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Abstract. The application of convective heat transfer for air mass displacement in ventilation 
systems without the mechanical draft (integration of Double Skin Facade with HVAC Systems of the 
building) has a real practical perspective for Building energy performance.  The purpose of this article is 
development of the theory of heat and mass transfer in capillary-porous media, air flows and building 
structures. The engineering purpose is а concept development of a closed ventilating circuit with 
convective heat flow to reduce the pressure on the environment, improve the comfort of the building and 
reduce operating costs.  The subject of this research is a closed ventilating circuit with convective heat 
flow in constructive energy system (ventilated facade integrated with the HVAC system).  It was the 
mathematical modeling of convective heat flow in ventilated facades. Based on the results obtained the 
concept of a closed ventilating circuit with convective heat flow is developed. The proposed system uses 
Convective heat transfer in a ventilated facade for the ejection and injection facilities, heat recovery in the 
buffer zone of the façade. It allows reducing ecological pressure on the environment and the application 
of energy resources. 

Аннотация. Использование термогравитационной конвекции для перемещения воздушных 
масс в системах вентиляции без применения механического побуждения при условии интеграции 
вентиляционной системы с фасадными конструкциями здания имеет реальные практические 
перспективы.  Целью данной статьи является развитие теории тепломассопереноса в 
гетерогенных средах, в том числе в капиллярно-пористых средах, воздушных потоках и 
строительных конструкциях. Технической целью статьи является создание концепции замкнутого 
вентиляционного контура (система вентиляции и кондиционирования, интегрированная с 
фасадными конструкциями) с термогравитационным течением, предназначенного для снижения 
экологического давления на окружающую среду, повышения комфортности здания и снижения 
эксплуатационных затрат.  Объектом исследования является замкнутый термогравитационный 
контур в системе конструктивного энергосбережения (фасадные конструкции, интегрированные с 
системами вентиляции и кондиционирования).  Разработана математическая модель замкнутого 
вентиляционного контура с термогравитационным течением, не требующая механического 
оборудования для организации движения воздуха. Предлагаемая система использует 
термогравитационную конвекцию в вентилируемом фасаде для эжекции и инжекции в 
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помещениях, рекуперацию теплоты в буферной зоне фасада, что позволяет снизить 
экологическое давление на окружающую среду, сократить использование невозобновляемых 
энергетических ресурсов. 

1. Introduction 
Control of indoor climate systems, ventilation, heating and air conditioning systems usually implies 

a high energy and economic costs. For heat exchange between the flows of supply and exhaust air are 
typically used air-to-air heat exchangers. Heat exchangers produce a transfer of tangible (visible) energy 
due to temperature difference on the surfaces. However, after a long period, the temperature difference 
between the air flows in the air intake is usually reduced and as a consequence some of the energy 
becomes insignificant. Another typical energy-saving solution is the introduction of ventilated facades 
using external or internal air, for reduction of thermal loads [1–5]. 

The design principles of envelope structures with the use of modern technology “active energy 
efficiency” and the recovery heat flow are investigated in the works [6–11]. The paper presents data on 
the transmission of heat recovery and special organization of the admission conditions of a flow of 
external air and its subsequent passage through the building envelope.  The scientific groups provide 
theoretical and experimental data on the study of integration of ventilated facade systems with ventilation 
systems [12–14]. 

The combination of these technologies allows for the recovery of thermal energy and represents 
the implementation of the building envelope, mechanical ventilated exhaust the internal air outlet of the 
ventilated façade must have a temperature lower than the outdoor temperature in summer or in winter 
[15-16].  

In the article [17-18] a numerical study of the efficiency of integrated energy-saving system 
consisting of a mechanically ventilated opaque façade and air-to-air heat exchanger. The transfer of 
energy from an external flow of air to the inside, leaving an air gap. 

Exhaust air in the ventilated facade is subjected to a process of evaporative cooling at the 
beginning and throughout the height of the building.  

