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Abstract. The paper presents an analysis of the stress-strain state of shallow shell structures of 
double curvature, reinforced from the concave side by a various number of stiffeners. Mindlin–Reissner 
shell deformation theory is used, which accounts for geometrical nonlinearity and transverse shears, as 
well as for discrete introduction of stiffeners with contact between the stiffener and the shell along the 
strip. The mathematical model is written in the form of a functional of full potential deformation energy. 
The algorithm of the analysis is based on the application of the Ritz method to the functional, which is 
used for reducing the problem to a system of nonlinear algebraic equations. The resulting system is 
solved by the parameter continuation method. Structural variations that are considered in the paper are 
fastened with fixed-pin joints along the contour and are subject to external uniformly distributed 
transverse loading. The values of stresses, forces, and moments in the stiffeners and in the shell skin are 
obtained and analyzed. Specific features of their distribution are revealed. All values are given in 
dimensionless parameters. It is shown that accounting for the contact of the stiffener with the shell skin 
along the strip allows one to investigate the stress-strain state in the stiffeners, which are not possible 
using delta functions with the introduction of stiffeners along the line. 

Аннотация. В работе проводится анализ напряженно-деформированного состояния пологих 
оболочечных конструкций двоякой кривизны, подкрепленных со стороны вогнутости различным 
числом ребер. Используется теория деформирования оболочек Миндлина–Рейснера, 
учитывающая геометрическую нелинейность, поперечные сдвиги, а также дискретное введение 
ребер жесткости с контактом ребра и обшивки по полосе. Математическая модель записана в виде 
функционала полной потенциальной энергии деформации. Алгоритм расчета основан на 
применении к функционалу метода Ритца для сведения задачи к системе нелинейных 
алгебраических уравнений. Полученная система решается методом продолжения решения по 
параметру.  Рассматриваемые варианты конструкций шарнирно неподвижно закреплены по 
контуру и находятся под действием внешней равномерно распределенной поперечной нагрузки.  
Анализируются полученные данные о значениях напряжений, усилий и моментов в ребрах 
жесткости и в обшивке. Выявлены особенности их распределения. Значения приведены в 
безразмерных параметрах. Показано, что учет контакта ребра с обшивкой по полосе позволяет 
исследовать напряженно-деформированное состояние в ребрах, что невозможно при введении 
ребер по линии с помощью дельта-функций.  
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Introduction 
The study of the behavior of shell structures is essential for different sectors of industry [1–4], 

including Civil Engineering [5–6]. For thin-walled shells, it is important to account for the reinforcement 
with stiffeners [7–35], which make it possible to significantly increase the critical load value, redistribute 
hazardous stresses, and thus increase the robustness of the structure. 

Most of the stability studies of reinforced shells were carried out for closed cylindrical shells [10, 
11, 17, 20, 21, 29–31], because such structures are the most widely used in practice. In addition, due to 
their symmetry, they can be analyzed using simplified models (as an axisymmetric problem).  

According to the type of external action, structures under axial compression are more frequently 
investigated [11–22, 27–29, 32], whereas structures under uniformly distributed transverse loading are 
studied less often [15–18, 26, 27]. 

Stability of shells under static loading is considered in [16–24], and the vibrations of such 
structures in [7, 8, 13–15, 32]. Optimization issues of reinforced shells for solving specific practical 
problems were discussed in [26–30].  

In most cases the stiffeners are located on the side of the concavity of the shell, but the cases 
where the stiffeners are located on the external side of the shell are also of interest [17, 18, 28, 31]. 

The finite element method for calculating reinforced thin-walled shells was used in [4, 7, 8, 11, 17, 
20, 25, 26, 34, 35]. 

In most studies it is assumed that stiffeners interact with the shell skin along the line: thus, for 
example, A.I. Lurie [36] and V.Z. Vlasov [37] considered the stiffeners as Kirchhoff–Klebsch bars, where 
the locations of stiffeners were defined with the aid of delta functions. With this approach, it is assumed 
[38] that the effect of shell-reinforcing stiffeners on the shear and torsion of the median surface of the 
shell skin can be neglected, and deformation of reinforcements is described by the relations of a linear 
stress state without accounting for their interaction. 

