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Stress-strain state of clamped rectangular Reissner plates

Hanps»xeHHO-gedopMmMpoBaHHOE COCTOSHME 3alleMIIeHHON
NPAMOYronbHOM NiacTUHbl PenccHepa

M.V. Sukhoterin, H-p mexH. Hayk, 3aeedyrouuli Kagpedpoii
S.0. Baryshnikov, M.B. CyxomepuH,

T.P. .Knysh, . _ N 8-p mexH. Hayk, pekmop C.O. bapbiwHuUKos,
Admiral Makarov State University of Maritime and KaHO. ¢hu3.-mam. HayK, 3amecmumerb
Inland Shipping, St. Petersburg, Russia dupexkmopa uHcmumyma 600H020

mpaHcnopma T.I1. KHbiw,

ocydapcmeeHHbIl yHusepcumem MOPCKO20 U
peyHoe0 hrioma umeHuU adMmuparna

C.O. Makaposa, 2. CaHkm-llemepbype, Poccusi

Key words: Plate Reissner; clamped contour; KnroueBble cnoBa: NnactuHa PeliccHepa;
bending; Fourier series; computations 3aLleMIIEHHbIN KOHTYP; psabl Pypbe;
KOMMbIOTEPHbIE BbIYUCTIEHNS

Abstract. The paper focuses on obtaining numerical results for a rectangular Reissner plate with
clamped contour under the influence of a uniform load using the iteration superposition method of four
types of trigonometric series (correcting functions). The initial function of bendings is selected as a quartic
polynomial which turns into zero on the contour and is a specific solution to the main bending equation.
Discrepancies in rotation angles from the initial polynomial are eliminated in turn on parallel edges by
pairs of correcting functions of bendings and stresses which cause angular discrepancies themselves.
During an infinite process of the superposition of these pairs, all discrepancies tend to zero, which gives a
precise solution at the limit. The paper presents results of bending computations, bending moments, and
shearing forces for square plates different thickness. The obtained results are compared with the results
of other authors, as well as with Kirchhoff theory. It is shown that with the relative thicknesses less than
1/20, the results gained with both theories are almost the same.

AHHOTauuMA. B crtatbe nonydeHbl YWUCNEHHbIE pesynbTaTbl ANs 3aleMIIeHHOW MO KOHTYpY
NPSAMOYrofibHOW NracTuHbl PeccHepa noa AeNCTBUEM PaBHOMEPHOM HArpy3kn UTepaumoHHbIM METOA0M
CyneprnosnummM YeTblpex BUOOB TPUTOHOMETPUYECKUX PAOoB (Ucnpasnsaowmnx dyHkuMn). HadvanbHas
dyHKUMA Npornbos BbIOMpaeTcsa B BUAe MHOrousieHa YeTBepToN CTeneHun, KOTopbi obpallaeTcs B HymMb
Ha KOHTYpe U SBNSAEeTCA YaCTHbIM peLleHneM OCHOBHOIO ypaBHeHMs nsrnba. Hesssku no yrmam nosopota
OT HayanbHOro MHOro4rieHa [MooYepedHO YCTPaHAKTCA Ha napannenbHbIX  Kpasx napamu
ncnpaensaowmnx yHKLMIN NPorMboB M HanpsXXeHUn, KOTopble CaMu MOPOXAaloT yrroBble HeBs3ku. B
xoae 6eckoHeYHOro npouecca cynepnosvummn 3TUX nap BCe HEBA3KM CTPEMSTCS K HymM, YTO B npegene
AaeT ToyHoe pelleHue. [lpuBedeHbl pesynbTaTbl pacyeToB NPorvbos, U3rMbalrLWMX MOMEHTOB U
nepepesbiBalOWNX CUN  ANS KBAAPaATHbIX MIAcTUH pPasnuMyHoW TomnwmMHbl. [laeTca cpaBHeHue C
pesynbTatamu Opyrux aBTOPOB, a Takke ¢ Teopuein Kupxroda. lNokasaHO, 4TO NpM OTHOCUTENbHbLIX
TonwuHax, meHbLmx 1/20 pesynbTaTtbl N0 06enM TEOPUSAM NPaKTUYECKN COBNaAatoT.

Introduction

Modern structures widely use metallic and non-metallic materials (composite, synthetic, etc.) which
have increased pliability to an interlaminar shear. Such materials are often used for making plates
(panels, slabs) which are main elements in ship, aero-, and other structures as well as in
nanoengineering.

Solution to 3D problems of the elasticity theory, which include problems of the plates’ elastic
behavior, is connected with solving a complex system of differential equations and boundary conditions. It
caused the necessity of shifting from 3D problems to more simple 2D ones. Historically, a simplified
theory of thin plates, based on the hypotheses of Kirchhoff-Love, was the first to put forward; it is called
the classical theory. Many engineering problems were successfully solved using this theory. However, it
provides poor accuracy near the plate’s contour, around the points of sharp change in boundary
conditions and the points of applied concentrated forces, as well as when making computations for plates
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of average thickness. Therefore, there emerged a problem of shifting to more precise two-dimensional
theories with using the altered hypotheses by Kirchhoff-Love. These theories were called refined theories
(intermediate between the classical two-dimensional theory and the three-dimensional one).

Today, a variety of refined theories are developed and used, including theories that take into
account the influence of transverse shear strain on the bending. Timoshenko [1] was the first to note the
necessity of considering this influence when solving rod vibration problems. The number of refined
theories today is quite large because there is no universal theory providing acceptable results for all types
of problems.