In [19] numerical modeling for light frame building structures having different values of the 
resistance of heat transfer for different external conditions and for various internal heat loads. The energy 
efficiency of the proposed system is compared with efficiency of conventional systems: the traditional wall 
with an air gap and a recovery system of air, where the air is transferred from the supply system to 
exhaust the air and out of the building. 

Currently, the typical functioning of the systems of ventilation and conditioning of modern buildings 
directly associated with high energy consumption for moving large volumes of air masses and maintain 
the required parameters of the microclimate (humidity, temperature, carbon dioxide concentration). They 
are designed, usually with the use of inefficient mechanical equipment and require additional allocation of 
usable space and volume to accommodate and service and the relevant regulatory measures for their 
maintenance. To operate such a relatively inefficient system consumes considerable additional non-
renewables, accompanied by additional environmental pressure on the environment [20–24].  

One of the promising directions in the construction is high-rise buildings. One of the many tasks 
due to the altitude is the specificity of the design and installation of ventilated façade system. 

The metal thin-walled structure of the hinged facade works separately from the main wall. In this 
regard, with the incorrect method of calculating the facade structure, there is a risk of deformation of the 
structure and its further collapse [25–29]. 

The systems of ventilation and conditioning with rare exceptions do not provide for integration with 
façade and limited use of the capabilities of thermo-gravitational convection.  

It is obvious that there is a real practical prospects for the use of thermo-gravitational convection 
for movement of air masses in ventilation systems without the use of mechanical impulses when 
integrated ventilation system with front designs of the building. Maintenance of such a system would not 
require energy resources, reducing ecological pressure on the environment, increases the comfort of the 
building and dramatically reduce maintenance costs.  

The purpose of this article is development of the theory of heat and mass transfer in capillary-
porous media, air flows and building structures. The engineering purpose is а concept development of a 
closed ventilating circuit with convective heat flow to reduce the pressure on the environment, improve 
the comfort of the building and reduce operating costs. 
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The subject of this research is a closed ventilating circuit with convective heat flow in constructive 
energy system (ventilated facade integrated with the HVAC system). 

2. Methods 

2.1. The development of hydraulic methods for solving problems of heat-
gravitational convective flows 

The main applied mathematical apparatus is numerical modeling of flows and fields of conservative 
impurity (temperature and moisture concentration) in licensed packages of programs using difference and 
variational-difference methods for solving parabolic and elliptic systems of equations (motion, momentum 
transfer, energy, impurity, heat propagation), allowing to obtain so-called "strong" solutions in the 
topology of uniform grid convergence. For validation of the numerical methods, it is planed to conduct full-
scale physical experiments. 

 Processing and verification of experimental data is carried out using standard packages of 
mathematical statistics. Since technical solutions in the field of energy-efficient construction are mainly 
focused on normative materials produced empirically, the unity of the methods used to solve the 
problems of building Thermophysics can be seen in the theory of heat and mass transfer of solid and 
elastic capillary-porous bodies forming heterophase systems.  

Currently, all known approaches to solving problems for such systems have insufficient connection 
with the basic provisions of the physics of surface phenomena. Therefore, it is planned to develop a 
physical model of non-stationary processes of interconnected heat and mass transfer taking into account 
the intensity of mass transfer between phases, thermocapillary flows, conditions of mechanical and 
dynamic equilibrium on curved surfaces of the phases. It is also assumed to propose and justify the 
rheological model of heterophase systems, characterized by the possibility of application in a wide range 
of unstable temperature and humidity conditions.  

Next, we formulate the system of differential equations and boundary conditions for the 
nonstationary heat and mass transfer with account of capillary forces in the capillary-porous media taking 
into account the thermodynamics and physics of surface phenomena, with one voice describes the 
filtering process in case of incomplete saturation with the aim of optimizing the process of heat transfer 
and management. 

