ZrW2O8 particles used here are not pretreated, 
whereas surface modification of ZrW2O8 has been reported [33, 34] to improve interaction with 
different polymer matrices. Therefore, it would be interesting to research the effect of a particle 
pretreatment on the mechanical properties and the degree of debonding at finite strains. 
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Abstract. CuAlO2, CuAl1-хMgхO2, CuCrO2, CuCr1-хMgхO2 and CuAl0.5Cr0.5O2 thin films were 
deposited on quartz substrates by sol-gel processing using spin coating technique. The 
elemental compositions, synthesis mechanisms, optical transmittance and resistivity of 
prepared films were studied. CuAl0.5Cr0.5O2 films had the best characteristics under lower 
temperature of synthesis. Optical transmittance of CuAl0.5Cr0.5O2 reached 70 % in visible 
region. The resistivity of CuAl0.5Cr0.5O2 was 0,4 kΩ·cm and was stable with time. Thus, 
CuAl0.5Cr0.5O2 films may have potential applications for transparent optoelectronics as p-
conductivity transparent oxides. 
Keywords: p-type transparent oxide films; quartz substrate; delafossite structure; sol-gel 
processing.  

1. Introduction
Transparent conductive oxide films of n-type conductivity are widely used as transparent 
conductive electrodes in optoelectronic devices: LEDs, photodetectors, solar panels, to increase 
their productivity [1]. Nowadays, the industry of thin-film oxide films is focused on the 
development and production of thin-film materials of p-type conductivity. The preparation of 
p-type conductivity transparent films will significantly expand the boundaries of thin-film 
structures applications and lead to the development of "transparent" thin-film optoelectronics 
based on a transparent p-n heterojunction. Transparent oxide films of p-type conductivity have 
only recently attracted an attention of researchers due to the complex technology of such 
materials preparing. The interest in materials with the delafossite structure appeared after first 
p-type CuAlO2 thin film was fabricated in 1997 [2, 3]. However, until now, in terms of their 
electrical characteristics, these films are inferior to the well-proven n-type thin oxide films, such 
as aluminum-doped zinc oxide (AZO) and indium-doped tin oxide (ITO) [4, 5]. Currently, the 
problem is to increase the conductivity of the p-type oxide films with decrease the cost of 
production technology owing to reducing process temperature. At present, the main methods 
for fabricating films of the delafossite structure are the pulsed laser deposition method, 
magnetron sputtering and electron beam sputtering [6, 7]. At the same time, the method of films 
preparing from solutions, namely the sol-gel method [8-14], could become an alternative 
competitive approach for the production of such materials. 

In this paper, we describe the sol-gel processing of Cu (I) -based delafossite oxides on 
quartz substrates and comparison their optical and electrical characteristics. 
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2. Experimental and results
Different sol solutions were examined for each structure CuAlO2, CuAl1-хMgхO2 (x=0.01), 
CuCrO2, CuCr1-хMgхO2 (x=0.05) and CuAl0.5Cr0.5O2. The molar ratio of Mg to Cu in each 
solutions was determined by the x value and then the molar ratio of Al species was equal to the 
(1-x) value. To yield a homogeneous solution the prepared sol stirred at room temperature for 
5 hours. The fused quart plates with 15 mm in diameter were used as substrate. The film was 
deposited layer by layer on substrate at a speed of 4000 rpm for 20 s. Each layer was preheated 
for at to remove organic resides. Ten layers were deposited for each film. Finally, deposited 
films were annealed for several hours at 900-1150 °C in air or argon. 

For CuAlO2 films precursor solution consisted of Cu(CH3COO)2·H2O, Al(NO3)3·9H2O, 
2-Methoxyetanol. The molar ratio of Cu/Al was 1.2:1. The concentration of solution was 
0.4 M. The film was annealed in argon for 4 hours at 1200 °C. At annealing in air the phase 
CuAlO2 was not obtained. 

For CuAl1-хMgхO2 (x=0.01) films the solution was prepared by dissolving mixtures of 
Cu(CH3COO)2·H2O, Al(NO3)3·9H2O, Mg(NO3)2·6H2O and isopropanol. The molar ratio of 
Cu/Al was 1:1. The concentration of solution was 0.2 M. The film was annealed in air for 
4 hours at 1200 °C. 

For CuCrO2 films the solution was prepared by dissolving mixtures of 
Cu(CH3COO)2·H2O, Cr(NO3)3·9H2O, 2-Methoxyetanol. The molar ratio of Cu/Cr was 1:1. The 
concentration of solution was 0.2 M. The film was annealed in air for 1 hours at 1000 °C. 

For CuCr1-хMgхO2 films the solution was prepared by dissolving mixtures of 
Cu(CH3COO)2·H2O + Cr(NO3)3·9H2O + Mg(NO3)2·6H2O + 2-Methoxyetanol. The molar ratio 
of Cu/Cr was 1:1. The concentration of solution was 0.2 M. The film was annealed in air for 
1 hours at 1000 °C. 

For CuAl0.5Cr0.5O2 films precursor solution consisted of Cu(CH3COO)2·H2O + 
Al(NO3)3·9H2O + Cr(NO3)3·9H2O. The molar ratio of Cu/Al/Cr was 1:0.5:0.5. The 
concentration of solution was 0.2 M. The film was annealed in air for 1 hours at 1000 °C. 

The thickness of one deposited layer was 20-40 nm. The total thickness of films was 
0,2-0,4 µm. 

The electrical resistivity of films was measured by 4-probe method with used source 
meter Keithley 2450. Optical absorption measurements of films were performed with fiber 
spectrometer AvaSpec-2048. 

Figs. 1-5 illustrate the transmittance of CuAlO2 (S1), CuAl1-хMgхO2 (x=0.01) (S2), 
CuCrO2 (S3), CuCr1-хMgхO2 (x=0.05) (S4) and CuAl0.5Cr0.5O2 (S5) thin films in the range 
300-1200 nm.  

Fig. 1. Optical transmittance of CuAlO2 (S1). The insets show the CuAlO2 optical band gaps 
calculated by Tauc’s relation. 
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The average transmittance of the samples S1, S2, S3, S4 and S5 at 400-800 nm were 
41 %, 50 %, 36 %, 26 %, and 53 %, respectively. 

Fig. 2. Optical transmittance of CuAl1-хMgхO2 (x=0.01) (S2). The insets show the CuAl1-

хMgхO2 (x=0.01) optical band gaps calculated by Tauc’s relation. 

Fig. 3. Optical transmittance of CuCrO2 (S3). The insets show the CuCrO2 optical band gaps 
calculated by Tauc’s relation. 

Fig. 4. Optical transmittance of CuCr1-хMgхO2 (x=0.05) (S4). The insets show the CuCr1-

хMgхO2 optical band gaps calculated by Tauc’s relation. 
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Fig. 5. Optical transmittance of CuAl0.5Cr0.5O2 (S5). The insets show the CuAl0.5Cr0.5O2 
optical band gaps calculated by Tauc’s relation. 

The optical band gap was estimated by the Tauc’s relation [15], expressed as 
𝛼𝛼ℎ𝜈𝜈𝑛𝑛 = 𝐴𝐴(ℎ𝜈𝜈 − 𝐸𝐸𝑔𝑔𝑜𝑜𝑜𝑜𝑜𝑜), (1) 
where A is a constant, Eg

optis the band gap of the films, hν is the photon energy, α is the 
absorption coefficient. For a direct allowed transition, n is 2. 

As shown in Fig. 1-5 (insets), for the direct transition, optical band gap of the samples 
S1, S2, S3, S4 and S5 were 3,3 eV, 3,4 eV, 3,3 eV, 2,5 eV, 3,17 eV, respectively. 

The electrical resistivity of the films S1, S2, S3, S4 and S5 were 9 kΩ·cm, 1.8 kΩ·cm, 
0.8 kΩ·cm, 0.4 kΩ·cm and 0.4 kΩ·cm, respectively. 

3. Conclusions
We deposited CuAlO2, CuAl1-хMgхO2, CuCrO2, CuCr1-хMgхO2 and CuAl0.5Cr0.5O2 thin films 
on quartz substrates by sol-gel processing using spin coating technique. Prepared films had high 
optical transmittance comparable to films prepared by other physics methods. Optical 
transmittance of CuAlO2 and CuAl1-хMgхO2 films reached 60-75 % in visible region. The 
average transmittance for these films at 400-800 nm was 50 % and 41 %, respectively. The 
resistivity of CuAlO2 and CuAl1-хMgхO2 were 9 kΩ·cm and 1.8 kΩ·cm, respectively. The 
resistivity of CuAlO2, CuAl1-хMgхO2 films increased with time. The optical transmittance of 
CuCrO2, CuCr1-хMgхO2 films was lower ~ 30-40%, when resistivity was 0,8 kΩ·cm and 
0,4 kΩ·cm, respectively. Resistivity measurements showed that doping of pure CuAlO2 and 
CuCrO2 was helpful in increasing conductivity of the films. CuAl0.5Cr0.5O2 films had the best 
characteristics under lower temperature of synthesis. The resistivity of CuAl0.5Cr0.5O2 was 
0,4 kΩ·cm and optical transmittance reached 70 %. The resistivity of CuCrO2, CuCr1-хMgхO2, 
CuAl0.5Cr0.5O2 films was stable with time. Followed on from the results we suggested that 
CuAl0.5Cr0.5O2 films could be considered as perspective candidates for p-type transparent 
conductive oxides with the lowest resistivity 0.4 kΩ·cm and the highest transmittance under 
lower temperature of synthesis. 
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APPLICATION OF QUANTUM-CHEMICAL MODELING RESULTS 

IN EXPERIMENTAL INVESTIGATIONS OF SILICONE COMPOSITES 
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Abstract. The results of direct numerical simulation obtained earlier, within the cluster 
quantum-chemical approximation, are used in experimental investigations of 
polydimethylsiloxane composites with shungit. The surface structure of these composites by 
scanning electron and atomic force microscopy was studied. Correlation of the distribution of 
micro and nano - dimensional filler in the polymer matrix with the physical mechanical 
properties of the elastomers was established. 
Keywords: polydimethylsiloxane composites, nanoshungit filler, scanning electron and atomic 
force microscopy. 

1. Introduction
The problems of increasing the strength of polymer materials are important for both 
fundamental science and applied research. For example, the polydimethylsiloxanes as 
representative of organosilicon polymers are of the great importance in industry. However, they 
have low mechanical strength. Increasing the resistance to fracture of these polymers is usually 
achieved with fillers [1].Therefore, it is necessary to study new reinforcing substances from 
disperse fillers of various nature.  

Of great interest in this respect is the use of schungit, natural composite, consisting of 
silica, dispersed in matrices of amorphous carbon [2]. There seems advisable preliminary to 
perform the molecular computational modeling, which is an effective method of a virtual 
analysis of the structural, energetic and micromechanical properties of micro and 
nanocomposites.  

As reported in [3], the energetic and structural characteristics of elastomer complexes 
with shungit have been calculated quantum - chemically under developed NDDO / sp-spd 
semiempirical original program [4]. Numerical calculations on the supercomputer MBC-5000 
in the Interdepartmental Supercomputer Center were performed. The microscopic 
characteristics of nanomechanical behavior, deformation and fracture characteristics of shungit 
adsorbates with polyisoprene during uniaxial tension based on this program in the cluster 
approximation were examined. It was deduced, that one can expect a substantial reinforcement 
for such composites.  

As reported in [5], the quantum - chemical studies of deformation in 
polydimethylsiloxane oligomer molecules in contact with the particles of silicates predict strong 
interactions between these components.  

The results of these calculations were used by us in the practical synthesis of siloxane 
composites with schungit. It has also been developed the multistage physical chemical 
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modification technology for obtaining the active nanostructured schungit filler for rubbers, 
based on these quantum chemical calculations.  

According to the results of [6] there is an increase in the tear resistance and in the specific 
work of the deformation during fracture, with preservation of the increased strength properties 
of synthetic thermally stable low-molecular-weight silicone elastomers based on SCTN-A, 
filled with micro and nanoscale schungit.  

To further elucidate the nature of the onset of strengthening effects, knowledge of the 
distribution of fillers in these elastomeric matrices is necessary. The surface structure of these 
composites, using electron and atomic force microscopy, in the present paper was studied.  

2. Experimental procedures and materials
As a filler of elastomers, a natural shungit mineral was used (Zazhoginsky deposit, Carbon-
Shungite Trade Ltd, Karelia, Russia). The rock is a natural composite, in the carbon matrix of 
which are distributed highly dispersed silicate particles and small amounts of other oxides. The 
chemical composition of schungit used in this work is shown in Table 1. 

Table 1. Chemical composition of shungit (%) [2]. 
SiO2 TiO2 Al2O3 FeO MgO CaO Na2O K2O S C H2Ocryst

57.0 0.2 4.0 2.5 1.2 0.3 0.2 1.5 1.2 29.0 4.2 

As the basis of the composite matrix, silicone low-molecular rubbers SKTN-A were 
chosen. Filler was both the original shungit and the grounded one in a ball planetary mill PM100 
(Retsch, Germany) under different environments. The introduction and dispersion of the filler 
and the mixing of all the ingredients were carried out in a laboratory mixer [6]. Table 2 shows 
the compositions of the samples studied.  

Table 2. Composition of the synthesized samples. 
Ingredients 
name 

Code of mixture 
С300 С301 С302 С303 С304 С305 С306 С307 С308 

% 
SKTN-A 
rubber 

100 90 80 70 60 90 80 70 60 

Shungit 
(original) 

10 20 30 40 

Shungit 
(grounded) 

10 20 30 40 

Total 100 100 100 100 100 100 100 100 100 

The fillers were added to the SKTN-A rubber according to the compositions given in 
Table. 2, kneaded by hand, and then passed through rolls. The resulting mixtures were 
evacuated for 15 minutes, and then a catalyst was introduced with a certain concentration for 
each composition and again evacuated. The samples were placed in teflon forms and cured.  

The Scanning Electron Microscope (SEM) Merlin (Carl Zeiss, Germany) worked with an 
accelerating voltage of 5 kV and beam current of 300 pA.  

The atomic-force microscope (AFM) easyScan (Nanosurf, Switzerland), operating in a 
contact mode at ambient conditions, using also the force modulation mode, or in the semi-
contact mode with the phase contrast mode, were used. In a semi-contact mode, a 
SuperSharpSilicon probe (Nanosensors, Switzerland) with a tip radius of about 2 nm was used. 
Image processing was performed using the SPIP™ - advanced software package for processing 
and analyzing microscopy images at nano- and microscale (Image Metrology, Denmark).  
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Investigations of the physical mechanical properties of the composites were conducted 
[6] on universal testing machine UTS-10 (Ulm, Germany).  

3. Experimental results
Initially shungit samples, after deposition on the surface of highly oriented pyrolytic graphite 
(HOPG) from a suspension in toluene, were tested by AFM. The AFM topography images of 
shungit powders on the HOPG surface and phase contrast images established the particle sizes 
of the original schungit in the range from 1 to 5 μm and the grounded powders in the range 
from 70 to 250 nm. Examples of AFM scans on the synthesized composites from the table 2 
are shown in figure 1 - 2. The AFM surface images of pure SCTN-A rubber are presented in 
Fig. 1 and AFM surface images of C 308 composite - in Fig. 2. The distribution and sizes of 
shungit fillers, presented as bright dots in the background of polymeric matrix, clearly are 
visualized in right images of material contrast Fig. 2. 

Fig. 1. AFM surface images of pure SCTN-A rubber 
Scans 36.9 x 36.9 μm2. Left - topography, right – material contrast. 

Fig. 2. AFM surface images of C 308 composite (b). 
Scans 31.5 x 31.5 μm2. Left - topography, right – material contrast. 
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The AFM images data processing showed that the aggregate sizes of these nanostructured 
schungit filler in composite C 308 are located in the range 50 nm to 2 μm, and the nearest 
distances between them on the average in 300 nm.  

Electron microscopic photographs of the C 308 composite are shown in Fig. 3a, b. The 
SEM surface topography C 308 composite, prepared in the form of plate, is presented in Fig. 
3a and SEM images of its perpendicular cross – section in Fig. 3b. 

a) b) 
Fig. 3. SEM images of the top surface topography plate C 308 composite (a) 

and of the plate perpendicular cross – section (b). 
Unite scales: 300 and 200 nm respectively. 

These SEM images shows the same approximate values of filler aggregate sizes as 
deduced from AFM measurements, and additionally visualize the space arrangement of fillers 
in the elastomer matrix. The application of SEM and AFM methods to visualize topography of 
surfaces and sections of investigated silicone rubber composites with schungit fillers allowed 
direct observation of changes in the structure of composite elastomers on the micro and 
nanometer range with increasing concentrations of reinforcing fillers.  

4. Discussions
Correlation these results with the physical mechanical properties of these materials, studied in 
[6], makes it possible to understand the cause of the enhancing ability of nanostructured 
schungit in organosilicon elastomers, as due to the formation of a spatial filler network in the 
polymer matrix. These data make it possible to understand the reasons for the shungit filler 
manifestation of the reinforcing properties in the SKTN-A rubber, as conditioned not only by 
the chemical affinity of the amorphous carbon and the silica with the polydimethylsiloxane 
matrix, but also by a fairly uniform spatial distribution of the filler in the composite. The role 
of polar hydroxyl groups (OH) bound to silica part of the shungit (silanol groups) interacting 
with siloxane segments (Si - O - Si) of matrix is also important, because the formed complex 
prevent the macroscopic agglomeration of initial schungit particles during introduction to the 
polymer. The resulting increase in the interaction surface of the nanostructured filler with the 
polymer macromolecules leads to an effective reinforcement of the initial polydimethylsiloxane 
matrix. As reported in [6] the tests of these composites on a machine UTS-10 showed an 
increase in the tensile strength from about 0.5 MPa in pure SCTN-A rubber to 3.6 MPa in C 
308 composite and tear resistance from 1.3 kN / m to 7.0 kN / m, respectively. It was also 
showed that C 308 composite is comparable in the maximum value of the specific work 
deformation for destruction with well known silicon composite reinforced by silica. These 
results, when compared with traditional silicon dioxide filler [1, 6], show good effectiveness of 
the present nanostructured shungit as reinforcement filler in polydimethylsiloxane. The 
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experimental verifications about theoretical predictions that nano shungit may be active also in 
the reinforcement of butadiene - styrene rubbers was shown in [7]. 

5. Conclusions
The application of SEM and AFM methods to visualize topography of surfaces and sections of 
investigated silicone rubber composites with schungit fillers allowed direct observation of 
changes in the internal structure of composite elastomers in the micro and nanometer range. 
The correlation these results with the physical mechanical properties of the composites is 
important for the development the basic principles of reinforcement material strengths. The 
preliminary direct numerical calculations within the framework of the cluster quantum-
chemical approximation [3 - 5] of the shungit nanostructure and its components, predicting the 
effectiveness of its use as filler in elastomers proved to be valuable for conducting these 
experiments. The presented experimental results show both theoretical and practical 
significance of the quantum - chemical approach proposed in [3 - 5] for computer selection of 
components in elastomeric composites and ways of modifying their fillers in order to predict 
the technologies for obtaining materials with improved strength characteristics. This developed 
computational technique can be applied in similar problems of designing new advanced 
materials. 
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Abstract. The results of numerical simulation for 45 steel deformation with the use of general 
and linearized models of the theory of processes along flat smooth trajectories with curvilinear 
sectors are presented. The results of calculation are compared with the data of thin-walled 
cylindrical specimen deformation experiment, carried out on SN-EVM testing complex. It is 
shown that for the realized types of experimental trajectories symmetric with respect to the 
bisector of a right angle Ilyushin’s postulate of isotropy is fulfilled in the proper way. 
Keywords: elastoplastic deformation; postulate of isotropy; numerical simulation. 

1. Introduction
Systematic tests on metals and alloys mechanical behavior behind elastic limit at the deflected 
mode were conducted to verify key provisions and a reasonable creation of elastoplastic 
deformation mathematical models of materials [1-10]. A. A. Ilyushin's postulate of isotropy 
[11-12] is one of the most important laws of the theory of elastoplastic processes, it was checked 
by many researchers for different materials on different trajectories [8-11]. In particular, in [10] 
trajectories, considered to be smooth on A. A. Ilyushin terminology [11], are symmetric 
relatively bisectors of the right angle. On the first sites of flat trajectories [10] deformation on 
the quarter of circle was realized, and then the trajectory without break, but with curvature 
change, passed into straight section. In the work verification of reliability of 
A. A. Ilyushin's postulate of isotropy and results of mathematical modeling is considered at 
complex deformation on the flat nonanalytic trajectories having the curvilinear site and point 
of break. 

2. Main equations
In the linear-combined space 6E  of tension and deformations with orthonormalized basis { }ki

stress tensors ijσ  and deformations ijε  

0ij ij ijSσ = σ δ + ,   0 3ij ijσ = σ δ ,   0ij ij ijЭε = ε δ + ,   0 3ij ijε = ε δ   (1) 
vectors are put in compliance 

0 0 ,S S i= +σ    ,k kS iσ =     0 0 ,Э i Эε = +    ,k kЭ Э i=       ( 1, 2,...5),k = (2) 
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where coordinates of vectors kS , kЭ  are connected with components of tensors ijσ , ijε  and 
deviators ijS , ijЭ  tension, and deformations, by the known biunique transformations [1, 2]. 
Volumetric strain in 6E  is supposed elastic according to the law of elastic change of the volume 

0 03Kσ = ε , where K  is the modulus of volume elasticity. 
According to A. A. Ilyushin's postulate of isotropy, vectors of tension σ  and 

deformations Э  of forming are connected by the defining ratios [1, 2] 

1 1 1cos ,d dЭ dM M
ds ds ds
σ σ σ = + − ϑ  σ 

   1 1
1 1sin ,d M

ds
ϑ

+ κ = − ϑ
σ

(3) 

where, 1M , d
ds
σ  is the functionalities of the process of deformation depending on parameters

of complex loading: s is lengths of the arc of the trajectory of deformation, its curvature 1κ , 

and corners of break 0
1ϑ . The approach angle 1ϑ  characterizes the direction of the vector σ  in

relation to the tangent to deformation trajectory in each its point and reflects the influence on 
the process of deformation of vector material properties. 

General mathematical model of the theory of processes. For the case of flat trajectories 
( 2 0ϑ = , 2 0κ = ) the defining ratios can be given to the system of the equations of the task of 
Cauchy in the scalar form [1]: 

1

1 1
1 1

, ( 1, 3),

sin ,

k k kdS dЭ SM M k
ds ds

d M
ds

 = + = σ
 ϑ + κ = − ϑ
 σ

(4) 

for which solution in work the numerical method of Runge-Kutta of the fourth order of accuracy 
in the realized application for the system of computer mathematics MATLAB was used.  

At the numerical solution of system (4), V. G. Zubchaninov's universal approximations 
of functionalities were used [1, 2]  

( )
( ) ( )

0
1 1 1

0 0

12 2 2 , cos ,

, ,

sq
р р

р р

dM G G G f e M M
ds

d dФ dФ s Af s Af
ds ds ds

−γ ∆ σ
= + − = − ϑ

σ Ω
σ = + Ω ∆ = +

(5) 

where , pG G  is elastic and plastic modules of shearing; 0
рG  is value of pG  in trajectory break-

point; т
кs s s∆ = −  is increment of length of the arc of trajectory after its break in some point K;

( ) ( )1s ss s e b e−γ∆ −γ∆ Ω ∆ = − γ∆ + −  (6) 

− function which after break of trajectory describes scalar dive of tension at difficult unloading 
and the subsequent secondary plastic deformation; 

11 cos
2

f − ϑ
= ;   

0
0 1

0 1
1 cos( )

2
f f − ϑ
= ϑ = (7) 

– the function considering the orientation of vector of tension in the course of deformation and
its value in break-point at the value of approach angle for nonanalytic trajectory. 

For approximation of Odqvist-Ilyushin's general function of hardening ( )Ф s  at simple 
loading expressions were used 
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( ) т
*

( )т т т
* * * *

т
*

2 1 , при 0 ,
( )

2 ( ) 1 , при ;

s

s s

G e s s
Ф s

G s s e s s

−α

−β −

 − ≤ ≤ ασ = =   σ + − +σ − >   

(8) 

where т
т2 / 3σ = σ ; тσ  is limit of stretching strain; т

*s  is the border of sites of the chart of

deformation dividing elastic part of the chart and site of flowability ( т
*0 s s≤ ≤ ) from the site

of self-hardening of material ( т
*s s> ); *,σ  *,G  ,α  ,β  ,A  ,b  ,γ  1,γ  ,p  q  are experimentally

determined parameters of the structural material. 
Linearized model. In the simplified linearized option [1, 13-14] of mathematical model 

for flat trajectories in the assumption of trifle of size 1ϑ  ( 1 1sin ,ϑ ≈ ϑ  1cos 1ϑ ≈ ) follows the 
differential equation  

1
1 1,d n

ds
ϑ

+ κ = − ϑ (9) 

in which, for active processes at 10 90< ϑ <   it is possible to accept 

1 1
т
к

2( ) ,M Gn s kα
= ≈ =

σ σ
  (10) 

where constk = ; 1α  is constant coefficient ( 0 1< α < );  т
кσ  is the value of the module σ  in 

deformation trajectory break point. The solution of the equation (9) leads to expression 

( )* 0 *
1 1 1 1

k se− ∆ϑ = ϑ + ϑ −ϑ ,  (11) 

where *
1 1 / kϑ = −κ . For piecewise and broken trajectories if to accept more difficult

approximation 
1( )n s k
s

= + ,   (12) 

that from (9) can be received [15] 

0 * *0
1 1 1 1

0

1 11 1k ss e
s ks ks

− ∆      ϑ = ϑ −ϑ − +ϑ −    
    

,   (13) 

where 0s  is length of the arc in trajectory break point. In particular, for two-unit broken lines 

at *
1 0ϑ =  from (13) follows

00
1 1

k ss e
s

− ∆ϑ = ϑ . (14) 

3. Results of tests and mathematical modeling
As samples for tests on the SN-EVM rated and experimental complex of A. A. Ilyushin thin-
walled barrel shells from steel 45 having in working part have been used: 110l =  mm length, 
the 1h = mm thickness, and diameter of the median surface of 31d =  mm. The initial isotropy 
of material of samples with sufficient precision ratio has been confirmed in experiences on 
simple loading (stretching, compression, and torsion) and when processing these charts, the 
following values of material parameters for steel 45 have been accepted in approximations (8): 
т 310σ = MPa, т 2

* 1,1 10s −= ⋅ , 52 1,57 10G = ⋅ MPa, 70β = , 900α = , * 82σ = MPa,

*2 2700G = MPa. 
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Two broken nonanalytic trajectories with preliminary elastoplastic deformation on the 
site of constant curvature which are mirroring of each other rather direct, slanting to coordinate 
axes 1Э  and 3Э  (fig. 1) are realized to verify A. A. Ilyushin's postulate of isotropy and 
assessment of reliability of results on the mathematical models described above in space of 
deformations 1 3Э Э− . 

Fig. 1. Deformation trajectories. 

The first of two trajectories of deformation (trajectory 1, in fig. 1 is designated in black 
color) on the first site represents a quarter of a circle radius 2%ρ =  with a center of curvature 

0
1 2%Э = , 0

3 0Э = , on which joint stretching with torsion of a sample to a point K. Then, with

a break on the corner 90  the trajectory passes to the second straight section where torsion on 
coordinate 3Э  was implemented. In specularly reflected trajectory (trajectory 2 in fig. 1) on the 
first site to the point K joint stretching and torsion on a quarter of a circle were also carried out 
at 2%ρ = , 0

1 0Э = , 0
3 2 %Э = , and on the second site - only stretching on 1Э . In the point K

joint of the first and second sites of trajectories in addition to the existence of salient points 
their curvature changes, means the first and second derivatives of the functions ( )Э Э s= , 
describing trajectories in a vector space, undergo a gap. 

Results of numerical calculations and experimental data for a trajectory 1 (see fig. 1) are 
given in fig. 2-7, and results and the experimental data for reflected trajectory 2 are given in 
fig. 8-13. Experimental data in drawings are noted by points: for a trajectory 1 – circles of black 
color; for a trajectory 2 – small squares of red color. Curves 1 (blue color) are results of 
calculations for the general mathematical model of the theory of processes, curves 2 (black 
color) – of the linearized model. Results of calculations and experiments rated are given in 
representation of deformations and tension according to A. A. Ilyushin's postulate through 
coordinates of the corresponding vectors of forming [1-2, 11-12]. 

In calculations, identical values of material parameters in approximations of 
functionalities of plasticity for both trajectories were taken. On the first site was taken: 0.1q =

, 1 25γ = ; on the second: 0.3q = , 1 50γ = γ = , 4p = , 0.35b = . For the initial value of 0
1ϑ  on

the second site after a salient point of a trajectory was taken 0 к
1 190 72ϑ = −ϑ ≈  , where к

1ϑ −
the value of an approach angle on the first site in a trajectory breaking point K  in the calculation 
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of the general model ( к
1 18ϑ ≈  ). On the linearized model in calculations was taken 1 0.7α = ,

258k = ; on the first site the corner 1ϑ  was defined on (11) where 0
1 0ϑ = , *

1ϑ  at 1 1/ 50κ = ρ =

was taken *
1 0,193 radϑ ≈ . On the second site of a trajectory, the approach angle 1ϑ  was defined

on (14) at 0 к
1 190 79ϑ = −ϑ ≈  , where к

1 11ϑ ≈   is a calculated value of a corner on the linearized
model in a point  the end of the first site of a trajectory of deformation. 