The linear plate bending theory, which qualitatively refined the classical theory, was firstly put
forward by Reissner [2]. Author rejected the hypothesis of the rectilinear element normality to the median
surface and suggested replacing it with a hypothesis of rectilinearity of this element and introducing a law
of stress variation based on thickness of the plate. Reissner, using a balance equation of the three-
dimensional elasticity theory, compatibility conditions, and Castiglian’s principle of minimum strain-
energy, obtained new differential equations of the plate bending and the corresponding boundary
conditions allowing for the transverse shear effect. The fundamental system consists of two equations.
The first equation of the fourth order characterizes the plate bending. The second equation of the second
order describes the stress state which is of local character and disappears quickly when moving away
from the plate’s edge. It increased the system’s order to the sixth which allowed satisfying three boundary
conditions (instead of two in the classical theory). The given and similar shear theories are often called
Reissner - Mindlin [3] - Timoshenko [4] theories due to their similarity. Particularly, the difference between
the theories by Reissner and Mindlin is basically values of the transverse shear coefficient: Reissner has
it equal to 5/6 (= 0.833) and Mindlin to T2/12 (= 0.822), which is very close.

Variant of shear theories presented in the work Ambartsumyan [5].

Applicability limits of the theories by Kirchhoff-Love, Poisson, and Reissner, as well as revision of
refined theories are discussed in the works Goldenveizer et al. [6, 7], Vasiliev [8, 9], Zhilin [10, 11] an
others.

Goldenveizer et al. [6, 7] in the refined theory divide the stress state into internal and edge.
Researchers use the asymptotic method in combination with the variational principle. The authors state
that the Reissner system of basic equations is incorrect because it does not result from the asymptotic
method. Vasiliev [8, 9] notes that there are problems which cannot be solved with the Kirchhoff theory.
The author reckons that the asymptotic method of the Goldenveizer refined theory is ambiguous and
approximate. In the work Vasiliev [9], the author makes an attempt to show that with the help of certain
transformations the sixth order refined theories can be presented as the modern form of the classical
plate theory. Zhilin [10] points out that the Reissner theory is in line with the three-dimensional elasticity
theory and the Kirchhoff theory should be considered as an asymptotic consequence of the Reissner
theory. In the work Zhilin [11] author warns about possible negative consequences of the formal use of
the classical plate theory in the Finite Difference Method (FDM), the Finite Element Method (FEM) and
other computing systems if spatial structures have rectangular plates with free support on the framework.
Actually, in the shear plate theory support reactions coincide with contour transverse forces Qx and Qy,
which balance the pressure on the plate. It excludes any angular forces in the case of free contour
support which takes place in the Kirchhoff theory.

Revision, refinement and generalization of the theory of Reissner-Mindlin-Timoshenko and
dedicated work in recent years [12—-19].

There is little information about numerical results of the bending problem of a rectangular plate with
a clamped edge using shear theories due to the problem’s complexity. Let us note the works [20-29].

A rigidly clamped uniformly-loaded plate was examined in the work of Rudiger [20]. The author
used hyperbolic-trigonometric series. The series’ ratios were found by the principle of virtual
displacements. Numerical computations for two kinds of rectangular plates show that allowing for the
transverse shear deformation significantly affects the plate bending (no computations were done for a
square plate). The works [21, 22] is based on the Ambartsumyan [5] shear theory. To solve the problem,
the author used trigonometric series with hyperbolic functions in a different coordinate. Indefinite
coefficients are found from the problem’s boundary conditions. The problem reduces to solving an infinite
system of linear algebraic equations.

In the works [23—-29] various modifications of FEM were used.

Xu [23, 24] used a triangular finite element. Values of bendings and bending moments in the center
of a square plate with the relative thickness of 0.1 were obtained.
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In the work by Zienkiewicz et al. [25], FEM with linear quadrilateral elements is used. Numerical
results are obtained for a square plate with a clamped edge with under a uniform load for relative
thicknesses 0.001, 0.01, and 0.1. The number of the elements increased from 4 to 1024.

In the work Weiming and Guangsong [26] "Rational FEM" is used for Reissner plates with various
boundary conditions under a uniform load and a central force. The accuracy of computations with the
number of elements up to 64 is studied.

Ayad et al. [27] used the hybrid-mixed variational FEM with triangular and quadrilateral elements
which is based on the Hellinger-Reissner variational principle. There are numerical results, particularly
the graphs of bendings in the center of a square plate for different relative plate thicknesses when
dividing the plate into 144 elements.

The work Dhananjaya [28] presents a closed form solution for equilibrium and flexibility matrices of
the Mindlin—Reissner plates using the Integrated Force Method (IFM) based on 4 node rectangular
elements. The author obtained the numerical results for square clamped plates with the relative
thicknesses of 0.01 and 0.2 as the graphs of bendings and moments in the center for different numbers
of finite elements, but, unfortunately, the scale of images is small.

In the work Aghdam et al. [29], an approximate solution is obtained for the bending of a rectangular
Reissner plate with clamped edges. Resolving equations are a system of three differential equations of
the second order. The solution procedure is based on using the extended Kantorovich method (EKM) to
transform resolving systems of equations into ordinary differential equations.

In [30] uses the method of Bergan-Wang for moderately thick plates (modified finite integral
transform method — FIT method). The results of a clamped square plate are compared with the results of
the classical plate theory, Reissner-Mindlin theory and the three dimensional theory of elasticity for
different relative thickness of the plate.

The goal of this work is to obtain reliable numerical results on the stress-strain state of a
rectangular plate with a clamped edge allowing for the transverse shear deformation within the Reissner
theory, to compare with the classical theory and with works of other authors, to determine applicability
limits of the classical theory.

