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Abstract. The resolving equations were obtained and a calculation technique was developed with
allowance for the nonlinear creep of three-layer plates and shallow shells with a lightweight filler. The
problem was reduced to a system of three differential equations with respect to the stress function,
displacement and deflection function. An example is given of calculating a rectangular planar shell in the
form of an elliptical paraboloid. The solution was performed numerically by the finite difference method in
combination with the Euler method for determining creep strains. The linear Maxwell-Thompson equation
and the Maxwell-Gurevich nonlinear equation were used as the creep law. There were no significant
discrepancies between the results obtained on the basis of the linear and nonlinear theory. It was
established that, as the curvature of the shell increases, the creep of the aggregate has a lesser effect on
the deflection value. It was revealed that for shells of greater curvature with constant displacements a
redistribution of stresses and internal forces occurs. The bending and twisting moments decrease, and
the longitudinal and shearing forces increase. In the aggregate, the tangential stresses relax, while in the
sheaths the normal and tangential stresses increase.

AHHoTauuma. MNonyyeHbl paspeluarolne ypaBHeHMS U pa3paboTaHa MeToguMKa pacyeTa C y4eToM
HENMHENHON NOMN3Y4Y4eCcTN TPEXCNOWMHbIX MacTUH 1M NOonornx obono4vek ¢ nerkum 3anonHutenem. 3agada
cBernacb K cucteme M3 Tpex anddepeHumnanbHbiX YPaBHEHUA OTHOCUTENbHO (OYHKLMW HanpsiKeHWUNn,
yHKUMN nepemelleHnin 1 npornba. lNMpuBedeH npuMmep pacyeTa NPSAMOYrofibHOW B MiaHe Mosfioromn
obonoukn B dhopme annuNTMYEcKoro napabonouga. PelwleHne BbIMNOMHANOCH YMUCNIEHHO METOAOM
KOHEYHbIX pa3HOCTEN B COMETAHUM C METOOOM Jdunepa ansa onpepenexHns gedopmauun nonsyyvyectu. B
KayecTBe 3aKoHa MON3yyeCcTU WCMONb30BaHO nWHenWHoe YypaBHeHWe Makcsenna-TomncoHa u
HennHenHoe ypaBHeHne MakcBenna-I'ypeBuya. CylleCTBEHHbIX PacXOXOEeHUN Mexay pesynbTaTamu,
NONy4YeHHbIMU Ha OCHOBE FMWHEMHOW WU HENWHEMHOW TeOopwuWn, He BbISBMEHO. YCTaHOBMEHO, YTO C
YyBEITIMYEHNEM KPMBU3HbI ODOSTOYKM MON3Yy4ecCTb 3arnoSfIHUTENS OKasblBaeT MeHbLUee BAWSHUE Ha
BENUYMHY npornda. BeisgBneHo, 4yto and obonoyek donbLlien KpUBU3HbLI NMPY MOCTOAHHBIX NEPEMELLEHMAX
NMPOUCXOAUT MepepacnpefeneHme HanpskeHUA W BHYTPEHHUX ycunui. Msrmbarowme v KpyTawme
MOMEHThbI yObIBalOT, @ NPOAONbHbIE W CABUralolWMe cunbl Bo3pacTalT. B 3anonHutene npoucxogut
penakcauusi KacaTesibHbIX HanpshkeHuW, a B OOLMBKax HOpMarnbHbIE WM KacaTeribHble HampsKeHWs
BO3pacTatoT.

Introduction

Three-layer structures with lightweight filler are widely used in various industries, including civil and
industrial construction, aircraft construction, shipbuilding, etc. With the same flexural rigidity, such
structures are much lighter then single-layer panels. As a filler of three-layered structures, polymeric
materials are widely used, for which, in addition to elastic properties, viscoelasticity is characteristic.
Therefore, to adequately describe the stress-strain state of three-layer structures, it is necessary to
involve the apparatus of the theory of creep. There is a large number of papers devoted to the calculation
taking into account the creep of three-layer beams, including [1-7]. As for the plates and shells, in most
papers the calculation is considered only in the elastic stage [8-10]. In [11-12] the solution of the
problem of axisymmetric bending of circular plates with a nonlinear elastic filler is given. In this case, only
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instantaneous nonlinearity is taken into account. In [13], a three-layered shell model with a lightweight
filler is used to describe the linear creep of a reinforced concrete structure. The linear creep of three-layer
plates and shells is also investigated in the author's papers [14-16].

In this paper, we will consider the technique for calculating plates and shallow shells, suitable for
arbitrary creep laws, including nonlinear ones.