Fig. 2. Trajectory 1. Response 1 3S S− . Fig. 3. Trajectory 1. Chart of deformation
.sσ−  

Fig. 4. Trajectory 1. Chart 1 1S Э− . Fig. 5. Trajectory 1. Chart 3 3S Э− . 

Fig. 6. Trajectory 1. Chart 1 .sϑ −  

The results received on the general mathematical model for charts sσ−  (curves 1 in fig. 
3, 8) and 1 sϑ −  (curves 1 in fig. 6, 11), the scalar and vector material properties reflecting 
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respectively are well coordinated with data of tests. Good compliance of rated results on the 
general model with the experimental data is also observed on a response in space of tension 

1 3S S−  (fig. 2, 7) and to local charts of deformation at stretching and compression 1 1S Э−  (fig. 
4, 9) and torsion  3 3S Э−  (fig. 5, 10). On the basis of it is possible to claim that the 
V. G. Zubchaninov's general mathematical model of yields adequate results at the description 
of patterns of elastoplastic behavior of material for the considered types of difficult nonanalytic 
trajectories with a breaking point.  

Fig. 7. Trajectory 2. Response 1 3S S− . Fig. 8. Trajectory 2. Chart of deformation
.sσ−  

Fig. 9. Trajectory 2. Chart 1 1S Э− . Fig. 10. Trajectory 2. Chart 3 3S Э− . 

Fig. 11. Trajectory 2. Chart 1 .sϑ −  

Results on the linearized model give essential deviations on vector properties (curves 2 
in fig. 6, 11). On scalar properties due to the fact that on the considered trajectories active 
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process of deformation ( 10 90< ϑ <  ) is carried out, and the parameter of complexity of the 

process 0
1 90ϑ <  , the linearized model shows acceptable results.

To verify the postulate of isotropy for trajectories 1 and 2 on fig. 12-13 the reflecting 
scalar and vector material properties, and also results of mathematical modeling with use of the 
general model (curves 1 in fig. 12-13) are presented combination of experimental results for 
charts sσ−  and 1 sϑ − . 

Fig. 12. Trajectories 1 and 2. Charts of 
deformation sσ− . 

Fig. 13. Trajectories 1 and 2. Charts 1 sϑ − . 

The comparison shows that experimental charts of specularly reflected trajectories of 
deformation matched among themselves a sufficient precision ratio. Therefore, it is possible to 
believe that for these types of difficult trajectories with a break and the preliminary elastoplastic 
deformation preceding it on the site with constant curvature, the postulate of isotropy is carried 
out on scalar and vector properties. 

References 
[1] V.G. Zubchaninov, Mechanics of processes of plastic environments (Fizmatlit, Moscow, 

2010). 
[2] V.G. Zubchaninov, Stability and plasticity. Vol. 2. Plasticity (Fizmatlit, Moscow, 2008). 
[3] V.P. Degtyarev, Plasticity and creep of engineering structures (Mashinostroenie, Moscow, 

1967). (In Russian). 
[4] F.M. Mitenkov, I.A. Volkov, L.A. Igumnov, A.V. Kaplienko, YU.G. Korotkih, V.A. Panov, 

Applied theory of plasticity (Fizmatlit, Moscow, 2015). 
[5] V.V. Moskvitin, Plasticity at variable loadings (Izdatelstvo MGU, Moscow, 1965).  
[6] V.S. Lenskij, In: Questions of the theory of plasticity (Izdatelstvo AN USSR, 1961), p. 58. 
[7] Yu.N. Shevchenko, N.N. Tormahov // International Applied Mechanics 35 (1999) 13. 
[8] V.G. Zubchaninov, A.A. Alekseev, V.I. Gul'tyaev // PNRPU Mechanics Bulletin 3 (2014) 

71. 
[9] V.G. Zubchaninov // Mechanics of Solids 46 (2011) 21. 
[10] V.G. Zubchaninov, A.A. Alekseev, E.G. Alekseeva // Materials Physics and Mechanics 

29(2) (2016) 150. 
[11] A.A. Ilyushin, Plasticity: Fundamentals of the general mathematical theory (Izdatelstvo 

AN USSR, Moscow, 1963). (In Russian). 
[12] A.A. Ilyushin, Proceedings (1946-1966). Vol. 2 Plasticity (Fizmatlit, Moscow, 2004). (In 

Russian). 
[13] V.G. Zubchaninov // Problemy prochnosti i plastichnosti 67 (2005) 5. (In Russian). 
[14] V.G. Zubchaninov, E.G. Alekseeva // Vestnik ChGPU im. I. Ia. Iakovleva. Seriia: 

Mekhanika predel'nogo sostoianiia 8 (2010) 172. (In Russian). 
[15] Dao Zui Bik // Vestnik MSU 2 (1965) 67.  

304 V.G. Zubchaninov, A.A. Alekseev, E.G. Alekseeva, V.I. Gultiaev



TESTING OF STEEL 45 UNDER COMPLEX LOADING ALONG 

THE CYLINDRICAL SCREW TRAJECTORIES OF DEFORMATION 
V.G. Zubchaninov, V.I. Gultiaev, A.A. Alekseev*, V.V. Garanikov, S.L. Subbotin  

Tver State Technical University, nab. Afanasiya Nikitina, 22, Tver, 170026, Russia 

*e-mail: alexeew@bk.ru

Abstract. The results of the experiment on complex loading of a thin-walled tubular steel 
specimen with three parameter action of axial force, torsion, and internal pressure are 
presented. The experiment was carried out on A.A. Ilyushin's testing complex SN-EVM. The 
program of the experiment in the deformation space is a cylindrical, helical trajectory with a 
displaced center of a screw curvature. Scalar and vector properties of the material steel 45 
were investigated.  
Keywords: plasticity; complex loading; trajectory of deformation; helical trajectory; scalar 
and vector properties of material; thin-walled tubular steel. 

1. Introduction
The experimental investigations conducted for studying of patterns and effects of structural 
materials deformation the behind elastic limit at compound stress condition and under 
disproportionate loading are an important component of mechanics of deformable solids and 
plastic theory. The phenomenological approach is the basis for the development of new 
mathematical models of deformation of materials behind elastic limit, and also for 
certification and assessment of limits of applicability of the modern theory of plasticity 
existing models.  

A large number of systematic experimental investigations was carried out under 
materials deformation along flat multilink piecewise and broken rectilinear and curvilinear 
trajectories of constant and variable curvature [1-10]. Tests at uniaxial ratcheting and difficult 
cyclic deformation on the closed trajectories [11-15] represent a special case of the sign 
variable theory of plasticity. The experiments executed on space trajectories of deformation of 
constant and variable curvature are practically absent [1, 3, 16, 17]. Series of tests on thin-
walled tubular specimens made of 45 steel at rigid loading along the dimensional trajectories 
in deviatory space of deformations (3)Э  showing an uncommon connection between tension 
and deformations at the elastoplastic deformation of material has been carried out in TvSTU 
mechanical laboratories. In the series of the tests at different parameters of internal geometry 
were implemented: 

– cylindrical screw trajectories of constant curvature and torsion with screw center of
curvature in datum origin on the plane 1 3Э Э− ; 

– cylindrical screw trajectories of constant curvature and torsion with the displaced
screw center of curvature on the plane 1 3Э Э− ; 

– the conic screw trajectories of variable curvature and torsion 1 3Э Э−  presenting
folding and unfolding Archimedes's spirals in the planes 1 3Э Э− . 
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The screw axis in all experiences had been oriented in the direction of coordinate 2.Э  
Testing was carried out on the Ilyushin's automatic testing complex SN-EVM, realizing the 
three-parametrical impact on a specimen (axial tension-compression, torsion, and internal 
pressure) in the automatic mode according to the set deformation program. When carrying out 
deformation tests were measured by means of the extensometer working together with the 
SN-EVM complex. 

2. Technique of experiment and main equations
The technique of experimental studies conducting is based on the A. A. Ilyushin's theory of 
elastoplastic processes [1, 2, 18, 19], where deviator of tension and deformations with 
components 

0 0,ij ij ij ij ij ijS Э= σ −δ σ = ε − δ ε ,  ( , 1, 2, 3i j = )       (1) 

are presented in the form of tensions σ  and deformations Э  vectors of forming in five-
measured deviatory space 

 , ( 1, 2,3)k kk kS i Э ЭЭ Э i kσ = σσ = = = =  , (2) 
where ijσ , ijε  are components of stress and deformations tensors, ijδ  is the Kronecker's 

symbol, 0 / 3,iiσ = σ  0 / 3iiε = ε  are average tension and deformation;  , Эσ  is unit vectors; 
2 2 2
1 2 3k kS S S S Sσ = = + + ,   2 2 2

1 2 3k kЭ Э Э Э Э Э= = + + (3) 

are modules σ  and Э ; { }ki is orthonormalized motionless basis; kS , kЭ  are coordinates of

vectors σ  and Э  in the basis, for which 

( ) ( )

1 11 11 22 33 2 22 11 22 33

3 12 12

1 11 11 0 2 22 11 22 33

3 12 12

3 2 1 1 1( ( ), 2 ( ),
2 3 2 2 2
2 2 ;

3 3 1 1, 2 ,
2 2 2 2
2 2 .

S S S S S

S S

Э Э Э Э Э

Э Э

 = = σ − σ +σ = + = σ −σ 
 

= = σ

 = = ε − ε = + = ε − ε 
 

= = ε

(4) 

In this case, history of stresses and deformations tensors changing is represented 
geometrically in vector (deviatory) spaces of forming in the form of images of the processes 
containing trajectory, and its points assigned with lengths of arc s or Σ  characteristics of 
process: vectors σ  or Э  and their increments, and also scalar parameters (temperature, 
average stress 0σ  and deformation 0ε  etc). At the same time, the connection between tensions 
and deformations is described by the scalar properties, characterizing connection between 
invariants of deviator of tensions and deformations, and the vector properties, characterizing 
misalignment of deviator of tensions, deformations and their increments. The provision of 
vector of tension σ  is defined by unit vector for which 

   
1 1 2 21 2 3cos sin (cos sin )p p pσ

σ = = ϑ + ϑ ϑ + ϑ
σ

, (5) 

where unit vectors of the Frenet frame { }kp

  
2 2

11 2 32 2
1 2 1

1 1 1, , , ...;dЭ d Э dЭ d d Эp p p
ds ds dsds ds

  
= = = κ +   κ κ κ   

(6) 
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1 2,κ κ  are parameters of curvature and torsion of the internal geometry of trajectory of 

deformation; 1ϑ  is vector σ  approach angle with a tangent vector 
1p  to deformation

trajectory; 2ϑ  is the deplanation corner characterizing vector σ  deviation from vector  2p

projected to the normal plane  
1 3p p . At the creation of experimental dependencies, it is

necessary to consider features of the behavior of both scalar, and vector material properties.  
Cylinder thin-walled shells from steel 45 in the condition of delivery which had the 

1h = mm wall thickness, 15,5r = mm radius of the median surface of the cross-section, and 
110l =  mm length of working part used as physical models for researching on the SN-EVM 

testing complex. In walls of specimens at a relation of /r h  homogeneous flat stress condition 
is implemented.  The material of specimens sufficiently was initially isotropic that was 
confirmed by basic tests at simple loading on trajectories like the "central fan" including tests 
on stretching, compression, torsion and internal pressure. While processing results of 
experimental data, dependencies [1, 3] were used to identify components of tensors of 
deformations ijε  ( , 1, 2, 3i j = ) and tension ijσ . 

( ) ( )

11 22 12 13 23

0
33 11 22 0 11 22 33

, , , 0,
2

1, ,
3

l r r
l r l

K

∆ ∆ ψε = ε = ε = ε = ε =
 σε = − ε + ε + ε = ε + ε + ε


(7) 

( )

11 22 12 33 13 232

0 11 22 33

, , , 0, 0,
2 2

1 , ,
3 3(1 2 )

P r Mq
rh h r h

EK

σ = σ = σ = σ ≈ σ = σ = π π

σ = σ +σ +σ =
 − µ

(8) 

where l∆  and r∆  − increments of l  and r ; ψ  − cross-section turning angle; 
P  − the stretching axial force; q  − intensity of internal pressure; M − torque; E − Young's 
modulus; µ− Poisson's ratio; K − Bulk modulus. When processing experimental data the 
condition of incompressibility of material (ε0 = 0), was accepted inasmuch as with the advent 
of plastic deformations pµ  the coefficient of cross deformation quickly approached value 

p 0,5µ = .  
The article is about the program of deformation along cylindrical screw trajectory with 

the displaced screw center of curvature from the origin on the plane 1 3Э Э−  (fig. 1-4) realized 
in tests. 

Fig. 1. Space trajectory of deformation. Fig. 2. Deformation trajectory on the 
plane 1 3Э Э− . 
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Fig. 3. Deformation trajectory on the plane 
1 2Э Э− . 

Fig. 4. Deformation trajectory on the plane 
2 3Э Э− . 

The trajectory with constant curvature in the form of radius circle 0,5 %R = , whose 
pole coordinates were *

1 0,5 %Э = , *
3 0Э =  and curvature was 1 1/ 200Rκ = =  was 

implemented at the first site, tension with torsion jointed in the experiment. After whole 
turnover of the circle by means of internal pressure on the second site deformation along axis 

2Э  along screw trajectory in the number of 4 incomplete rounds with propeller pitch 
0,25 %H =  and parameter of torsion 2 15,7κ ≈  was implemented. The digits 1, 2, 3, 4 in 

figures 1-4 have designated points of the beginning of the first and the subsequent rounds of 
the screw. The experience in the mode of continuous specimen deformation with fixed speed 

6 110 s− −ε = , allowing to choose short-term creep of material at standard temperature 
continued for more than 9 hours. 

For implementation of cylindrical screw trajectory on the second site of the program of 
experiment the Cartesian coordinates of vectors on the SN-EVM automated complex were set 
in the form of [1, 3] 

0 0 0
1 1 2 2 3 3sin , , cos ,Э Э R Э Э b Э Э R= + ϕ = + ϕ = + ϕ (9) 

where 0
1Э , 0

2Э , 0
3Э  − Cartesian coordinates of curvilinear part of trajectory pole; ϕ  is the 

polar corner counted from axis 1Э  against the course of the hour hand; / 2b H= π . For 

presented in fig. 1-4 trajectories  0
1 0,5 %,Э = 0 0

2 3 0.Э Э= =  As propeller pitch is 0H =  we 
have 0b = , and from (9) the circle equation realized on the first site follows.  

When processing results of experimental studies on strain and stress vectors coordinates 
forming were defined by components of tensors on formulas (4), and vector modules on 
formulas (3). For definition of approach angles 1ϑ , deplanation angles 2ϑ  and the contact 
angles 1ψ , characterizing the influence of vector material properties on deformation process 
were used expressions 

 

 
 

1 2 1 31

3 1
1 2 1 3 23

1 1

1cos cos sin ,

sin1sin cos sin , sin ,
sin sin

p S b R S S
s

p
p S R b S S

s

  ϑ = σ = + ϕ ϕ  σ   

σ ψ  ψ = σ = − ϕ ϕ ϑ = =  σ ϑ ϑ  





(10) 

where 
2 2s R b= + ,    0 0

1 1 3 3sin ( ) / , cos ( ) / .Э Э R Э Э Rϕ = − ϕ = − (11) 
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3. Experimental results
In fig. 5-11 experimental results of testing of a tubular specimen on the program submitted in 
fig. 1-4 are presented. In fig. 5-8 the response in space of tension (3)S , in fig. 9 local charts of 
deformation on coordinates k kS Э− , in fig. 10 - the general charts of deformation Эσ−  and 

sσ− , the characterizing scalar material properties, where s  is the length of the arc of 
deformation trajectory are presented. The dependences of corners 1ϑ , 2ϑ  and 1ψ  on s  
characterizing vector material properties is given in fig. 11. 

Fig. 5. A response in space of tension (3)S . Fig. 6. Response to the plane 
1 2S S− . 

Fig. 7. Response to the plane 1 3S S− . Fig. 8. Response to the plane 
3 2S S− . 

While deformation on the site of circle the 2Э - effect [1], which is followed by the 
emergence of deformation anisotropy and growth of component 2Э , which peak value was 
0,13 %  was observed. At further deformation value of 2Э  decreased, and before screw 
trajectory was close to zero. 

On the chart sσ−  (fig. 10) on the site of the circle and four rounds five "direct" dives 
of tension and on the chart Эσ−  are five "return" dives of partial elastic unloading are 
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traced. This obviously differs from the Odkqist-Ilyushin's law of hardening ( )sσ = Φ . The 
size of tension dives decreased each time: on the site of circle the size of dive was 

54∆σ ≈ MPa, on the last spiral turn – 18∆σ ≈ MPa. Material in the course of plastic 
deformation, in general, has received hardening, but it was insignificant and was only 45 MPa 
that at the value of liquid limit т 315σ ≈ MPa corresponds to the value of 360σ ≈ MPa. 

Fig. 9. Local charts of deformation 1 1S Э− , 2 2S Э− , 3 3S Э− . 

Fig. 10. General charts of deformation sσ− , Эσ− . 

Fig. 11. Charts 1 sϑ − , 2 sϑ − , 1 sψ − . 

Change of coordinate size 2S  on screw rounds has practically not impacted on 
coordinates 1S  and 3S  (see fig. 7). At the same time, explicit frequency of local charts of 
stretching compression 1 1S Э−  and torsion 3 3S Э−  is observed (see fig. 9). Also, explicit 
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frequency on rounds of the screw is observed for corners 1ϑ , 2ϑ  , and 1ψ . Peak values of 2ϑ  

and 1ψ corners was 33° and 25° respectively. Values of the approach angle 1ϑ  averaged 50 , 

therefore elementary deformation work 1cosdA dЭ ds= σ = σ ϑ  for corners 1 90ϑ <   is 0dA > . 
It means that there is an active deformation process at all sections of the given trajectory. 

4. Conclusion
The experimental data presented in the article for dimensional elastoplastic processes of 
deformation are necessary for the solution of an important problem of reliable creation of 
approximations of functionalities of the plasticity of the general defining ratios of the theory 
of processes [1, 2], and the adequate description of difficult space processes of loading of 
continuous environments. 
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Abstract. In the article the questions connected with modeling of isotropic material on an 
example of carbon steel St3ps [1] for subsequent use in analysis of power protective frames of 
cabins of agricultural machinery in accordance with regulatory requirements are considered 
[14]. The choice of the Johnson-Cook (JC) material model for performing tasks of this type is 
substantiated. Full-scale tests of steel specimens were carried out, on the basis of which the 
mathematical model of material was validated. 
Keywords: isotropic material; carbon steel; Johnson-Cook material model.  

1. Introduction
Nowadays in the design of new products there is a growing importance of virtual testing based 
on the finite element method [5]. In accordance with this, there is an urgent need for more 
accurate modeling of the static and dynamic behavior of materials used in design models of 
structures [3, 4, 7]. Generally, the most common materials in engineering industry are isotropic 
materials with steel as a dominant material. 

The most famous model of behavior of steel materials is the JC model [2]. Many works 
are devoted to the study of the behavior of steel materials on the basis of this model [8-12]. 

In the study [11] devoted to modeling the behavior of containers in throwing (simulating 
emergencies) based on the JC model the authors emphasize the need to take into account the 
temperature component of this material model when performing similar tasks in the nuclear 
industry. The authors give a comparison of modeling using the JC model and a tabulated model 
of plasticity.  

The paper [9] devoted to the study of the incubation time criterion (in the form of fracture 
and yielding flow criteria), describing the dynamic effects of the strength behavior in brittle 
fracture and the yield stress during plastic deformation. The advantage of the approach is in a 
single macroscopic time parameter, independent of geometry, load mode and 
phenomenologically related to structural changes in the material at the micro level. The author 
proposes to interpret the effect of filler, metal fibers on the strength properties of the material 
in a wide range of external influences (under dynamic loads, the change is most pronounced) 
on the basis of the concept of incubation time. An important part of the work is devoted to the 
introduction of the phenomenological model of the deformation curve of elastoplastic materials 
for various deformation rates on the basis of the concept of incubation time. The author suggests 
applying the calculated model of the deformation curve to fine-grained and coarse-grained 
metals and their alloys. 
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A numerical comparative study of the dynamic properties of metals on the basis of the 
Kolskiy method and on the basis of the JC model was carried out in paper [10]. The use of the 
rheological and energy characteristics of impact compression based on the Kolskiy method is 
proposed to determine the relaxation time of tangential stresses and to find the relationship 
between the thermal internal energy of a material based on an aluminum alloy. 

In work [12] studies on the applicability of the JC model in the modeling of technological 
stamping processes were carried out. The authors show that it is necessary to take into account 
the dynamic component of the JC model in simulating such high-speed technological processes 
by the finite element method, and also to identify the parameters of this model with the Mie-
Gruneisen state equation. 

Comparative analysis of the JC model with the Cooper-Simonds and Zerilli-Armstrong 
models was carried out in work [13] using the finite element simulation of the process of volume 
stamping. The author suggests using the JC model to solve a wide range of plastic deformation 
problems, as the most simple, satisfactorily describing the curve of plastic yielding flow of a 
metal in a wide range of changes in basic physical parameters and available in most software 
packages of numerical analysis. 

Thus, the JC material model can be used to simulate the roll-over protective structure 
(ROPS) of agricultural machinery with the appropriate selection and validation of the material 
model based on full-scale testing of the specimens. Standard [14] provides for the performance 
of tests with relatively low (in comparison with the processes of processing metal pressure) 
speed of impactors and normal temperature conditions. 

2. Formulation and solving methods
To model the material needed to describe shock phenomena with high strain rates, the LS-Dyna 
application software [6] often uses the JC material model (*MAT_JOHNSON_COOK). 
According to this model, the von Mises flow stress 𝜎𝜎 is calculated by the following formula [2]: 
𝜎𝜎 = (𝑎𝑎 + 𝑏𝑏𝜀𝜀𝑛𝑛)(1 + 𝑐𝑐 ln 𝜀𝜀̇∗)(1 − 𝑇𝑇∗𝑚𝑚), (1) 
where 𝜀𝜀  – equivalent plastic strain;  𝜀𝜀̇∗ = 𝜀𝜀̇

𝜀𝜀0̇�  is the dimensionless plastic strain rate for

𝜀𝜀0̇ =  1.0 𝑠𝑠−1, 𝑇𝑇∗ – is the dimensionless temperature, and 𝑇𝑇∗ = (𝑇𝑇 − 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)/(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟), 
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  is the melting temperature of the material, 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  is the room temperature. The five 
material constants are 𝑎𝑎 – yield stress, 𝑏𝑏 – the hardening modulus, 𝑐𝑐 – the strain rate sensitivity 
coefficient, 𝑛𝑛 – the hardening coefficient, 𝑚𝑚 – the thermal softening coefficient. 

Formula (1) is an equation of flow stress, which is defined as the instantaneous value of 
stress required to continue the plastic flow of material - to keep the metal flowing. The JC model 
is purely empirical and it’s the most widely used of the strain-rate dependent plasticity models. 
It makes it possible to take into account the effects of isotropic (static) strengthening, kinematic 
strengthening, temperature variation and the associated variation in yield strength. This model 
takes into account both kinematic strengthening and adiabatic heating of the material 
undergoing strains. Moreover, the JC model is easily implemented in computational codes due 
to its simplicity.  

All the parameters are coupled due to the multiplicative nature of the model.  However, 
difficulties exist with determining them. The problem of determining the numerical values of 
the parameters of the JC material model can be successfully solved using the parametric 
optimization tool. However, the accuracy of the description of the deformation curve will 
largely depend on the objective function used in the optimization process. In practice, the most 
common objective function is the root-mean-square averaged difference between the values of 
the experimental and calculated curves. At the same time, the accuracy of the deformation curve 
description using this objective function is quite high, however, due to modern requirements to 
the accuracy of computational models, there is a need for more accurate material modeling. 

Validation of the mathematical model of isotropic material using parametric optimization... 313



3. Results and Discussion
Gathering of testing data. For full-scale testing, steel grade St3ps is chosen as the most 

popular material for the manufacture of power-frame of cabins and base elements of agricultural 
machinery. Specimens of standard sizes are cut from this material (Fig. 1). To evaluate the 
reliability of the data obtained is needed to test three specimens. 

Fig. 1. The standard specimen: a – for natural testing, b – drawing. 

The chemical composition of the material is described in Table 1. 

Table 1. The chemical composition of the material test specimens. 

Grade of steel 
Mass content of chemical elements 

Carbon Manganese Silicon 
St3ps 0.14…0.22 0.40…0.65 0.05…0.15 

Full-scale testing of sample materials is carried out on a certified tensile testing machine, 
which in real time, during the test, records the stresses occurring in the material and the 
corresponding deformation (Fig. 2).  

Fig. 2. Testing equipment (a, b) and standard experimental specimens after testing (c). 

The results of stress measurements, as a function of deformations for three specimens is 
shown in Fig. 3. This dependence is presented in engineering units. 
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Fig. 3. Experimentally measured deformation diagrams in engineering dimensions. 

The obtained data are averaged and transferred from engineering ones to true units by the 
following formulas: 
𝛿𝛿 =  ln(𝜀𝜀 + 1), (2) 
𝑆𝑆 =  𝜎𝜎(𝜀𝜀 + 1), (3) 
where 𝛿𝛿 – true deformations; 𝜀𝜀 – engineering deformations; 𝑆𝑆 – true stress; 𝜎𝜎 – engineering 
stress. 

As a result, the deformation diagram is presented in the form in which it can be used to 
validate the finite element model (Fig. 4). 

Fig. 4. The averaged experimental deformation diagram in true dimensions. 

Specimen modeling, parametrization and optimization of the model. Finite element 
model of the specimen is modeled by shell elements in accordance with the drawing, which 
was used to excise the samples during testing (Fig. 5).  

Fig. 5. Finite element model of standard specimen. 
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The thickness of the elements is equal to the thickness of the test specimens. The 
developed model is stretched along the X axis in both directions to repeat the impact test bench. 
The model without destruction is considered. 

The example of mathematical model card of material (*MAT_JOHNSON_COOK) is 
shown in Fig. 6. 

Fig. 6. The card of JC material. 

As a result, of the modelling, a deformation diagram was obtained, which has a significant 
discrepancy with the curve obtained from the tests (Fig. 7). 

Fig. 7. Comparison of experimental and initial stress-deformation diagrams 

For accurate reproduction of the test results, it is necessary to optimize the physical and 
mechanical properties of the material laid down in the JC card. It is necessary to parameterize 
the model. 

Variable parameters include the yield point, hardening module, strengthening index, and 
the Young's modulus of the material. 

Optimization was carried out in the application software HyperStudy developed by Altair. 
It was proposed to optimize in three ways: 

− minimizing the area between curves; 
− minimization of the difference between the corresponding values of two graphs averaged 

by the mean square method; 
− adjustment of values in characteristic points of the graph. 

Let us consider in detail each of the proposed methods of optimization. 
Minimizing the area between curves. To set the optimization response, a script was 

written to calculate the area between the two curves. The text of this script is given below: 
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function area_between_two_curves(v1x,v2x,v1y,v2y)

{

newx = sync2(v1x, v2x) [1]

newy1 = lininterp(v1x, v1y, newx) [2]

newy2 = lininterp(v2x, v2y, newx) [3]

suby = newy1-newy2  [4]

area_value = absarea(newx, suby) [5]

return area_value [6]

}

The first line of code performs synchronization of values along the X-axis of two curves. 
In the second and third lines, the Y-axis values for the new X values are calculated by linear 
interpolation. The fourth line determines the difference between the corresponding values along 
the Y axis. The fifth line calculates the area between the two curves. The sixth line displays the 
result. 

The goal of optimization is to minimize the calculated area between the two curves. The 
optimization history by iteration is shown in Fig. 8. 

Fig. 8. The history of optimization by iterations (minimizing of area). 

As a result, the area between the curves was reduced more than twice. 
Minimizing the RMS difference. To set the optimization response, a script was written 

for the root-mean-square averaging of the differences between the two curves. The text of this 
script is given below: 

function area_between_two_curves(v1x,v2x,v1y,v2y) 

{ 

    newx = sync2(v1x, v2x) [1] 

newy1 = lininterp(v1x, v1y, newx) [2] 

newy2 = lininterp(v2x, v2y, newx) [3] 

suby = newy1-newy2 [4] 

aver = rms(suby)  [5] 

    return aver [6] 

} 
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The first line of code performs synchronization of values along the X-axis of two curves. 
In the second and third lines, the Y-axis values for the new X values are calculated by linear 
interpolation. The fourth line determines the difference between the corresponding values along 
the Y axis. The fifth line produces the mean-square averaging of the differences obtained. The 
sixth line displays the result. 

