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Abstract. We study the natural oscillations of a rectangular plate, two adjacent edges of which are
clamped, and the other two are free (CCFF-plate), as an element of many building structures. The
deflection function is chosen as a sum of two hyperbolic trigonometric series. Both series obey the main
equation of free vibration. Meeting all boundary conditions of a problem leads to an infinite system of
homogeneous linear algebraic equations with respect to eight series coefficients. This system is
transformed in two subsystems due to four basic coefficients, for which the iterative solution process is
organized. Initial values of a pair of basic coefficient series are chosen randomly. Frequency values are
chosen so that iterations coincide starting with a certain number. This provides non-trivial solutions of the
reduced system. For the first eight obtained natural frequencies there have been presented relevant 3D
mode shapes. The paper provides accuracy analysis and its comparison with other familiar results.

AHHoTauumA. NccnepyoTtca cobCcTBeHHbIE KonebaHusa NpsiMOYronibHOW NnThbl, Ba CMEXHbIX Kpast
KOTOpoOW 3alemneHsbl, a aBa gpyrnx csobogHbl (CCFF-nnacTnHa), Kak anemMeHTa MHOMMX CTPOUTENbHbIX
KOHCTpyKumi. Wckomas dyHKumMss npormboB BbibupaeTca B Buge CyMmbl ABYX runepbono-
TpuroHomeTpuyeckux psgoB. Oba psga NOOUYUHSIIOTCS OCHOBHOMY YpaBHEHMIO COOCTBEHHbIX konebaHui.
BbinonHeHMe BCeEX rpaHMYHbIX YCMOBUW 3adayn npuvBOAMT K OECKOHEeYHOW CUCTEME OAHOPOAHbIX
NVHENHbIX anrebpanyeckmx ypaBHEHUN OTHOCUTENbHO BOCBMWU KOI(MULMEHTOB psigoB. dTa cuctema
npeobpasyeTcsa K ABYM NoACUCTEMAM OTHOCUTENBHO YeTbIpex 06a30BbiX KO3MULNEHTOB, ONA KOTOPbIX
OpraHus3oBaH  UTepauUMOHHbLIN  npouecc  pelleHusi. HavanbHble  3HayeHUa  OoAHOW  napsbl
nocrnegoBaTenbHOCTEN 06a30BbIX KOIPMULMEHTOB Ha3HaYaTCs Npon3BonbHo. MNoabupatoTca 3HaYeHus
4YacToT, NPU KOTOPbIX, HAYMHAs C HEKOTOPOro HoOMepa, uTepaLuu coBnagarT, YTO JaeT HeTpuUBUanbHbIe
peLLeHns peayumMpoBaHHOM cucTeMbl. [N HaWdeHHbIX TakuMm o6pa3oM nepBbiX BOCbMU COBCTBEHHbIX
YacToT npefcTaBrneHbl cooTBeTcTByOWMNe 3D opmbl konebaHui. [NpuBoasTcs aHanu3 TOYHOCTU
BbIYNCIIEHUI N CPaBHEHUE C U3BECTHLIMU pe3ynbTaTamu.

1. Introduction

Industrial and civil buildings often have perpendicular side wings in plan. In the inner corners of
buildings a rectangular balcony slab and flat roofs can be rigidly sealed to adjacent wall. The other two
edges are usually free. In addition to static load, these elements can be subjected to dynamic effects.
These are vibrations from various types of power units, sound or shock waves, seismic loads. The
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frequencies of forced oscillations can vary in a wide range. Resonance phenomena occur not only at the
first natural frequency, but also on overtones. Therefore it is important to know some initial spectrum of
natural frequencies that will allow to carry out full-scale tests of the specified elements on resonance.

Application of innovative materials in construction requires improvement of computational methods
to carry out high-precision calculations, in particular, dynamic ones. An accurate closed-form solution to a
problem of free vibration of a rectangular CCFF plate (C — clamped edge, F — free edge) has not been
provided. Usage of approximate solutions contradicts validity of the obtained numerical results. Mesh
methods are often efficient, however fine mesh can lead to less accuracy due to a badly — determined
matrix of the system. Such methods need testing by analytical or numerical-analytical methods.