Methods

The fundamental system of differential equations of the Reissner elastic plate (see [2, 4]) has the
form:

2
DVAVAW = q— 27V vz
10 1-v
10 1)
VZ‘P—F‘P=O.

where D = EH?¥ [12(1-v%)] — cylindrical stiffness; E — Young's modulus; H — plate’s thickness;
v — Poisson’s ratio; v? — Laplace two-dimesional operator; W(X, Y) — function of bending of the middle
surface of the plate; X, Y — coordinates; (X, Y) — transverse load; ¥(X, Y) — stress function (edge
potential).

For the uniform transverse load, directed at the negative side of oz axis, the system (1) in its
dimensionless form will look as follows:

VEVAw(xX,y)=-1,

W(X’y) -—a VZV/(X!y) =0.

where w(x, y) = W/(gb*/D) — dimensionless bending function; b — the width of the plate; x =X/b, y = Y/b-
dimensionless coordinates; w(x, y) = Y(X, Y) /qb* — dimensionless stress function; a = h?%10 - shear
factor; h = H/b — dimensionless plate’s thickness.

)

Boundary conditions of the rectangle plate with a clamped edge x = £ y/2, y = £ 1/2 have the form:
w=0, ¢,=0, ¢ =0 3)

where y = a/b — ratio of the plate’s sides; a — length of the plate; ¢x, ¢y - the angles of rotation of
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sections:
0 2 oy . 0 oy _ 2a
¢X—&<W+alv W)—ala, oy = ay(w+051V W)+alaX, (al_E .

The task is set to find bending functions w and stress functions y, satisfying fundamental Eq. (2)
and the given conditions (3) on each edge.

To solve the problem, we use the system of functions:

wo(x,y)=—%(x2—%2j(yz—%j @)

W, (X,Y) = _123:( 1)k ﬂ«(xsmhﬁkx——tanhﬂkcoshﬂkx)cosiky (5)
Wy, (X, y)_S;m( )S (ysmh 1Yy — 2tanh fi,cosh ysyjcos,us (6)
Wi (X%, Y) = _123:( —1)¥'C,,sinh B.xsin 4y @

Von (X,Y) = ng(—l)s* D, sinh &,y sin zix ®

where Wo(X, y) is the initial bending function (null approximation); Win , Wzn , Win , won are the correcting
bending functions w and stress functions y; n is the number of the iteration; Awn , Bsn , Ckn , Dsn are
indefinite coefficients;

Av=Kkm, pu = Sﬂ, k™= k+1, S*zﬂ'.

ﬂk l;}/ ~_ v b= /1k+_ &= ,Usz"‘i-
\ \ a

The correcting bending functions are biharmonic and turn into zero on the plate’s contour; the
stress functions satisfy the second basic Eq. (2).

The initial function wWo(X, y) is an isolated solution to the first Eq. (2). It equals to zero on the plate’s
contour but causes the contour to turn, i.e. creates the main discrepancies ¢x , ¢y in boundary

conditions (4) which should be expanded into the Fourier series (on the edges X = - /2 and y = - 1/2
they differ in signs):

1 X s
¢XO|X=7:_Z(y2 _Z"'zalj: Z (_1)k 8y, COSA, Y,

8 k=1,3....

N

00

Pl === 3 (1) bsingy,

2 2 k=1,3,..
¢ 9)
a, X - .
Dol === D (-1) ugsin X,
y=5 2 s=1,3...

1 2 < s’
Ol 1= X ~Lv2a, |= > (1) 9,008 X
y=7 8 4 s=1,3,...

where axo, bk0, Uso, gso — the coefficients of the decomposition.

The correcting functions during the infinite iteration process of their superposition must reduce
these discrepancies to zero.
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The idea of an infinite superposition of functions to elimination of the main deviations (residuals)
from a private solution belongs to V.Z. Vasiliev [31].

The second discrepancy (9) (the first discrepancy will be allowed for in the next iteration to improve
the series convergence) is eliminated by the first pair of correcting functions w11 and w11 with satisfying
the conditions on the edges x = + /2 at the expense of coefficients A and Ca.

However, the functions themselves cause angular discrepancies on the edges y = + 1/2:

2 Ay
(py11|y:% = Lf;sh (xsmhﬂkx - —tanhﬂk cosh A X + 2a, 4, coshﬂkx) a,C,, 3, cosh 3, x} . (10)
k=13,... /11(

They should be expanded into the Fourier series in COSUsX, we should invert the summation, plug
expressions for the coefficients Aw, Cii, in them and put them together with the corresponding
discrepancies gyoy=12 from the initial polynomial (the fourth function (9)), i.e. transform into

o0

(0;11 |y:1 =0y1q |y:; +¢yo| 1= Z (_1) g:1COS/JsX- (11)

2 2 y72 s=13,...
where gs1* = gso +0s1 are the series’ ratios.

Discrepancy (11) and the third discrepancy (9) are compensated by the second pair of correcting
functions Wz1, ¥ 21 at the expense of coefficients Bs; and Ds;.

Besides, functions W»; and s 21 on the edges x = =+ y/2 also create angular discrepancies:

z LO hii (ysmh,usy 2tanh,uS cosh i,y + 24 p4,.c0Sh iy )+051D51§s coshg‘sy}. (12)
=1,3

Pl X:% S

which should be expanded into the Fourier series in cosiy we should invert the summation, plug
expressions for the coefficients Bsi, Dsi in them and put them together with the corresponding
discrepancies gy« - ,2 from the initial polynomial (the first function (9)), i.e. transform into

((Pxo"‘ Py ) N Z (-1) k*a;lCOSﬂky ;- (13)

where @’k1 = ako + ax1.

Discrepancies (13) are compensated by the correcting pair of w12 and g 12 of the second iteration
when satisfying the boundary conditions on the edges X = £ y/2. This gives the system of two equations
to determine the coefficients Ak2, Cko.