The goal of optimization is to minimize the calculated RMS value. The history of 
optimization by iteration is shown in Fig. 9. 

Fig. 9. The history of optimization by iterations (root-mean-square difference). 

As a result, the root-mean-square difference between the curves was reduced by more 
than four times. 

Fig. 10. Characteristic points for optimization. 

Determination of values in characteristic points. Optimization responses are the values 
of stresses and strains at characteristic points of the curve, with a deformation of 0.02 mm, and 
also with the maximum stresses achieved (Fig. 10). Targets for these parameters are taken from 
the experimental curve; the achievement of these parameters is the goal of the optimization. 
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The history of optimization by iterations is shown in Fig. 11. 
As a result, of optimization, all indicators reached their target values. 

Fig. 11. The history of optimization by iterations (characteristic points).  

Comparison of results. Optimization for each type of objective functions was carried 
out using the same convergence conditions. The resulting comparative criterion for estimating 
the coincidence of the calculated curve with the experimental estimate is the root-mean-square 
averaged difference in their ordinates. Time of optimization is also one of the important 
parameters for comparison. Table 2 compares the three optimizations using different objective 
functions. 

Table 2. Comparison of results with the use of various objective functions. 

Objective function RMS average Number of 
Iterations 

Minimization of area 9,19 17 
Minimization of root-mean-square difference 7,51 37 

Fitting of values at characteristic points 7,24 13 

Comparative analysis shows that minimizing the root-mean-square difference and 
adjusting the values at characteristic points gives the same results in terms of deviation from 
the experimental curve. But in terms of time required for optimization, minimizing the root-
mean-square difference takes about three times the fitting of values at characteristic points. 

A visual comparison of the stress-deformation diagrams obtained for various 
optimizations is shown in Fig. 12. 

Comparison of the root-mean-square deviation and the visual behavior of the deformation 
diagram showed that the best objective function for parametric optimization of the physical-
mechanical properties of the material is to "adjust values at characteristic points". 

4. Conclusions
For the validation of the mathematical model of material used to solve problems on shock 
phenomena and high-speed deformations, the most effective approach to parametric 
optimization is the method of characteristic points, which turned out to be more accurate than 
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the mean-square averaging method. The method of optimization by area has proven to be 
insufficiently precise, therefore is not recommended for further practical implication. 

Fig. 12. Comparison of stress-deformation diagrams. 

Acknowledgements 
The work is carried out with financial support of the Ministry of Education and Science of the 
Russian Federation within the framework of the Federal Program "Research and Development 
in Priority Areas for the Development of the Russian Science and Technology Complex for 
2014-2020", Activity 1.3., Agreement on the Grant No. 14.578.21.0206 of 03.10.2016, the 
unique identifier of the program of research and experimental works: RFMEFI57816X0206. 

References 
[1] GOST 380-2005 Common quality carbon steel. Grades. 
[2] G.R. Johnson, W.H. Cook, In: Proceedings of 7-th Symposium on Ballistics (Hague, 

Netherlands, 1983), p. 541. 
[3] T. Ozel, Y. Karpat // Materials and Manufacturing Processes 22 (2007) 659. 
[4] M.J. Loikkanen, M. Buyuk, C. Kan, N. Meng, In: Proceedings of 5-th European LS-DYNA 

Users Conference (Birmingham, UK, 2005), CD-ROM format, Article 3c, p. 79. 
[5] R.H. Gallagher, Finite Element Analysis. Fundamentals (Mir, Moscow, 1984). 
[6] J.O. Hallquist, LS-DYNA: Theoretical manual (Livermore Software Technology 

Corporation, Livermore, 1998). 
[7] J.S. Sun, K.H. Lee, H.P. Lee // Journal of Material Processing Technology 105 (2000) 110. 
[8] G.R. Johnson, W.H. Cook // Engineering Fracture Mechanics 21(1) (1985) 31. 
[9] N.S. Selutina, Destruction and plastic deformation of structural materials under shock wave 

loads. PhD Thesis (Saint-Petersburg State University, St. Petersburg, 2016). 
[10] V.M. Kosenkov, V.M. Bychkov // Applied Mechanics and Technical Physics 53(6) (2012) 

134. 
[11] A.V. Sobolev, M.V. Radchenko // Journal of the Russian Universities. Nuclear Energy 3 

(2016) 82. 
[12] V.A. Kuzkin, D.S. Mihaluk // Computational Mechanics of Continuous Media 3(1) (2010) 

32. 
[13] A.A. Hodko // Aerospace Engineering and Technology 5(112) (2014) 11. 
[14] GOST R ISO 5700-2008 Wheeled tractors for agriculture and forestry. Roll-over 

protective structures. Static test method and acceptance conditions. (In Russian). 

320 A.I. Borovkov, O.I. Klyavin, O.I. Rozhdestvenskiy, M.V. Aleshin, A.N. Leontev, S.P. Nikulina, K.S. Ivanov, A.P. Okunev



ON USING QUASI-RANDOM LATTICES FOR SIMULATION OF 

ISOTROPIC MATERIALS 
Vadim A. Tsaplin2, Vitaly A. Kuzkin1,2* 

1Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg 195251, Russia, 
2Institute for Problems in Mechanical Engineering RAS, Saint Petersburg 199178, Russia,  

*e-mail: kuzkinva@gmail.com

Abstract. Elastic properties of three-dimensional lattices are usually anisotropic. This fact 
limits the range of applicability of lattice models in solid mechanics problems. In the present 
paper, we propose a simple three-dimensional lattice model with isotropic elastic properties. A 
quasi-random lattice is generated by randomly displacing particles of the face-centered cubic 
lattice. Then particles are connected by linear and angular springs such that initially forces in 
all springs are equal to zero. It is shown numerically that the resulting quasi-random lattice has 
isotropic elastic properties, provided that amplitudes of random displacements are sufficiently 
large. Poisson’s ratio of the lattice depends on number of angular springs per particle and 
stiffnesses of these springs. In the present model, values of Poisson’s ratio belong to the 
interval [0;0.41]. The model can be used, in particular, for simulation of deformation and brittle 
fracture of rocks in hydraulic fracturing.  
Keywords: particle dynamics; quasi-random lattice; face-centered cubic lattice; effective 
elastic properties; isotropy; molecular dynamics. 

1. Introduction
Discrete mechanical models are widely used for simulation of deformation and fracture of 
materials at different length scales [1,2]. In these models, a material is represented as a set of 
interacting particles (e.g. material points or rigid bodies). Then mechanical properties of the 
material are determined by its structure (particle positions) and interparticle interactions.  

Specifying initial positions of particles (structure of the material) can be a challenge [1]. 
The simplest arrangement of particles is a perfect lattice. If crystals are concerned, lattices arise 
naturally. For other materials, lattices are used as coarse-grained models [3-5]. Advantage of 
lattice models is that, in many cases, relations between microscopic and macroscopic properties 
of the material can be derived analytically [4,6-9]. Therefore calibration of model 
parameters (e.g. parameters of interparticle interactions) is relatively straightforward. At the 
same time, symmetry of lattices significantly influence their mechanical properties. In 
particular, elastic properties of three-dimensional lattices are usually anisotropic (see e.g. [1, 9, 
10,11]). Influence of lattice symmetry on fracture processes is even more pronounced. 
Therefore for simulation of isotropic materials, more complicated irregular packings of 
particles should be used.  

A natural way for simulation of isotropic materials is generation of 
random (amorphous) [5,12-14] or polycrystalline structures [15]. For example, algorithms for 
generation of random close-packings of spheres are proposed, in papers [13,14]. Creation of 
polycrystalline materials is discussed in paper [15]. However, implementation of 
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algorithms [13-15] is relatively time-consuming, especially in three-dimensional case. 
Therefore, more efficient and simple algorithms are required.  

In the present paper, we present a simple discrete model with isotropic elastic properties. 
Quasi-random lattice is generated. Particles in the lattice are connected by linear and angular 
springs. It is shown that proper choice of parameters of the model allows to simulate isotropic 
materials with prescribed elastic moduli. 

2. Generation of the quasi-random lattice
The quasi-random lattice is generated as follows. Initially, the particles form a perfect face-
centered cubic lattice (FCC). Radius vectors of the particles have form 
𝑹𝑹𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑎𝑎(𝑛𝑛 𝒆𝒆 1 + 𝑚𝑚 𝒆𝒆 2 + 𝑘𝑘 𝒆𝒆 3),       𝑎𝑎 = 𝑑𝑑

√2
,  (1) 

where 𝑛𝑛,𝑚𝑚,𝑘𝑘, 𝑛𝑛+𝑚𝑚+𝑘𝑘
2

are integers, 𝒆𝒆1, 𝒆𝒆2, 𝒆𝒆3 are orthogonal unit vectors, 2a is the lattice 
spacing. 

Fig. 1. Two layers of particles (left) and a unit cell (right) of the FCC lattice.  

Particles are randomly displaced from their positions given by formula (1). Amplitudes 
of random displacements are chosen according to the following algorithm. The minimum 
distance, 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚, between the particles is specified. For each particle, the corresponding unit cell 
is constructed. The particle is connected to 12 nearest neighbors by line segments. Then planes, 
orthogonal to segments, and passing through their centers are drawn. The unit cell is a body 
bounded by these planes. In the case of FCC, the unit cell has a shape of rhombic 
dodecahedron (see figure 1). The unit cell is compressed by the following factor:  
𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑 = 1 − 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚

𝑑𝑑
(2) 

Random displacements of particles are chosen such that the following three conditions 
are satisfied. Firstly, the particle belong to the compressed unit cell. Secondly, the particle is 
outside the sphere, inscribed into the compressed cell. Thirdly, the particle is outside the cube 
such that midpoints of its edges coincide with middle points of sides of the compressed unit 
cell. Thus, particle positions belong to the volume given by the difference between the 
compressed unit cell and union of the inscribed sphere and the cube. 
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Fig. 2. Regular FCC lattice (𝑘𝑘dev = 0, left) and quasi-random lattice (𝑘𝑘dev=0.7, right). 

Thus, amplitude of particle displacements is determined by parameter 𝑘𝑘dev. For 
𝑘𝑘dev = 0, particles form a perfect FCC lattice. For 0 < 𝑘𝑘dev < 1, particle positions are random. 
At the same time, particles remain in their unit cells. Therefore, the lattice is referred to as the 
quasi-random.  

Interparticle interactions are described by linear springs. Two particles are connected by 
the spring, if the distance between them is less than 𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐. Equilibrium length of the spring is 
equal to the initial distance between particles. Therefore initially forces in all springs are equal 
to zero. Force 𝑭𝑭𝑖𝑖𝑖𝑖 acting between particles 𝑖𝑖, 𝑗𝑗 is calculated as 
𝑭𝑭𝑖𝑖𝑖𝑖 = 𝑐𝑐𝑖𝑖𝑖𝑖�𝑅𝑅𝑖𝑖𝑖𝑖 − 𝑑𝑑𝑖𝑖𝑖𝑖�𝒆𝒆𝑖𝑖𝑖𝑖,  (3) 
where 𝒆𝒆𝑖𝑖𝑖𝑖 = 𝑹𝑹𝑖𝑖𝑖𝑖

𝑅𝑅𝑖𝑖𝑖𝑖
, 𝑹𝑹𝑖𝑖𝑖𝑖 = 𝑹𝑹𝑗𝑗 − 𝑹𝑹𝑖𝑖, 𝑐𝑐𝑖𝑖𝑖𝑖 is the bond stiffness, 𝑑𝑑𝑖𝑖𝑖𝑖 is the equilibrium bond length. 

The bond stiffness is inversely proportional to bond length, i.e. 
𝑐𝑐𝑖𝑖𝑖𝑖 = 𝑐𝑐𝐿𝐿

𝑑𝑑
𝑑𝑑𝑖𝑖𝑖𝑖

, (4) 

where 𝑐𝑐𝐿𝐿 is characteristic value of the bond stiffness, 𝑑𝑑 is the characteristic distance between 
neighboring particles, given by formula (1). 

Thus, elastic properties of the quasi-random lattice depend on four parameters: 𝑐𝑐𝐿𝐿 , 𝑑𝑑, 
𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐, 𝑘𝑘dev. In the following sections, we show that fitting these parameters yields isotropic 
material with prescribed elastic properties.  

3. Isotropy of the quasi-random lattice
In the present section, we show that a proper choice of random displacements of particles (𝑘𝑘dev) 
allows to create a material with isotropic elastic properties.  

Elastic properties of the quasi-random lattice are calculated numerically as follows. By 
construction, the lattice is orthotropic and it has cubic symmetry. Therefore two test problems 
are sufficient for calculation of elastic properties. In the first problem, the cubic sample under 
periodic boundary conditions is subjected to uniform uniaxial strain, 𝜀𝜀11. Normal stresses in the 
direction of stretching, 𝜎𝜎11, and in the orthogonal direction, 𝜎𝜎22, are calculated. Then 
coefficients of the stiffness tensor 𝐶𝐶11,𝐶𝐶12 are calculated as 
𝐶𝐶11 = 𝜎𝜎11

𝜀𝜀11
 ,         𝐶𝐶12 = 𝜎𝜎22

𝜀𝜀11
   (5)

In the second problem, the cubic sample is subjected to uniform shear deformation, 𝜀𝜀12. 
Corresponding shear stresses are calculated. Then the stiffness coefficient is as follows 
𝐶𝐶44 = 𝜎𝜎12

2 𝜀𝜀12
  (6)

Thus, the test problems yield components 𝐶𝐶11,𝐶𝐶12,𝐶𝐶44 of the stiffness tensor.  
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Anisotropy of the material is characterized by the following parameter [10]:   
𝜂𝜂 = 2𝐶𝐶44

𝐶𝐶11−𝐶𝐶12
(7) 

The anisotropy parameter 𝜂𝜂 is equal to 1 for isotropic materials. Since 𝜂𝜂 is dimensionless, 
then it depends only on dimensionless parameters of the model 𝑘𝑘dev and 𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐/𝑑𝑑. The value of 
𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐 = 1.9𝑑𝑑 was chosen using trial and error approach in the problem of crack propagation. 
This value ensures that strength of the lattice is isotropic. Therefore it is sufficient to consider 
the dependence of 𝜂𝜂 on 𝑘𝑘dev. Parameters of numerical simulations are summarized in table 1.  

Table 1. Numerical parameters used for calculation of elastic properties. Here 𝛽𝛽𝑐𝑐𝑐𝑐 = √𝑐𝑐𝐿𝐿𝑚𝑚, 𝑚𝑚 
is particle’s mass. Leapfrog integration scheme is used. 

Interaction radius (𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐) 1.9 d 
Size of the computational domain 28 d 

Initial deformation (ε11 = ε, ε12 = ε/2) ε = 10-4 
Viscous friction coefficient 1.0 ∙ βcr 

Time step 0.02 𝜋𝜋 �𝑑𝑑min
𝑑𝑑
�
1 2⁄

�
𝑚𝑚
𝑐𝑐𝐿𝐿

  

Resulting dependence of the anisotropy parameter, 𝜂𝜂, on the amplitude of random 
displacements of particles (𝑘𝑘dev) is shown in figure 3. As expected, the anisotropy parameter 
decreases for sufficiently large 𝑘𝑘dev. Isotropy of elastic properties is reached at 𝑘𝑘dev ≈ 0.67.  

Fig. 3. Dependence of the anisotropy parameter on the amplitude of random displacements of 
particles (𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐 =  1.9 𝑑𝑑). Points show the results averaged over 10 realizations. 

4. Changing Poisson’s ratio of the quasi-random lattice
Elastic properties of the isotropic material, described in the previous section, are characterized 
by Young’s modulus and Poisson’s ratio. Proper choice of bond stiffnesses,  𝑐𝑐𝐿𝐿 , allows to fit 
any value of Young’s modulus. At the same time, Poisson’s ratio of this material is fixed. 
Numerical simulations show that it is equal to 0.255. In the present section, we show that adding 
three-particle interactions (angular springs) allows to change Poisson's ratio in the interval 
from 0 to 0.414.   
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Potential energy of the spring connecting pairs of particles 𝑖𝑖, 𝑗𝑗 and 𝑖𝑖, 𝑘𝑘 reads 
Π = 1

2
𝑐𝑐𝜑𝜑(𝜑𝜑 − 𝜑𝜑0)2, (8) 

where 𝑐𝑐𝜑𝜑 is the stiffness of angular spring, 𝜑𝜑 is the angle between the bonds, 𝜑𝜑0 is the initial 
value of 𝜑𝜑. Forces acting on particles 𝑖𝑖, 𝑗𝑗,𝑘𝑘, caused by the spring, are the following 
𝑭𝑭 𝑗𝑗 = 𝑐𝑐𝜑𝜑

𝑅𝑅𝑖𝑖𝑖𝑖
Δ𝝋𝝋 × 𝒆𝒆𝑖𝑖𝑖𝑖 ,      𝑭𝑭 𝑘𝑘 = − 𝑐𝑐𝜑𝜑

𝑅𝑅𝑖𝑖𝑖𝑖
 Δ𝝋𝝋 × 𝒆𝒆𝑖𝑖𝑖𝑖,

𝛥𝛥𝝋𝝋 = (𝜑𝜑 − 𝜑𝜑0) 𝒆𝒆𝑖𝑖𝑖𝑖×𝒆𝒆𝑖𝑖𝑖𝑖
�𝒆𝒆𝑖𝑖𝑖𝑖×𝒆𝒆𝑖𝑖𝑖𝑖�

,        𝑭𝑭 𝑖𝑖 = −𝑭𝑭 𝑗𝑗 − 𝑭𝑭 𝑘𝑘, (9) 

where 𝒆𝒆𝑖𝑖𝑖𝑖 = 𝑹𝑹𝑖𝑖𝑖𝑖
𝑅𝑅𝑖𝑖𝑖𝑖

,𝑹𝑹𝑖𝑖𝑖𝑖 = 𝑹𝑹𝑗𝑗 − 𝑹𝑹𝑖𝑖, 𝑹𝑹𝑖𝑖 is radius vector of particle 𝑖𝑖.  

Angular springs are added using the following algorithm. For particle number 𝑖𝑖, all 
neighbors are found such that for each neighbor, 𝑗𝑗, the inequalities 𝐿𝐿min < 𝑅𝑅𝑖𝑖𝑖𝑖 < 𝑎𝑎cut are 
satisfied. Then all different triples 𝑖𝑖, 𝑗𝑗,𝑘𝑘 are formed such that distances 𝑅𝑅𝑖𝑖𝑖𝑖, 𝑅𝑅𝑖𝑖𝑖𝑖, and 𝑅𝑅𝑖𝑖𝑖𝑖 are all 
greater than 𝐿𝐿min. For each of these triples, three angular springs (in all three angles) are 
introduced. Stiffness of the angular spring between pairs 𝑖𝑖, 𝑗𝑗 and 𝑖𝑖, 𝑘𝑘 depends on lengths 𝑅𝑅𝑖𝑖𝑖𝑖, 
𝑅𝑅𝑖𝑖𝑖𝑖 as follows 

𝑐𝑐𝜑𝜑 = 𝑐𝑐𝜑𝜑0 �
min�𝑅𝑅𝑖𝑖𝑖𝑖,𝑅𝑅𝑖𝑖𝑖𝑖�

𝑑𝑑
�
2

(10) 
For now on, the model has two additional dimensionless parameters 𝑐𝑐𝜑𝜑0/(𝑐𝑐𝐿𝐿 𝑑𝑑2) 

and 𝐿𝐿min/𝑑𝑑. These parameters are used in order to change Poisson’s ratio of the quasi-random 
lattice. Dependence of Poisson’s ratio on stiffness of the angular spring for fixed 𝐿𝐿min = 1.7𝑑𝑑 
is shown in figure 4. 

Fig. 4. Dependence of Poisson's ratio on angular stiffness 𝑐𝑐𝜑𝜑0/(𝑐𝑐𝐿𝐿 𝑑𝑑2). 

It is seen that increasing the angular stiffness, we change Poisson’s ratio in the interval 
from 0.255 (for 𝑐𝑐𝜑𝜑0 = 0) to 0 (for 𝑐𝑐𝜑𝜑0 ≈ 4𝑐𝑐𝐿𝐿𝑑𝑑2). 

In order to achieve Poisson's ratios larger than 0.255, angular springs with negative 
stiffness should be used. Then we fix 𝑐𝑐𝜑𝜑0 = −0.11𝑐𝑐𝐿𝐿 𝑑𝑑2 and change the ratio 𝐿𝐿min/𝑑𝑑. The ratio 
controls the average number of angular springs per particle. For 𝐿𝐿min = 𝑎𝑎cut = 1.9𝑑𝑑, angular 
springs are absent. The dependence of Poisson's ratio on 𝐿𝐿min/𝑑𝑑 is shown in figure 5. 
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Fig. 5. Dependence of the Poisson's ratio on number of angular springs per particle, 
controlled by parameter 𝐿𝐿min/𝑑𝑑. 

Thus changing the number of angular springs per particle (parameter 𝐿𝐿min/𝑑𝑑), values of 
Poisson's ratio up to 0.414 can be reached. 

5. Conclusions
An algorithm for generation of three-dimensional quasi-random lattices was presented. Particle 
positions were generated by randomly displacing nodes of the face-centered cubic lattice. It 
was shown that elastic properties of the quasi-random lattice are isotropic, provided that the 
amplitude of random displacements is sufficiently large. In order to control both Young’s 
modulus and Poisson’s ratio of the material, the particles were connected by linear and angular 
springs. Choosing stiffness of linear springs, any value of Young’s modulus can be fitted. 
Angular springs allows to change Poisson’s ratio in the interval [0; 0.414], which is sufficient 
in many applications. Simulation of incompressible materials (𝜈𝜈 = 0.5) remains a challenge. 

The presented model can be generalized in order to simulate brittle fracture. A criterion 
for bond breakage should be added. Then preliminary calculations show that if elastic properties 
of the quasi-random lattice are isotropic, then its strength is also isotropic. Therefore, the model 
can be used, for example, for simulation of crack propagation in isotropic materials. In 
particular, hydraulic fracturing in naturally fractured reservoirs [16] can be simulated. 
However, detailed discussion of crack propagation is beyond the scope of the present paper. 
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Abstract. In order to be competitive, modern manufacturers have to offer best-in-class 
products. Superior quality of the product requires introduction of new materials, digital design 
methods and advanced manufacturing technologies into production process. Special attention 
is given to numerical simulation as the most time efficient, flexible and cheap method to 
evaluate the level of optimality and viability of the proposed solution as well as to predict 
further Product Life-Cycle. Accurate setting of material properties and representation of 
complex material structure is crucial for product design employing simulation. Commonly, 
material representation for simulation purpose is based on the analytical relationships that 
provide approximate data and cannot provide multiscale information about structure. Initiation 
of Material Genome Initiative (MGI) as well as the study of Big Data and Machine Learning 
concepts leads to development of new, more accurate and reliable instruments for product 
design that involve material simulation and optimization of material selection process. 
Keywords. Factory of Future (FoF), Material Genome Initiative (MGI), Integrated 
Computational Materials Engineering (ICME), Computer-Aided Engineering, Big-Data, 
Machine Learning.  

1. Introduction
Nowadays, there is keen interest in development of advanced manufacturing. This interest has 
been embodied in emergence of some programs and initiatives such as Industry 4.0, Industry + 
and Advanced Manufacturing Partnership 2.0. Taking into account these trends, a lot of studies 
are dedicated to automatization and digitalization of manufacturing processes as the key 
instruments to build the Factories of Future (FoF). The modern computer design systems such 
as Computer-Aided Design (CAD), Computer-Aided Engineering (CAE) and Computer-Aided 
Optimization (CAO), improve quality of products and reduce final costs of produced goods. 
The modern machine tools and equipment have computer numerical control (CNC) that in 
combination with Computer-Aided Manufacturing (CAM) allows to reduce the time of 
manufacturing of highly-customized products. Simultaneously the utilization of Internet of 
Things (IoT) leads to optimization of the whole production process and enables control over 
the product data and characteristics at all stages of manufacturing.  

One more way to improve manufacturing process is to introduce advanced materials. 
Although, the advanced materials aren’t directly related to advanced manufacturing or FoF 
concepts, the application of this group of resources is often vital to create the designed best-in-
class products and implement advanced manufacturing technologies. The importance of 
materials to key industry sectors and technologies is widely recognized all over the world. For 
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this reason, there are advanced materials-related strategies in countries that seek to increase the 
competitiveness of their industry. For example, the US Advanced Manufacturing Strategy that 
identifies advanced materials as a critical ‘cross-cutting technology’ R&D priority 
underpinning advanced manufacturing competitiveness. [1] In fact, most of the advanced 
manufacturing roadmaps and strategies highlight the important role of advanced materials for 
novel production technologies such as additive manufacturing (AM) or technologies related to 
robotics and autonomous systems. [1] For example, successful application of Additive 
technologies as well as the quality of printed products directly depends on the applied materials. 
Not only have the advanced materials a significant impact on manufacturing stage but also on 
such crucial stage as product design where the design characteristics of the product that 
constitute its global competitiveness are defined and ensured. 

The usage of computer-aided techniques at the design stage allows to substantially 
decrease the cost and production time of the whole manufacturing process. In this case, the first 
step (Simulation-Based Design) becomes the most expensive part of manufacturing process. 
However, this expenditure allows to reduce or completely eliminate the subsequent cycles of 
physical product testing and production changeovers (Fig. 1). Thus, the accurate and reliable 
simulation models is required. Nowadays, there are a lot of various instruments and methods 
for calculation of complex structures. However, the key input data for each of them consists of 
the material properties and the representation of material structure. Taking into account the 
rapid development of material science, the modern numerical algorithms and approaches for 
simulation of material characteristics during Simulation-based design stage are of particular 
interest. The implementation of these methods as an integral part of FoF concept can 
significantly increase the quality of manufactured goods and provide the manufacturing of 
“best-in-class” products. 

Fig. 1. The impact of computer simulation and design approach on the manufacturing cost[2]. 

This work provides a review of the most efficient solutions for material simulation and 
modeling for product design purposes. Fiber-reinforced composite material as the most 
common and representative advanced material type is discussed in this work. The work is 
organized as follows. The Section 2 presents a general description of traditional computational 
simulation of advanced materials using an example of a fiber-reinforced composite materials. 
The Section 3 provides information about modern approaches based on the combination of 
experimental and computational instruments, an open data bases as well as several frameworks 
for integration of various software tools. The Section 4 includes a comparison between 
traditional and modern approaches and provides general information about usage of Big Data 
concept for product design purposes. 
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2. Modelling of material properties in numerical simulation-based design
Substantial development of computing systems as well as the emergence of high-performance 
computer machines made the computational analysis of composite materials more effective and 
attractive compared to analytical methods based on solid mechanics. Computational analysis of 
composite structure and behavior in case of load application is based on the use of numerical 
integration of the state equations by transforming the system of partial differential equations to 
a system of linear and linearized algebraic equations with the subsequent solution by means of 
the mathematical apparatus of the calculus of variations. [3] Nowadays, the finite-element 
method (FEM) is a commonly used numerical algorithm realized in analytical software 
applicable for this purpose. The application of FEM as the computational tool is associated with 
calculation of a significant number of equations and requires high-performance computing 
resources. However, this method is able to perform calculation of samples with complex 
geometry and structure. The advantages associated with calculation of complex geometry by 
usage of linear and linearized equations systems are achievable only through realization of 
function of the sample partition to the nodes and finite-elements. In case of computing software 
this partition is realized as meshing step. [3] 

The automation sample meshing is realized on the base of mathematical approaches such 
as Delaunay triangulation and Advancing Front (AF) approaches. [4] Both approaches are 
widely used to create tetrahedral (tet) mesh. However, there are differences between these 
methods. AF is based on adding mesh elements starting at the boundaries by inserting one new 
point or merging different existing points. In this case, the main criteria of adequate 
triangulation is the intersection absence. The disadvantage of AF method is a very complex 
analysis of the partition region and surroundings of mesh elements. In that case the Delaunay 
triangulation is more flexible. For performing this method, the other triangulation methods may 
be used as the base segmentation. The subsequent algorithm implies checking compliance of 
base triangulation with Delaunay requirements and further improvement when necessary. In 
general, the triangulation satisfies Delaunay condition, if none of the given triangulation points 
fall within the area inside of the circle escribed around any of the built triangles. However, in 
case of conformity check, the algorithms are based on the theorem that can be formulated as 
“Among all possible triangulations, in case of Delaunay triangulation there is the maximum 
sum of the smallest angles of all built triangles” The requirement complemented by the theorem 
provides four analytical instruments for conforming check: 

1. Use of the circumscribed circle equation.
The equation of circle circumscribed the triangles built on points (𝑥𝑥1,𝑦𝑦1), (𝑥𝑥2,𝑦𝑦2), (𝑥𝑥3,𝑦𝑦3) 

can be expressed as: [4] 
(𝑥𝑥2 + 𝑦𝑦2) ⋅ 𝑎𝑎 − 𝑥𝑥 ⋅ 𝑏𝑏 + 𝑦𝑦 ⋅ 𝑐𝑐 − 𝑑𝑑 = 0, (1) 
where  

𝑎𝑎 = �
𝑥𝑥1 𝑦𝑦1 1
𝑥𝑥2 𝑦𝑦2 1
𝑥𝑥3 𝑦𝑦3 1

�, 𝑏𝑏 = �
𝑥𝑥12 + 𝑦𝑦12 𝑦𝑦1 1
𝑥𝑥22 + 𝑦𝑦22 𝑦𝑦2 1
𝑥𝑥32 + 𝑦𝑦32 𝑦𝑦3 1

�, 𝑐𝑐 = �
𝑥𝑥12 + 𝑦𝑦12 𝑥𝑥1 1
𝑥𝑥22 + 𝑦𝑦22 𝑥𝑥2 1
𝑥𝑥32 + 𝑦𝑦32 𝑥𝑥3 1

�, 𝑑𝑑 = �
𝑥𝑥12 + 𝑦𝑦12 𝑥𝑥1 𝑦𝑦1
𝑥𝑥22 + 𝑦𝑦22 𝑥𝑥2 𝑦𝑦2
𝑥𝑥32 + 𝑦𝑦32 𝑥𝑥3 𝑦𝑦3

� 

The Delaunay condition is feasible if for any point (𝑥𝑥0,𝑦𝑦0) does not fall into the circle 
region. This condition can be expressed as: 
((𝑥𝑥02 + 𝑦𝑦02) ⋅ 𝑎𝑎 − 𝑥𝑥0 ⋅ 𝑏𝑏 + 𝑦𝑦0 ⋅ 𝑐𝑐 − 𝑑𝑑) ⋅ 𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎 ≥ 0  (2) 

2. Checking with the previously calculated circumscribed circle.
Use of the circle equation mentioned above, requires a significant number of arithmetic 

calculations that leads to an increase in computation time. The usage of previously calculated 
circumscribed circle method allows to overcome this shortcoming. This method is based on the 
calculation of center (𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐) and radius r of circumscribed circles for each triangle. [4] 
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𝑥𝑥𝑐𝑐 = 𝑏𝑏
2𝑎𝑎

, (3) 

𝑦𝑦𝑐𝑐 = −𝑐𝑐
2𝑎𝑎

,  (4) 

𝑟𝑟2 = (𝑏𝑏2+𝑐𝑐2−4𝑎𝑎𝑎𝑎)
4𝑎𝑎2

, (5) 
The Delaunay condition is feasible if the distance from any point (𝑥𝑥0,𝑦𝑦0) to the centre of 

circle is bigger than radius. [4] 
(𝑥𝑥0 − 𝑥𝑥𝑐𝑐)2 + (𝑦𝑦0 − 𝑦𝑦𝑐𝑐)2 ≥ 𝑟𝑟2 (6) 

The advantage of this method is the absence of necessity to calculate the parameters of 
circles for each triangle. The check of Delaunay condition is always performed for pair of 
triangles, which leads to necessity to calculate the circle just for one of them. That method 
allows to reduce the amount of calculated circles by 25 - 45% and to reduce the number of 
arithmetic computations by third.  