Methods

The element of the three-layered shallow shell is shown in Figure 1. In the calculation, we will use
the technical theory of three-layer structures, according to which the bending and twisting moments, as
well as the shear and longitudinal forces are completely perceived by the carrier layers. The filler only
works on shear, taking transverse forces. The thickness of the carrier layers § is the same and small
compared to the total shell thickness h.

Figure 1. Element of a three-layered shallow shell

Equilibrium equations for the element of a three-layered shallow shell are written in the form:

aNx+as_0 65+6Ny_0
ox dy ' ox ady '
oM, 4 J0H _ 0 oM,, N J0H —0 )
ox 0y 0 =0; dy  Ox Oy =0
0Q,  00Q,
Ox +W_kxNx_kyNy+q =0,
where N,,N, — longitudinal forces; S — shear force; M,, M, — bending moments; H — torque; Q,, Q, —
. 0%z 9%z ..
transverse forces; q — surface load, k, = - k, =~ o principal curvatures.

To satisfy the first two equilibrium equations in (1), we introduce the stress function according to
the formulas:

02d 02d 02d
X = Gy’ y=gz0 ST : @)
y d0x 0x0dy
Bending moments and torque are related to the stresses in the carrier layers as follows:
h h h
M, = (o —ax‘)Sz; M, = (o) —J;)SE; H = (5, —T;y)é‘i. (3)
Longitudinal and shear forces are written as:
Ny = (o5 +07)8; Ny = (a5 +0;)8; S = (1, + 11,)0. 4)
For tangential stresses in the aggregate, a uniform thickness distribution is adopted:
Qx = Tzxh; Qy = Tz5h. ()
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Deformations of the carrier layers can be written as:

o out®™)
e;( ) = I + k,w;
o ovt)
8;( ) — 5 + kyw; (6)
o) _ out® N du+
xy oy ox '

where u*t(, v+ — displacements of the lower (upper) skin along the axes x and y, w — deflection.
For the displacements of the filler, a linear thickness distribution is adopted:

u +ut ut—u"

um = + z=u+az
S (7)
v +v vt —v
A > + T Z=V + pz.
Shear strains of the filler are defined as follows:
m_aum+aw_ +6W_
Vex =5, Tax - * T ox (8)
m _aum+aw_ﬁ+aw
Y2y = 75, dy ay’

When calculating, we assume that the carrier layers work elastically, and the middle layer is
viscoelastic. The stresses in the carrier layers of the shell are determined as follows:

E
+(- +(- +(-
O'x( ) =—1 2 (sx( ) +vsy( ));
E
+(-) _ +(=) +(2).
oy _1—v2(£y + Ve, ),
dO_E e
xy 21+v) "™
Deformations of the filler represent the sum of elastic deformations and creep strains:
Tm
(10)

m_ Tz .o Ty,
Vzx = . t Voxs Vzy = a + Vzy,
Yzy — Creep strains of the middle layer.

(9)

m
where G,,, — shear modulus of the middle layer, y,; and

We express from (9) the stresses through deformations:
ow

Tglc = m(yz@ - yz*x) =Gy (a +a_yz*x);
" " . ow . (12)
Tzy = m(yzy - sz) = Gp (ﬁ +E - yzy)-
Then the transverse forces will take the form:
Q G h( + ow ) )
x =\ & T Vzx |5
0
ow (12)
Qy = Gph (ﬂ + E - yzy)-

Substituting (6) into (9) and then (9) into (3), we obtain:

Jda 9B\
Me= (5 +v5,)
M =D(v6_a+6_ﬁ)_ (13)
Y ox dy)’

oo )

where D = Z(Elj;) — cylindrical rigidity of a three-layer shell.

H =
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For longitudinal forces, taking into account (9) and (4), we can write:

s ES dut odu”
Ny =1z (ef +ex +vlef +&0)) = T (G- + 5+

+2(ky + vk, )w + av++av- 266 (6u+ av+(k +vk,) )
xvywvay dy 1—v2\ox Vay x TR WS

2ES§ (0v du
y = m(@‘kva‘}' (ky +ka)W),
ES (au N av)
1+v\dy 0dx/
By analogy with the average displacements u and v, we introduce the values of the average
deformations of the carrier layers by the formulas:

du o 0w o _ Ou 4 dv (15)
—; &y =——; =— 4+ —

ox’ Y 09y Vay dy 0x

For the values introduced by formulas (15), the deformation compatibility equation is valid:

2,0 3220 2,,0
0%y 0%y  0°yxy

(14)

el =

= . 16
dy? + dx?>  0xdy (16)
We express from the relations (14) the values &7, €5 1 vy
o 1 ¢ N,) = kow = 1 [(0%® 0%2d e
T s VT VY T aW Eops Gy T Vaxz ) T W
o 1 (v N) = kyw = 1 [(0%® 0%2d e (17)
T ps Ny TV T OW T gps \axz T Vg2 ) T W
o 14w 1+v 0%®
Yxy = S=- .
EéS ES 0xdy

Substituting (17) into the deformation compatibility equation (16), we obtain the first resolving
equation:
1 0%w 2%w
—V*d —k,——k,—=0. 18
2ES *oyz Y ox? (18)
To obtain the second resolving equation, we substitute the formulas of the transverse forces (12)
into the last equation of equilibrium in (1):

a Jf 0Vsx  0Vzy RO 02D
Gnh|=—+—+ V?w ———=— =—q+ky,—+k,— 19
m <6x dy YT o dy 4 o ayz Y ox? (19)
We introduce the displacement function F by the formula:
pode, 9b (20)
“ox Ay
Then equation (19) takes the form:
1 RO R q Vs 0Vs
Viw — k +k =————F+ 242 21
v Gmh< Yoyz Y 6x2> Gnh ox  dy (21)
We exclude the transverse forces from the last three equilibrium equations in (1):
%M, 0%H aZMy
+2 + — kN, —k,N, +q =0. 22
dx2 0xdy  0y? e = Ry Ny T4 (22)
The third resolving equation is obtained by substituting (13) into (22):
0%d 0%d
2 —
DVF__q-l_kxa—yz-l_kyW' (23)

Thus, the problem of calculating a shallow three-layer shell reduces to a system of three differential
equations (18), (21), and (23). Instead of two second-order equations (21) and (23) with respect to the
functions w,F and @, we can obtain a fourth-order equation with respect to the deflection and stress
function. For this we express from (21) the value F:
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Gnh\ ¥ ay?2 Y ox? ox  0dy
Further we substitute (24) into (23):
vt 1 2 k62¢+k 020 +1 k62¢+k R _
VoG \Fayz T gz ) Tp\r gy T gz ) T
q 1 ox | ay
=———Vq+ V= +—).
D Gph' 1 < ax | dy
The solution of the system of equations (18) and (25) makes it possible to determine the deflection,
as well as longitudinal and shearing forces. However, to calculate the bending moments, torque and

shear forces, it is required to find the functions « and S. To obtain the resolving equations for « and g3, we
substitute (13) in the third and fourth equation (1):

_OM, O0H _ <62a 1+v 92p 1—v62a>_

1 [ 20 0% s, oy
F=—Vw+ (k +k —q>+ﬁ+ﬂ. (24)

(25)

= +—= + +
Qx ox 0y 0x2 2 0xdy 2 0y?
oM, OH 9?6 1+v d%a 1-va?p
Qp=—7"+= >+ + 5 |-
Jdy  0Ox dy 2 0xdy 2 0x
Using the displacement function F, we exclude the function g from the first equation in (26), and
the function a from the second:

(26)

D JoF
Qx =E<(1 —V)V2a+ (1 +v)a>;

(27)
2la-wwepraend
Qy = > v v 3y )
Equating (27) to (12), we obtain:

V2 2Gyh _ 2G,h (aw *) 1+voF
* D(l—v)a_D(l—v) ax 7)1 vox 28
v2p__26mh_, __2Gnh (aw .) 1+voF (28)

B D(1—-v)" DA —v)\dy Yzy 1—vay

Thus, to determine the functions a and g, it is necessary to first find the displacement function F,
therefore, the use of Eq. (25) instead of (21) and (23) is inexpedient.

After calculating the longitudinal forces, bending and twisting moments stresses in the carrier
layers can be found by the formulas:

ot o e (M o Ne My

* %VS hs' 1%5 1}\/115’

+_ Y, Y, -__Y_ Y, 29

% =25 hs Y T2 hs' (29)
S H S H

+ 7 4. - - - _

=% e T2 ke
We consider the calculation technique using the example of a three-layered shallow shell
rectangular in plan, the surface of which is an elliptical paraboloid (Fig. 2). The equation of the shell

surface is:

z=f[%(2§—1)2+%(2%—1)2—1], (30)

where f = f; + f, — shell elevation.
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Figure 2. Rectangular in the plan shallow shell in the form of an elliptical paraboloid

The principal curvatures of the considered shell are determined as follows:

- 622_ 8f1
S oA

0%z 81, (31)
=527 T

In the calculations, we assume that along the contour the shell is connected to diaphragms
absolutely rigid in their plane and flexible from it. The boundary conditions on the edges have the form:

atx=0,x=a:

G
w=0; M,=0; Nx=a—yz=0;v+=v_=0. (32)
aty =0,y =b:
G )
w=0; My=0; Ny=——==0 u"=u =0 (33)

From the last equality in (32) it follows that at the edges x = 0 and x = a:

vt —v~

Then on these edges the derivative % automatically vanishes. In order for the bending moment M,

to be zero it is necessary that the derivative Z—z is equal to zero. Then for the edges x = 0, x = a we can
write:

_o, TP g a9 (35)
W= oy T oax  dy
Similarly for the edges y =0 and y = b:
62
=0; —=0; F=0. 36
=0 o (36)

To solve the system of differential equations (18), (21) and (23), one more boundary condition is
necessary with respect to the stress function @. As this condition we use the equality of & function to
zero at the edges.

The boundary conditions for the a function have the form:

F
atx =0,x = a: —a=0;
ox

aty=0,y=b: a=0.

For the function B, the boundary conditions are written as:
atx=0,x=a: f=0;
aty =0,y =b: %=0.
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The system of equations (18), (21) and (23) was solved numerically by the finite difference method
in combination with Euler's method for determining creep strains. Calculations were performed in the
Matlab package. The time interval at which the creep process was considered we divided into n steps At.
The first step was the solution of the elastic problem with t =0, y;, =0, y;, = 0. After defining the
functions @, w and F the numerical solution of equations (28) was performed. Next, the stresses in the
shells and filler were determined. If the creep law is given in differential form, then the stresses can be
used to calculate the growth rates of creep strains, as well as creep strains at time t + At by linear
approximation:

. oy”
Yesar =Ve + 5% At. (37)
Note that for three-layered plates in comparison with shells, the calculation is much simpler, since
instead of a system of three differential equations, it is sufficient to solve successively the following two

equations:

DV?F = —q;
) q 0Yzx  OVzy (38)
=————F+—+—
VW= T Ty

The first equation in (38) does not include creep strains, which implies that the displacement
function F for a three-layer plate does not depend on time, and it is not necessary to solve this equation
at every time step, but only once. After determining the functions F and w, the functions a« and g are
determined from Egs. (28).

Results and Discussion

The calculation was made for a rectangular shell with dimensions a = b = 3 m, overall thickness
h = 8 cm, loaded by uniformly distributed over the area the load q. Carrier layers of the shell were steel
with thickness of 1 mm (E =2-10%° MPa,v = 0.3). The middle layer is a rigid polyurethane foam
(G,, = 4.85 MPa).

As the creep law, the Maxwell-Thompson linear equation was used, as well as the nonlinear
Maxwell-Gurevich equation. For uniaxial tension (compression), the Maxwell-Thompson equation has the
form [17]:

de do

- =1 — 39
nEat+H£ nat+a, (39)

where E and H - respectively, instantaneous and long-term elastic moduli, n — relaxation time,
o — normal stress, & — full strain.

For the case of pure shear, equation (39) can be written in the form:

0 ot
nGma—];+Hy:na+r. (40)

Here G,, and H are respectively the instantaneous and long-term shear moduli, t is the tangential
stress, and y is the total shear deformation.

Representing the total deformation as the sum of elastic deformation and creep deformation, we
can express from (40) the growth rate of creep strains in the following form:

ay; 1 H
—_— = ——|t; — Hy' 41
ot kK [(1 Gm) o Hy, ]' (41)

where k = nG,, — coefficient of viscosity of the filler.

To determine the deformations y,, and y;,, it suffices to substitute the corresponding indices in (41)
instead of i.

The Maxwell-Gurevich equation in the case of a triaxial stress state is written in the form [18]:

ae;j _fi-

ot n*’
where f;; — stress function, n* — relaxation viscosity.

i=xy2 j=xY7 (42)

UYenypuenko A.C. PacueT TpexcioiHBIX OJIOTHX 000JI0YEK ¢ yIeTOM HeTMHEHHOH nonsydectu // IHxeHepHO-
cTpouTtenbHbIN xypHaAI. 2017. Ne 8(76). C. 156-168.

162



Magazine of Civil Engineering, No. 8, 2017

* 3 *
fij =3 (01j — p8ij) — Ewnsij;
y =t exp (_ |frmax | ) (43)
m* )’
where §;; — Kronecker symbol, p = (g, + 0, + 0,)/3 — mean stress, m" — the relaxation constant, called
the velocity modulus, ng — initial relaxation viscosity, E,, — high elasticity modulus.