The discrepancies of this pair gy12jy=1/2 Will have the form similar to (10, 11):

¢’y12| 1= Z ( 1 gschS,uSX. (14)
13

2 s=
Then series W22 and w2, are used to eliminate the discrepancies of this pair.

And then the process is repeated.

The convergence of the method

During the iteration process, discrepancies in boundary conditions should tend to zero, i.e. the
iteration process should be convergent. Due to linearity of the problem, it is sufficient to prove, for
example, that

rl]mAm:O (k =13,...; n:1,2,...). (15)

It is established that the coefficients Ax of two adjacent iterations are linked linearly. The
dependence of Aw+10n A is a homogeneous infinite system of linear algebraic equations. This system
should be regular [32]. Then, successive approximations will lead to a trivial solution from whatever initial
values of the coefficients Ay, limited in total, we would start.
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Since the discrepancy coefficients linearly depend on coefficients Ay, during the iteration process
they will also tend to zero.

Analysis of the series convergence for bending moments and shearing forces
Moments M, and shearing forces Q according to [4] will have the following form:

2 2 2 2
M, =- a\QIJr aW+05262V2w +a28—l//+a3,
ox oy? ox ox0oy

2 2 2 2
MV:—(gy—vzv vgvzv+az%V2WJ—a2 Y va,,
! X
2 2 2 2
M=) g O vay_of YOV
Y Ox0y oy ox
Qx __EVZW_{_@_W , Q —_ﬁvzw_a_l//
Ox oy oy ox

Here, the moments are referred to value gb2, shearing forces — to value gb; a 2 = 2q;
a3 =val(1l-v).

Let us show final expressions for bending moments My, torsion moments M,y and shearing forces
Qx which were used for computing:

2
szﬁJr1 y2—£+v x2 -
2 4 4 4

_ N _ K 2 _ OShﬂ,k
> (-1) ﬂ,k{[ZcoshﬂLKXJr%zﬂ1< (coshlkx p— cosh B, x j

k

As N 4a cosh S, X
cosh4 A2 coshjf,

+ > (—1)5* L {[—21/ cosh u y + 4oyl [cosh LY — 222?1? cosh §SyJ

S

+(1—v)(/1kxsinhikx—}fktanh/?fk cosh/lkx)] }cosﬂky (16)

+(1—v)(pysinh s,y — fi, tanh fi; cosh s,y )] By + 4a coshe, y}cos,us :

cosh ii, yu’ coshé

M, = —1_7ny—k§. ¥ {([(1—@(1—2} tanh /, ) + 4aA? [sinh 4,x-+ (1-v) A xcosh A, x
iﬁ{%ﬂ(@ + 3¢ )sinh B, jcﬂksﬁkzk Akj;kcofr:[s'k smh,ka}sinﬂky
- %H(—l)s* {([(1—v)(1— A tanh i, ) + doyi? Jsinh s,y + (1-v) 1, ycosh s,y 0
—2“5%2225(#5 +¢Z)sinh f;y] Cf)‘;ﬁﬁ;g - 2;‘ ﬂ‘; ;fh Fsinhz, Y}Smﬂs
(18)

~ : cosh /i As 1 1 cosh&y
+2 -1 cosh —_— s SZ inux,
sﬂzg“( ) {ﬂs ( Y Cosh §S she yJ cosh i 7/ u? cosh, } s
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where Ay = A+ A,+...+A,;...; Bs =B, +B,+..+ B, are overall coefficients in all iterations;

/ék:ﬂk7/21gs:§s/2'

Let us study the convergence of functional series that occur in formulae (16), (18).

The fastest to converge are the series of bending moments (16) in the center of the plate, where
general terms have the order O(l/coshﬁk) or O(]/COSh fi;), and the slowest — in the middle of clamped

edges, where expressions for bending moments will take the form:

(19)

The coefficients An (5) and Bsn (6) have similar estimations Axn = O(1 / k?), Bsn = O(1 / %), and
the corresponding series that occurs in (19), starting from some number, converges not worse than

alternating series Z (—1)rn / m. Although such a series converges slowly, it is good for computations
m=1,3,...

because pursuing the Leibniz theory, it is possible to estimate the inaccuracy of computing its sum (from

the moment when the series terms start to decay).

Let us note that in angular points of the plate
1) « h?
Y A P P L (20)
272) 2 10(1-v)
while for the Kirchhoff plate these moments equal to zero.
The most slowly the series of shearing forces converges on the side x = + y/2:

Qx(g;yj=£—2 3 (—1)k* {Zf(tanhik _

k=1,3,...

- tanh 3
ﬁtanhﬂkJAkz +—’B“}cos/1ky
B ABy

- cosh cosh 1 cosh
-2 Z S2 lufy_ giy Bsz+_2 fiy ,
cosh iz,  cosh{ yug cosh
It is proved that the series for the shear forces converge no worse than numerical

series z 1/m?.

m=1,3,...

(21)

Similar conclusions are also valid for bending moments My, torsion moments M,, and shearing
forces Qy.

Thus, a series of moments and shear forces are quite suitable for computer calculations.

Results and Discussion

Numerical results were obtained for square plates with relative thicknesses h = 0.05, 0.1, 0.2, 0.3
and Poisson’s ratio v = 0.3. Up to 150 terms were held in the series depending on the speed of
convergence of a particular series. The process converged in a geometrical progression with the ratio <
1/3 for all considered examples. The discrepancy coefficients were printed out in every iteration. The
calculation stopped after ten iterations, when all discrepancies were nearly equal to zero; in the process,
the overall coefficients Ais and B,s were calculated (due to linearity of the problem), using which the
bendings, bending moments My, and shearing forces Qx in different points of plates were obtained. Near
the contour, computational points clustered in order to refine the influence of ends.
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In Table 1 the first five coefficients Awr ( = Bsx) are given, as well as their values with
k = 299 (150 terms of the series) for different relative thicknesses of a square plate.

