Детальная информация

Станкевич, Лев Александрович. Оценка уровня умственной работоспособности учащихся на основе анализа сигналов ЭЭГ [Электронный ресурс] / Л. А. Станкевич, С. С. Аманбаева, А. В. Самочадин. — Электрон. текстовые дан. (1 файл : 443 Кб) // Научно-технические ведомости Санкт-Петербургского государственного политехнического университета. Сер.: Информатика. Телекоммуникации. Управление, 2018. – Т. 11, № 4 [Электронный ресурс]. — Загл. с титул. экрана. — Электронная версия печатной публикации. — Свободный доступ из сети Интернет (чтение, печать, копирование). — Текстовый файл. — Adobe Acrobat Reader 7.0. — <URL:http://dx.doi.org/10.18721/JCSTCS.11411>. — <URL:http://elib.spbstu.ru/dl/2/j19-166.pdf>.

Дата создания записи: 04.07.2019

Тематика: Вычислительная техника; Распознавание и преобразование образов; работоспособность учащихся; умственная работоспособность; оценка уровня работоспособности; электроэнцефалографические сигналы; умственная усталость; декодирование; неинвазивные интерфейсы; student performance; mental performance; evaluation of performance; electroencephalographic signals; mental fatigue; decoding; non-invasive interfaces

УДК: 004.93

ББК: 32.973-018.2

Коллекции: Общая коллекция

Ссылки: DOI

Разрешенные действия: Прочитать Загрузить (0,4 Мб) Для чтения документа необходим Flash Player

Группа: Анонимные пользователи

Сеть: Интернет

Аннотация

Представлены результаты исследований в области применения неинвазивных интерфейсов "мозг-компьютер" для анализа степени умственной усталости учащихся. Предложено использовать электроэнцефалографические (ЭЭГ) сигналы, позволяющие определить вызванные событиями потенциалы. Подробно описан набор алгоритмов для предварительной обработки сигналов ЭЭГ и распознавания вызванного потенциала Р300, возникающего через 300 мс после зрительного стимула. Основное внимание уделено эксперименту по распознаванию волны Р300 по информации, снимаемой прибором типа Muse headset. Приведены предварительные результаты по точности распознавания волны Р300 у разных людей с использованием различных типов классификаторов. Разработана методика применения Р300 для оценки степени умственной усталости учащихся. Проведен ряд экспериментов, подтверждающих возможность такой оценки по разработанной методике.

The article presents the results of studies on using non-invasive brain-computer interfaces (BCI) for analyzing the degree of mental fatigue of students. It is proposed to use electroencephalographic (EEG) signals, allowing to determine the potentials caused by events. A set of algorithms for preprocessing EEG signals and recognizing the evoked potential of P300 arising 300 ms after a visual stimulus is described in detail. The main focus is on the P300 wave recognition experiment from information captured by a Muse headset. Preliminary results on the accuracy of P300 wave recognition in different people using various types of classifiers are given. A methodology has been developed for using P300 to assess the students mental fatigue. A number of experiments have been carried out confirming the possibility of such assessment using the developed methodology.

Права на использование объекта хранения

Место доступа Группа пользователей Действие
Локальная сеть ИБК СПбПУ Все Прочитать Печать Загрузить
-> Интернет Все Прочитать Печать Загрузить

Статистика использования документа

stat Количество обращений: 44
За последние 30 дней: 2
Подробная статистика