When using equation (43), it is necessary to bear in mind that ¢, = %yz*x and g, = %yz*y.

The results of tests of rigid polyurethane foam in shear creep are presented in [1-2]. The creep
curves in the above studies are approximated by the Findley power law, which in the case of uniaxial
tension is:

_ (1+1t”) 44
e—aEe E, , (44)

where E, and E; — respectively, elastic and viscoelastic modulus of deformation of the material.

The disadvantage of this law is that the time in it is contained in an explicit form, which can lead to
contradictory results. A method for determining the relaxation constants of a material on the basis of the
Maxwell-Gurevich equation is given in [19-20]. Using this technique, as well as the results presented in
[1-2], the author obtained the following values of the relaxation constants: E, = 27.38 MPa,
ny = 1.43-10* MPa - h, m* = 0.0218 MPa.

When processing creep curves on the basis of the Maxwell-Thompson equation, the relaxation
parameters were chosen so that at the end of the creep process the solution using this equation
coincided with the solution based on the Maxwell-Gurevich equation. As a result we obtained the values
x =1118 MPa - h, H = 3.17 MPa.

The magnitude of the load was assumed constant: g = 2 kPa. The curvature of the shell was varied
by varying the amount of elevation f. The growth curves of the largest deflection relative to the deflection
at t = 0 with different values of the ratio f / a are shown in Fig. 3. The dashed lines correspond to the
result based on the Maxwell-Gurevich equation, continuous - to the Maxwell-Thompson equation.

In his Ph.D. thesis, the author studied the influence of the curvature of the shell on the growth of
deflection under linear creep by the example of a spherical three-layer shell. For the analysis, finite
element modeling was used. As a result, it was found that with increasing curvature, the creep effect
decreases, and for shells of large curvature, the creep of the aggregate has no effect on the amount of
deflection. Similar results are observed in Figure 3. Creep of the aggregate does not have a noticeable
effect on the deflection already at f/a = 1/15. We recall that it is customary to refer to shallow shells
such that have f/a < 1/5. The results obtained on the basis of the linear and nonlinear theory differ
insignificantly, especially for shells with greater curvature.

If the displacements in time practically do not change, then in the presence of viscoelastic
properties of the material, the stresses can not be constant. Figure 4 is a graph of the change in time of
the greatest value of tangential stresses 2 at f/a = 1/15. As before, the dashed line corresponds to the
result based on the Maxwell-Gurevich equation, continuous - to the Maxwell-Thompson equation. It is
seen from the presented graph that in the aggregate with constant shear deformations the stress
relaxation occurs. Bending and twisting moments also decrease in time. The graphs of their changes are
shown in Figure 5. The greatest bending moment in the creep process decreased by 32.7 %, and the
torque — by 27 %.
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Figure 3. Graphs of the growth of the deflection for different values of the shell elevation: solid
lines — Maxwell-Thompson equation, dashed lines — Maxwell-Gurevich equation
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Figure 4. Change in time of the greatest tangential stresses in the aggregate

Longitudinal and shear forces increase during the creep process. The graphs of their growth are
shown in Figure 6. The longitudinal force N, increased by 8.33 %, and the shear force S — by 12.4 %.
Figure 7 is a graph of the change in time of the largest values of the normal stresses g, in the upper and
lower skin. In the upper skin, the stresses are practically constant, and in the lower skin they increase by
17.4 %. The tangential stresses increase both in the upper and the lower skin, as it can be seen from
Figure 8. In the upper skin, the stresses T, increased by 18.8 %, and in the lower skin by 7.71 %.
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Figure 5. Change in time of the greatest bending and twisting moments: solid lines — Maxwell-
Thompson equation, dashed lines — Maxwell-Gurevich equation
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Figure 6. Change in time of the greatest longitudinal and shear forces
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Figure 7. Change in time of the greatest normal stresses in the carrier layers
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Figure 8. Change in time of the greatest tangential stresses in the shells

Conclusions

The obtained resolving equations are universal and allow to calculate three-layer plates and
shallow shells under an arbitrary creep law. Using the example of a three-layer shell in the form of an
elliptical paraboloid, it was shown that, with increasing of curvature, the effect of creep of the aggregate
on the deflection amount decreases and is practically absent even at f /a = 1/15. At the same time,
with constant displacements, redistribution of stresses and internal forces occurs. The bending and
twisting moments decrease, and the longitudinal and shear forces increase. As for stresses, in the middle
layer relaxation occurs, and in carrier layers stresses increase.
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