The theory of heat-gravitational convective flows should not be considered by hydrodynamic theory 
of heat-gravitational convection with its set of methods and solutions including the theory of jet boundary 
layers [30–33].  

Below the basic position of the hydraulic theory of heat-gravitational convective flows are listed in a 
dogmatic form. In part it demonstrates the possibilities of this theory and it is adapted for simple solutions 
of specific ventilation’s problem. 

The hydraulic calculation methods of heat-gravitational convective flows are based on the following 
assumptions:  

1). The Boussinesq approximation: the pressure distribution in the heat-gravitational convective 
flows is hydrostatic: 

0 gdz
dp

 , 

where z – is a vertical coordinate [3] 

The momentum equation at the vertical plane has the form: 
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2). It is considered that heat-gravitational convective flows – is a barotropic flow, p = p(). More 

precisely the condition of barotropicity is replaced by the condition of polytropes: 

n
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polytropic exponent n. In the case of thermal equilibrium (stationary gas), n=k, k – for a perfect diatomic 
gas (air) k=7/5. In the case of barotropic motion with the supply of heat from the hot wall: n<k. Then if 
1<n<k, it is the cooling air in the flow’s direction. If n<1, the air is continuously heated in the direction of 
heat-gravitational convective flows. 

3). The polytropic exponent n is uniquely determined by the intensity of heat exchange between 

the air and the hot wall. If St=0n=k; St=∞, n=1. Then, for example, when 1<n<k at a convenient 
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the Stanton’s number,  - the coefficient of heat transfer from hot wall to the stream, v – the average 
velocity in heat-gravitational convective flows; 

4). The momentum equation contains 3 density distribution sought for (pressure and 2 components 
of velocity). A system of equations is compiled: the momentum equation is contained by the energy 
equation and the displacement continuity equation. The density associated with the barotropic pressure 
connection (barotropicity condition). In the hydraulic version of heat-gravitational convective flows the 
density distribution are replaced by the distributions: velocity by average velocity, temperature by average 
flow temperature. 

5). The corresponding equality are formulated for the integral distribution: 
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 where h – channel width, L – its length,  – velocity coefficient, 
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1
,  – pressure loss factor [3]. 

The first relation is a consequence of energy integral (Bernoulli) for the heat-gravitational convective 
flows, and the second relation is a consequence of the first start to flow in a heated channel (the condition 
of entropy balance) and finally, the third relation is the displacement continuity condition. 

The dependence is fair for average velocity [4]: 
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R – the individual gas constant. For air, approximately, R=287 m2/(s2К).  

Then: .
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The last expression in dimensionless form is possible to write in "similarity criterion":  
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/


 . Indeed, FrgLv :/  – the Froude number for heat-gravitational convective 

flows, BaRTgL c /  - number Barstow, measuring the ratio of the Lagrangian velocity gL  to the 

velocity of sound in cold air, cRT . Then: 
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The use of variables similarity is convenient for simulations of real building structures in laboratory 
settings (Fig.1) 

 

Figure 1. Physical model 

6). For a real air flow in heat-gravitational convective flows the assessment is evaluated

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Therefore the integral of the kinetic energy can be neglected velocity head [3]; 

7). For example, if the vertical ventilation manifold with constant cross section A is equal to the 

releases section Ae  and coefficient loss factor  .  Let, further, an icon 1 shows the flow parameters in the 
reservoir before release, icon 2 – after the release and the icon e in the news. Given: velocity  v1, 
pressure p1, square section of the vent of the collector editions, A, Ae. Find the velocity and velocity 
distribution along the length of the manifold [5]. The equation of balance of kinetic energy with the use 
limitations of paragraph 6 is: 

2

2

2211
e

eeee

v
AvApAvpAvp 

, 

     1/:,
22

2
1

2
11

2
2

2
112  AAnnvvvpvvpp ee



. 