The most accurate approach is when the contact between the stiffener and the shell skin occurs 
along the strip [39]. Also, for reinforced shells, it is essential to account for transverse shears [40].  

The purpose of this paper is to analyze the stress-strain state of stiffened shell structures and to 
identify the features of their deformation process. 

The objective of the study is to perform a computational experiment to determine the stress-strain 
state of shallow shells of rectangular base with a varying number of shell-reinforcing stiffeners.  

Methods 
Let us consider shallow isotropic shell structures of double curvature, of square base (Figure 1), 

with fixed-pin joints along the contour and subjected to external uniformly distributed transverse loading 
.q  The load is oriented along the normal to the median surface. The shell is reinforced from the concave 

side by an orthogonal grid of stiffeners, parallel to the coordinate lines.  

 

Figure 1. Schematic representation of a shallow shell structure of double curvature, of square base 
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Mathematical model 
The mathematical model of deformation of such structures is constructed from three groups of 

relations: geometric (associating displacements and strains), physical (associating stresses and strains), 
and the functional of the total potential deformation energy. 

Let us consider a geometrically nonlinear version of the model, which also takes into account 
transverse shears (the Mindlin–Reissner model), and the possibility of discrete introduction of stiffeners, 
taking into account the contact of the stiffener and the shell skin along the strip and accounting for the 
shear and torsional rigidity of the stiffeners. In this case, the unknown functions are three displacement 

functions  ,, yxUU    ,, yxVV   and  yxWW ,  and two functions of the angles of rotation of 

the normal,  yxxx , , and
 
  yxyy , ; and the geometric relations will have the form: 
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where yx  ,  are axial strains along the x  and y  coordinates of the median surface; xy  is the shear 

strain in the yx plane; 1221 ,,   are functions of change of curvatures and torsion; 

21 /1,/1 RkRk yx   are primary curvatures of the shell along the x  and y  axes; 21, RR  are the 

principal radii of curvature; and 
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The physical relations for linearly elastic deformation of an isotropic material under a plane stress 
state will have the form 
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where E  is the elastic modulus of an isotropic material;   is the Poisson’s ratio; and 12G  is the shear 

modulus. 

Expressions for forces and moments are separated into components acting in the shell skin 

(index 0), and in the stiffeners (index R ). Consequently, we have 
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If the stiffeners are introduced discretely, then in the expressions (4) one should take [35] 
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Here h  is the thickness of the shell skin; F , S , and J  are the area of the cross-sectional or 

longitudinal section of the stiffener per unit length of the cross-section; the static moment of the area; and 
the moment of inertia of this cross-section. In the discrete approach, it is taken into account that the 
contact of the stiffener with the shell skin occurs along the strip, the shear and torsional rigidity of the 
stiffeners are taken into account, and then these characteristics are calculated as follows [41]: 
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Here 
ji hh ,  are the height of the stiffener; indices i  and j  indicate the order number of the 

stiffener located parallel to the x and y  axes, respectively; mn,  are the number of stiffeners; 

 jiij hhh ,min ; and  jxx  ,  jyy   are unit bar graph functions equal to 1 in places where 

stiffeners are connected, which are equal to the difference of two unit functions: 

           ., iiijjj dyUcyUyybxUaxUxx    (8) 

Moreover, 2/,2/,2/,2/ iiiiiijjjjjj rydrycrxbrxa  , where ji rr ,  are 

the width of the stiffener; and indices i  and j  indicate the order number of the stiffeners located parallel 

to the x and y  axes, respectively. 