3. Checking of the sum of the opposite angles.
The primary sources of this method are earlier works [5,6]. According to the authors, the 

Delaunay condition is feasible if for any point (𝑥𝑥0,𝑦𝑦0) used for area triangulation there is 𝛼𝛼 +
𝛽𝛽 ≤ 𝜋𝜋. (Fig. 2) 

Fig. 2. A check the sum of the opposite angles. 

This condition can be expressed as [7]: 
𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼 ⋅ 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽 +  𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼 ⋅ 𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽 ≥ 0, (7) 
where  

𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼 =  (𝑥𝑥0−𝑥𝑥1)(𝑥𝑥0−𝑥𝑥3) + (𝑦𝑦0−𝑦𝑦1)(𝑦𝑦0−𝑦𝑦3)
�(𝑥𝑥0−𝑥𝑥1)2+ (𝑦𝑦0−𝑦𝑦1)2�(𝑥𝑥0−𝑥𝑥3)2+ (𝑦𝑦0−𝑦𝑦3)2

(8) 

𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽 =  (𝑥𝑥2−𝑥𝑥1)(𝑥𝑥2−𝑥𝑥3) + (𝑦𝑦2−𝑦𝑦1)(𝑦𝑦2−𝑦𝑦3)
�(𝑥𝑥2−𝑥𝑥1)2+ (𝑦𝑦2−𝑦𝑦1)2�(𝑥𝑥2−𝑥𝑥3)2+ (𝑦𝑦2−𝑦𝑦3)2

(9) 

𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼 =  (𝑥𝑥0−𝑥𝑥1)(𝑦𝑦0−𝑦𝑦3) − (𝑥𝑥0−𝑥𝑥3)(𝑦𝑦0−𝑦𝑦1)
�(𝑥𝑥0−𝑥𝑥1)2+ (𝑦𝑦0−𝑦𝑦1)2�(𝑥𝑥0−𝑥𝑥3)2+ (𝑦𝑦0−𝑦𝑦3)2

(10) 

𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽 =  (𝑥𝑥2−𝑥𝑥1)(𝑦𝑦2−𝑦𝑦3) − (𝑥𝑥2−𝑥𝑥3)(𝑦𝑦2−𝑦𝑦1)
�(𝑥𝑥2−𝑥𝑥1)2+ (𝑦𝑦2−𝑦𝑦1)2�(𝑥𝑥2−𝑥𝑥3)2+ (𝑦𝑦2−𝑦𝑦3)2

(11) 
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4. Modified check of the sum of the opposite angles.
This method is similar to ‘checking of the sum of the opposite angles’ method. However, 

in order to reduce amount of calculation there is a pre-stage that implies partial calculation of 
equation (7). For this method, the parameters 𝑠𝑠𝛼𝛼 and 𝑠𝑠𝛽𝛽 must be calculated. [4] 
𝑠𝑠𝛼𝛼 = (𝑥𝑥0 − 𝑥𝑥1)(𝑥𝑥0 − 𝑥𝑥3) + (𝑦𝑦0 − 𝑦𝑦1)(𝑦𝑦0 − 𝑦𝑦3) (12) 

𝑠𝑠𝛽𝛽 = (𝑥𝑥2 − 𝑥𝑥1)(𝑥𝑥2 − 𝑥𝑥3) + (𝑦𝑦2 − 𝑦𝑦1)(𝑦𝑦2 − 𝑦𝑦3)      (13) 
According to [7] if parameters 𝑠𝑠𝛼𝛼 and 𝑠𝑠𝛽𝛽 are either positive or equal to 0 then the Delaunay 

condition will be fulfilled. If the 𝑠𝑠𝛼𝛼 and 𝑠𝑠𝛽𝛽 are both negative then the Delaunay condition will 
not be fulfilled and triangulation must be improved. The other combinations of these parameter 
values lead to subsequent calculation by the equation (7). On average, this modified method 
allows to reduce the number of arithmetic computations by 20 - 40%.  

Proposed analytical tools allow to check the correctness of the existing mesh in case of 
Delaunay triangulation, while the meshing based on Delaunay triangulation is performed by 
various algorithms such as iterative algorithms, merging algorithms, algorithms for direct 
construction and two-pass algorithms. Each algorithm is applied for some specific case and is 
discussed in detail in works [7].  

The meshing step is a preparatory stage for subsequent calculations. In general, the 
existing Computer-aided engineering (CAE) software has solver modules which allows to deal 
with mechanics, thermomechanics and fluid tasks. In general CAE software is able to provide 
the following analysis types. 

1. Static strength analysis that can provide information about displacement, strain and
stress taking place in the sample under mechanical load. The basic equation for this analysis 
can be expressed as: [7]. 
[𝐾𝐾]{𝑢𝑢} = {𝐹𝐹},           (14) 
where [𝐾𝐾]is the stiffness matrix; {𝑢𝑢}- displacement vector; {𝐹𝐹}- force vector, that can be 
represented by concentrated forces, temperature loads, pressure and inertia forces. 

This type of analysis can be suitable in case of the negligible impact on the structure 
behavior from action of inertia forces or energy dissipation processes. 

2. Dynamic strength analysis can be used for construction study in case of time-dependent
load application. The examples of these loads are sudden loads (shocks), cyclic loads (rotation), 
etc. Analysis of this type of loads is based on equation: [7]. 
[𝑀𝑀]{𝑢𝑢′′} + [𝐶𝐶]{𝑢𝑢′} + [𝐾𝐾]{𝑢𝑢} = {𝐹𝐹(𝑡𝑡)},        (15) 
where [𝑀𝑀] - the mass matrix; [𝐶𝐶]- the damping matrix; [𝐾𝐾]- the stiffness matrix; {𝑢𝑢′′}- the nodal 
acceleration vector; {𝑢𝑢′} - the nodal speed vector; {𝑢𝑢}- the vector of nodal displacement; {𝐹𝐹}- 
the loads vector and t is the computation time. 

The values of variables {𝑢𝑢}, that at any instant of time satisfy the equilibrium conditions 
of the system, are the solution of equation (15).  

3. Analysis of the construction stability that allows to define the load level that leads to
decrease of stability as well as reverse task - the state of construction under applied load can be 
performed by linear and nonlinear methods. The analytical equation of linear method is [7]. 
([𝐾𝐾] − 𝜆𝜆[𝑆𝑆]){𝑢𝑢} = 0,          (16) 
where [𝐾𝐾]- the stiffness matrix; [𝑆𝑆]- the matrix of effective stiffness; 𝜆𝜆- scale factor; {𝑢𝑢}- 
buckling vector. 

Nonlinear method is more complex and accurate method: 
[𝐾𝐾]𝑖𝑖−1({𝑢𝑢}𝑖𝑖 − {𝑢𝑢}𝑖𝑖−1) = {𝐹𝐹} − {𝐹𝐹𝑒𝑒𝑒𝑒}𝑖𝑖−1,        (17) 
where [𝐾𝐾]𝑖𝑖−1 is the stiffness matrix at the previous iteration; {𝑢𝑢}𝑖𝑖, {𝑢𝑢}𝑖𝑖−1- the displacement 
stiffness at the current and previous iteration respectively; {𝐹𝐹} - the vector of applied loads; 
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{𝐹𝐹𝑒𝑒𝑒𝑒}𝑖𝑖−1- the vector of the elastic forces correspondent to displacements at the previous iteration 
(i-1). 

4. Thermal analysis allows to obtain temperature stress and strain, phase transformations,
unsteady temperature conditions, etc. The basic equation for this type of analysis can expressed 
as: [7]. 
[𝐶𝐶]{𝑇𝑇′} + [𝐾𝐾]{𝑇𝑇} = {𝑄𝑄},          (18) 
where [𝐶𝐶] - the matrix of specific heat capacity; {𝑇𝑇′} - derivative of temperature; [𝐾𝐾] - the 
effective thermal conductivity matrix; {𝑇𝑇}- vector of nodal temperature; {𝑄𝑄}- the vector of 
effective heat flux in nodes. 

Basic equations of the described analysis contain elements that strongly depend on the 
properties of construction materials. These parameters are the matrixes of specific heat capacity 
and effective thermal conductivity for thermal analysis as well as the stiffness matrix for other 
types of mechanical analysis. For example, stiffness matrix strongly depends on the effective 
Young’s moduli and effective Poisson’s ratio. [8] 

Traditional bottom-up product design approach involves two simultaneous processes 
such as design of geometric parameters of product as well as selection of appropriate materials. 
The information about product functions and conditions of use provides engineers with the 
information about loading type, concentration and value of stresses that can be used to make an 
assumption about the required set of material properties. The task of engineers is to choose the 
material that best meets these requirements. [9] 

However, in real application there can be a few materials that allow to fulfill the final 
product requirements. In this case, the material selection is associated with solution of multi-
criteria optimization task. Commonly, material selection charts (Ashby charts) are used to find 
the most optimal solution. In general, Ashby charts demonstrate material properties plotted 
against each other on logarithmic scales. Obtained property-space is occupied by each material 
class and sub-class represented by bubbles that allow to visually compare the combination of 
properties between various materials. There is a lot of variants of Ashby charts plotted by using 
combination of about 30 mechanical and thermal properties such as density, Young’s moduli, 
ultimate strength, etc. The example of Young’s moduli - density Ashby chart is shown in Fig. 3. 

Fig. 3. A schematic Young’s moduli - density Ashby chart [10]. 
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In general, the Ashby's method of multi-criteria material selection process involves 
plotting and usage of material indexes that can be obtained analytically. Basically, the product 
performance criteria (P) are the function of loading requirements (F), geometry requirements 
(G) and material properties requirements (M). [10] 
𝑃𝑃 = 𝑓𝑓(𝐹𝐹,𝐺𝐺,𝑀𝑀) (19) 

Needless to say, that material selection is based only on material properties requirements. 
Thus, there is need to separate variables related with material properties from the others. For 
example, the performance criteria related with design of light and stiff beam (Fig.4) can be 
represented by system: [10] 

�
𝑚𝑚 = 𝐴𝐴 ∙ 𝐿𝐿 ∙ 𝜌𝜌
𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚 ≥

𝐶𝐶1𝐸𝐸𝐸𝐸𝐸𝐸
𝐿𝐿3

, (20) 

where L – the length of beam; A – the beam cross-section; 𝜌𝜌 - the material density; E – 
Young’s moduli; F – force applied to beam; 𝐶𝐶1 – constant that depends on the load distribution; 
I – the second moment of the area of the section, that can be defined as: 
𝐼𝐼 = 𝐴𝐴2

12
(21) 

Fig. 4. A beam of square section, loaded in bending [10]. 

The 𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚 is the permissible value of bending that must not be exceeded. Taking into 
account equations 20, 21, the optimization of beam mass can be written as: 

𝑚𝑚 ≥ � 12𝐹𝐹
𝐿𝐿𝐶𝐶1𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚

∙ 𝐿𝐿3 ∙ � 𝜌𝜌
𝐸𝐸
1
2
� (22) 

According to equation 22, material properties requirements can be represented as: 

𝑓𝑓(𝑀𝑀) = � 𝜌𝜌
𝐸𝐸
1
2
� (23) 

Therefore, the best materials for a light and stiff beam are those with the smallest values 
of 𝑓𝑓(𝑀𝑀). However, usually engineers invert 𝑓𝑓(𝑀𝑀) in order to obtain material index. For the 
considered case, the material index is √𝐸𝐸 𝜌𝜌� . On the Ashby chart, the material index are plotted 
as a family of straight parallel lines of slope 2 and can be used to find the material with optimal 
relation of  √𝐸𝐸 𝜌𝜌�  (Fig. 3). The bubbles crossed by the same straight line present materials with 
the same value of material index. The material that located under or above the material index 
line have lower or higher value of √𝐸𝐸 𝜌𝜌�  relation, respectively. According to the Fig. 3, some 
types of composites, wood and ceramics have the greater value of √𝐸𝐸 𝜌𝜌�  material index 
comparing with the metals, polymers and foams. Therefore, in case of presence of composite 
and metal beams with the same stiffness, the composite beam will be less heavy comparing 
with the metal one. In works [10], there is description of other material indexes and their 
applications for engineering tasks. 

In order to minimize the search region, the additional limits can be used. Potential 
materials obtained by the Ashby's method than studied by using supported information in order 
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to find the best solution. Further, the effective properties of chosen material are used for CAE 
computation and design confirmation.  

The effective properties can be characterized as the averaged material properties of 
investigated part or whole structure. It is true even in case of analysis of homogeneous 
materials. The reason is the presence of grains, particles with various dimension and orientation. 
There is the interaction between these elements that can have influence on the material 
behavior. However, this interaction can be referred to micro-mechanical investigation. For 
homogeneous materials the mechanical analysis commonly deals with macro scale that 
represent level of components and structural parts. The absence of differences in properties on 
macro scale level allows to avoid the segmentation of calculated structure. On the other hand, 
the analysis of heterogeneous materials such as composite materials is more complex and 
requires an investigation on the meso scale (level of composite phases) and micro scale. [11] 
There are several methods that can be used for property description of composite materials to 
perform computational analysis. 

The most common type of composite materials are plastic materials reinforced by 
continuous fibers. In fact, this type of composite materials has two types of heterogeneity. The 
first one is characterized by the presence of two phases such as matrix and reinforcement fibers. 
The second one represents the heterogeneity provided by layered structure consisting of layers 
with the certain direction of the fibers (00, 900, ±450). Commonly for the calculation of the 
structure behavior and mechanical analysis, only the second type of heterogeneity is taken into 
account. In these case, the composite material is represented as a number of layers with known 
properties. [12]  

The same approach is commonly used for calculation of lamination composite materials. 
On the other hand, the structures with fillers represented by spheres, plates, tubes, etc. are 
commonly exposed to the homogenization process that represents the composite structure as a 
homogeneous material with effective properties calculated on basis of volume fractions. The 
study of these composites on the micro scale level is more complex and can be performed when 
the interaction between matrix and fillers phases must be investigated. [13] 

According to [14,15] the minimum set of properties required for computational 
calculation includes effective Young's modulus along and across of the fibers (E1, E2, 
respectively) (Fig.5); effective shear modulus G12; 𝜎𝜎1𝐵𝐵+ ,𝜎𝜎1𝐵𝐵−  - ultimate strength under uniaxial 
tension and compression across the fibers; 𝜎𝜎12+ - shear strength; 𝜇𝜇12 - effective Poisson ratio 
(where the first index shows the direction of load action, while the second - the direction of  the 
relevant transverse deformation), while the 𝜇𝜇21 can be expressed as [15]: 
𝜇𝜇21 = 𝜇𝜇12

𝐸𝐸2
𝐸𝐸1

(24) 

Fig. 5. Cross-section of unidirectional monolayer. 

In case of multilayer composite materials reinforced by continuous fibers the set of 
effective properties must be provided for each layer that is accepted as the homogeneous 
structure. This process is known as homogenization and is based on the ‘Rules of Mixture’ 
prediction model (ROM). There are several models of ROM. For example, the ROM model 
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based on the assumption that all components of structure undergo the same deformation in the 
same direction is known as Voigt-type ROM. [16] Commonly, this model is used for calculation 
of Young's modulus along fibers (E1) in case of the load application in direction of fibers. 
𝐸𝐸1 = 𝜉𝜉𝑀𝑀𝐸𝐸1𝑀𝑀 + 𝜉𝜉𝐹𝐹𝐸𝐸1𝐹𝐹 ,         (25) 
where 𝜉𝜉𝑀𝑀, 𝜉𝜉𝐹𝐹- the volume fractions of matrix and fiber components, respectively; 𝐸𝐸1𝑀𝑀, 𝐸𝐸1𝐹𝐹- 
Young’s modulus of matrix and fiber components, respectively.  

At the same time, the effective shear modulus G12 can be calculated by means of Reuss-
type ROM based on the equal load distribution among the whole structure. 
1
𝐺𝐺12

= 𝜉𝜉𝑀𝑀
1
𝐺𝐺𝑀𝑀

+ 𝜉𝜉𝐹𝐹
1
𝐺𝐺𝐹𝐹

, (26) 

where 𝐺𝐺𝑀𝑀, 𝐺𝐺𝐹𝐹- shear modulus of matrix and fiber components, respectively. 
Although, this model is accurate for laminate composite materials, in case of matrix based 

composites Reuss-type ROM cannot provide adequate results. More accurate version of models 
above is the Reuss–Voigt bounds that provides the upper (Voigt) and lower (Reuss) values of 
the effective elastic properties. 
(𝜉𝜉𝑀𝑀𝐸𝐸1𝑀𝑀−1 + 𝜉𝜉𝐹𝐹𝐸𝐸1𝐹𝐹−1)−1 ≤ 𝐸𝐸1 ≤ 𝜉𝜉𝑀𝑀𝐸𝐸1𝑀𝑀 + 𝜉𝜉𝐹𝐹𝐸𝐸1𝐹𝐹.      (27) 

In works [16,15,17,18,19], authors demonstrate the usage of Hashin-Shtrikman bounds 
and Mori-Tanaka methods to calculate the effective elastic properties of two and three phase 
composites. Moreover, these methods are in line with the test results and can be used for 
composites with randomly oriented fibers or inclusions of irregular shapes.  

In general, other parameters such as mass density, ultimate strength and thermal 
conductivity of composite materials can be calculated by ROM method. 
(𝜉𝜉𝐹𝐹
𝜌𝜌𝐹𝐹

+ 𝜉𝜉𝑀𝑀
𝜌𝜌𝑀𝑀

)−1 ≤ 𝜌𝜌𝑒𝑒𝑒𝑒𝑒𝑒 ≤ 𝜉𝜉𝐹𝐹𝜌𝜌𝐹𝐹 + 𝜉𝜉𝑀𝑀𝜌𝜌𝑀𝑀, (28) 

(𝜉𝜉𝐹𝐹
𝜎𝜎𝐹𝐹

+ 𝜉𝜉𝑀𝑀
𝜎𝜎𝑀𝑀

)−1 ≤ 𝜎𝜎1𝐵𝐵+ ≤ 𝜉𝜉𝐹𝐹𝜎𝜎𝐹𝐹 + 𝜉𝜉𝑀𝑀𝜎𝜎𝑀𝑀,   (29) 
where 𝜌𝜌𝐹𝐹, 𝜌𝜌𝑀𝑀 – density of fiber and matrix, respectively; 𝜎𝜎𝐹𝐹, 𝜎𝜎𝑀𝑀 – ultimate tensile strength of 
fiber and matrix, respectively. 

The analytical calculation of composite properties provides the range in which the values 
of effective properties are. For this reason, in case of FEM analysis of composite structure there 
is a necessity to use the properties obtained from experimental tests in order to increase 
accuracy of final results.  

The obtained effective parameters can be used to describe the elasticity characteristics of 
the studied construction. The Hooke's law expressed in stiffness form can be used for this 
purpose. [15] 
[𝜎𝜎] = [𝐾𝐾][𝜀𝜀],            (30) 
where [𝜎𝜎] is the matrix of stress arising in the studied structure; [𝜀𝜀] - the strain matrix of 
structure; [𝐾𝐾]- the stiffness matrix. 

In case of multilayer composites reinforced with continuous fibers, the stiffness matrix 
depends on the effective properties of materials as well as geometry of construction. The matrix 
can be expressed as: 
[𝐾𝐾] = 1

𝐻𝐻
∑ [𝑘𝑘]𝑖𝑖ℎ𝑖𝑖𝑛𝑛
𝑖𝑖=1 , (31) 

where H- the thickness of construction; ℎ𝑖𝑖 - thickness of i-th layer; [𝑘𝑘]𝑖𝑖 - the stiffness matrix of 
i-th layer. 
[𝑘𝑘]𝑖𝑖 = [𝑇𝑇]𝑖𝑖�𝑘𝑘��𝑖𝑖[𝑇𝑇]𝑖𝑖𝑇𝑇,          (32)
where T is the transformation matrix that can be expressed as: 

[𝑇𝑇]𝑖𝑖 = �
𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃𝑖𝑖 −2𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃𝑖𝑖 𝑐𝑐𝑜𝑜𝑠𝑠2𝜃𝜃𝑖𝑖 2𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑖𝑖

𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑖𝑖 −𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃𝑖𝑖 − 𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃𝑖𝑖
�   (33) 
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where 𝜃𝜃𝑖𝑖- the fiber orientation of i-th layer; �𝑘𝑘��
𝑖𝑖
 is the stiffness matrix in local coordinates of i-

th layer. [15] 

�𝑘𝑘��
𝑖𝑖 = ��

𝐸𝐸1,𝑖𝑖

1−𝜇𝜇12,𝑖𝑖𝜇𝜇21,𝑖𝑖

𝜇𝜇12,𝑖𝑖𝐸𝐸2,𝑖𝑖

1−𝜇𝜇12,𝑖𝑖𝜇𝜇21,𝑖𝑖
0

𝜇𝜇21,𝑖𝑖𝐸𝐸1,𝑖𝑖

1−𝜇𝜇12,𝑖𝑖𝜇𝜇21,𝑖𝑖

𝐸𝐸2,𝑖𝑖

1−𝜇𝜇12,𝑖𝑖𝜇𝜇21,𝑖𝑖
0

0 0 𝐺𝐺12,𝑖𝑖

��, (34) 

The obtained stiffness matrix can be used as input data for CAE analysis (eq. 14 -17). 
Besides the elastic properties, the solver algorithms must be equipped with the failure 

criteria that strongly depends on the composite material strength. There are various methods for 
failure criteria setting. However, the most common method is Tsai-Wu criterion. [15] The 
simple form of this criterion is equation 35. 
𝐹𝐹1𝜎𝜎11 + 𝐹𝐹2𝜎𝜎22 + 𝐹𝐹11𝜎𝜎112 + 𝐹𝐹22𝜎𝜎222 + 𝐹𝐹33𝜎𝜎122 + 2𝐹𝐹12𝜎𝜎11𝜎𝜎22 = 1,     (35) 
where  
𝐹𝐹1 = 1

𝜎𝜎1𝐵𝐵
+ + 1

𝜎𝜎1𝐵𝐵
− ;   𝐹𝐹2 = 1

𝜎𝜎2𝐵𝐵
+ + 1

𝜎𝜎2𝐵𝐵
−  (36) 

𝐹𝐹11 = − 1
𝜎𝜎1𝐵𝐵
+ 𝜎𝜎1𝐵𝐵

−     𝐹𝐹22 = − 1
𝜎𝜎2𝐵𝐵
+ 𝜎𝜎2𝐵𝐵

−   𝐹𝐹33 = − 1
𝜎𝜎12𝐵𝐵
2  (37) 

F12 is the coefficient that characterizes the interinfluence of 𝜎𝜎11and 𝜎𝜎22. This coefficient 
can only be determined by experimental measurements. (Fig. 6) 

Fig. 6. Surface of maximum stresses. 

In these simple forms the Tsai-Wu criterion takes into account only three parameters 
(𝜎𝜎11,𝜎𝜎22,𝜎𝜎12). However, the real numerical calculation deals with stresses in each direction 
(nine parameters) and coefficients of mutual influence between stresses in plane xy, yz, xz. [15] 
𝐴𝐴 + 𝐵𝐵 < 1,  (38) 
where  

𝐴𝐴 = − 𝜎𝜎𝑥𝑥𝑥𝑥2

𝜎𝜎𝑥𝑥𝑥𝑥
𝑓𝑓 𝜎𝜎𝑥𝑥𝑥𝑥

𝑓𝑓 −
𝜎𝜎𝑦𝑦𝑦𝑦2

𝜎𝜎𝑦𝑦𝑦𝑦
𝑓𝑓 𝜎𝜎𝑦𝑦𝑦𝑦

𝑓𝑓 − 𝜎𝜎𝑧𝑧𝑧𝑧2

𝜎𝜎𝑧𝑧𝑧𝑧
𝑓𝑓 𝜎𝜎𝑧𝑧𝑧𝑧

𝑓𝑓 + 𝜎𝜎𝑥𝑥𝑥𝑥2

�𝜎𝜎𝑥𝑥𝑥𝑥
𝑓𝑓 �

2 + 𝜎𝜎𝑦𝑦𝑦𝑦2

�𝜎𝜎𝑦𝑦𝑦𝑦
𝑓𝑓 �

2 + 𝜎𝜎𝑥𝑥𝑥𝑥2

�𝜎𝜎𝑥𝑥𝑥𝑥
𝑓𝑓 �

2 + 𝐶𝐶𝑥𝑥𝑥𝑥𝜎𝜎𝑥𝑥𝑥𝑥𝜎𝜎𝑦𝑦𝑦𝑦

�𝜎𝜎𝑥𝑥𝑥𝑥
𝑓𝑓 𝜎𝜎𝑥𝑥𝑥𝑥

𝑓𝑓 𝜎𝜎𝑦𝑦𝑦𝑦
𝑓𝑓 𝜎𝜎𝑦𝑦𝑦𝑦

𝑓𝑓
+ (39) 

+ 𝐶𝐶𝑦𝑦𝑦𝑦𝜎𝜎𝑦𝑦𝑦𝑦𝜎𝜎𝑧𝑧𝑧𝑧

�𝜎𝜎𝑦𝑦𝑦𝑦
𝑓𝑓 𝜎𝜎𝑦𝑦𝑦𝑦

𝑓𝑓 𝜎𝜎𝑧𝑧𝑧𝑧
𝑓𝑓 𝜎𝜎𝑧𝑧𝑧𝑧

𝑓𝑓
+ 𝐶𝐶𝑥𝑥𝑥𝑥𝜎𝜎𝑥𝑥𝑥𝑥𝜎𝜎𝑧𝑧𝑧𝑧

�𝜎𝜎𝑥𝑥𝑥𝑥
𝑓𝑓 𝜎𝜎𝑥𝑥𝑥𝑥

𝑓𝑓 𝜎𝜎𝑧𝑧𝑧𝑧
𝑓𝑓 𝜎𝜎𝑧𝑧𝑧𝑧

𝑓𝑓
, 

𝐵𝐵 = � 1

𝜎𝜎𝑥𝑥𝑥𝑥
𝑓𝑓 + 1

𝜎𝜎𝑥𝑥𝑥𝑥
𝑓𝑓 � 𝜎𝜎𝑥𝑥𝑥𝑥 + � 1

𝜎𝜎𝑦𝑦𝑦𝑦
𝑓𝑓 + 1

𝜎𝜎𝑦𝑦𝑦𝑦
𝑓𝑓 � 𝜎𝜎𝑦𝑦𝑦𝑦 + � 1

𝜎𝜎𝑧𝑧𝑧𝑧
𝑓𝑓 + 1

𝜎𝜎𝑧𝑧𝑧𝑧
𝑓𝑓 � 𝜎𝜎𝑧𝑧𝑧𝑧, (40) 
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where 𝜎𝜎𝑥𝑥𝑥𝑥,𝜎𝜎𝑦𝑦𝑦𝑦,𝜎𝜎𝑧𝑧𝑧𝑧 ,𝜎𝜎𝑥𝑥𝑥𝑥,𝜎𝜎𝑦𝑦𝑦𝑦 ,𝜎𝜎𝑥𝑥𝑥𝑥 - stress components in the material coordinate system; 
𝜎𝜎𝑥𝑥𝑥𝑥
𝑓𝑓 ,𝜎𝜎𝑦𝑦𝑦𝑦

𝑓𝑓 ,𝜎𝜎𝑧𝑧𝑧𝑧
𝑓𝑓  – failure tensile stress along x, y and z axes in the material coordinate system;

𝜎𝜎𝑥𝑥𝑥𝑥
𝑓𝑓 ,𝜎𝜎𝑥𝑥𝑥𝑥

𝑓𝑓 ,𝜎𝜎𝑥𝑥𝑥𝑥
𝑓𝑓  – failure compressive stress along x, y and z axes in the material coordinate system; 

𝜎𝜎𝑥𝑥𝑥𝑥
𝑓𝑓 ,𝜎𝜎𝑦𝑦𝑦𝑦

𝑓𝑓 ,𝜎𝜎𝑥𝑥𝑥𝑥
𝑓𝑓  – failure shear stress in plane xy, yz and xz in the material coordinate system; 

𝐶𝐶𝑥𝑥𝑥𝑥,𝐶𝐶𝑦𝑦𝑦𝑦,𝐶𝐶𝑥𝑥𝑥𝑥 - mutual influence coefficient in plane xy, yz and xz in the material coordinate 
system. 