The table shows that the highest are the first coefficients; the second are lower in an absolute
value approximately by two orders, then the coefficients decay, keeping the negative sign.

Tables 2-5 show values of relative bendings; Tables 6-9 show values of bending moments My;
Tables 10-13 show values of shearing forces Qy for square Reissner plates with the relative thicknesses
of 0.05, 0.1, 0.2, 0.3.

Table 1. Values of coefficients Axs for the bending functions of a square plate (Reissner -
CCCC, q = const)

Kk
n 1 3 5 7 9 299
0.05 1.774x10 -1.063x10* -3.966x10° -1.173x10° -3.971x10° -1.013x10°
0.1 1.726x10 -5.582x10° -1.923x10° -4.715x10® -1.564x10° -4.941x10°
0.2 1.543x102 -5.191x10° -3.400x10° -2.000x10° -1.356x10° -2.229x108
0.3 1.248x10%2 -2.531x10* -1.231x10* -6.974x10° -4.492x10° -5.282x10®

Table 2. Values of bendings referred to value gb* / D x10° of a square plate h = 0.05
(Reissner - CCCC, q = const)

X

Y 0 0.1 0.2 0.3 0.4 0.42 0.44 0.46 0.48 0.5

0 -132.70 | -123.80 | -98.33 -60.94 -21.70 -15.11 -9.40 -4.79 -1.56 0
0.1 -123.80 | -115.50 | -91.84 -57.01 -20.35 -14.19 -8.83 -4.51 -1.47 0
0.2 -98.33 -91.84 -73.23 -45.68 -16.43 -11.48 -7.17 -3.67 -1.21 0
0.3 -60.94 -57.01 -45.67 -28.70 -10.42 -7.30 -4.57 -2.35 -0.78 0
0.4 -21.70 -20.35 -16.43 -10.42 -3.77 -2.62 -1.62 -0.82 -0.26 0
0.42 -15.11 -14.19 -11.48 -7.30 -2.62 -1.82 -1.11 -0.55 -0.17 0
0.44 -9.40 -8.83 -7.17 -4.57 -1.62 -1.11 -0.67 -0.32 -0.09 0
0.46 -4.79 -4.51 -3.67 -2.35 -0.82 -0.55 -0.32 -0.14 -0.03 0
0.48 -1.56 -1.47 -1.21 -0.78 -0.26 -0.17 -0.09 -0.03 -0.001 0
0.5 0 0 0 0 0 0 0 0 0 0

Table 3. Values of bendings referred to value gb* / D x10® of a square plate h = 0.1
(Reissner - CCCC, ( = const)

X

Y 0 0.1 0.2 0.3 0.4 0.42 0.44 0.46 0.48 0.5

0 -150.50 | -140.90 | -113.60 | -72.98 -28.88 -21.07 -14.04 -8.01 -3.23 0
0.1 -140.90 | -132.00 | -106.50 | -68.56 -27.21 -19.88 -13.26 -7.57 -3.06 0
0.2 -113.60 | -106.50 | -86.19 -55.75 -22.32 -16.35 -10.94 -6.28 -2.55 0
0.3 -72.98 -68.56 -55.75 -36.36 -14.73 -10.83 -7.28 -4.20 -1.72 0
0.4 -28.88 -27.21 -22.32 -14.74 -6.03 -4.44 -2.98 -1.72 -0.70 0
0.42 -21.08 -19.88 -16.35 -10.83 -4.44 -3.26 -2.19 -1.26 -0.51 0
0.44 -14.04 -13.26 -10.94 -7.28 -2.98 -2.19 -1.46 -0.83 -0.34 0
0.46 -8.01 -7.57 -6.28 -4.20 -1.72 -1.26 -0.83 -0.47 -0.19 0
0.48 -3.23 -3.06 -2.55 -1.72 -0.70 -0.51 -0.34 -0.19 -0.07 0
0.5 0 0 0 0 0 0 0 0 0 0
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Table 4. Values of bendings referred to value gb* / D x10° of a square plate h = 0.2
(Reissner - CCCC, ( = const)

X

Y 0 0.1 0.2 0.3 0.4 0.42 0.44 0.46 0.48 0.5

0 -217.20 | -205.40 | -171.00 | -118.20 | -55.60 -43.20 -31.22 -19.87 -9.38 0
0.1 -205.40 | -194.30 | -161.90 | -112.10 | -52.91 -41.14 -29.77 -18.97 -8.96 0
0.2 -171.00 | -161.90 | -135.40 | -94.29 -44.94 -35.04 -25.43 -16.26 -7.72 0
0.3 -118.20 | -112.10 | -94.29 -66.38 -32.24 -25.27 -18.45 -11.88 -5.68 0
0.4 -55.60 -52.91 -44.94 -32.24 -16.22 -12.85 -9.50 -6.21 -3.02 0
0.42 -43.20 -41.14 -35.04 -25.27 -12.85 -10.22 -7.59 -4.99 -2.45 0
0.44 -31.22 -29.77 -25.43 -18.45 -9.50 -7.59 -5.68 -3.76 -1.87 0
0.46 -19.87 -18.97 -16.26 -11.88 -6.21 -4.99 -3.76 -2.53 -1.28 0
0.48 -9.38 -8.96 -0.77 -5.68 -3.02 -2.45 -1.87 -1.28 -0.67 0
0.5 0 0 0 0 0 0 0 0 0 0