The total potential deformation energy of a shallow shell of double curvature can be written with the 

aid of a functional pE  that represents the difference of the potential deformation energy of the system 

and the work of external forces: 
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Representing this functional as the sum of two functionals, individually corresponding to the shell 
skin and the stiffeners, we obtain 

,0 R
ppp EEE   (10) 

where [41] 
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An expression for 
R
pE  is obtained analogously: 
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Algorithm 
In this paper, it is proposed to use an algorithm based on the Ritz method and the method of 

parameter continuation for the study of shell structures. 

According to this algorithm, the Ritz method is applied to the functional in order to reduce the 
variational problem to a system of nonlinear algebraic equations. For this, the required functions are 
represented in the form 
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and the system of nonlinear algebraic equations is obtained relative to the unknown numerical 

parameters )(IU , )(IV , )(IW , )(IPS , and )(IPN .  

The convergence of the Ritz method in solving the problems of stability of thin-walled reinforced 
shells was shown in [40], where for problems with symmetric shells the difference in the critical load 

values for 9N  and 16N  was minimal. In this paper, all the results were obtained with 9N . 

Various numerical methods can be used to solve this system [40, 42, 43]. In this paper we use the 
parameter continuation method [40]. 

Approximation functions in (13) are selected depending on the method of fixing the shell contour, 
and must satisfy the boundary conditions. With the fixed-pin joint along the contour, we obtain the 
following boundary conditions: 

for :,0 axx   
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Taking into account the fact that shallow shells of double curvature of square base have symmetry, 
the approximation functions for this type of fastening can be taken in the form: 
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Results and Discussion 

Calculations are carried out for shallow shells of double curvature of square base with ba  , and 

21 RR  , with fixed-pin joint along the contour and subjected to uniformly distributed transverse loading. 

Let us introduce the dimensionless parameters 
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We will investigate the nature of stress distribution on the outer surface of the shells for different 

numbers of shell-reinforcing stiffeners with height h3  and width h2  for ha 60  and 

 1622521   kkhRR . 

Figure 2 shows the stress diagrams   for ,150P  reinforced with four stiffeners (Figure 2, a) 

and two stiffeners (Figure 2, b). The curve with number 1 corresponds to the cross-section ,1.0  

curve 2 to the cross-section ,2.0  curve 3 to the cross-section ,3.0  curve 4 to the cross-section 

,4.0 and curve 5 to the cross-section .5.0
 

As can be seen from Figure 2, the stresses on the stiffener decrease substantially, but closer to the 

central cross-section )5.0(  , the character of the stress becomes smoother. 

For shells reinforced with two wide stiffeners (width h12 ), the stress pattern remains the same 

(Figure 2, c). 

Now let us investigate the nature of the distribution of forces and moments in the stiffeners and in 
the shell skin. 
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Figure 2. Diagram of stresses  of a shallow shell with various cross-sections 

Figure 3 shows diagrams of forces 
RN and moments 

RM  acting in the stiffener (Figure 3, a) and 

along the stiffener (Figure 3, b); and 
0
N  and 

0

M  (Figures 3, c and 3, d) in the shell skin along the 

stiffener (for the shell reinforced by two stiffeners intersecting in the center with height h3  and various 

widths for 5.0,150  P ). 

Curve 1 corresponds to the width of the stiffener h2 , curve 2 to width h12 , and curve 3 to width 

h24 . As can be seen from Figure 3, the forces and moments in the cross-section of the stiffener are 

much larger than in the shell skin. Moreover, the fibers in the shell skin are compressed, and the fibers in 

the stiffener are elongated, because 
RN  and 

0
N  have opposite signs. 

Figures 3,e and 3,f show the diagrams of moments 
0
M  and forces 

0
N  in the cross-section of a 

shell skin 1.0  (between the stiffeners). All values presented in Figure 3 are related to the unit length 

of the cross-section. 

 

Figure 3. Diagrams of forces N  and moments M of a shallow shell in the cross-section 

5.0
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As can be seen from Figure 3, as the width of the stiffener decreases, the forces and moments in 
the stiffeners increase. Let us consider shells reinforced with two and four intersecting stiffeners of height 

h3  and width h . In Figures 4 and 5, the curve number indicates the number of shell-reinforcing 

stiffeners. 