The inequality fulfillment demonstrates that the construction is able to withstand the 
applied load. In fact, the value inverse to right part of equation 38 characterizes the safety factor 
of the tested construction. In addition to the parameters and criteria above, the prediction of the 
remaining life must be performed by use of the algorithms and models that are able to take into 
account the material aging during exploitation. [14]  

The modern systems for numerical analysis allow to significantly increase the accuracy 
and quality of the constructions made from composites materials. However, the application of 
this types of analyses strongly depends on the information about material properties. The 
mentioned analytical relations and methods used to describe composite properties as well as 
their structure are not precise enough. They include certain approximation and assumptions. 
For this reason, the usage of experimental measurements is strongly recommended. However, 
experimental tools are not always applicable due to the limitations of the composite material 
theory. Taking into account the duration of the research and development of the new desired 
material (an average 10 - 20 years), the engineers must look for compromises in the existing 
materials that deprives the Simulated-based design of one more optimization parameter such as 
material structure. 

3. Genome-Oriented Strategy
Nowadays cost-cutting and time-to-market reduction are relevant ways to gain the competitive 
advantage in the global market. In order to produce faster and at low cost, it is insufficient to 
optimize the construction parameters. The deployment of the most suitable materials in the 
different parts of the construction is a key advantage. For this reason, the Material Genome 
Initiative (MGI) was initiated in the United States. According to the MGI, ‘the discovery and 
deployment of advanced material systems is crucial to achieving global competitiveness in the 
21st century’. [20] This program or initiative is focused on involvement of computational 
capabilities and data management in material science and engineering.  

The MGI aims to accelerate the advanced materials research and design by creation wide 
networks and open source platforms involved in advanced material development. The first step 
to create this type of advanced materials infrastructure is an adoption of rapidly developing 
computational technologies as well as the development of more efficient algorithms for 
prediction and modelling of materials’ properties. The involvement of such technologies is 
crucial for reduction of the time spent on experiments and supplementation of physical 
experiment data. In addition to the development advanced materials and obtaining information 
about the structure and related properties, the generated data must be recorded and translated to 
an open source database. Existence of such open source database allows industry offer new 
product designs improved by not only an optimization of components by deployment of more 
suitable materials. [20] An ability to monitor the development of new materials and presence 
of connection between open source platforms and computer-aided instruments leads to an 
acceleration of design and improvement of designed constructions.  

Thus, the main aim of MGI is an achievement of superiority in advanced material design 
and implementation by development of new instruments such as digital data platforms and new 
research and development (R&D) tools. [20] 
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3.1. R&D computation instruments. Traditionally, material developing is completed by 
testing. The experimental tools for testing and study of obtained results are expensive and their 
implementation is time-consuming in comparison with computational instruments. However, 
in spite of this comparison, the experimental/empirical methods of material study are still used 
for research and development of advanced materials. The results of computational analysis 
strongly depend on the quality of calculated models that must include accurate and extensive 
data about material behavior and properties. For new materials, the physical experimentation is 
the only possible option to obtaining such accurate set of data. Moreover, the experimental tools 
are the only possible way to validate calculated results of computer modelling of developed 
materials. For this reason, the experimental tools cannot be neglected during creation of modern 
advanced materials infrastructure. The simultaneous use of computational and experimental 
tools allows to overcome the problems that cannot be solved by using theoretical frameworks. 
While the experimental tools are able to improve calculation model by incorporating new data, 
the computational tools can use this improved model to perform analysis of structure, properties 
and optimization by studying a large set of possible configurations. [20] 

The development of novel software that allows to connect the experimental and 
computational tools is an important step for improvement of Design Stage as the key part of 
Factory of Future. For this reason, the various research groups and companies are involved in 
development of this kind of software technologies. One of the example of such software is the 
Simpleware toolkit. In works [21,22] the usage of this software for characterization of 
heterogeneous material properties and structures is presented. The methodology is represented 
by step sequence that involves experimental and computational tools. The first step is usage of 
scan techniques such as Computed tomography (CT), X-ray Microtomography (micro-CT) 
[22], and serial sectioning (SEM) for generation of image stack that can be converted from 2D 
pixels into 3D pixels (voxels) by image processing software. The conversion process is 
accompanied by segmentation of heterogeneous structure into separate regions (different 
phases, reinforced particles, defects or porous networks etc.). Typically, the data obtained by 
scan techniques is presented by regular Cartesian grid of greyscale data that demonstrate the 
amount of radiation passed through the tested samples. The variation in the shades informs 
about the changes in material throughput that can be related with difference in materials, phases 
and structures of the tested sample. [4] Regions segmentation process is based on the presence 
of this data set and implies determination of various phases in sample structure. Some factors 
such as noise, poor contrast, and other defects related to the quality of scan techniques can 
influence on the accuracy of segmentation. [4] The need of accurate results requires the use of 
thresholding and cropping software techniques. For example, a noise reduction required to 
eliminate variations of brightness and color information can be performed by using a median 
filter. The tools such as ‘island removal’ can be used for reassignment of unconnected small 
areas to the relevant phase, while the ‘smoothing’ algorithms make a deal with the volume and 
topology of obtained phases. [21] 

The segmented 3D image data can be rapidly processed and converted into multi-part 
meshes by algorithm such as +FE Grid that is the part of Simpleware software or the other 
finite-element based methods and techniques such as ‘Enhanced Volumetric Marching Cubes’ 
(EVoMaC). The usage of image-based meshing approach allows to obtain more accurate and 
complete meshes comparing with CAD-based approaches. The main reason of this is the usage 
of model segmentation for generation of mesh with different dimension or configuration 
depending on the size and complexity of local phases. Mostly, this meshing is possible due to 
the EVoMaC algorithm, that generates hexahedral elements from voxels lying in mask interiors, 
while the tetrahedral meshing applies to voxels lying close to mask interfaces. [21,4] In case of 
CAD-based approach, the mesh creation is often accompanied by loss of volume or topology 
that leads to decrease in model accuracy. Obtained meshed model can be used for calculation 
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of behavior and properties of tested samples by using existing computational tools mentioned 
earlier. Typically, the calculation of heterogeneous materials is performed by numerical 
homogenization. In case of Simpleware, homogenization is carried out by software modules 
such as +SOLID, +LAPLACE and +FLOW. The work of these modules is based on use of a 
built-in finite element solvers that allows to calculate and analyze the behavior of a material 
cuboidal sample in case of boundary conditions. The operability of proposed methodology is 
demonstrated with studying of advanced materials such as Berea sandstone [23] and Aluminum 
Matrix Composite with PMMC particles [22]. 

Without a doubt there are other methods used for converting the 2D scan data to the 3D 
model. For example, Yiu et al. use the CT image data to generate 3D microstructural model of 
asphalt mixture. [24,25,26] The study of asphalt mixture structure and properties (shear 
modulus) by usage of X-ray CT and FEM tools is presented in work [27]. In work [28, 29,30], 
the X-ray CT is used as the instrument for reconstruction of more detailed “real” model of 3D 
woven and other types of textile composite materials. In general, the approach proposed to 
study textile composite material structure is similar to Simpliware methodology, however to 
classify the material phases there is the database of “training set” that allows to train the 
program classifier module on the examples. In works [31, 32, 33] the authors perform numerical 
and experimental studies of delamination process and their prediction for carbon fiber 
reinforced polymers (CFRP). For this purpose, the Spectral Element Method (SEM) is applied 
to support numerical analysis as well as Scanning Laser Doppler Vibrometry (SLDV) is related 
with experimental research.  

In fact, the experimental tools can be used not only for initial data obtaining but also to 
confirm the correctness of the calculated model and the predicted behavior of structure. For 
example, nanoindentation techniques can be used to measure mechanical properties in a pattern 
at nanoscale. [34] In work [35], the technique for collection of Acoustic Emission data is 
applied to validate the numerical prediction of L-flange behavior under quasi-static load 
conditions. However, the application of this technique provides a small amount of data for 
numerical model validation. In fact, AE is the audio records that include sequence of sound 
spikes with regard to time. These spikes cannot be used to identify the area of fracture or the 
magnitude of deformation. However, the obtained data can be compared to numerical results in 
terms of moments of deformation and fracture occurrence. In fact, strength testing allows to 
provide more information that can be used for validation. [36]  

Nowadays, there is a large number of instruments and methods of empirical investigation 
that can be used for improvement of numerical algorithms. This approach allows to obtain 
highly-accurate data that further can be used to design the high-quality constructions as well as 
to create platform for material R&D. However, the undeniable advantage of systems such as 
Simpleware software compared to using various separate tools is a quick data transferring and 
usage of data format transparent for all software modules. The involvement of existing methods 
and improvement of performance in digital research and design trends is possible due to 
development of data representation standards as well as various frameworks provided 
interaction between different experimental and numerical instruments. 

The development of such frameworks is mentioned in work [35]. In order to numerically 
predict L-flange behavior under quasi-static load conditions the authors involve a variety of 
tools such as COMPRO software, Abaqus Simulation and Autodesk Helius PFA softwares. In 
this work, the model of composite structure is performed by means of COMPRO software that 
are able to provide additional information about the structure behavior during processing as 
well as to predict the deformation and to calculate residual stresses. Partly on the base of this 
model, the model of L-flange mechanical properties such as the ply-level strength is calculated 
by means of Abaqus Simulation software. The data obtained from these tools and design steps 
is transferred into the final step carried out by means of Autodesk Helius PFA software. It is 
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the powerful instrument of progressive FE analysis that allows to perform more advanced 
multiple failure analysis of composite structures. Each of these software instruments can be 
applied separately for providing high-quality results with subsequent analytical calculation or 
replaced by other numerical tools. However, the main aim of the proposed calculation method 
is the combination of their advantage in order to obtain fast and accurate results and 
construction behavior prediction. Such integration and data communication is provided by 
usage of commercially available ModelCenter software package. The advantage of this 
software is an ability to interface with other standalone applications and to automate the data 
transfer process by integration of applications outputs into a system model. In fact, the proposed 
in the work [35] framework covers the stages from composite material preparation to testing of 
construction made from this material. The complex calculation of these stages involves material 
study on various scale levels such as micro, meso and macro scales. Although this approach 
requires considerable computing power, but the obtained results allow to understand the links 
between material creation process, material structure, material properties and behaviors as well 
as properties of final construction. This approach is known as Integrated Computational 
Materials Engineering (ICME). [35, 37] 

3.2. Integrated Computational Materials Engineering (ICME) approach as an 
efficient design instrument for FoF concept. In general, the ICME approach aim is to provide 
all stakeholders with a relevant tool for designing materials for targeted performance 
requirements. [37] Moreover, this approach is a disruptive technology. In order to satisfy the 
product requirements, the design of micro- and mesostructure of materials can be performed 
instead of the traditional material selection. This replacement allows to provide the Simulated-
based design with one more optimization parameter such as material structure that allows to 
design best-in-class products with the reduction of time to market parameter. 

The improvement of design process by use of ICME approach instead of traditional 
methods, some basic aspects of which is described in Section 2, can be explained by level of 
input data. Both approaches are based on the top-down design process in which the function 
and requirements of final product are target functions used for creation and optimization of 
product construction. For traditional approach the target functions define the necessary 
geometry and properties of construction that leads to use of materials with strictly required 
mechanical, thermal or electrical properties. In case of traditional approach, the designer’s work 
with material is limited by selection of more appropriate materials among the existing options. 
This selection is based on compromises, which means sacrificing some characteristics for the 
sake of taking more important ones. In this case, the ideal design solution can be rarely obtained 
due to the time-consuming nature of the process as well as lack of suitable materials. 

The ICME approach ignores material selection step. In fact, required material properties 
obtained on the macroscope investigation level are used as the input data for meso-, macro- and 
sometimes nanoscope level design. Requirements of mechanical, thermal and electrical 
properties are used as the basis for calculation and design of material structure as well as the 
processing of this materials. For example, such sequence of processing-structure-properties 
investigations is mentioned in work [38] as the integration of Moldflow and Moldex3D 
software for characterization of structure and fiber orientation obtained during processing and 
NX Nastran or Ansys Workbench software to analysis of the properties and behavior of 
obtained material structure. The involvement of micro- and mesoscale investigation into design 
process makes the ICME similar to another approach that is commonly associated with 
properties and behavior prediction. This prediction approach is the bottom-up process that deals 
with atomic structure. The key process is combinatory search of more optimal atomic 
configuration that provides the required properties. The examples of such approach is 
CALculation PHAse Diagram (CALPHAD) method [39,40,41] and Universal Structure 
Predictor: Evolutionary Xtallography [42, 43] as well as several other methods [44,45]. 
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However, such combinatorial methods deal only with atomic structure while ignoring the 
morphology of multiple phases and interphase strength. This concentration on atomic structure 
and properties such as atomic bonding cannot guarantee the multiscale investigation to meet 
the final product requirements. For this reason, this prediction approach is commonly used for 
study of new materials in material science, chemistry and physics researches, while the ICME 
can be integrated into the design process for competitive products. [37] 

In fact, the ICME approach combines the top-down and bottom-up methods in order to 
provide the multiscale product design. The data about product functions and characteristics as 
well as the information about material genome that includes relationship between 
microstructure and desirable properties is important information for investigation by this 
approach. According to [37] the realization of such multiscale approach faces a number of 
problems such as: 

- creation of relations between polyphase microstructures and the properties of 
construction behavior by considering their behavior at all scales; 

- description and determination of responses in higher scales behavior to variations and 
changes in structure or mechanisms in lower scales; 

- description of relations between microstructure and applied processing technology as 
well as the environment and impurities; 

- involvement of the physics and chemistry knowledge into design process and combine 
them with engineering methods. 

The last but not least problem is description of microstructure by means of mathematical 
and digital methods. In work [46], the microstructure is presented as the key factor that links 
the different scales during investigations. The authors describe three important types of 
microstructure representation. The more approximate type is statistical representation that 
involves statistical tools and instruments. However, the data obtained using these tools cannot 
provide the highly resolved information for accurate multiscale design valuation. Commonly 
this type of microstructure representation deals with average value of microstructure parameters 
such as grain size, aspect ratio, etc. This information as the statistical model of material 
microstructure is entered into materials equations on the process scale in order to estimate 
material properties for other scales calculations. On the other hand, there are two more complex 
types such as Spatial and Numerical representations. In general, any spatial descriptions are 
based on the use of scalars, vectors and tensors. In order to use numerical algorithms for their 
calculation and characterization, they must be represented by data arrays with dimension 
corresponding to the amount of objects/features in the microstructure. Besides the description 
of objects/features positions, the scalars, vectors and tensors represent concentration fields for 
individual chemical elements, stress-strain fields and others parameters that allow to describe 
and take into account various changes in the structure. The Spatial representation method may 
be based on experimental approach using data from empiric studies (CT, SEM, etc.) or on 
simulation approach that involves phase-field and crystal plasticity FEM computation 
algorithms. In addition, the Spatial representation method may use the synthetic approach that 
use neither experimental nor simulation tools. In fact, this approach involves algorithms that 
create artificially microstructure design on basis of statistical representation. The third 
representation method (Numerical) is based on use of voxel type numerical representation and 
calculation of microstructure. Commonly this method is more suitable for subsequent FEM 
approaches. More comprehensive description of representation methods is presented in works 
[47,48, 49]. 

The described above principles of ICME approach are illustrated in various works. For 
example, in work [50] the multiscale design is applied to create the car door assembly from 
fiber reinforced composite material. The main aim is to achieve the best mass-strength ratio. 
For this purpose, the optimization of composite geometries is performed. The design of door 
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assembly as well as behavior simulation in case of load applications is performed in ABAQUS 
software. The assembly components are designed by the use of failure criterion Tsai-Wu and 
stiffness based deflection criteria. In this case, the preliminary calculation is performed by the 
use of isotropic material in order to obtain the stress contours and stiffness requirements that 
can be used for composite structure optimization. For this purpose, a repetitive unit cell model 
(RUC) is generated by the open source TexGen software. The obtained RUC microstructural 
models have various structure architectures such as plain, woven and 3D textile weaves. These 
models are virtually tested with regard to required stiffness parameters generated on the 
macroscale level until the optimal parameters such as matrix and fiber materials, fibers 
orientation are obtained. The automatization of ICME approach and data transfer between 
divided instruments and simulation modules are achieved by a framework based on TCS 
PREMAP software platform. [50] 

In work [38], authors propose a novel framework for FRP parts design that besides 
traditional CAD/CAE modules includes Computer-Aided Conceptual Design (CACD) tools. 
According to the authors, the main application of CACD is searching for optimal structure, 
fiber orientation and distribution in polymer matrix taking into account the minimum fiber 
consumption requirement. The main object for data representation and transfer between various 
steps is the heterogeneous feature model (HFM) proposed by the authors. HFM fully describes 
the fiber-reinforced composite details during design and optimization process and is thoroughly 
described in work [38]. In general, the HFM is based on structure and material optimization 
results and is further supplemented by detailed design from CAD modules and processing 
simulation data from Injection molding CAE tools. The obtained model can be sent to part-
scale simulation powered by CAE software. Depended on the obtained results the structure and 
material optimization can be repeated and the process continues until the optimal solution is 
obtained. 

3.3. Digital Data. Nowadays, it is crucial not just to develop the new materials but also 
to provide the results of study to all concerned participants of advanced material innovation 
process. This set of data may significantly help the product designer in choosing the material 
with certain parameters and properties. [20] For this reason the MGI and ICME are based on 
creation of open databases that contain significant amount of existing material knowledge. The 
modern material scientists and engineers have access to the information about advanced 
materials, materials’ structures and properties as well as the information about development of 
new materials more suitable for their purpose. The existing material databases are represented 
by Total Materia, Material Data Facility [51], the Material Commons [52], the Material Project 
[53], the Harvard Clean Energy Project [54], Inorganic Crystal Structure Database [55], the 
Open Quantum Materials Database [56] and the Cambridge Structural Databases [57]. 

The main goal of such instruments development is serving the needs of the growing 
advanced materials research community and providing it with the powerful tools for its work. 
In fact, the presented databases differ from the usual understanding of this therm. Modern 
material data bases are not resources with the lists of existing materials and their properties, but 
cloud platforms for communication and data exchange between participants of the material 
research and development process. 

For example, the Material Commons is a cloud platform and information repository with 
computation and experimental results, research publications, storing experience and analytic of 
the current material science state. Moreover, the Material Commons includes abstracts and 
description of a data models for material processing-structure-property relationships that can 
be used for ICME design. 

Material Data Facility, like the previous platform, is focused on providing wide range of 
information. This platform makes raw and derived data available in order to provide a more 
detailed information about methodology of studies and obtained results. The platform creators 
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believe that the data accompanying research such as models codes, protocols and experimental 
conditions are of particular interest to use in similar studies or real applications. Thus, Material 
Data Facility platform provides simplified access to this type of data. 

The platforms such as the Materials Projects and the Harvard Clean Energy Project are 
open-source analytical tools. Such platforms allow performing numerical calculation to define 
the properties of compounds, to validate the obtained results and make them available to wide 
auditory. On the other hand, the databases, such as Total Materia, are a source of significant 
amount of material properties and characteristics that can be exported into numerical software 
to perform accurate simulation and analysis of designed products. Moreover, such platforms 
provide information about materials’ structures and can determine the material utilizing the 
chemical composition obtained with the help of spectrometry, which can be useful for re-
engineering purposes. 

Modern platforms for generation of material data and sharing of research data contribute 
to the material science growth and advanced material development. The wide range of existing 
databases provides information that can be useful for various branches of materials study. 
Moreover, existing data platforms can be integrated into the work processes that use numerical 
software, which allows to increase quality of obtained results in product design. The 
combination of ICME approach and open source material databases allows designing and 
manufacturing highly competitive products with lower costs. These principles are similar to the 
idea of Factories of Future. For this reason, the implementation of ICME approach supported 
by open material data bases in the real production process is an important step towards 
realization of FoF concept. 

4. New strategy
As mentioned before the traditional process of product design involves the selection of more 
appropriate material on the macroscopic level. [12] The described process may be schematically 
represented as in the Fig. 7. 

Fig. 7. The traditional process of product design. 

An engineer obtains the information about the final product characteristics. Based on this 
information, engineers create the 3D concept of constructions, prepare calculation models for 
numerical simulation and optimization as well as set material properties. In this case, the 
material properties are the effective properties analytically evaluated with no regard to the 
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microstructure as well as the processing of the materials. This approximate data can be used for 
product simulation-based design. However, there is less optimization parameters that prevent 
the creation of the most optimal design. In addition, the lack of information about the 
microstructure and quality of material processing leads to reduction in accuracy of the product 
life-cycle prediction. 

The ICME approach allows for expanding the boundaries of material selection step. The 
proposed approach of production design involves study and selection of material parameters on 
each scope level (macro, meso, micro, nano) in order to maximize product optimization and to 
take into account all structure and processing features that may influence on the product 
performance. In the ICME approach the cornerstone is the processing - structure - property - 
performance (PSPP) relationship. The movement from right to the left (top-down design 
approach) allows finding many possible variants of material structures that match to the one set 
of product requirements (performance). The top-down approach is concerned with a study of 
one-to-many relationships that provide the array of available variants. The bottom-up design is 
undertaken to take the available variant and due to calculation and simulation to find the most 
optimal solution. The ICME design approach is a resource intensive method that requires a lot 
of material science data and involves various numerical and experimental instruments. In order 
to provide collaboration and data transfer between various tools, the framework connected to 
open material data bases is used. Nowadays, there is no universal framework for ICME product 
design. However, according to Section 3 the ICME approach may be illustrated by the scheme 
presented on the Figure 8. 

Fig. 8. A schematic representation of ICME approach. 

However, the combination of experimental and numerical instruments proposed by ICME 
approach also has some limitations. Both of these instruments are based on theoretical 
knowledge that is represented in algorithms and analytical relations. Although, the MGI leads 
to the accelerated development of material science, it is quite difficult to represent PSPP 
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relationships by computational models and algorithms. It is particularly true for advanced 
materials, PSPP relationships for which can even be unknown. For this reason, the intelligent 
and high-performance analyzing algorithm for accurate prediction of material performance is 
required. Considering the existence of open data bases with colossal amount of material 
information, the Big Data concept can be mentioned as one of the possible ways to improve 
design approach. In general, the big volume of valid information from various sources that is 
being updated with high velocity can be characterized as Big Data. The various algorithms and 
methods such as Machine Learning, Deep learning, etc. can be used for processing of such open 
resources and creation of prediction models involved into product design. 

In general, the Machine learning as the method for automation creation of prediction 
model use algorithm that iteratively compares the feature relations from available data in order 
to find hidden insights non-obvious in terms of the existing theory. According to [58] the basic 
idea of using machine learning methods for design process is to automate the analyzing and 
mapping of the nonlinear relationships between the processing-structure-properties-
performance features by extracting knowledge from existing empirical data. The result of this 
method utilization is the model that can be applied for current product design as well as for 
dealing with the similar design orders in the future. 

According to work [59], obtaining of prediction model requires the setting of “goal”, 
“sample” and “algorithm”. The term “sample” implies the presence of significant volume of 
available information such as experimental data, protocols, computation results, etc. provided 
by open source material data bases. In fact, the sample preparation is the first basic step for 
machine learning method. (Fig. 9) The preparation involves data cleaning from noise and 
incomplete elements as well as reduction of the amount of inadequate information. In addition, 
the sample preparation involves feature engineering step that provide some simple physical 
basis for extraction of main structural and chemical trends to provide fast and accurate material 
performance prediction. [59]  

Fig. 9. Basic steps of Machine Learning approach. 

The well-prepared sample is the input information for the second basic step - “model 
building”. The core of this method is the algorithm used for data learning and prediction model 
generation. For these purpose, the “algorithm” is set of operations with input information that 
performed under control of “goal” parameters, that may be illustrated by scheme presented in 
Fig. 10. The “goal” is the target characteristics that must be achieved and used for study of the 
provided “sample”. The most commonly used algorithms for machine learning is Naive Bayes 
[60], Logistic regression [61] as well as Linear regression [62], Support vector machine [63], 
Logistic model tree [64] and Artificial neural networks [65]. The selection of appropriate 
algorithm is based on the task of prediction and target parameters. In case numerical target 
parameter such as fatigue strength, etc., the algorithms based on the regression methods is more 
effective. The target parameters represented by categorical information involves usage of 
classification techniques and relevant algorithms. In general, the commonly used algorithms 
are Artificial neural networks (ANN) and Support vector machine (SVM) as the algorithms 
capable to use both regression and classification techniques. 
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Fig. 10. Principle of Model building step. 

The process of model building is similar to training by using existing examples. 
However, the obtained model with mapping function and set of various approximation 
coefficients, might be able to deal only with the data that was used during the training and be 
unsuitable for work with previously unseen data. In this case, the model cannot be considered 
as valid and cannot be used for purposes of product design. The obtained model must be 
evaluated. Commonly for this purpose the information obtained from data bases is divided into 
training set used for sample preparation and testing data set. Testing data sets are proposed to 
the obtained prediction models obtained in order to validate the model suitability. There are 
various methods of test sets preparation. In general, the initial amount of data is partitioned in 
proportion of 2/3 to training data and 1/3 to test data (Hold-out method). In case of cross-
validation method, the initial data can be divided into k mutually exclusive subsets of the same 
size and the (k-1) sets is the training data set. 

Results obtained during evaluation tests allow for evaluating the quality and accuracy of 
the created prediction model that is vital for their implementation into product design process. 
According to [60, 59], the model error is represented by the mean absolute percent error 
(MAPE), the root mean square error (RMSE) and the correlation coefficient (R2). 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
∑ |𝑦𝑦′𝑖𝑖−𝑦𝑦𝑖𝑖|

𝑦𝑦𝑖𝑖
𝑛𝑛
𝑖𝑖=1 ,  (41) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑛𝑛
∑ (𝑦𝑦′𝑖𝑖 − 𝑦𝑦𝑖𝑖)2𝑛𝑛
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𝑛𝑛
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𝑛𝑛
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, (43) 

where 𝑦𝑦𝑖𝑖 and 𝑦𝑦′𝑖𝑖 are the original values from SAMPLE and the predicted value by using of 
obtained model, respectively; 𝑦𝑦� and 𝑦𝑦′�  are the averages of the original and predicted values, 
respectively. [59]  

The example of use of Machine Learning and Big Data concepts can be found in work 
[66]. The authors propose the framework for determining material genome of granular minerals. 
The proposed framework uses the mineral databases as the source of granular material genome 
information. The genome of granular materials represents the “parent rocks”, weathering 
process as well as the mineral composition and structure. The available instruments for genome 
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study are experimental tools such as scanning electron microscopy (SEM), transmission 
electron microscopy (TEM), Energy-dispersive X-ray (EDX), etc. According to work [66], 
these techniques make it possible to link mineral composition with the shape, texture and other 
morphological characteristics of particles. However, performing these experimental 
investigations is time consuming. More reasonable approach is to use open data base that can 
be filled by researches related to this area of material science. The information about minerals 
presented in data base must involve reference number, mineral, chemical composition, crystal 
structure information, typical grain size, etc. In addition, the mechanical properties obtained 
from laboratory experiments and transferred to multiple scales by means of computer 
simulation approach must be sent to this data base. Significant volume of information 
accumulated in mineral data base can be considered as a Big Data. The authors, proposed to 
use algorithms for Big Data processing in order to define relationships between genome and 
mechanical properties of granular materials. The obtained prediction model can allow for 
developing materials with required properties as well as reducing the timeline from discovery 
to implementation of granular materials.  