At first the range of five natural frequencies for free vibration of a rectangular CCFF plate was
obtained by Young [1] in 1950 by the Rayleigh-Ritz method using beam functions (three in each direction),
which are combinations of hyperbolic and trigonometric functions. The Rayleigh-Ritz method was also used
in the papers [2-7] to solve a similar problem. Leissa [2] increased a number of beam functions to 36.
Dickinson and Li [3] applied double series with hyperbolic and trigopnometric sine and cosine functions that
satisfy the conditions of free support for opposite edges. Bhat [4] used characteristic orthogonal
polynomials and the Gram-Schmidt procedure. Mizusawa [5] dealt with B-spline function. Zhang and Li [6]
sought a solution in the form of the double Fourier cosine series, supplemented by several ordinary
trigonometric series of a special form. The paper of Monterrubio and llanko [7] presents polynomials,
trigonometric functions and their combinations for 55 types of boundary conditions with penalties during
calculation.

In 1992 Singal et al. [8] obtained experimental data about natural frequencies of plates with different
boundary conditions. This information is a reliable benchmark for theoretical calculations. In the above-
mentioned paper the authors provide theoretical results that were gained using the "Analdyne-1" computer
software by the Gorman method (the superposition method) [9, 10].

The papers [11-13] focus on various modifications of the Finite Element Method (FEM). Kerboua et
al. 2007 [11] applied the semi-analytical FEM along with the Sanders Shell Theory. Patil [12] solved a
problem using the Modified Discrete Kirchhoff Quadrilateral element (MDKQ) with the mesh 8x8 and
16x16. The work of Rao and Mohan [13] is based on FEM using the ANSYS software and Galerkin
analytical method to determine the first frequency for different materials and boundary conditions on the
crack and non-crack surfaces.

In the work [14] two-dimensional boundary value problem is reduced to one-dimensional, modifici-
specific method of spline-collocation. The one-dimensional problem is solved numerically by discrete
orthogonalization.

The papers [15-18] describe methods which were applied for plates with different boundary
conditions. However, these papers do not contain numerical results for a CCFF plate, though they could
have been used for solving this problem. Actually, the results [18] for CFFF and CCCC plates are equal to
our results obtained in the papers [19-21].

In works [22—-25] the questions of resonant phenomena at high frequencies are touched upon. It is
noted that they are weakly expressed and are not able to cause destruction of structural elements.
However, there is no analysis of the long-term impact of the disturbing force on the resonant frequencies.

One interesting recent work [26] devoted to the solution of the problem of natural vibrations in
stresses, and not, as usual, in displacements.

We also note the works [27-29], devoted to the application of various computational methods for
solving problems of the dynamics of structures, which can be used for this problem.

Relevance of research of own oscillations of CCFF plates is caused by their wide application in civil
engineering, and also in instrument making and nanotechnologies.

The purpose of this work is to determine the initial spectrum of natural frequencies and vibration
forms of a rectangular plate, two adjacent edges of which are clamped, and the other two are free. The
task of the study is to build a numerical and analytical method to achieve this goal with high accuracy. The
object of the study is the vibrations of the plates, and the subject of the study — the natural vibrations of the
CCFF - plate.
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2. Methods
2.1. Problem statement

The paper considers a rectangular Kirchhoff plate with two adjacent edges clamped (X = 0 and

y = 0), and two other edges free. Let a and b be dimensions of the plate in plan, h is its thickness. It is
required to find a spectrum of natural frequencies for such a plate and corresponding mode shapes.

We introduce dimensionless coordinates X = X/ b, y =Y / b, hence the plate dimensions will be
the following: 0 <x <7y, 0 <y <1 where y = a/ b (Figure 1).
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Figure 1. Rectangular CCFF plate

The differential equation of free vibrations of the plate is determined by Lekhnitskii [30]

, O°W
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where V? —is the 2D Laplace operator; W (X, y,t) — is a desired function of the deflections of the middle
plane of the plate; t is time, n° = phb4/D , pis the density of the plate's material, D = Eh3/(12(1—l/2))
is the cylindrical rigidity of the plate, E is Young's modulus, v is Poisson's ratio.

According to the Fourier method, this function is written as follows:
W (x,y,t) =(C, cos pt+C,sin pt)w(x, y). )

Here, C1, C2 are arbitrary constants, which are determined from the initial conditions; p is the

unknown oscillation frequency (circular frequency) of the plate; W(X, ) is a coordinate function that must
satisfy the differential equation [30]:

VVAW(X, y) — o*W(X,y) =0, ©)
w=pn= pbzﬁ/ph/ D - is the natural dimensionless vibration frequency. This equation is obtained by
substituting (2) in (1). Function W(X, Y) determines mode shapes for the found frequency.