Table 5. Values of bendings referred to value gb* / D x10° of a square plate h = 0.3
(Reissner - CCCC, ( = const)

X

Y 0 0.1 0.2 0.3 0.4 0.42 0.44 0.46 0.48 0.5

0 -324.60 | -309.10 | -263.40 | -190.70 | -98.19 -78.38 -58.47 -38.64 -19.07 0
0.1 -309.10 | -294.40 | -251.20 | -182.20 | -94.11 -75.19 -56.14 -37.13 -18.34 0
0.2 -263.40 | -251.20 | -215.00 | -157.00 | -81.92 -65.62 -49.13 -32.59 -16.16 0
0.3 -190.70 | -182.20 | -157.00 | -116.00 | -61.80 -49.78 -37.50 -25.04 -12.51 0
0.4 -98.19 -94.11 -81.92 -61.80 -34.29 -27.96 -21.36 -14.50 -7.38 0
0.42 -78.38 -75.19 -65.62 -49.78 -27.96 -22.90 -17.59 -12.02 -6.16 0
0.44 -58.47 -56.14 -49.13 -37.50 -21.36 -17.59 -13.60 -9.38 -4.87 0
0.46 -38.63 -37.13 -32.59 -25.04 -14.50 -12.02 -9.38 -6.55 -3.46 0
0.48 -19.07 -18.34 -16.16 -12.51 -7.38 -6.16 -4.87 -3.46 -1.90 0
0.5 0 0 0 0 0 0 0 0 0 0
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Table 6. Values of bending moments My referred to value qb?x10° of a square plate
h =0.05 (Reissner -CCCC, (| = const)

Y 0 0.1 0.2 0.3 0.4 0.42 0.44 0.46 0.48 0.5

0 -23110 | -21450 | -15860 -4413 16220 21860 28090 34980 42520 50670
0.1 -21460 | -19950 | -14830 -4244 15040 20340 26220 32720 39870 47610
0.2 -16570 | -15480 | -11690 -3555 11790 16090 20890 26230 32160 38640
0.3 -8553 -8087 -6281 -1850 7450 10150 13200 16630 20470 24730
0.4 2189 1948 1463 1554 3772 4614 5593 6693 7905 9298
0.42 4603 4222 3282 2498 3311 3802 4400 5080 5821 6691
0.44 7088 6570 5183 3542 2984 3142 3389 3696 4033 4465
0.46 9643 8991 7167 4688 2800 2645 2574 2563 2589 2717
0.48 12290 11510 9251 5945 2745 2290 1927 1646 1445 1466
0.5 15120 14210 11520 7342 2713 1944 1270 720 355 357

Table 7. Values of bending moments My referred to value gb?x10° of a square plate h = 0.1
(Reissner -CCCC, ( = const)

X
Y 0 0.1 0.2 0.3 0.4 0.42 0.44 0.46 0.48 0.5
0 -23630 | -21920 | -16210 -4677 15810 21340 27420 34060 41260 48940
0.1 -22040 | -20470 | -15200 -4482 14730 19930 25670 31960 38790 46090
0.2 -17300 | -16130 | -12130 -3732 11760 16030 20760 25970 31670 37810
0.3 -9528 -8962 -6858 -1970 7824 10610 13740 17230 21100 25370
0.4 952 822 704 1454 4523 5566 6788 8212 9870 11830
0.42 3343 3072 2500 2400 4104 4800 5650 6681 7942 9514
0.44 5840 5428 4398 3444 3787 4140 4622 5274 6145 7307
0.46 8469 7913 6422 4600 3567 3573 3687 3956 4498 5432
0.48 11280 10580 8611 5876 3417 3067 2806 2635 2729 3348
0.5 14360 13540 11020 7338 3196 2620 1806 1456 472 1429

Table 8. Values of bending moments My referred to value qb?x10 of a square plate h = 0.2
(Reissner -CCCC, ( = const)

X
Y 0 0.1 0.2 0.3 0.4 0.42 0.44 0.46 0.48 0.5
0 -25290 | -23450 | -17440 -5692 14220 19410 25050 31120 37630 44580
0.1 -23830 | -22120 | -16500 -5461 13380 18320 23680 29480 35700 42330
0.2 -19470 | -18120 | -13630 -4635 11080 15260 19840 24810 30190 35910
0.3 -12250 | -11440 -8666 -2823 8012 11010 14330 18000 22030 26380
0.4 -2112 -1969 -1306 598 5157 6620 8348 10380 12750 15520
0.42 321 318 516 1554 4679 5780 7138 8809 10840 13400
0.44 2925 2770 2487 2627 4242 4946 5887 7155 8833 10880
0.46 5732 5418 4630 3834 3867 4127 4573 5333 6581 8066
0.48 8787 8305 6982 5196 3587 3366 3240 3296 3800 5341
0.5 12220 11510 9532 6654 3494 2992 2037 878 322 5714
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Table 9. Values of bending moments My referred to value gb?x10® of a square plate h = 0.3
(Reissner -CCCC, ( = const)

Y 0 0.1 0.2 0.3 0.4 0.42 0.44 0.46 0.48 0.5

0 -27650 | -25710 | -19460 -7598 11770 16720 22050 27780 33890 40490

0.1 -26300 | -24480 | -18580 -7348 11120 15860 20980 26490 32380 38680

0.2 -22230 -20750 -15890 -6489 9337 13460 17950 22800 28020 33500

0.3 -15340 -14370 -11160 -4692 6847 9979 13430 17230 21360 25720
0.4 -5251 -4951 -3860 -1340 4120 5845 7875 10250 12980 16170
0.42 -2763 -2613 -2000 -380 3566 4915 6572 8595 11040 14270
0.44 -82 -88 31 715 3028 3942 5148 6751 8832 11260