These works among the others [67, 68, 69, 70] show the significance of the role of Big 
Data and Machine Learning methods for development of new materials. On the other hand, 
there is a limited number of works that connect the Big Data concept with product design. 
However, according to [58], Machine Learning is capable of providing model that can be used 
for both the direct (bottom-up) and for the reverse (top-down) prediction of materials PSPP 
relationships. This feature is similar to the ICME multiscale design concept that allows making 
assumption that Big Data and Machine Learning concepts can be used for product design based 
on ICME approach. The schematic representation of this idea may be represented by Fig. 11. 

Fig. 11. Product design based on ICME and Machine Learning approaches. 

Theoretically, the usage of Machine Learning can automate the design process on the 
nano-, micro- and mesoscale levels by providing prediction models taking the input information 
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about material properties giving the best structural and processing solutions without involving 
the additional tools into this optimization process. The simulation of product performance based 
on the material properties and working conditions is still performed by CAE/CAO macroscale 
systems under engineers’ control. Study of properties-performance relationships by traditional 
algorithms provides the optimization criteria for prediction model building by the means of 
Machine Learning. Although, Machine Learning is able to accelerate the process of choosing 
the optimal material processing and structure solutions, their usage is associated with some 
limitations. For example, preparation of significant amount of unstructured data and their 
further analysis require for utilization of high-performance computation resources that might 
be unavailable. Moreover, the creation of prediction models for specific product design purpose 
takes time and can be more complex comparing with the existing computer or experimental 
measurement instruments. However, when developed, such models can be used for design of 
similar products in future. Thus, the communication environment and open libraries or data 
bases that publish prepared prediction models are critical for such product design approach. 
(Fig. 11) 

In addition, the implementation of Big Data analysis into the product design process 
allows for development of digital product models with more information comprehensively 
characterizing the designed objects. In case of the computer and experimental investigation the 
obtained information is limited by existing theoretical knowledge while the Big Data analysis 
can provide links that can be unknown for material science but have significant influence on 
final product quality. Thus, the implementation of Big Data analysis and Machine Learning 
approach can be significant push for improvement of Product Life-Cycle management as well 
as for creation of best-in-class products that is the goal of FoF concept. 

5. Conclusions
In this work, the review of advanced material representation approaches for product design 
purpose is presented. The basic information about traditional approaches in simulation of fiber-
reinforced composites structure as well as calculation algorithms for analyzing of details made 
from composite materials are described to illustrate the influence of the accuracy of material 
data on the quality of prediction of final product performance. In general, the effective 
properties of composite materials are used for product simulation. Considering the results 
obtained by the use of the analytical methods as average values for components properties, the 
effective parameters of composite materials for numerical simulation can be used as an 
approximate evaluation of the designed products. Thus, the development of more complex 
frameworks and related computing tools is required for improving Product Life-Cycle 
management and creation of best-in-class products. Some solutions developed within the 
Material Genome Initiative (MGI) are represented in this work. Key solutions are related to 
combination of experimental and computer aided R&D methods as well as the creation of 
communication environment for cooperation and sharing of generated material science data. 
The creation of such open material data bases contributes to accumulation of huge amount of 
experimental and simulation data that can provide comprehensive information about 
processing-structure-properties-performance relationships for advanced materials. That 
information lays the foundation for effective product design and simulation. The 
implementation of Big Data analysis utilizing Machine Learning algorithms in ICME approach 
allows to automate of material structure optimization and provides engineers with powerful 
tools for the most efficient optimization of designed product available. 
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Abstract. We consider the generic gradient elasticity theory of Mindlin-Tupin and try to 
establish a class of applied models of gradient elasticity, for which the boundary value problems 
of the gradient theory with static boundary conditions are divided into a sequence of two 
subtasks, one of which is classical. Such applied models are very effective in applications, 
because their solutions reduce exactly to a consistent solution of boundary value problems of 
the second and not of the fourth order. We consider gradient theories with a general structure 
of tensors of gradient modules that satisfy potentiality conditions and additional symmetry 
conditions, which is considered as a criterion of correctness. 

It is shown that their gradient tensors of the elastic modules are represented in the form 
of an expansion with respect to the tensor basis of five sixth-rank tensors, three of which satisfy 
a special property. Each of these basis tensors is represented as a convolution of fourth-rank 
tensors, and the corresponding quadratic form is a convolution of vectors.  

It is shown that for the traditional gradient Mindlin-Tupin theory, the “classical” static 
conditions on the body surface are not satisfied locally. However, if the gradient modules are 
represented as a convolution of the “classical” tensors of elastic moduli, then the set of the 
boundary value problems of such gradient theory admits a full fractionation of the initial 
boundary value problem into two: the “classical” boundary value problem and the “cohesive” 
boundary value problem. 

It is established the structure of the applied gradient models with such property of 
separating boundary value problems. They are particular cases of gradient elasticity theories 
with gradient modulus tensors, representable in the form of an expansion in three basis tensors 
of the sixth rank, satisfying the properties of the representation in the form of convolution via 
fourth-rank tensors. 

We formulated “vector” gradient Mindlin-Tupin model that preserves the classical form 
of static boundary conditions. Such a model leads to a specific variant of the gradient theory 
with a single non-classical modulus, or one-parametrical model. It is shown that the obtained 
gradient model can be considered as some generalization of the well-known applied theory 
GradEla providing for it the separation of boundary value problems. 
Keywords: gradient theories, scale parameters, separation of boundary value problems, 
“classical” displacement field, “cohesive” displacement field. 
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1. Introduction
In the gradient theory of elasticity the density of potential energy depends not only on first 
derivatives of the displacement vector, but also on the second derivatives of the displacement 
vector (first derivatives of deformation tensor in the framework of the Midlin’s Form II models 
[1]). So, the statement of the gradient theory includes not only classical moduli of elasticity but 
also physical constants which dimension are different from the classical ones by the square of 
length. The gradient theory of elasticity was first formulated in [1, 2]. It was shown that in the 
general case for an isotropic medium, the model contains seven material constants – two 
classical Lame parameters and five additional modules. 

The development of continuum media models accounting for various 
micro/nanostructures parameters beyond the theory of classical elasticity appears to be crucial 
for the description of short-range interactions, cohesion forces, and also for the modeling of 
other size-dependent effects in the framework of generalized elasticity and plasticity theories. 
Applied gradient model was developed initially by Aifantis [3]. Robust gradient models were 
developed for gradient elasticity by Aifantis and co-workers [4-6]. Later it was shown that, 
within the framework of the gradient theory of elasticity, it is possible to eliminate of the 
singularities of crack tips [6-8] and dislocations [9-11], correctly describe wave dispersion 
[12-13] and scale effects for the composite materials [14-22] and others. In this case, usually 
there are used simplified versions of the gradient theory of elasticity, which contain fewer 
additional parameters. The determination of additional physical constants requires the 
involvement of specific experimental approaches [23, 24] or methods of the 
molecular-dynamics modeling [21, 25-27]. Usually, there are used the applied models that, 
instead of five modulus [1, 2], contain three additional parameters [23,28] or two parameters 
[29] or a single additional scale parameter [4-6, 30]. A detailed classification of simplified 
models of the gradient theory of elasticity was considered in a recent paper [31, 32]. 

At the present time, gradient theories are actively developed and are increasingly used in 
various applied problems. However, fundamental questions of the construction of these theories 
are also discussed. In particular, there are discussed the physical meaning of additional high-
order stresses [31,32], the problem of the correct formulation of models of gradient bars and 
plates [33-36], the problem of the correct formulation of the equilibrium equations and 
boundary conditions [32, 36-38], the problem of constructing models with allowance for the 
requirement of symmetry conditions [29] . 

In this paper we discuss the problem of constructing a gradient theory of elasticity, in 
which static boundary conditions and equilibrium equations are written in terms of the same 
tensor of generalized stresses. In this paper, such stresses are suggested to call as “classical” 
stresses but not the “total” stresses introduced using terminology of E. Aifantis because the 
equilibrium equations are a divergence of these stresses, and the boundary conditions represent 
their convolution with the unit vector of normal to the surface of the body.  The class of gradient 
models considered in the paper is the most attractive from a practical point of view, since for 
such models the solution of boundary value problems can often be simplified, sequentially 
solving the classical problem of elasticity theory and then solving the problem for an equation 
of Helmholtz type in which the right-hand side is the classical solution. Note that the known 
one-parameter gradient theories (so-called GradEla, SSGET etc. [29, 36, 37]) do not satisfy 
these requirements and their variational formulation leads to the appearance of natural boundary 
conditions in the complicated form [29,32,36]. In this paper we show the possibility of 
constructing a theory of GradEla type that satisfies these requirements, but with an asymmetric 
tensor of stresses. 
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2. «Vector» gradient model
Let us consider the Lagrangian L of the Mindlin-Tupin model: 

, , , ,
1 ( ) .
2 ijmn i j m n ijkmnl i jk m nlL A C R R C R R dV= − +∫∫∫  (1) 

Here ( )ijmn ij mn im jn in jmC λδ δ µ δ δ δ δ= + +  is the tensor of classical modulus, ijkmnlC is the 
tensor of gradient modulus, ijδ  is the Kronecker delta, A - is the work of the external given 
forces in the volume and on the surface of the body, iR  is the displacement vector. 

We write down the conditions that determine the properties of the tensor of gradient 
elastic modules: 

1. Existence of the density of potential energy:
( ) / 2.ijkmnl ijkmnl mnlijkC C C= +  (2) 

2. The symmetry condition, determined by the requirement of continuity of
displacements: 

( ) / 4.ijkmnl ijkmnl ikjmnl ijkmln ikjmlnC C C C C= + + +  (3) 
As a result, taking into account conditions (2) and (3), we establish the general structure 

of the tensor ijkmnlC : 

1

2

3

4

5

( )

( )

( )

( )

( ).

ijkmnl

ij kl mn ik jn ml ij kn ml mn lj ik

ij km nl mn li jk ik jm nl ml ni jk

in jl km mj nk li in mj kl il jn mk

im jn kl jl nk

im jk nl

C

C

C

C

C

C

δ δ δ δ δ δ δ δ δ δ δ δ

δ δ δ δ δ δ δ δ δ δ δ δ

δ δ δ δ δ δ δ δ δ δ δ δ

δ δ δ δ δ

δ δ δ

=

= + + + +

+ + + + +

+ + + + +

+ + +

+

(4) 

Consequently, in the general form, the gradient elastic modules of the Mindlin-Tupin 
model depend on five parameters. 

We note that sometimes the symmetry requirement for the first two indices is imposed. 
Then three additional relations are introduced for the parameters of the gradient tensor of the 
elasticity modulus (4): 

1 2

2 5

3 4

( )( )

( )

( )( ) 0,

ijkmnl ijr

ml knr mn klr

nl kmr

kl nmr nk lmr

C Э

C C Э Э
C C Э
C C Э Э

δ δ

δ

δ δ

=

= − + +

+ − +

+ − + =
where ijrЭ  is the permutation symbol. 

In this case, the gradient part of the energy density of the general model is two-
parametrical. Let’s call such a gradient model a completely symmetric gradient model.   

We propose to introduce the definitions of basis tensors of sixth rank: 
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1 2 3 4 5
1 2 3 4 5

1

2

3

( )

( )

(

ijkmnl ijkmnl ijkmnl ijkmnl ijkmnl ijkmnl

ijkmnl ij kn ml mn lj ik ij kl mn ik jn ml

ijkmnl ij km nl mn li jk ik jm nl ml ni jk

ijkmnl in jl km mj nk li in mj k

C C C C C Cδ δ δ δ δ

δ δ δ δ δ δ δ δ δ δ δ δ δ

δ δ δ δ δ δ δ δ δ δ δ δ δ

δ δ δ δ δ δ δ δ δ δ

= + + + +

= + + +

= + + +

= + +
4

5

) .

( )

( )

l il jn mk

ijkmnl im jn kl jl nk

ijkmnl im jk nl

δ δ δ

δ δ δ δ δ δ

δ δ δ δ






+


= +
 =

(5) 

Basis tensors 1
ijkmnlδ , 2

ijkmnlδ  and 5
ijkmnlδ  in (5) have the same structure: each term in them is 

the product of three Kronecker tensors, one of which has both indices belonging to the first 
triple of the indices of the sixth-rank tensor ijkmnlC , the second one has indices belonging to 

different triples of indices of the sixth-rank tensor ijkmnlC , and the third one has indices belonging 

to the second triple of indices of the sixth-rank tensor ijkmnlC . The basis tensors  3
ijkmnlδ  and 4

ijkmnlδ
also have the same structure, but it differs from the previous one: all three Kronecker tensors in 
them have indices belonging to different triples of indices of the sixth-rank tensor ijkmnlC  (one 

index is from the first triple, another is from the second triple of the indices of the tensor ijkmnlC
). The density of the gradient potential energy, as a result, is divided into the sum of two 
fundamentally different terms. The first term is determined by the first group of basis tensors 

1
ijkmnlδ , 2

ijkmnlδ  and 5
ijkmnlδ , contains, respectively, the modules 1 2 5, ,C C C and determines the 

quadratic form, composed of the components of two vectors ,,i k kiR R∆ . The second term is 

determined by the second group of basis tensors 3
ijkmnlδ  4

ijkmnlδ , and contains, respectively, the 

modules 3 4,C C  and determines a quadratic form composed of the components of the tensor of 
the third, but not of the first rank. 

It can be shown, for example, that the completely symmetric theory of gradient 
deformation, and the theory of Aero-Kuvshinsky, which is considered the theory of gradient 
rotations, contain two types of basis tensors: one of the first type, constructed as a linear 
combination of basis tensors 1

ijkmnlδ , 2
ijkmnlδ  and 5

ijkmnlδ , second of the second type, constructed as 

a linear combination of basis tensors 3
ijkmnlδ  and 4

ijkmnlδ . 
Further, we will concentrate on the particular cases of gradient models, which contain 

only basic tensors of the first type. Preference is given to this particular case, because all three 
basis tensors 1

ijkmnlδ , 2
ijkmnlδ  and 5

ijkmnlδ  can be represented as convolutions with respect to one 
index of two tensors of the fourth rank. 

Theorem: "All three basis tensors 1
ijkmnlδ , 2

ijkmnlδ  and 5
ijkmnlδ , can be represented as 

convolutions with respect to one index of two tensors of the fourth rank" 
Proof. In each term of the basis tensor 1

ijkmnlδ , 2
ijkmnlδ  and 5

ijkmnlδ  there is a factor containing 
indices from different triples of the sixth-rank tensor. We represent it as a convolution of two 
tensors of Kronecker, for example: im ia maδ δ δ= . In a similar way, we will deal with each 
Kronecker tensor containing indices from different triples: 
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1 ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )( ) ( )( ) (

ijkmnl ij kn ml mn lj ik ij kl mn ik jn ml

ij kn ml mn lj ik ij kl mn ik jn ml

ij ka na ml mn la ja ik ij ka la mn ik ja na ml

ij ka ml na ik ja mn la ij

δ δ δ δ δ δ δ δ δ δ δ δ δ

δ δ δ δ δ δ δ δ δ δ δ δ

δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ

δ δ δ δ δ δ δ δ δ

= + + + =

= + + + =

= + + + =

= + + )( ) ( )( )

( )( ) ( )( )

( )( )

ka mn la ik ja ml na

ij ka ml na mn la ik ja mn la ml na

ij ka ik ja mn la ml na

δ δ δ δ δ δ δ

δ δ δ δ δ δ δ δ δ δ δ δ

δ δ δ δ δ δ δ δ

+ =

= + + + =

= + +
2 ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )( ) ( )( ) (

ijkmnl ij km nl mn li jk ik jm nl ml ni jk

ij km nl mn li jk ik jm nl ml ni jk

ij ka ma nl mn la ia jk ik ja ma nl ml na ia jk

ij ka nl ma jk ia mn la ik

δ δ δ δ δ δ δ δ δ δ δ δ δ

δ δ δ δ δ δ δ δ δ δ δ δ

δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ

δ δ δ δ δ δ δ δ δ

= + + + =

= + + + =

= + + + =

= + + )( ) ( )( )

( )( ) ( )( )
ja nl ma jk ia ml na

ij ka ik ja nl ma jk ia mn la ml na

δ δ δ δ δ δ δ

δ δ δ δ δ δ δ δ δ δ δ δ

+ =

= + + +

(6) 

5 ( )

( )( )
ijkmnl im jk nl

jk ia nl ma

δ δ δ δ

δ δ δ δ

= =

=
As a result, the gradient model, built on basic tensors (6), takes the following form: 

1

2

5

( )( )

[( )( ) ( )( )]

( )( ).

ijkmnl

ij ka ik ja mn la ml na

ij ka ik ja nl ma mn la ml na jk ia

jk ia nl ma

C

C

C

C

δ δ δ δ δ δ δ δ

δ δ δ δ δ δ δ δ δ δ δ δ

δ δ δ δ

=

= + + +

+ + + + +

+

(7) 

In the basis (6), the doubled density of the potential energy of curvature of displacement 
has the form: 

, , 1 , , 2 , 54 4 .ijkmnl i jk m nl i ia m ma i ia a a aC R R C R R C R R C R R= + ∆ + ∆ ∆  (8) 
The quadratic form (8) can be established using equations (7). This form is canonical, and 

positive definite. 
We note that in the expression for the gradient part of the potential energy density there 

are convolutions of the components of two vectors ,i iaR  and aR∆ . Therefore, in what follows, 
we shall call this particular three-parameter model the "vector" gradient theory of elasticity. 

For such a theory, it is easy to establish conditions for positive definiteness. Indeed, in 
accordance with the Sylvester criterion, for (8), we obtain the following system of inequalities: 

1

1 5 2 2

0
.

0

C
C C C C

 >


− >
 (9) 

It follows from (9) that 5 0TC >  too. Indeed, let us introduce instead of the modulus 5C , 
another modulus by the relation: 

2
1 5 2 2 .C C C C С− =  (10) 

As a consequence of (10), the second of the conditions (9) is identically satisfied. It also 
follows from (10): 

2
1 5 2 2 0.C C С C C= + >  

From the first condition of (9) and (10) we obtain: 
2

2 2
5

1

0.С C CC
C
+

= >
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3. On classical boundary conditions for the “vector” gradient model
Let us now consider in more detail the gradient theory, which is determined by the potential 
energy (1), (8) and which can be called the variant of the “vector” gradient theory. Using the 
relation (8), the density of the potential curvature energy in the "vector" theory (6) can be 
represented as a canonical positive definite quadratic form. 

, , 1 , , 2 , 5

2
2 2

, , 2 , 5
5

2
2 2

, , 5 , ,
5 5 5

4 4

4 4

2 24 ( )( ).

ijkmnl i jk m nl i ia m ma i ia a a a

i ia m ma i ia a a aT

i ia m ma a i ia a i ia

C R R C R R C R R C R R

С C C R R C R R C R R
C

C CС R R C R R R R
C C C

= + ∆ + ∆ ∆ =

+
= + ∆ + ∆ ∆ =

= + ∆ + ∆ +

(11) 

We can state that the “vector” theory in the general case contains three nonclassical 
moduli, under certain restrictions (9) due to positive definiteness of the canonical quadratic 
form of the density of the potential curvature energy (11). 

We write the variational equation of the "vector" gradient model. From the requirement 
of stationarity of the Lagrangian (1) it follows that: 

, , , ,

, , 1 , 2 , 2 , 5

, ,

1 2 , 2 5 ,

2 , 5

[ ]

[ (4 4 ) (4 ) ]

[

[4( ) (4 ) ]

(4 ) (

ijmn m n i j ijkmnl m nl i jk

ijmn m n i j m ma a i ia i ia a a

ijmn m n i j

m ma a i ia

i ia a a

L A C R R C R R dV

A C R R C R C R R C R C R R dV

A C R R

C C R C C R R

C R C R R R

δ δ δ δ

δ δ δ δ

δ δ

δ

δ

= − + =

= − + + ∆ + + ∆ ∆ =

= − +

+ + + + ∆ +

+ + ∆ ∆ −

∫∫∫
∫∫∫
∫∫∫

, )] .j ja dV
Using the relation: 

, , , , , ,( ) ( ) ( )a jj j ja m jn ma nj m jn mj na m jn ma nj mj na m jn mnk ajkR R R R R R Э Эδ δ δ δ δ δ δ δ− = − = − = , 
we can found that the procedure of integrating  by parts  for the gradient part of the potential 
energy density will not require further transformations of the surface integral: 

, , 1 2 5 , , 5 , ,

1 2 , 2 5 ,

2 , 5 ,

[ (4 8 ) ]

{[4( ) (4 ) ]

2(4 ) ( / 2) } .

ijmn m n i j a a i i a j m n mnk ajk

m ma a a i i

i ia a m n mnk j kja

L A C R R C C C R R C R R Э Э dV

C C R C C R n R

C R C R R Э n Э dF

δ δ δ δ δ

δ

δ

= − − + + ∆ − ∆ −

− + + + ∆ +

+ + ∆ −

∫∫∫
∫∫

Indeed, let’s introduce the classical definitions for the volume changing deformations 
,i iRθ =  and deformations of spins , / 2k m n mnkR Эω = − . These parameters determine on the 

surface independent variations of linear combinations of normal and tangential derivatives of 
displacements, which do not require further integrating by parts. As a result, the variational 
equation of the “vector” model takes the form: 

, 1 2 5 , 5 , ,

, 1 2 5 , 5 ,

1 2 , 2 5 2 , 5

[( (4 8 ) ) ]

{[ ( (4 8 ) ) ]

[4( ) (4 ) ] 2(4 ) ( )} 0.

V
ijmn m n a a ij a c ijk ack j i i

F
i ijmn m n a a ij a c ijk ack j i

m ma a a i ia a k j kja

L C R C C C R C R Э Э P R dV

P C R C C C R C R Э Э n R

C C R C C R n C R C R n Э dF

δ δ δ

δ δ

δθ δ ω

= − + + ∆ − ∆ + +

+ − − + + ∆ − ∆ −

− + + + ∆ − + ∆ =

∫∫∫
∫∫  (12) 

Equilibrium equations can be obtained from (12) as the Euler equations: 
, 1 2 5 , 5 , ,( (4 8 ) ) 0.V

ijmn m n a a ij a c ijk ack j iC R C C C R C R Э Э Pδ− + + ∆ − ∆ + =  (13) 
We call attention to the fact that the second-rank tensor, which divergence is equal to the 

external volume force in the equilibrium equations (13), can conditionally be called the 
“classical” stress tensor: 
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, 1 2 5 5(4 8 ) 2 .ij ijmn m n ij k ijkC R C C C C Эτ θδ ω= − + + ∆ + ∆  (14) 
Since this tensor (14) satisfies three classical equilibrium equations of elasticity theory: 

, 0.V
ij j iPτ + =  (15) 

However, the “classical” stresses (14) differ from the “classical” ones, in the first place, 
in that this tensor is non–symmetric tensor, since the last term is antisymmetric when free 
indices are permuted. This term you can remove only if 5 0C = . Therefore, the vector model 
can’t operate with the concept of true “classical” stresses. 

On the other hand, the stress ijτ  satisfies not only the three classical equilibrium 
equations, but also the three classical static boundary conditions: 

( ) 0.F
i ij j iP n R dFτ δ− =∫∫  (16) 
Indeed, boundary conditions for the considered variant of the “vector” theory break up 

into three pairs of alternative boundary conditions. The static boundary conditions (16) during 
variations of displacements completely coincide with the classical ones. Three pairs of 
alternative nonclassical boundary conditions break up into a pair of scalar alternative boundary 
conditions: 

1 2 , 2 5[4( ) (4 ) ] 0.m ma a aC C R C C R n dFδθ+ + + ∆ =∫∫  (17) 
One of them is connected with variation of spherical tensor of deformation (see (17)). 

Two other pairs of alternative boundary conditions determine the possible work of some force 
vector 2 , 5(4 )a i ia af C R C R= + ∆  on the variations of another (plane) vector a k j kjav n Эω= : 

2 , 5(4 ) ( ) 0.i ia a k j kjaC R C R n Э dFδ ω+ ∆ =∫∫  (18) 

It is not difficult to verify that the vector a k j kjav n Эω=  in (18) does not have a projection 
onto the normal to the surface, that is, lies in a tangent plane to the surface of the body 

( ) ( ) 0a a k j kja a k j a jakv n n Э n n n Эω ω= = ≡ . 
Let us return to the equilibrium equations and investigate the possibility of separating the 

equilibrium operator into a product of the classical equilibrium operator and an additional, 
nonclassical one. In other words, we will find out whether it is possible to represent the operator 
of equations (13) in the form: 

2 2 2
, ,[ (...) ( )(...) ]{(...) (...) ( )(...) } 0.V

ij ij jk jk jk k il l l R Pω θ ωµ δ µ λ δ δ∆ + + − ∆ − − + =  (19) 
By successively applying to the displacement vector kR , first the operator in curly 

brackets (19), and then the operator in square brackets, we get: 
2 2

, , , ,( ) (2 ) ( ) (2 ) 0V
i j ji j ij i j ji j ji iR R R l R R l R Pω θµ µ λ µ µ λ∆ − + + − ∆ ∆ − − + ∆ + =  (20) 

Comparing (20) and (13), we find that the equations coincide if the parameters 2 2,l lθ ω  are 
related to nonclassical modules by the following relations: 

2
5

2 2
1 2

.
4 8 (2 )

C l
C C l l

ω

θ ω

µ

µ λ µ

 =


+ = + −
 (21) 

Applying the operator in curly brackets of equation (19) to the vector kR  (19), we obtain 
the definition of “classical” displacements iU : 

2 2 2
,

2 2
, ,

{(...) (...) ( )(...) }

( ) .
j jk jk jk k

j j k kj k kj

U l l l R

R l R R l R
ω θ ω

ω θ

δ δ= − ∆ − − =

= − ∆ − −
(22) 

Taking into account the definition (22), the equilibrium equations (19) take the form of 
the Lamé equations of the classical theory of elasticity in displacements: 
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,[ (...) ( )(...) ] 0.V
ij ij j iU Pµ δ µ λ∆ + + + =  (23) 

Since the linear differential operators in (19) are commutative, the equilibrium equations 
can be rewritten in the following equivalent form: 

2 2 2 2
, ,2

( ){(...) (...) ( )(...) } [ (...) (...) ] 0.V
ij ij ij jk jk k il l l l R P

l ω θ ω
µ µ λδ δ δ

µ
+

− ∆ − − ∆ + + =  (24) 

The first of the operators in (24) is a generalized Helmholtz operator. Therefore, we can 
introduce a vector of "cohesive" displacements [14-16, 19, 20, 21], ju : 

2
,

2
, ,

( )[ (...) (...) ]

(2 )[( ) ].

j jk jk k

j k kj k kj

u l R

l R R R

µ λδ
µ
µ λ
µ

+
= − ∆ + =

+
= − ∆ − +

 (25) 

Taking into account the definition of ju , (25) the equilibrium equations give the 
equilibrium equations of the “cohesive” field: 

2 2 2
, ,( ) 0.

V
i

i j ji j ji i
Pl u u l u u lω θ µ

∆ − + − + =  (26) 

Let us consider the definitions (22) and (25) as a linear algebraic system with respect to 
the vortex field ,( )j k kjR R∆ −  and the potential field ,k kjR : 

2 2
, ,

2 2
, ,

( )

(2 )( )

j k kj k kj j j

j k kj k kj j

l R R l R R U

l R R l R u

ω θ

µ λ
µ

 ∆ − + = −

 +

∆ − + = −


 (27) 

It is easy to see that the equation system (27) can be rewritten in the following form: 
2

2 2 2

, 2

2

2 2

, 2

2

(2 ) 1 1( )
( )

(2 )[ ]
.