We assume pe=0. Then the sequence of velocities in the sections between the editions forms a 
geometric progression: 
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 – the number of issues: 

- pressure on any part of the header  22
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Then it turns out that to align the costs of air releases and average velocity along the length of the 

collector it is necessary to design issues so that the least z different from 1, i.e. to either >>1, or n<<1, 
either simultaneously fulfill both inequalities. Real air editions of the condition n<0,1 guarantees the 
homogeneity of the flow releases; 

8). Dissipation power flow in the collector of the ventilation shaft is determined by the standard 
according to the formula: 
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If the number of issues >>1, then 
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For example, if A=1 m2, v=20 m/s, air density is standard,  = 1.19 kg/m3, the dissipation heat in 
the collector capacity will be the quantity of the order 4 kW. The same power dissaperaed on releases. 
The total value of dissipation heat power is about 8kW. Taking into account the efficiency of the 
ventilation installation, the electric power consumption will be approximately 10 kW. Supplied with a 
ventilation manifold in space consumption will be about 70000 m3/h. It is easy to recalculate the vent 
manifold to any other air flow; 

9). Hydraulic theory of heat-gravitational convective flows intersects with accurate hydro-
mechanical theory in the model boundary layer. The fact is that, in vertical channels when the Rayleigh 
numbers  

9
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 , heat-gravitational convective flows are laminar. The near-wall 

boundary layer lift force has a thickness 4

2

g

x
  ,  – Prandtl number, a maximum of a few millimeters 

and never fills the entire vertical width of the ventilated channel, contrary to the assertions of some 
authors [7]. 

In these circumstances the description of the flow is reduced to limit the problem of Case [6] for the 

dimensionless stream function  afdzf ,0,/:    and the dimensionless temperature difference 

 1.0: 
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ch TT
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 . It is considered that f=f(), =(), :=y/, 0<<. We denote the derivative touches 

the requed distributions f and  variable .  Then f’’=df/d proportional to the local longitudinal velocity in 

the boundary layer, f”=d2f/d2 proportional to the friction, ’=d/d proportional to the heat flow across the 
heat-gravitational flow from the hot wall.  The ultimate objective of Case can be formulated as follows: 
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Main results: 

- velocity distribution     af 3exp'   and the maximum velocity are near the hot wall. 

The velocity profile is the same as in grazing torch (wall jet); 

- temperature distribution   a3exp  ; 

- the distribution of friction decreases in  from a maximum value at the hot wall, =0, to zero 

outside the boundary layer, =:       aaaf 3exp33exp"  ; 

- the heat flux distribution is monotone-decreasing quantity of :     aa 3exp3'  . 

Having a local velocity profiles and temperature difference, it is easy to spend an averaging across 
the width of the channel and the flow rate and find the hydraulic distribution (average velocity and 
average flow temperature). 

2.2. Optimization of the heat and mass transfer in systems of constructive energy 
saving 

To minimize heat losses through the external envelope the research of flow and heat transfer in 
capillary-porous medium in building structures. 

 

Figure 2 The estimated model of the external envelope 

To calculate the following temperatures is used: 

• 235.4 K the regions with large difference in temperature throughout the year; 

• 289.8 K – the temperature outside equals the temperature of the outer surface of the insulation; 

• 300 K – high ambient temperature. 

Below there are results of calculations for different climatic zones for buildings with a height 30m 
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Figures 3–4. Isotherms, isolines of velocity (d=300mm L=30m.T=300K) 

 

Figures 5–6. Velocity vectors (d=300mm L=30m.T=300K) in the upper and lower parts. 
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3. Results and Discussion 
In recent years the systems of ventilated facades are widely spread in different regions with 

different climatic conditions. This is due to the fact that modern ventilated facades possess such qualities 
as energy efficiency, reducing the influence of solar insolation on the microclimate inside the building, 
protection from noise impacts and a wide range of design solutions. Considering all these qualities of 
ventilated facades, the solution of the organization of heating and ventilation to the building to increase its 
efficiency is proposed. 