Figure 4 shows the "load P  - deflection W  in the center of the shell" dependencies and diagrams 

of the angles of rotation of the normal x  along the axis   for 150P  and 1.0 . As can be seen 

from this figure, at the point where the stiffener is attached to the shell skin, the angles of rotation x  

become practically equal to zero. 

Figure 5 shows the diagrams of forces 
RN  (Figure 5, a) and 

0
N  (Figure 5, b), and moments 

RM  (Figure 5, c) and 
0
M  (Figure 5, d) per unit length of the cross-section, for 150P  along the 

stiffener (parallel to the y axis). 

Since the force and moment diagrams are given along the stiffener, then for the shells reinforced 

with two stiffeners, the stiffener is located at 5.0 , and for the shells reinforced with four stiffeners at 

35.0 . 

As can be seen from Figure 5, in the cross section of the stiffener, significant forces and moments 
appear along the stiffener, while these values are much smaller in the shell skin. Near the edge, the 
stiffener is subject to compression, and further from the edge, to elongation. At the place of intersection of 
the stiffeners, the forces are reduced. A smooth change in the forces is observed in the shell skin. 

Since the model of the stiffened shell, taking into account the transverse shears, permits the out-of-
plane bending of the stiffener, let us analyze this point. 

Figure 6 shows the diagrams of bending moments 
RM  (in the direction of the axis  ) in the 

cross-section of the stiffener )5.0(  and the longitudinal section of the stiffener )5.0(   which are 

mutually orthogonal, for the shells reinforced with a different number of stiffeners: 2 stiffeners (curve 2) 
and 6 stiffeners (curve 6), with height 3h and width h. The index “1” in Figure 6 designates that the height 

of the stiffeners is h6  and the width is h . A shallow shell of square base with parameters 

32,120  kha  is subject to uniformly distributed transverse loading, 500P . 

As can be seen from Figure 6, the bending of a stiffener in cross-section is somewhat larger than 
in longitudinal section, but is of the same order. As the height of the stiffener increases, bending 
moments also increase. At the intersections of the stiffeners, their bending (out-of-plane) decreases. The 
direction of bending of the stiffener out of its plane differs for a shell that has only one stiffener in the 
direction being examined and a shell that has several stiffeners in the direction being examined. 

Next, let us study the character of the normal stress distribution along the stiffener in different 
layers of the stiffened shell along the thickness of the stiffener. 

 

Figure 4. "Load-deflection" graphs for a shallow shell reinforced with two and four stiffeners,  

and diagrams of the angles of rotation of the normal x  
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Figure 5. Diagrams of forces and moments in the shell skin and in the stiffeners of a shallow shell 
reinforced with two and four stiffeners 
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Figure 6. Diagrams of moments 
RM  in different cross-sections for a shallow shell reinforced with 

a different number of stiffeners 

Let us examine the stress distribution in the shell skin and in the stiffener under critical load. Figure 

7 shows the stress diagrams   for 5.0  along the   axis for the shell with 16,60  kha : curve 

1 for 2/hz  , curve 2 for 0z , curve 3 for 2/hz  , curve 4 for hhz 32/   (at the center of the 

stiffener), and curve 5 for hhz 62/   (bottom part of the stiffener). Figure 8 shows similar results for 

shells with parameters hak 120,32   (index “1”), and ha 240  (index “2”) near the critical load 

value (for the shell with ha 120 , 1860krP , and for the shell with 1580,240  krPha ). The 

shells are reinforced with six stiffeners with height h3  and width h2 . 
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Figure 7. Diagram of stresses   in different cross-sections of the stiffener for 16,60  kha  
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Figure 8. Diagram of stresses   in different cross-sections of the stiffener for 32,120  kha  

As can be seen from Figures 7 and 8, stresses occurring in the stiffener significantly exceed 
stresses in the shell skin. These stresses increase with the height of the stiffener. Therefore, plastic 
deformations will appear in the stiffener first, and only afterwards in the shell skin. When plastic 
deformations occur in the stiffener, the moment of stability loss may occur earlier. 