1 1( )

(2 )[ ]

j j j

j k kj

j j j

k kj

lR U u
l l lR R

l
l

R U u
l lR

l
l

θ

ω ω

θ

ω

ω

θ

ω

µ λ
µ

µ λ
µ

µ λ
µ

 +
− − −

 ∆ − =
+ −


 − +


= + −


 (28) 

The first of equations (28) determines the vortex field ,( )j k kjR R∆ − . Its divergence is, by 
definition, equal to zero. Therefore, taking into account (22), (28) we can write: 

2

, , ,2 .
(2 )k k k k k k

lR U u
l
θµ

µ λ
= −

+
 (29) 

The second of the equations (28) determines the potential field ,k kjR . Its rotor is zero, by 
definition: 

2

, , ,2 .m n mnr m n mnr m n mnr
lR Э U Э u Э
l
ω= −  (30) 

Accordingly, we can write the following equation for the rotor of the rotor: 
2

, , ,2( ) ( ) ( ).k m mk k m mk k m mk
lR R U U u u
l
ω∆ − = ∆ − − ∆ −  (31) 
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Substituting (30) and (31) into (23), we obtain the general solution of the “vector” 
gradient theory iR  through two fundamental vectors, one of which is a vector of “classical” 
displacements iU , and the second one is a vector of “cohesive” displacements iu : 

2 2 2 2
2 2

, , , ,2 2( ) ( ) .
(2 )i i i k ki k ki i k ki k ki

l l l lR U l U U l U u u u
l l
ω ω θ θ

ω θ
µ
µ λ

= + ∆ − + − ∆ − −
+

 (32) 

Let us write down the tensor of stresses in displacements. Substituting vector of 
displacements iR , with the help of  equation (32), into (14) and taking into account the 
definitions (22), we can get: 

,

2 2
, , ,2

2 2 2 2
2 2

, , , ,2 2

12 [ ] ( )[ ( )
(2 )

( ) ] 2 .
(2 )

ij ijmn m n

k k ij im jn in jm m n k kmn

k kmn m n k kmn k kmn k ijk

C U

l u l U U
l

l l l ll U u u u l Э
l l

θ ω

ω ω θ θ
θ ω

τ

µµ δ µ δ δ δ δ
µ λ

µ µ ω
µ λ

= +

+ + + ∆ − +
+

+ − ∆ − − + ∆
+

 (33) 

Let’s make the following remark. In expressions (25), (26), we introduce a scale 
normalizing parameter when it’s determined the “cohesive” field vector iu . We can assume 
without loss of generality that 2 .l lω= In the general case, both the system of equilibrium 
equations (24), the general solution of these equations and the expression for the stresses (33), 
are written in terms of “classical” displacements and “cohesive” displacements are determined 
only through two scale parameters 2lω  и 2.lθ  The spherical tensor of deformations ,k kR  and 
pseudo-vector of rotations ,m n mnrR Э  (see equations (29) and (30)) are also written explicitly 
through “classical” displacements and “cohesive” displacements, and, therefore, depend only 
on 2lω  and 2lθ . Therefore, if kinematic boundary conditions hold (see (12)), then the problem, as 
a whole, is two-parametric. In the general case of static boundary conditions, only the static 
factor with 2 , 5(4 )a i ia af C R C R= + ∆   depends on the third parameter 2C . Consequently, the 
boundary value problem, as a whole, becomes three-parametric only in the case of static 
nonclassical boundary conditions (12). 

Further, if we assume that 
2

2 2
2

(2 ) ,l l l
l
θ

ω
ω

µ λ
µ
+

= = , then we come to a one-parameter 

model for which the expansion [14-16, 20,22] takes place: .i i iR U u= −   
Finally, we note that the fulfillment of the hypothesis of "classicality", in which the static 

boundary conditions on the tensor of “classical” stresses have the standard classical form (16), 
generally leads to the possibility of constructing approximate solutions of a wide class of 
applied problems with the decrease of order of boundary value problems. 

Suppose that there are boundary value problems containing the static boundary condition 
(16) as one of the boundary conditions on the body surface. We will assume at the first step of 
constructing an approximate solution, that for the tensor of stresses ijτ  the defining relation can 
be approximately written in the form ,ij ijmn m nC Uτ = . Then the displacement vector iU  can be 
found from the solution of the first classical boundary-value problem (a problem with static 
boundary conditions). At the final step, the solution of the boundary value problem for equation 
(22) is constructed 

2 2 2
,{(...) (...) ( )(...) }jk jk jk k jl l l R Uω θ ωδ δ− ∆ − − = , 

with boundary conditions defined by the variational equality 
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1 2 , 2 5 2 , 5{[4( ) (4 ) ] 2(4 ) ( )} 0m ma a a i ia a k j kjaC C R C C R n C R C R n Э dFδθ δ ω+ + + ∆ − + ∆ =∫∫  
Then the field of “cohesive” displacements from equality (25) can be explicitly 

determined. After that, we can redefine the stresses in formula (33), assuming that the field of 
“cohesive” displacements is known, and repeat the procedure for constructing the solution, 
which reduces to a sequence of solving two boundary value problems of second and not fourth 
order. It is not difficult to see that the algorithm proposed above corresponds to the procedure 
for constructing a solution using the asymptotic expansion of the solution for a small parameter 

2 2l lω=  and resembles the procedure for the method of elastic solutions. In this case, the 
equilibrium equations (15) and static boundary conditions (16) are satisfied exactly at each step, 
and the defining relations are considered as approximate, which is completely permissible. 

4. Applied “vector” gradient models
For applied problems, the simplest gradient models that contain two or even one additional 
parameter are of interest, comparing with the classical theory of elasticity. Let's consider some 
variants of such correct “vector” gradient models. 

Suppose that in (10) 0С = . In the future, we will use the same transformations for model 
analysis as we used in the section 3. The variational equation of the applied gradient two-
parameter model in this case has the form: 

2
, 5 2 ,

5

2
, 5 , 2 , 2 ,

5

2
2 ,

5

2 2
5 , , , ,

5 5

{ 4 (1 ) }

{ [ (1 2 )

2 (1 ) ] }

{ ( 2 ) [ ( )]} 0.

V
ijmn m nj i j ji i i

F
i ijmn m n i j j i k k ij

m mij j i

a m ma a j j a j j k k a

CL C R C R C R P R dV
C

CP C R C R C R C R
C

CC R n R dF
C

C CC R R R n n R n R dF
C C

δ δ

δ

δ

δ

= − ∆∆ − + ∆ + +

+ − − ∆ − ∆ − + ∆ −

− + +

+ − ∆ + + + =

∫∫∫

∫∫

∫∫





(34) 

For the model (34), the “classical” equilibrium equations and the “classical” static 
boundary conditions (with variation of displacements iRδ in (34)) have a clearly classical form: 

, 0V
ij j iPτ + = ,  ( ) 0,F

i ij j iP n R dFτ δ− =∫∫  

where ijτ is the tensor of “classical” stresses: 

2 2
, 5 , 2 , 2 , 2 ,

5 5

(1 2 ) 2 (1 ) .ij ijmn m n i j j i k k ij m mij
C CC R C R C R C R C R
C C

τ δ= − ∆ − ∆ − + ∆ − +  (35) 

The stresses (35), in contrast to (14), can be made paired, requiring in addition: 2 5 .C C=  
The nonclassical boundary conditions in (34) decompose into three pairs of alternative 

nonclassical boundary conditions: 
2 2

5 , , , ,
5 5

{ ( 2 ) [ ( )]} 0.a m ma a j j a j j k k a
C CC R R R n n R n R dF
C C

δ− ∆ + + + =∫∫  (36) 

The “vector” (three-parameter) theory (12), (17) differs from the theory of the “cohesive”  
field (two-parametric) model (34), (36) in that the boundary conditions contain all three 
nonclassical parameters. 

For the model under consideration, the operator of the equilibrium equation is represented 
as the product of a classical equilibrium operator and an additional, nonclassical Helmholtz 

362 S.A. Lurie, Р. A. Belov, Y.O. Solyaev, E.C. Aifantis



operator if the scale parameters 2 2,l lθ ω  in (24) are related to nonclassical modules by the 
following relations: 

2
5

2
2

.
2 (2 )

C l

C l l l
ω

ω θ ω

µ

µ µ λ µ

 =


= + −
 (38) 

The “classical” displacement field, the field of “cohesive” displacements in this model, 
is also determined by equations (22) and (25), and the general solution is represented by the 
relation (32). 

Let us give one more particular “vector” gradient model, which is a further simplification 
of the general vector model and is already a one-parameter gradient model. We assume in (11), 
(14) that 2 2

5 20, , 2 ( )С C l C lµ µ λ= = = + . Then the density of the gradient part of the 
potential energy can be represented in a simpler and more compact form: 

2
, , , , , ,

(2 ) (2 )[( ) ][( ) ].ijkmnl i jk m nl a i ia i ia a i ia j jaC R R l R R R R R Rµ λ µ λµ
µ µ
+ +

= ∆ − + ∆ − +  (37) 

Here it is taken into account that 
2 ( ) ( )[( ) ( )][( ) ( )].

2 2ijkmnl jk ia ij ka ik ja nl ma mn la ml naC l µ λ µ λµ δ δ δ δ δ δ δ δ δ δ δ δ
µ µ
+ +

= + + + +  

For this particular model (37), the variational equation defining the mathematical model 
(solving the equation and the boundary conditions) has the form: 

,

2
, , , ,

{ } { ( )}

( )[ ( ) ] [ ( )] 0,
2

V F F
ij j i i i i ij j i

a m ma a k j j ak k a k

L

P R dV P P n R dF

l R R R R R n dF

δ

τ δ τ δ

µ λµ µ λ δ δ
µ

=

= + + − − +

+
− ∆ + + + + =

∫∫∫ ∫∫

∫∫





 (38) 

where ijτ  are the “classical” stresses: 

2
, , ,

, ,

( )[
2

(3 ) ( )( ) (2 ) ].
2 2

ij ijmn m n i j j i

m mij k k ij

C R l R R

R R

µ λτ µ

µ λ µ λµ λ µ λ δ
µ µ

+
= − ∆ + ∆ +

+ +
+ + + + ∆

 

If we assume 2 2 2 2(2 ) / ,l l l lθ ωµ λ µ= + =  then for the one-parameter model (38) under 
consideration, the operator of the equilibrium equation is represented as the product of the Lame 
operator and the generalized Helmholtz operator constructed on the base of the Lame operator 
(see also [20]): 

2
,[ (...)]{(...) ( / ) (...) } 0,V

ij jk ij jk k iL l L R Pδ µ− + =  (39) 
where (...)ijL  is the Lame operator, ,(...) [ (...) ( )(...) ]ij ij ijL δ µ λ= ∆ + + . 

The “classical” displacement field and the field of “cohesive” displacements are 
determined, respectively, by the equalities: 

2
,[ ( ) ] /j j j k kjU R R R lµ µ λ µ= − ∆ + + ,   2( / )j jk ku l L Rµ= −  (40) 

and are the solutions of equations: 

,

2

[ (...) ( )(...) ] 0

( / ) 0

V
ij ij j i

V
ij j i i

U P

L u l u P

µ δ µ λ

µ

∆ + + + =

− + =
 (41) 

The general solution is represented as a decomposition: .i i iR U u= −  
Note that the one-parameter gradient model for which the equalities (39) - (41) are 

satisfied was widely used in [19, 20, 22] to solve applied problems in the mechanics of 
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composites with micro/nano-dimension inclusions and was called the applied model of the 
interphase layer. 

5. On one generalization of the Aifantis’s GradEla model
Finally, we consider an even more particular gradient model, which belongs to the class of 
vector models. 

We suppose that 2
1 2 50, 0,C C C lµ= = = . Then the relation (11), (14) gives the following 

representation for the tensor of gradient modules 2 ( )( )ijkmnl jk ia nl maC lµ δ δ δ δ= , and the gradient 
part of the potential energy has the form: 

2
, ,ijkmnl i jk m nl a aC R R l R Rµ= ∆ ∆ . (42) 

The variational equation of the vector gradient model under consideration looks like: 
, , , ,

2 2
, , ,

[ ]

{[ ( ) ] ( )} 0

ijmn m n i j ijkmnl m nl i jk

F
i ijmn m n i j j i a a k k

L A C R R C R R dV

P C R l R n R l R R n dF

δ δ δ δ

µ δ µ δ

= − + =

= − − ∆ − ∆ =

∫∫∫
∫∫

(43) 

It follows from the variational equality (43) that in the boundary-value problem the 
“classical” static condition for the “classical” stress ijτ  is precisely distinguished, and three 
pairs of alternative nonclassical boundary conditions are given by the variational equality: 

2
,( ) 0.a a k kl R R n dFµ δ∆ =∫∫  

In this case, the “classical” stress has the form 
2

, , ,ij ijmn m n i jC R l Rτ µ= − ∆  (44) 
and, in its structure, almost exactly coincides with the expression for the total stresses of the 
GradEla model of Aifrantis. 

It is easy to verify that the equilibrium equation for a given vector model exactly coincides 
with the equilibrium equation of the GradEla model, and the operator of the equilibrium 
equation is represented as the product of the Lame operator and the Helmholtz operator 

2
,{(...) (...)}[ (...) ( )(...) ] 0.V

ik ik k il R Pµ δ µ λ− ∆ ∆ + + + =  (45) 
The “classical” displacement field jU  and the "cohesive" displacement field ju  are 

determined by the equations: 
2

j j jU R l R= − ∆ ,   ,[ (...) ( )(...) ] 0V
ij ij j iU Pµ δ µ λ∆ + + + = (46) 

,[ (...) (...) ( ) / ]i ik ik ku Rδ µ λ µ= − ∆ + + , 2 0V
i i il u u Pµ µ∆ − + = , (47) 

which also coincide exactly with the corresponding equations of the Aifantis GradEla model 
[36]. 

Note that although the gradient model determined by the relations (42) - (47) resembles 
the gradient model of Aifantis (GRADELA) in many ways, does not coincide with it. The model 
presented above is non-symmetric – the “classical” stresses are non-symmetric. In the Aifantis 
model, the gradient part of the potential energy is written in the form 2

, ,ij k ij klµ ε ε and differs 
from the expression (42), the gradient component of the defining relation for symmetric total 
stresses is written through Laplacian of the deformation ,i jε∆ , in contrast to expression (44). 

The model considered in the article belongs to the class of vector gradient correct models. 
For it, the static boundary condition, written only for “classical” stresses, is precisely 
distinguished. In general, this leads to simplifying the construction of solutions of applied 
problems. The GradEla model of Aifantis does not possess this quality. It does not belong to 
the class of vector gradient correct models.  
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The model defined by (42) - (47) we will call the generalized Aifantis model. This 
generalization allows us to transfer the Aifantis model to a class of correct vector models for 
which the classical boundary. 

 
6. On decomposition of boundary value problems 
Let us return to the vector gradient models and briefly examine the possibility of substantially 
simplifying the solutions of boundary value problems for them using decomposition of the 
general boundary value problem of the fourth order into a sequence of independently solvable 
boundary value problems of the second order. We assume that the conditions that lead to static 
boundary conditions of the classical form are satisfied: 

.ijkmnl akij almnC l lµ=  (48) 
Then the following statement holds: The gradient part of the potential energy density for 

the model in which the gradient modules obey conditions (48) is representable as the potential 
energy density of vector field. Really, taking into account (48) we obtain: 

, , , , , ,( )( ).ijkmnl i jk m nl akij almn i jk m nl akij i jk almn m nlC R R l l R R l R l Rµ µ= =  (49) 
The expression (49) is determined by the convolution of the following vectors 

,i akij i jkl Rε = . Consequently, for the gradient models under consideration, the variational 
equation, taking into account (48), (49) takes the form: 

, , ,

, , ,

[( ) ]

{[ ( ) ] ( )} 0.

V
ijmn m n a k akij j i i

F
i ijmn m n a k akij j i a akij k i j

L C R l P R dV

P C R l n R l n R dF

δ µε δ

µε δ µε δ

= + + +

+ − + − =

∫∫∫
∫∫

 (50) 

We can define the second rank tensor in (50) as the tensor of conditional “classical” 
stresses: 

, ,( ).ij ijmn m n a k akijC R lσ µε= +  (51) 
It is easy to see that the stresses ijσ  (51) satisfy both the equilibrium equations and the 

classical static conditions: 
,

,

( )

[( ) ( )] 0.

V
ij j i i

F
i ij j i a akij k i j

L P R dV

P n R l n R dF

δ σ δ

σ δ µε δ

= + +

+ − − =

∫∫∫
∫∫

 (52) 

The variational equation (52) indicates that nonclassical conditions are determined by 
three pairs of alternative boundary conditions which do not change the classical boundary 
conditions 0F

i ij jP nσ− = . 

Using the classical modulus of elasticity ( )ijmn ij mn im jn in jmC λδ δ µ δ δ δ δ= + + , let’s 
postulate the following relations: 

( )ijmn ijmn im jn in jm ij mn
ll C l λδ δ δ δ δ δ
µ µ

= = + + ,   ijmn mnijl l=  (53) 

Therefore, taking into account (49) we find that the following equality must hold: 
2

ijkmnl akij almn
lC C C
µ

= ,     ( )almn al mn am ln an lmC λδ δ µ δ δ δ δ= + + . 

In this case, the relation (51) takes the form: 
, , ,( ) ( )ij ijmn m n a k akij ijmn m m nC R l C R lσ µε ε= + = + . (54) 

We note, however, that the introduction of hypothesis (53) leads to a loss of symmetry 
for the “classical” stresses (54). 

At last, “classical” displacements iU  can be found (see eq. (53)): 
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2
, ,

2
,

( )

[ ( ) ] / .

i i i i ilmn m nl i im ln in lm il mn m nl

i i k ki

U R l R l l R R l R

R R R l

λε δ δ δ δ δ δ
µ

µ µ λ µ

= + = + ⋅ = + + + =

= + ∆ + +
 (55) 

“Cohesive” displacements iu  are defined through the difference between “classical” and 
total displacements [20, 22]: 

2

,[ ( ) ].i i k ki
lu R Rµ µ λ
µ

= ∆ + +  (56) 

Then general solution for the considered variant of the “vector” gradient model has the 
form: 

i i iR U u= −  (57) 
Note, that the gradient model defined by equations (50)-(57) is unique one parametrical 

model which allow to simplify set of boundary volume problems using the decompositions of 
the initial problems of fourth order to the sequence of two problems of second order.    

As a result, for the “vector” gradient model, the first fundamental problem splits into two, 
the classical boundary value problem: 

,

,

0
,

( ) ( ) 0

V
ijmn m nj i

V
i ijmn j m n i i

С U P

P С n U U u dFδ

 + =


− − = ∫∫
 (58) 

and the auxiliary boundary value problem: 
2

,

,

( / )
.

( ) ( ) 0
ijmn m nj i i

i i ijmn j m n

l С R R U

R U C n R dF

µ

δ

 − = −


− = ∫∫
 

The decomposition of the general solution into a superposition of “classical” one and 
“cohesive” one leads to the fact that the boundary value problems of gradient theories, in some 
cases, can be represented as a sequence of solutions of two boundary value problems: classical, 
with respect to the vector of “classical” displacements iU  and the boundary value problem with 
respect to the vector of complete displacements iR . The non-classical auxiliary to (58) the 
boundary value problem can be reformulated, in accordance with (57) with respect to 
“cohesive” displacements iu : 

2
,

, ,

( / ) 0

( ) 0.

V
ijmn m nj i i

i ijmn j m n m n

С u l u P

u C n U u dF

µ

δ

 − + =


− =∫∫
  (59) 

Consequently, for the first fundamental problem, the boundary value problems always 
disintegrate into “classical” and “cohesive” displacements for the “vector” gradient model 
under consideration. 

 
7. Analysis and decompositions of the boundary value problems   
Formally, the boundary value problems of the “vector” gradient model, in the general case, are 
coupled problems (58), (59): 

2
, ,

, , ,

0 ( / ) 0
.

( ) ( ) 0 ( ( )) 0

V V
ijmn m nj i ijmn m nj i i

V
i ijmn j m n i i i ijmn j m n m n

С U P С u l u P

P С n U U u dF u C n U u dF

µ

δ δ

 + = − + = 
 

− − = − =  ∫∫ ∫∫ 

 (60) 

For definiteness, we will assume that in the surface integral the multiplier associated with 
variation determines as the “static factors” in the boundary conditions, and the expression under 
the variation determines as “kinematic factors”. Let us consider four basic formulations of 
boundary value problems for statements (60). 
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1. For “classical” and “cohesive” displacements, it is required to perform static boundary 
conditions: 

,( ) 0,

0.

V
i ijmn j m n

i

P С n U
u

− =

=
 (61) 

In this case, we can see that the boundary value problems (60), (61) with respect to vectors 
of “classical” iU  and “cohesive” iu  displacements are separated by their construction. 

2. For “classical” displacements, the static boundary conditions are satisfied, and for 
“cohesive” displacements, are performed the kinematic boundary conditions: 

,

, ,

( ) 0,

( ) 0.

V
i ijmn j m n

ijmn j m n ijmn j m n

P С n U
C n U C n uδ

− =

− =
        (62) 

Varying ,( ) 0V
i ijmn j m nP С n U− =  and adding up with , ,( ) 0ijmn j m n ijmn j m nC n U C n uδ − = , we 

obtain using (62):  
,

,

( ) 0,

( ) 0.

V
i ijmn j m n

V
i ijmn j m n

P С n U

P C n uδ

− =

− =
 (63) 

As a result we again receive the full decomposition of the boundary value problems 
(60),(63) for the vectors of “classical” iU  and “cohesive”  iu displacements. 

3. For “classical” displacements, kinematic boundary conditions are performed, and for 
“cohesive” displacements, the “static” boundary conditions are satisfied:  

( ) 0,
0.
i i

i

U u
u
δ − =

=
 (64) 

Varying 0iu =  and adding up with ( ) 0i iU uδ − = , we obtain from (64) the following 
boundary conditions:  

0,
0.

i

i

U
u
δ =
=

 (65) 

Conditions (65) lead to fully decomposition of the boundary value problems for the 
vectors of “classical” iU  and “cohesive” iu displacements. 

4. The kinematic boundary conditions are satisfied for the “classical” displacements and 
for “cohesive” displacements: 

, ,

( ) 0,
( ( )) 0.

i i

ijmn j m n m n

U u
C n U u

δ
δ

− =
− =

         (66) 

The  boundary conditions (66) do not allow to  divide   boundary volume problems respect 
to vectors of “classical” iU  and “cohesive” iu  displacements. Indeed, since 

* ( )ijmn ijmp pn ijmp p nC C C n nδ= +  and *
,( ) 0ijmp pn i i nC U uδ δ − = , from the second condition (66) 

follows that , ,( ) 0i j j i j jU n u nδ − = . Thus, the boundary-value problem for the vectors of 
“classical” iU  and “cohesive” iu  displacements takes the form: 

, ,

( ) 0,
( ) 0.

i i

i j j i j j

U u
U n u n

δ
δ

− =

− =
 (67) 

Conditions (66) (and (67)) define the coupled boundary value problem respect to vectors of 
“classical” iU  and “cohesive” iu  displacements.  
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8. Conclusions 
It is shown that the traditional formulation of gradient theories of elasticity leads to the fact that 
classical static conditions on the surface of the body are not satisfied locally. A “vector” theory 
is formulated, it is correct and provides a classical view of static boundary conditions. 

Particular cases of vector gradient models are considered and it is shown that there exists 
a particular vector gradient model whose equilibrium equations coincide with the equations of 
the well-known applied GradEla model of Aifantis. Such a vector gradient model can be 
considered as a generalization of the Aifantis model. For it there is an exact decomposition of 
static boundary conditions to “classical” stresses (full stresses if we use Aifantis definition). 
Finally, it is shown that if we neglect the symmetry requirement for the gradient-module tensor 
with respect to the last indices in triples, then it is possible to indicate a unique gradient theory 
that admits the decomposition of boundary value problems of the fourth order into a sequence 
of two second-order boundary value problems when we solve a number of boundary value 
problems. 
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Abstract. Paper continues developments and numerical testing of functional approach [1-3] to 
a posteriori error control for 2D problems of classical [2] and Cosserat elasticity [4,5]. The 
approach yields reliable error bounds (majorants) that are valid for all conforming solutions of 
problems regardless of methods used for a numerical implementation of a solution process. 
Efficiency of the above technique is shown on a set of numerical examples including 
consequent mesh adaptations with MATLAB tools as it was done [6]. 
Keywords: computational mechanics; a posteriori error estimates; finite element method. 
 
 
1. Introduction 
Various boundary-value problems of classical elasticity theory have been intensively used for 
developments, numerical testing and comparison of different approaches to a posteriori error 
control. Such methods are aimed to explicitly compute some quantitative measure of errors, 
which appear during numerical simulations, and indicate subdomains with large errors for 
further refinements. All general frameworks for error estimation and adaptive mesh refinement 
have been applied to linear elasticity. The first theoretical result appeared in [7] (much earlier 
than others, like [8-10]). W. Prager and J.L. Synge considered a “geometrical” method of error 
estimation based on originally intuitive constructions. But this idea gave a rise to another 
approach of P. Ladevèze and colleagues (see [11-14] for reviews). It is based on the concept of 
errors in constitutive relations or CRE. However, [13] shows that computational efforts to get 
sharp error estimates with this method can be significant. 

Another approach that is widely used nowadays is the so-called gradient averaging. It is 
based on pioneering works of O.C. Zienkiewicz and J.Z. Zhu [9,15]. The last paper includes a 
comprehensive study of various computational aspects with different examples of 
implementation of averaging procedures to problems of solid mechanics with different types of 
finite elements. The main advantage of this method is simplicity, but it isn’t able to provide 
reliable error control and often underestimates true errors. Another series of famous 
publications of O.C. Zienkiewicz and J.Z. Zhu appeared in 1992 [16-18] with a new approach 
called superconvergent patch recovery or SPR, which is quite popular nowadays – see  
[19-23].  

Group of residual-based methods for linear elasticity started to develop from paper by 
C. Johnson and P. Hansbo [10], which also includes numerical results for plane strain 
statement. For further research on explicit and implicit residual methods, we refer to [24-33]. 
Recent results on residual-type indicators and other methods in application to plane problems 
of linear elasticity theory one can find, for example, in [27,34,35]. 

Paper [22] contains a comprehensive study and comparison of various modifications of 
the SPR-method with the same conclusion about possible underestimation of the true error that 
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yields unreliability of the method. For extended review of the literature, we mention [19] and 
[36]. In [37] one can find comparison of 6 indicators of different types. Authors of [38] 
compared CRE and SPR methods (see also [39]). In 1994 paper of I. Babuška and colleagues 
[40] provided a special methodology for comparison of indicators of different types and 
presented a review of early results on error estimation theory. Investigation has been continued 
in [41-43], and in [44]  – with adaptations. 

It is necessary to note that collection [45] edited by P. Ladevèze and J.T. Oden, and the 
review by R. Verfürth [46] are also very useful for analysis of various groups of classical 
methods of a posteriori error control for problems of solid mechanics. Nowadays, the theory of 
a posteriori error control forms one of the important directions of modern computational 
mathematics. The amount of the corresponding literature is increasing continuously from the 
end of 1970-s (see, for instance, [3,47,48] for a review). However, summarizing these results, 
one can conclude that computationally inexpensive approaches are unreliable, especially in 
error control of solutions of black-box software for Computer-Aided Engineering (CAE). Some 
modifications, which increase reliability, may lead to extra computational efforts and rather 
technical implementations. All standard approaches are based on the fact that controlled 
numerical solution is an exact solution of a discrete problem generated by Finite Element 
Methods (FEM). Often, this is not the case for commercial software.  

Theoretical background of the functional approach to a posteriori error control, including 
estimates for various problems of continuum mechanics, has been developed starting from 
pioneering work of S. Repin and L.S. Xanthis [49]. The early results were mostly 
theoretical – some references can be found in [2,3,50]. For the last decade, investigations of the 
functional approach by S. Repin and his colleagues become more practice-oriented. Functional-
type a posteriori error majorants for classical linear elastic problems have been obtained in [51] 
and [2] using two different methodologies. 

Cosserat continuum [52] is one of interesting and sufficiently straightforward 
generalizations of the classical theory (see, for example, [53] and [54] for mathematical 
statements). Numerical methods for solving problems related to Cosserat continuum began to 
develop more intensively from the XXI century (see, for example, [55-59]). Nevertheless, first 
results concerning functional-type error estimates have appeared during the last few years. 
Totally, there are only few papers addressed to a posteriori error control for computed 
approximations – [60,61,4,5], and this work requires further developments in construction and 
comparison of adaptive algorithms. 
 
2. Statement 
Majorants for both mathematical models under consideration have some important features in 
common. Estimates for classical and Cosserat elasticity have the form 
|||e|||   ≤   M :=   D(ũ, s*) + R(s*) + penalty terms,      e : = u - ũ,  (1) 
where := means “equality by definition”, u contains all components of the exact solution, which 
is generally unknown, ũ represents approximations of these components, which are explicitly 
provided from computations, e is the corresponding error vector formed by components of 
deviations from exact values, s* is a set of auxiliary variables, and |||...||| denotes the global 
(energy) norm of the error. All components of functional-type error majorants have clear 
physical meaning and interpretation. Term D represents errors in constitutive relations. Term R 
is a residual term with mesh-independent constants (some proper balance of equilibrium 
equations). The estimate (1) may contain optional penalty terms that violate the symmetry 
condition for auxiliary tensors in a weak form. Therefore, the right-hand side of (1), denoted as 
M, depends only on known data – approximate solutions, constants, positive parameters, 
additional variables, and it can be calculated explicitly. This estimate is exact in the sense that 
the equality can be achieved with a proper setting of parameters and variables. For instance, 
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estimates for plane problems of the considered types have the form (1) – see [2,4,61] for details. 
All auxiliary fields can be constructed on a common basis of finite elements suitable for space 
H(div) – the Hilbert space of square summable vector-functions with square summable 
divergence. 