0.46 2818 2649 2252 1970 2552 2958 3594 4616 6205 7570

0.48 5965 5628 4696 3416 2215 2050 2007 2187 2871 4716

0.5 9552 8928 7253 4879 2245 1964 613 -1191 -1472 12860

Table 10. Values of shearing forces Qx referred to value b of a square plate h = 0.05
(Reissner -CCCC, ( = const)

X

Y 0 0.1 0.2 0.3 0.4 0.42 0.44 0.46 0.48 0.5

0 0 0.052 0.112 0.191 0.297 0.322 0.349 0.376 0.404 0.429
0.1 0 0.047 0.103 0.177 0.279 0.303 0.329 0.356 0.384 0.408
0.2 0 0.033 0.076 0.136 0.224 0.246 0.269 0.294 0.320 0.343
0.3 0 0.011 0.030 0.068 0.132 0.149 0.166 0.186 0.206 0.227
0.4 0 -0.021 -0.034 -0.027 0.010 0.020 0.031 0.041 0.052 0.067
0.42 0 -0.028 -0.048 -0.049 -0.016 -0.007 0.003 0.013 0.022 0.036
0.44 0 -0.035 -0.062 -0.070 -0.042 -0.032 -0.022 -0.012 -0.003 0.010
0.46 0 -0.039 -0.072 -0.087 -0.063 -0.053 -0.042 -0.031 -0.021 -0.008
0.48 0 -0.035 -0.066 -0.083 -0.066 -0.057 -0.047 -0.036 -0.027 -0.013
0.5 0 0 0 0 0 0 0 0 0 0

Table 11. Values of shearing forces Qx referred to value gb of a square plate h = 0.1
(Reissner - CCCC, ( = const)

X

Y 0 0.1 0.2 0.3 0.4 0.42 0.44 0.46 0.48 0.5

0 0 0.051 0.112 0.189 0.292 0.316 0.340 0.366 0.390 0.412
0.1 0 0.047 0.103 0.176 0.274 0.298 0.322 0.346 0.370 0.392
0.2 0 0.034 0.077 0.137 0.222 0.243 0.265 0.287 0.309 0.331
0.3 0 0.013 0.034 0.072 0.136 0.152 0.169 0.187 0.207 0.226
0.4 0 -0.016 -0.023 -0.012 0.024 0.035 0.046 0.059 0.074 0.092
0.42 0 -0.021 -0.033 -0.028 0.002 0.012 0.022 0.035 0.049 0.066
0.44 0 -0.024 -0.041 -0.041 -0.016 -0.008 0.001 0.012 0.025 0.043
0.46 0 -0.024 -0.043 -0.047 -0.029 -0.022 -0.014 -0.005 0.006 0.023
0.48 0 -0.018 -0.033 -0.038 -0.027 -0.023 -0.018 -0.013 -0.005 0.009
0.5 0 0 0 0 0 0 0 0 0 0
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Table 12. Values of shearing forces Qx referred to value b of a square plate h = 0.2
(Reissner - CCCC, ( = const)

Y 0 0.1 0.2 0.3 0.4 0.42 0.44 0.46 0.48 0.5

0 0 0.051 0.110 0.184 0.277 0.298 0.319 0.340 0.362 0.382
0.1 0 0.047 0.103 0.172 0.262 0.282 0.303 0.324 0.345 0.366
0.2 0 0.036 0.080 0.139 0.218 0.237 0.256 0.276 0.296 0.316
0.3 0 0.018 0.044 0.084 0.146 0.162 0.179 0.197 0.215 0.235
0.4 0 -0.002 0.003 0.019 0.055 0.065 0.078 0.092 0.109 0.128
0.42 0 -0.004 -0.004 0.008 0.037 0.046 0.057 0.070 0.086 0.105
0.44 0 -0.006 -0.008 -0.001 0.021 0.028 0.037 0.048 0.063 0.081
0.46 0 -0.007 -0.010 -0.007 0.008 0.013 0.019 0.028 0.040 0.057
0.48 0 -0.005 -0.008 -0.007 0.000 0.003 0.006 0.010 0.018 0.032
0.5 0 0 0 0 0 0 0 0 0 0

Table 13. Values of shearing forces Qx referred to value gb of a square plate h = 0.3
(Reissner - CCCC, q = const)

Y 0 0.1 0.2 0.3 0.4 0.42 0.44 0.46 0.48 0.5

0 0 0.051 0.109 0.179 0.266 0.285 0.304 0.324 0.344 0.365
0.1 0 0.048 0.102 0.169 0.253 0.272 0.291 0.311 0.331 0.351
0.2 0 0.038 0.082 0.140 0.216 0.234 0.252 0.271 0.290 0.310
0.3 0 0.023 0.052 0.093 0.154 0.170 0.186 0.204 0.222 0.242
0.4 0 0.006 0.017 0.036 0.073 0.083 0.096 0.110 0.127 0.146
0.42 0 0.004 0.011 0.026 0.055 0.064 0.075 0.089 0.104 0.123
0.44 0 0.002 0.006 0.016 0.038 0.046 0.055 0.066 0.080 0.099
0.46 0 0.000 0.002 0.008 0.023 0.028 0.034 0.043 0.055 0.072
0.48 0 0.000 0.000 0.003 0.010 0.012 0.015 0.020 0.027 0.042
0.5 0 0 0 0 0 0 0 0 0 0

Hereinafter CCCC -plate is clamped on all four edges.

y = % 1/2. The curves numeration is similar to Figure 1.