Therefore, it is necessary to analyze the maximum stresses in the shell and stiffeners for 
comparison with the maximum allowable values in order to remain in the elastic zone. 

To confirm the reliability of this approach to the introduction of stiffeners, let us consider the results 
of an experimental study of the stability of stiffened shells, performed at the Ural Scientific Center of the 
USSR Academy of Sciences and described in the work of V. I. Klimanov and S. A. Timashev [43]. Tests 
were carried out on 18 samples of shallow shells of square base from plexiglass, the parameters of which 

are 6.0ba  m, 51.121  RR  m, 001.0h  m, reinforced by an orthogonal grid of stiffeners with a 

cross-sectional area 0092.00033.0   m2 ( hh 2.93.3  ) and step size for stiffener arrangement 0.075 m ( 99  

stiffeners). The dimensionless parameters of the curvature of such shells are 238  kk . The load 

was assumed to be uniformly distributed over the area of the shell.  

As a result of the experiment, the authors of Ref. [43] obtained critical load values that ranged from 
210411.0   MPa to 

210703.0   MPa. According to the method of calculation of reinforced shells 

proposed by us, a study of similar structure was conducted: when reinforced with stiffeners ( hh 2.93.3 

), the critical load value is 
21072.0   MPa (the difference in values is explained by the fact that during 

calculations, the ideal structure is considered, as well as the possibility of plastic deformations and other 

factors), and when reinforced with stiffeners ( hh 32  ) the critical load value is 
2103.0   MPa. 
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It is also noted in [43] that the shells were initially exposed to cavities, which, under further loading, 

developed to a depth of h55.0 . On average, under load 
210195.0 q  MPa, deflections of the model 

centers are h5.2 . For a load 
210389.0 q  MPa, they were equal to h7  [43]. Similar qualitative 

results of the process of stability loss of the shell were obtained in this work.  

Conclusions 
As a result of the calculations and analysis of the data obtained, the following features of the 

stress-strain state of stiffened shallow shell structures of double curvature can be outlined: 

 when the shell is reinforced with a small number of stiffeners, stresses in the area of their 
connection to the shell skin decrease quickly, and their redistribution occurs in comparison with 

the smooth shell, but closer to the central cross-section )5.0(   the character of stresses 

becomes smoother. Moreover, as the width of the stiffeners increases, the nature of the 
stresses remains the same; 

 as the number of stiffeners increases, the distribution of stresses on the outer surface of the 
shell skin becomes smoother; 

 as the width of the stiffener decreases, the forces and moments in the stiffeners increase; 

 at the places where the stiffeners are connected to the shell skin, the angles of rotation of the 

normal x  become close to zero, but in the other part of the shell they increase, so that, in 

comparison with smooth shells, accounting for transverse shears significantly affects the stress-
strain state of the stiffened shell; 

 in the cross-section of the stiffener there are significant forces and moments, whereas in the 
shell skin these values are much less than in the stiffener itself. Near the contour of the shell, 
the stiffener is subject to compression, and closer to the center it is under tension. 

 as the height of the stiffener increases, bending moments in the stiffener increase; 

 at the intersection of the stiffeners, their bending (out of the plane of the stiffener) decreases, 
which proves the necessity to take into account the joint action of the stiffeners at their 
intersection. With the introduction of stiffeners along the line, this effect is not taken into 
account; 

 stresses occurring in the stiffener significantly exceed stresses in the shell skin. These stresses 
increase with the height of the stiffener. Therefore, plastic deformations will occur first in the 
stiffener, and then in the shell skin. When plastic deformations develop in the stiffener, the 
moment of stability loss may occur earlier. 

Thus, taking into account the contact of the stiffener with the shell skin along the strip makes it 
possible to investigate the stress-strain state in the stiffeners, which is not possible using delta functions 
with the introduction of stiffeners along the line. 
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