A reasonable choice of approximations for free variables in functional-type error 
estimates allows obtaining accurate guaranteed upper bounds of errors. The functional approach 
does not impose significant additional restrictions (for example, the assumption about exact 
satisfaction of equilibrium equations) on free variables. A functional-type error estimate is 
applicable to any arbitrary approximate solution from the corresponding energy space. It 
remains valid regardless of the approach used for calculating this solution, thus it allows taking 
into account various error sources, what is extremely important for additional verification of 
commercial software for CAE. Additionally to the global error estimation procedure, the 
functional M2 can be split and used as an indicator of the local error distribution, considering 
the contributions to the global error on each finite element. Therefore, it can provide a basis for 
construction of adaptive algorithms. 

Adaptive algorithms for FEM generally consist of four main steps: solve, estimate, mark 
and refine (see, for example, [62,63]). Concerning the estimate (1) the procedure admits the 
following interpretation: 
1. step(solve): compute ũ on some (initial or consequent) finite element mesh; 
2. step(estimate): compute the functional M from all individual contributions to it on every 
element; 
3. step(mark): mark mesh elements with comparatively large local errors by some marking 
strategy (using some error threshold or percent of the total amount of elements); 
4. step(refine): divide marked elements and do local mesh refinements. 

Besides of local refinements, for more sophisticated and efficient algorithms one can 
consider some procedures for local mesh coarsening.  
 
3. Numerical results 
Adaptive algorithms for plane elasticity problems, mentioned in this paper, are implemented in 
MATLAB. In the continuation of previous research the mixed-FEM approximations [64,65] 
are used for computation of upper error bounds and indicators. Extending results of [66], below 
we consider two examples as an illustration. 

For both examples, all material properties are taken from [56]. 
Example 1 (square domain with a hole). We consider the square domain with side 

16.2 mm, which contains a circular hole with radius 0.216 mm in the center. The left edge is 
fully clamped and the tensile loading of 1 MPa is applied to the right edge. Initial mesh is shown 
in Fig. 1 (a). 

Two types of problems are solved – with classical and Cosserat elasticity models. The 
resulting adaptive meshes are compared. Results for classical elasticity are collected in Table 1, 
and for Cosserat model – in Table 3. The lowest-order Raviart-Thomas approximation [64] is 
used for the implementation of the majorant M from (1). 

For this example results were partially presented in [66] with minor modifications of 
computational algorithms. For instance, final mesh for the majorant for the classical elasticity 
now consists of 2960 nodes instead of 2955 in [66]. 

The first block of results in each table corresponds to the uniform mesh refinement with 
no adaptation. The initial mesh (first column) is provided by a standard MATLAB tool and 
remains the same for all refinement algorithms. In any uniform refinement step, each element 
from previous mesh is divided into four new elements. The nodes, elements and relative errors 
are collected in corresponding table rows. Relative errors are computed with the  
so-called reference solution – an approximate solution obtained on a fine mesh. It is very time-

372 M.A. Churilova, M.E. Frolov



consuming to calculate the reference solution; therefore, it is provided only for numerical 
experiments on validation and comparison of different approaches. For engineering practice, it 
is never used. But the following results show that functional type error majorants can be 
considered as a reasonable alternative choice. 

Table 1. Example 1. Classical elasticity: results for uniform and adaptive mesh refinements. 
Uniform refinement 
MESH 1 2 3 4 5 
NODES 295 1147 4522 17956 71560 
ELEMENTS 557 2228 8912 35648 142592 
RELATIVE ERROR, % 10.1 6.6 4.2 2.6 1.6 
Reference indicator 
NODES 295 353 423 765 2050 
ELEMENTS 557 664 793 1428 3906 
RELATIVE ERROR, % 10.1 6.9 4.9 2.6 1.6 
Majorant-based indicator 
NODES 295 323 536 876 2960 
ELEMENTS 557 606 1002 1648 5701 
RELATIVE ERROR, % 10.1 7.1 3.7 2.7 1.4 
Ieff = M/|||e||| 1.2 1.2 1.3 1.3 1.2 

Table 2. Example 1. Classical elasticity: results for another uniform refinement. 
Uniform refinement (another initial mesh) 
MESH 1 2 3 4 5 
NODES 305 1183 4658 18484 73640 
ELEMENTS 573 2292 9168 36672 146688 
RELATIVE ERROR, % 7.5 4.6 2.8 1.7 1.0 

In addition, the uniform refinement procedure is repeated from another slightly different 
initial mesh (Fig. 1 (b)). Results are collected in Table 2. If the desired relative error level is 
less or equal to 2%, then for the first uniform sequence the resulting mesh contains 71560 nodes, 
and for the second one a solution process yields the mesh with 18484 nodes only. Thus, choice 
of the initial mesh may dramatically affect the uniform refinement results and may increase 
computational costs caused by necessity to provide accurate results. 

Table 3. Example 1. Cosserat elasticity: results for uniform and adaptive mesh refinements. 
Uniform refinement 
MESH 1 2 3 4 5 
NODES 295 1147 4522 17956 71560 
ELEMENTS 557 2228 8912 35648 142592 
RELATIVE ERROR, % 12.0 9.2 6.6 4.4 2.7 
Reference indicator 
NODES 295 348 469 899 2582 
ELEMENTS 557 652 870 1668 4899 
RELATIVE ERROR, % 12.0 9.8 6.8 4.5 2.8 
Majorant-based indicator 
NODES 295 317 527 1039 4111 
ELEMENTS 557 592 956 1894 7674 
RELATIVE ERROR, % 12.0 9.6 7.0 4.7 2.6 
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(a) 295 nodes (initial mesh) (b) 305 nodes (initial mesh 2) 

  
(c) ux (d) uy 

  
(e) 2050 nodes (reference) (f) 2960 nodes (majorant) 

Fig. 1. Example 1. Classical elasticity: initial meshes (a,b), components of the solution 
u (c,d) (displacements), the result of adaptation by the reference indicator (e), the result of 

adaptation by majorant-based indicator (f). 
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(a) 295 nodes (initial mesh) (b) ux 

  
(c) uy (d) w 

  
(e) 2582 nodes (reference) (f) 4111 nodes (majorant) 

Fig. 2. Example 1. Cosserat elasticity: initial mesh (a), components of the solution u and 
w (b-d) (displacements and rotation), the result of adaptation by the reference indicator (e), 

the result of adaptation by majorant-based indicator (f). 
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For the same problem conditions of Cosserat elasticity with the same uniform meshing, 
the relative error is greater than for the classical one – this effect occurs due to solving equations 
that are more complex from mathematical point of view. 

For analyzing adaptation results, reference (target) meshes are constructed. The 
adaptation process takes a large amount of steps, refining only several elements on each. 
Elements to be refined are chosen with reference error indicators, which are based on the energy 
norm of the difference between solutions on coarse and fine meshes. Results for corresponding 
reference meshes are collected in the second block of the Table 1 and Table 3, respectively. 

In the third blocks of the above-mentioned tables, the results for majorant-based 
adaptation process are collected. In Table 1 the functional-type error majorant from [2] is used 
for reliable upper error estimation. The ratio between the error majorant M and the error |||e||| is 
used as a standard quality measure for error control. This parameter is usually called  
the efficiency index – it is denoted by Ieff.  

The results for classical elasticity are presented in Fig. 1 with the following subplots: 
initial mesh, corresponding to Table 1 (a); initial mesh, corresponding to Table 2 (b); classical 
solution components (c-d); the final mesh for the reference indicator (e) and the final mesh for 
the majorant-based indicator (f). For Cosserat elasticity, the results are presented in Fig. 2 with 
the following subplots: initial mesh, corresponding to Table 3 (a); solution components (b-d); 
the final mesh for the reference indicator (e) and the final mesh for the majorant-based 
indicator (f). The difference between solutions of classical and Cosserat elasticity problems is 
moderate. 

The results show that for considered parameters, geometry and loading in both cases 
(classical and Cosserat model) majorant-based error indicators lead to final adaptive meshes, 
which are similar to reference ones. The adaptation process was stopped after reaching the same 
error level as on uniform mesh with 71560 nodes. For classical model the number of nodes in 
the final adaptive mesh is 2960 and for Cosserat model – it is 4111, which is more than 10 times 
less. These results show that adaptive refinements save a lot of computational resources to get 
an approximate solution of a good quality. 

It is also worth noting that adaptive meshes for different elasticity models have different 
structure. In first case, the node concentration regions are around the corners of clamped edge 
and around the hole. In the second case (Cosserat model), the node concentration region is more 
along the whole clamped edge. 

In addition, Table 4 illustrates the behavior of error estimation for several steps with 
uniform mesh refinements for the simplest Arnold-Boffi-Falk approximation [65]. From these 
results for Cosserat elasticity we conclude that the efficiency index of estimates remains stable 
and overestimation of the true error is moderate and acceptable. 

 
Table 4. Example 1. Results for the lowest order Arnold-Boffi-Falk approximation for nested 
meshes [5]. 

MESH 1 2 3 4 
NODES 168 624 2400 9408 
RELATIVE ERROR, % 15.8 11.1 7.3 4.0 
Ieff 1.2 1.2 1.2 1.3 

 
Example 2 (Γ-shaped domain). In this example the Γ-shaped domain is considered. 

Length of the left and upper edge is 2 m, the other edges are of length 1 m. The left edge is fully 
clamped and on the upper edge a loading is applied. 

As for the Example 1, the results for classical elasticity model are grouped in Table 5, 
and for Cosserat model – in Table 6. 
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For this example the difference between the solutions of classical and Cosserat elasticity 
problems is more significant. In addition, the relative error for the solution of Cosserat elasticity 
problem is almost two times larger than for classical one. Nevertheless, for both elasticity 
models the difference in the number of nodes for final adaptive and uniform meshes with the 
same level of relative error is still significant. 

 
Table 5. Example 2. Classical elasticity: results for uniform and adaptive mesh refinements. 

Uniform refinement 
MESH 1 2 3 4 5 6 
NODES 85 305 1153 4481 17665 70145 
ELEMENTS 136 544 2176 8704 34816 139264 
RELATIVE ERROR, % 26.2 17.9 12.0 8.1 5.4 3.7 
Reference indicator 
NODES 85 217 357 694 1591 3409 
ELEMENTS 136 379 639 1278 3004 6557 
RELATIVE ERROR, % 26.2 15.3 11.4 8.1 5.4 3.7 
Majorant-based indicator 
NODES 85 177 532 1041 1898 3582 
ELEMENTS 136 304 983 1969 3643 6942 
RELATIVE ERROR, % 26.2 16.52 9.8 7.3 5.4 3.9 
Ieff = M/|||e||| 1.2 1.2 1.2 1.2 1.2 1.2 

 
Table 6. Example 2. Cosserat elasticity: results for uniform and adaptive mesh refinements. 

Uniform refinement 
MESH 1 2 3 4 5 6 
NODES 85 305 1153 4481 17665 70145 
ELEMENTS 136 544 2176 8704 34816 139264 
RELATIVE ERROR, % 53.0 39.4 27.6 18.9 12.8 8.7 
Reference indicator 
NODES 85 227 674 1640 4229 10036 
ELEMENTS 136 398 1241 3073 8049 19276 
RELATIVE ERROR, % 53.0 37.6 26.4 18.9 12.7 8.7 
Majorant-based indicator 
NODES 85 267 943 1904 5582 15941 
ELEMENTS 136 449 1680 3440 10268 29642 
RELATIVE ERROR, % 53.0 37.7 26.1 20.1 12.6 7.9 

 
The adaptive meshes corresponding to the last columns of Table 5 and Table 6 are 

presented in Fig. 3 and Fig. 4. As in Example 1, the adaptive mesh structure is different for 
classical and Cosserat elasticity models. For the classical elasticity problem node concentration 
regions are around the corners of clamped edge and around the domain reentrant corner. For 
the Cosserat elasticity problem the node concentration region is more along the clamped edge 
and the domain reentrant corner. 
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(a) 85 nodes (initial mesh) 

  
(b) ux (c) uy 

  
(d) 3409 nodes (reference) (e) 3582 nodes (majorant) 

Fig. 3. Example 2. Classical elasticity: initial mesh (a), components of the solution 
u (b,c) (displacements), the result of adaptation by the reference indicator (d), the result of 

adaptation by majorant-based indicator (e). 
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(a) 85 nodes (initial mesh) (b) ux 

  
(c) uy (d) w 

  
(e) 10036 nodes (reference) (f) 15941 nodes (majorant) 

Fig. 4. Example 2. Cosserat elasticity: initial mesh (a), components of the solution u and 
w (b-d) (displacements and rotation), the result of adaptation by the reference indicator (e), 

the result of adaptation by majorant-based indicator (f). 
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4. Conclusions 
The functional approach is always reliable due to the fact that estimates are guaranteed upper 
bounds of errors. This property is known from the corresponding mathematical theory and it is 
numerically approved in the process of implementation of adaptive algorithms. As local error 
indicators, respective majorants provide useful information about distributions of 
computational errors that leads to efficient mesh adaptations and significantly saves 
computational resources for getting accurate approximate solutions (tens of times). For the 
considered classes of problems, H(div) conforming approximations as Raviart-Thomas or 
Arnold-Boffi-Falk yield suitable results from the viewpoint of a stability of the efficiency index 
and a moderate overestimation of the true error. 
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Abstract. We report the results of numerical simulation of the mitral valve in human heart. The 
beam-shell geometry model was created based on anatomical atlases and taking into account 
the heterogeneity of distribution of the mitral valve’s leaflets thickness. The full cycle of the 
mitral valve opening and closure was simulated using the finite element analysis software 
ANSYS Mechanical. The method of data processing from a computer tomography in a solid 
CAD model was implemented and tested. 
Keywords: mitral valve, finite element simulation, computed tomography. 
 
 
1. Introduction 
Thorough understanding of the mitral valve (MV) mechanics is needed for surgical decision 
making such as choosing the type of surgical valve repair applicable for particular patient [1].  
Several mathematical models [2, 3 and 4] of the MV have been developed that allowed 
simulating the valve opening and closure under different conditions. In this study, in addition 
to modeling normal MV function, we analyzed the leaflet motion in the presence of mitral valve 
prolapse (MVP) and its repair using novel plication device [5]. 
 
2. Mitral valve anatomy 
The MV consists of the annulus, posterior and anterior leaflets, chordae tendineae that are 
connected to papillary muscles. Chordae tendineae are tendinous connective fibers that bond 
the leaflets of the MV with the papillary muscles located on the inner surface of the left 
ventricle. The main function of the MV is to control the blood flow from the left atrium to the 
left ventricle. During normal left ventricular diastole, the MV is open and blood flows from the 
left atrium into the left ventricle. Then, during left ventricular systole the MV closes, and blood 
is ejected into the aorta. During contraction of left ventricle, papillary muscles contract and 
tether the chordae preventing prolapse of the MV leaflets.  

2.1 Mitral valve prolapse. MVP is a disease in which there is the displacement of MV 
leaflet into the left atrium during left ventricular systole. It is accompanied by the appearance 
of the blood backflow into the left atrium. Significant amount of the blood in the backflow leads 
to heart failure over time, which requires surgical correction of MVP. 

MVP can be repaired on a beating heart using an implantable device, the Leaflet Plication 
Clip that has been developed at Boston Children’s Hospital [5]. The Clip is attached to the 
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diseased leaflet and thereby prevents displacement of the leaflet toward the left atrium and 
reduces mitral regurgitation. 

Prior to surgical operation, patient specific MV anatomy needs to be analyzed using high-
resolution computed tomography or three-dimensional echocardiography. Then, the imaging 
data is processed into a 3D model of the MV. Finally, a physician analyzes the model with the 
purpose of choosing the optimal method of MV surgical repair. 

2.2 Geometry model. In this study, a geometrical model of the MV (Fig. 1) was created 
using program ANSYS SpaceClaim. Reliable dimensions of the MV were taken from the 
previously published articles [6, 7] focused on studying the anatomy of the heart valves. 

 

  
Fig. 1. Geometry model of the mitral valve. 

 
A non-uniform thickness distribution (Fig. 2) was implemented with the “External Data” 

option that allowed importing data in text format from external sources into ANSYS 
applications. The import procedure allows users to set up the value of the leaflet thickness at 
the specified points, and then this value is interpolated on the nodes located in the specified 
range. 

 

  
Fig. 2. Thickness distribution on the surface of the mitral valve. 
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2.3 Finite element model. According to the geometry model of the MV described above, 
finite element model (Fig. 3) was created with the following features: 
element size – 0.5 mm, number of nodes – 5 402, number of elements - 4 794, type of elements: 
quadrilateral and triangular for modeling of the leaflets(SHELL181) and beam elements for the 
chordae tendineae (BEAM188). 

Fig. 3. Finite-element model. 

2.4 Natural and essential boundary conditions. Initial and boundary conditions were 
simulated taken into account the actual conditions of MV function. At the initial moment of 
calculation, the valve is in the unstressed state. This corresponds to the transition from the filling 
phase to the phase of left atrial systole. Based on the pressure curves from the left atrium and 
the left ventricle [7], the resulting pressure curve was obtained (Fig. 4). 

Fig. 4. Resulting pressure curve. 

Boundary conditions are shown in figure 5. The mitral annulus is fixed in three 
translational degrees of freedom (A). In addition, points (B) of the lower part of chords are 
fixed at the place of attachment to the papillary muscle in the left ventricle. Pressure is applied 
to the surface (C) from the left ventricle and provides closure of the leaflets. 
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Fig. 5. Natural and essential boundary conditions.  

 
2.5 Constitutive model of the mitral valve tissue. MV leaflets consist of collagen, 

elastin and glycosaminoglycan. The relationship between collagen and elastin determine the 
mechanical behavior of the tissue. Angle measured between the collagen fibers describes that 
the fiber orientation depends on the considered region and symmetrical to the central radial axis 
of each MV leaflet. 

Most of the biological materials are anisotropic, i.e. their deformation depends on the 
direction of displacement. Such fiber-reinforced composite material with a single preferred 
direction is called transversely isotropic material. A network of crimped collagen fibers 
represents tissue of the MV, particularly in the central region. The angle of these fibers is 
relatively uniform within the considered experimental region. Therefore, it is assumed that the 
tissue of the MV can be modeled as a transversely isotropic material. 

We assumed local tissue homogeneity, although there is some heterogeneity due to the 
complicated structure of the valve leaflets. Tissue of the MV consist mainly of water and has 
got a reduced perfusion (blood supply). Based on these structural and mechanical observations, 
it can be assumed that the tissue of the MV can be modeled as a hyperplastic incompressible 
material that is initially and locally transversely isotropic relative to the axis of the collagen 
fibers. 

The strain energy function is a short description of the material of this type. Several types 
of strain energy functions were proposed in order to account for the transversal isotropy of the 
soft tissues. Following the method Humphrey [8], it is possible to make an assumption about 
the subclass of transversely isotropic materials in which the strain energy function W 
presumably depends only on the two coordinate invariant measures of finite deformation 
(i.e., the first invariant of strain and elongation along the fiber direction α):  
𝑊𝑊 = 𝑊𝑊(𝐼𝐼1,𝛼𝛼),  (1) 
where 𝐼𝐼1 = 𝑡𝑡𝑡𝑡𝑪𝑪 = 𝑡𝑡𝑡𝑡𝑩𝑩  and 𝜶𝜶 =  𝑵𝑵 ∙ 𝑪𝑪 ∙ 𝑵𝑵. 

𝑪𝑪 =  𝑭𝑭𝑇𝑇 ∙ 𝑭𝑭, 𝑩𝑩 =  𝑭𝑭 ∙ 𝑭𝑭𝑇𝑇 are the right and left Cauchy-green deformation tensor, 
respectively, and N is a unit vector that defines the presumed direction of the fibers of the 
material in the undeformed configuration. F is the deformation gradient tensor, det (F) =1, due 
to incompressibility of the material. The expression of Cauchy stress tensor for a material of 
this type can be expressed as: 

𝑻𝑻 =  −𝑝𝑝𝑰𝑰 + 2𝑊𝑊1𝑩𝑩 + (𝑊𝑊𝛼𝛼/𝛼𝛼) 𝑭𝑭 ∙ 𝑵𝑵⊗𝑵𝑵 ∙ 𝑭𝑭𝑇𝑇,  (2) 
where 𝑝𝑝 is the multiplier that provides incompressibility, 𝑰𝑰 – identity tensor,  

𝑊𝑊1 =  𝜕𝜕𝑊𝑊/𝜕𝜕𝐼𝐼1,  𝑊𝑊𝛼𝛼 =  𝜕𝜕𝑊𝑊/𝜕𝜕𝜕𝜕, ⊗ denotes tensor product. 
Partial derivatives 𝑊𝑊1 and 𝑊𝑊𝛼𝛼 can be calculated directly from the measured stress and 

strain taking into account the angle φ of the collagen fibers. This formulation means that in the 
special case when one of the strain invariants is alternately held constant while the other is 

386 M. D. Stepanov, O.S. Loboda, Y. V. Novozhilov, N. V. Vasilyev



varied, i.e., a set of experiments with constant invariant can be used to determine the functional 
form of W. 

However, to use this type of material we would need the series of experiments to 
determine mechanical properties of the leaflets. In this study, a linear isotropic model of the 
MV leaflet material was used. Values for the stiffness matrix (in the isotropic case is the young's 
modulus and Poisson's ratio) were taken from the article M. A. Hisham [9] devoted to computer 
modeling of the leaflets of the MV under the action of the systolic pressure. 

− material of leaflets: 𝐸𝐸п = 2 𝑀𝑀𝑀𝑀𝑀𝑀; 𝐸𝐸з = 1 𝑀𝑀𝑀𝑀𝑀𝑀;  𝜈𝜈 = 0.49 
− material of chords: 𝐸𝐸 = 250 𝑀𝑀𝑀𝑀𝑀𝑀; 𝜈𝜈 = 0.488  
 

3. Results 
3.1 Initial configuration. The distribution of values of the principal stresses on the leaflets of 
the MV at different time points are shown in figure 6. The highest stresses are observed during 
the transition from tension phase to the expulsion phase in 0.302 sec calculation. At this moment 
the resulting pressure of 16 kPa acts on the leaflets, this moment is called a full closure of the 
valve. At the time of full closing of the leaflets oscillation occurs, which is caused by sharply 
decrease of the blood flow speed not allowing to overcome the closed valve. 

 

 
Fig. 6. The values of principal stresses at different time points. 
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Closure of the MV is confirmed by checking the status of contact elements at the moment 
of peak stress (Fig.7). The tight closing of the MV can be judged by the image of the middle 
cross-section (Fig.8). 

Tension on the anterior leaflet is greater than the pressure arising at the posterior. In 
general, stress values vary in the range of 13 kPa during the filling period of the ventricle to 
637 kPa during the period of complete closure of the valve. This result is aligned with the data 
obtained in the articles [2, 3 and 4] devoted to studies of the MV. 

 

Fig. 7. The middle cross-section of the valve 
at the moment of full closure of the valve. 

 

 
Fig. 8. The contact pressure at the moment 

of maximum closure of the valve. 
 

3.2 Modified configuration of the mitral valve with the “Clip” on the posterior 
leaflet. The analysis of influence of the Leaflet Plication Clip device on the MV during normal 
operation was executed additionally in this study. “Clip” was modeled as a point mass. The 
device was installed on the posterior leaflet in the center (Fig.9). 

 

 
Fig. 9. The location of the mass point on the 

surface of the posterior leaflet. 

 
Fig. 10. Line along the surface of the 

leaflet. 
 

The weight of the device was calculated by the formula: 
𝑚𝑚 =  4𝑙𝑙𝑐𝑐𝜌𝜌𝜌𝜌𝑟𝑟2, (3) 
where 𝑙𝑙𝑐𝑐 – the maximum distance from the mitral annulus to the free edge of the leaflet,  
ρ = 6.4 g/cm3 is the density of the material of the device, r is the radius of the clip. 

Thus, the weight of the clip can vary from 0.1 to 0.4 grams. This Study considers three 
cases: a) the mass of the “Clip” - 0.1 g., which corresponds to a wire radius of 0.5 mm; b) mass 
of the “Clip” - 0.23 g., the radius is 0.75 mm; с) mass of the “Clip” - 0.4 g., the radius is 1 mm. 
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The calculation was executed for those three types of the “Clip” and obtained results were 
compared with the case without the “Clip”. 

Analysis of displacements along the line indicated in the figure showed that the maximum 
divergence of the results is 0.18% for the case without the “Clip” and the case с) Mc = 0.4 g. 
This suggests that the installation of clip does not significantly affects the movement of MV 
leaflets during normal operation. 

Chart 11 shows the values of the stresses on the installing line of the “Clip” (Fig. 10) for 
three cases in comparison with the solution without “Clip” on the leaflet. 

 

 
Fig. 11. The tension dependence of the coordinates on the line for three types of “Clip” and 

case without it. 
 

For cases a) and b) large discrepancies were not observed. However, there is divergence 
of results in the upper region of the valve with the mass increase. The maximum value of the 
divergence of results is 5.11% detected in case c) when the mass of a “Clip” is equal to 0.4 g. 
In article [10], the value of the dynamic ultimate tensile strength is 0.9 MPa for the material of 
the leaflets of the mitral valve. Thus, we can conclude that “Clip” does not entail the appearance 
of additional tensile stresses that can lead to the destruction of the material of the leaflets. 

 
4. Processing data from a computer tomography 
One of the objectives of this study was the creation of 3D model using data obtained from 
computer tomography. We did not have access to high resolution valve images. The workflow 
was tested on images of the spinal cord. This process can be divided into two stages: a) 
Converting data from DICOM format to STL format; b) Creation of solid model using STL 
model. 

4.2 Converting data from DICOM format to STL format. Pictures from the computer 
tomography (figure 12) are the visualization of DICOM data obtained during the survey. Using 
the software package 3D Slicer, by processing the DICOM files was created STL model of the 
human spine (figure 13). 
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Fig. 12. Computer tomography image. Fig. 13. Spine STL model. 

The created model has a lot of extra surfaces and irregularities caused by the noise effects 
during survey. Using the program MeshLab model was filtered out (figure 14). 

Fig. 14. Comparison of number of surfaces before and after filtration. 

4.2 Converting the STL into a solid model. STL format is widely used for storing three-
dimensional models of objects for use it in technologies of rapid prototyping. Information about 
the object is stored as a list of triangular facets that describe the surface and their normal lines. 
However, for use in the calculations in the engineering software packages required to create 
solid geometry CAD model. Thus, with the help of the program ANSYS SpaceClaim above 
STL model was converted to a CAD model. This operation allows us to use this geometry model 
in the calculations of biological structures using finite element method. 
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5. Limitations of the Study
In carrying out the described analysis we made several assumptions. At first, the material model 
of chordae tendineae and the leaflets should possess the properties of anisotropic hyperelastic 
material. In the case of chords, the definition of BEAM188 elements does not allow simulation 
of hyperelasticity. In general, creating a high quality anisotropic hyperelastic material model 
requires a series of experiments to determine the constants included in the expression for the 
description of such a model. In this work, the material of the leaflets and chordae tendineae was 
modeled as a linear hyperelastic at the first order approximation. 

At second, detailed studying the behavior of the MV and determining the position of 
“Clip” on the leaflet requires an anatomically accurate model of the valve obtained from the 
high resolution computer tomography. Since such equipment was not available to us, geometry 
model of the MV was constructed according to anatomical atlases with the dimensions 
confirmed with that data published in articles focused at studying the anatomy of the MV. 

6. Conclusions
In this study, the numerical simulation of the MV in the human heart was conducted. Based on 
anatomical atlases beam-shell geometry model was created taking into account the 
heterogeneity of distribution of the MV leaflets thickness. The full cycle of the MV opening 
and closure was simulated using the finite element analysis software ANSYS Mechanical. For 
the numerical solution of this problem transient structural (non-stationary structural) analysis 
type allowing to determine time-varying displacements, strains, stresses and internal forces in 
the body under the influence of unsteady loads was selected. For modeling, the material of the 
MV leaflets was chosen as linearly elastic isotropic model. 

Despite the limitations and assumptions chosen for material model, the obtained results 
for stresses on the leaflets coincide with the data obtained from the articles [2, 3, and 4] devoted 
to modeling of the MV. In addition, in the framework of numerical simulation it was proven 
that the valve closes tightly during the transition from phase of tension to the phase of expulsion 
in 0.302 sec calculation, which coincides with the data for cycle of the mitral valve operation 
[7]. 

In addition to modeling the normal functioning of the MV, the simulation of the the MV 
function with the device “Clip” implanted on the leaflet was executed. Analysis of the obtained 
results permits to state that “Clip” does not entail the additional tensile stresses that can lead to 
the destruction of the material of the MV leaflets. 

Moreover, in this study we implemented and tested a method of processing data with a 
computer tomography in a solid model on the example of the spine that can be later used for 
calculations in software systems of finite element analysis. This method will allow in the future 
creating of an anatomically accurate model of the MV. 

In the future, we plan to use an incompressible, hyperelastic transversely isotropic 
material and construct the geometrical model of the MV derived from computed tomography 
images for more precise studies of the valves behavior. 
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