Figure 1 illustrates bending lines of square Reissner plates under a uniform load at the section
y = 0. Curve 1(the dotted line) represents the Kirchhoff plate, the following numbers are given to the
Reissner plates with relative thickness h = 0.05, 0.1, 0.2, 0.3. Figures 2, 3 illustrate curves of bending
moments M  for these plates at the clamped section X = * y/2, and Figures 4, 5 — on the adjacent side

Figure 1. Lines of relative bendings of square plates (Reissner -CCCC, q = const)
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Sukhoterin M.V., Baryshnikov S.0., Knysh T.P. Stress-strain state of clamped rectangular Reissner plates.
Magazine of Civil Engineering. 2017. No. 8. Pp. 225-240. doi: 10.18720/MCE.76.20.

236



NuxeHepHO-CTPOUTENBHBII KypHaJI, Ne 8, 2017

coordinate, y

.05 —

0,062 =

0,01 -

bending moments, M:

4] - ¥ - T - L s T
o o1 o 03 0.4

Figure 2. Curves of bending moments My of square plates (Reissner -CCCC, ( = const) at the
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Figure 3. Magnified fragment of the curve of bending moments My of square plates
(Reissner -CCCC, ( = const) at the section X = % y/2 near the plate’s angle
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Figure 5. Magnified fragment of the curve of bending moments My of square plates
(Reissner -CCCC, (| = const) at the section Y = £ 1/2 near the plate’s angle

Cyxorepun M.B., bapeimankos C.O., Kupin T.I1. HanpspkeHHO-1€hopMHpPOBaHHOE COCTOSIHUE 3aIEMJICHHON
MPSAMOYTOJIbHOM TTacTHHbI Peiiccuepa // HxeHepHO-CTpouTeNnbHbIHN xypHai. 2017. Ne 8(76). C. 225-240.

237



Magazine of Civil Engineering, No. 8, 2017

The computations and graphs show that with small relative thicknesses h < 1/20, the results for the
Kirchhoff and Reissner plates are almost equal. With the increase in the relative thickness, relative
bendings also increase. Absolute bendings, of course, decrease, because they are obtained by
multiplying relative bendings with the expression qb*/D = 12(1-v%) qb/(Eh?). If the bending in the center
for the square Kirchhoff plate equals to 0.00126 [4], for the Reissner plates with thickness
h =0.05, 0.1, 0.2, 0.3 it amounts to 0.001327, 0.001505, 0.002172, 0.003246 respectively.

Thus, the Kirchhoff plate can be considered as a limit behavior of the Reissner plate, when h — 0.

Bending moments in the middle of clamped edges decrease when h increases, but they rise when
closer to angles of the plate. In angular points the bending moments different from zero and increase in a
proportion to the square of relative thickness (see (17)). This is the fundamental difference from the
Kirchhoff plate.

In the center of the plate, bending moments slightly increase in an absolute value when h
increases; shearing forces change moderately.

The Shirakawa work [21] presents calculated correlations w/we of the plate’s bendings within the
shear theory to the bendings within the classical theory for central points of the median zo/h = 0 and top
Zo/h = 0.5 surfaces. For a square plate with relative thicknesses h/a = 0.1, 0.2, 0.3 these values
amounted to = 1.25, 1.85, 2.95 and 1.2, 1.7, 2.6 respectively. In this paper, average values of thickness
amounted to 1.2, 1.7, 2.6, i.e. were equal to the corresponding values [21] on the plate’s surface.

In [22] shows diagrams of shear forces on the contour of the uniformly loaded clamped square
plates with the relative thickness of 0.001, 0.04, 0.1 and 0.3. These results practically coincide with those
obtained in the present work.

In the works of X, [23, 24], for a square plate with the relative thickness of 0.1 the bending in the
center amounted to 0.001499 and the bending moment amounted to 0.0231. In the work [25] of
Zienkiewicz et al. 1993 with the grid of 1024 elements these values amounted 0.00150442 and 0.023195
respectively, opposing to 0.0015050 and 0.023630 in our work. It indicates a good agreement of the
results.

In the work [26] by Weiming and Guangsong, the bending in the center of a square plate with the
relative thickness h/a = 0.3 amounted to 0.0028997 and the bending moment amounted to 0.023538,
while in this work — to 0.0032460 and 0.027650 respectively. The values in the aforementioned work
were obtained using FEM with the grid of 8x8 elements; however, they poorly correlate with our results.

In the work of Ayad et al. [27], the maximum bending for a square clamped plate with the relative
thickness of 0.1 amounted to = 0.001575 (according to the graph).

The work of Dhananjaya [28] provides numerical results for square plates with the relative
thicknesses of 0.01 and 0.2, represented as graphs of bendings and moments in the center depending on
the number of finite elements. The scale of the images does not allow making a proper comparison,
although the proximity of the results is obvious.

In the article [30] for a square plate with the relative thickness of 0.1 the bending in the center
amounted to 0.0013636 (method FIT), 0.0015040 (FEM, theory of Reissner - Mindlin), 0.0014918 (FEM,
3D solution). The last two values are in good agreement with the value 0.0015050 obtained in the present
work.

Conclusions

1. In the present work the iterative process of superposition of hyperbolic-trigonometric series to
solve the problem of bending rectangular Reissner plate clamped along the contour as a result of the
action of a uniform load is constructed and its convergence to the exact solution of the problem is proved.

2. Increasing the number of members in the ranks and the number of iterations, we can obtain the
numerical solution with high accuracy having used a simple algorithm.

3. The convergence of the series and their suitability for computations of bending moments and
shear forces an investigated.

4. Numerous examples of calculating deflections, bending moments and shear forces for square
plates with different relative thickness are given.
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5. It is shown that in case of small relative thicknesses theories of Reissner and Kirchhoff produced

the same results.

6. We also analyzed the differences of the above theories when changing the relative thickness.
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