Principles of design of envelope structures with the use of modern technology of “active energy 
efficiency” and the recovery heat flux are investigated [6–11]. The paper presents data on the 
transmission of heat recovery and special organization of the conditions of admission of a flow of external 
air and its subsequent passage through the building envelope.  The scientific groups provide theoretical 
and experimental data on the study of integration of ventilated facade systems with ventilation systems 
[12–14]. In this paper the minor energy consumptions with respect to a basic configuration consisting of a 
traditional closed cavity wall and recovery equipment wherein energy is transferred from the outdoor air 
to the exhaust air extracted from within the building, are also calculated by introducing a cooling 
performance index and discussed in full details. A dimensional empirical correlation that expresses such 
cooling performance index as a function of the several independent variables considered is also 
proposed [15]. 

The thermo-circuit is shown at figure 7. In basis of thermo-circuit is the natural convection and the 
recovery of the energy expended for air heating in the facade. The principle of operation of the circuit as 
follows: air enters from the atmosphere through the rusty to the channel between the facade and 
insulation. Due to the temperatures difference on the thermal insulation and facade air is heated in the 
channel and begins naturally rising to the top. Next the heated air is collected around the perimeter of the 
roof and is supplied to filtration-pumping station. But before it get into it, the oxygen level of taking air 
mass are monitored (if the oxygen level is low, the filtration-pump system is able to collect air from the 
environment). Filtration-pumping system consists of three main elements: the numeral 1 is a high 
performance air pump high pressure; 2 – filter system (cyclone separator); 3 – heating device. After 
filtration and pumping the air gets into the ventilation shaft to the rooms to provide the necessary climate 
conditions. It is possible to adjust the resistance at the outlet of the ventilation ducts leading from the 
mine to the premises. To adjust the operation of the filtration and pumping system the sensors pressure 
is installed in the ventilation shaft, which you can adjust the mass flow in the circuit. Supply air to the 
rooms is carried out through the ducts in the floor. Due to the natural convection the heated air rises to 
the ceiling, then it gets into the output part of the ventilation system which leads the air back to the 
ventilated façade. 

.  

Figure 7. The closed ventilating circuit with convective heat flow 
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4. Conclusions  
It is developed hydraulic methods of calculation of heat-gravitational flows, complicated heat and 

mass transfer, allowing proposing specific design solutions and reasonable methods of determining 
parameters and dimensions of the elements of the circuit. It is established that рaving a local velocity 
profiles and temperature difference, it is easy to spend an averaging across the width of the channel and 
the flow rate and find the hydraulic distribution (average velocity and average flow temperature). 

The concept of closed ventilating circuit with convective heat flow is developed (HVAC integrated 
with ventilated system facade) based on heat-gravitational convection, does not require mechanical 
equipment to air displacement. The proposed system uses thermo-gravitational convection in a ventilated 
facade for the ejection and injection facilities, recovery of heat in the buffer zone of the facade. The air 
flows in the facade through the holes on the outer face of the facade and perceive the warmth of the inner 
face of the facades and air flow induced from the premises. The buffer zone acts as a heat exchanger 
and is used as a heat-shielding layer of the building. In this system the air as incompressible fluid, the 
fluid obeying the laws of hydraulics. The velocity distribution     af 3exp'   and the maximum 

velocity are near the hot wall. The velocity profile is the same as in grazing torch (wall jet); the distribution 

of friction decreases in  from a maximum value at the hot wall, =0, to zero outside the boundary layer, 

the heat flux distribution is monotone-decreasing quantity by . 

It is offered the optimization of flows and heat transfer in systems of constructive energy saving: 
vertical constructions and ventilation systems to minimize the cost of power to move the coolant (air). 
(analytical calculations, the numerical experiments in specialized software systems, preparing a physical 
model). 
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