Then we will solve the problem of determining natural frequencies and mode shapes.

The desired function of the form of oscillations W(X, Y) is to satisfy the boundary conditions [31],

W:O,@:O at x=0, (4)
OX
2 2 3 3
6\/2v 6V2v:O, 8v3v+(2_ )aWZ:OatXZy, (5)
OX oy OX oxoy
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W:O,%zo aty =0, (6)
oy
2 2 3 3
8\/2v+vav2v=0’ a—V;/JF(Z—V) 62W =0aty=1, )
oy X oy ox“oy
2
SX;Vy =0 in point (y; 1). (8)

Boundary conditions show the absence of deflections and angles of rotation for clamped edges, the
lack of bending moments My, My and shear forces Qy, Qy on free edges and the torque M,y in a free angular
point.

2.2. Methods

The exact solution of the problem (3-8) can be obtained if the desired deflection function is
represented as the sum of two such hyperbolic-trigonometric series of sinuses of the following form

ZOO: [A coshea, (Xx—y) + B, cosh S (X —)

k=1,3,...

w(x,y)

+C, sinhe, (X—y)+ D, sinh g (x—y)]sin 4.y

()]
+ Y [E,coshé& (y—1)+ F,coshn(y -1)
s=1,3,...
+ G, sinh & (y —1) + H,sinhn, (y —1)]sin z X

where Ak, By, Ck, Dk, Es, Fs, Gs, Hs are undetermined ratios,

ko ST
= s = 10
A 2 Mo, (10)

Ratios ok, ﬂk, és, Ms result from the biquadratic equations, when each series are inserted in the basic
differential Equation (3):

o =\ +o, f=\A -0, &=\l +o, n=Ju-o. (11)

Note that the series (9) have only odd harmonics, which ensures symmetry in the solution due to
edges X = y and y = 1. Thus, we consider the plate of 2y X 2 dimensions with additional conditions along
the symmetry axes (5, 7, 8) instead of conditions on fictitious edges X = 2y and y = 2.

It is required that the deflection function W should satisfy all boundary conditions. Primarily,
deflections on the clamped edges of the plate have to go to zero (first conditions (4), (6)). This results into
two equations for the unknown ratios:

A coshea,y + B, cosh g,y —C,sinha,y — D, sinh gy =0, (12)
E,cosh ¢, + F, coshn, — G sinh&, —H_sinhrp, =0 . (13)

Then the partial derivatives and their combinations included in conditions (4) — (8) are found.

The condition of the absence of rotation angles for the clamped edges (the second conditions (4),
(6)) also leads to two equations:
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> (-Aesinhayy — B B, sinh B,y + C e, cosha,  + D, 3, cosh By )sin A,y

k=13,...

+ i us[Es COShés(y_l)_'_Fs COShns(y_l)+GsSinh§s(y_1) (14)

s=1,3,...

+H,sinhn,(y-1)] =o0.

D (-E& sinh & — R, sinhn, +G.& cosh & + H n, coshr, )sin u,x

s=1,3,...

+ i A[A coshe, (X—y)+ B, cosh g, (x—y)+C, sinhea, (X—) (13)

k=13,...
+D, sinh g (x—»)]=0.

The conditions (5) of the absence of bending moments and shear forces on the edge X = y provide
other two equations:

0

i [A (o5 =vAS) + B (B —vAIsin Ay + Z (=2 [E,(—p +v&;)cosh &, (y ~1)
+Fs(_/usz +V7752)C05h ns(y_1)+Gs(_ﬂ52 +V552)Sinh§s(y_1) o

+H, (=45 +vapg)sinh, (y -1)] =0,
Cealey = (2-v)A1+ DAL —(2-v)A1=0, (17)
where s” = (s+1)/2.

The conditions (7) of the absence of bending moments and shear forces on the edge y = 1 leads to:
Y DA (A +ve)cosha, (x—7) + B (=47 +vf3¢) cosh B (x =)
+C, (=A% +ve)sinha, (X - y) + D (=42 +vBZ)sinh B (x — )] (18)

+ > [E(E —vud) + F (2 —vpu2)]sin ux =0,

s=1,3,...
ngs [532 - (2 - V)] + Hsns [7752 - (2 - V)] =0 ) (19)
where K" = (K + 1)/ 2.
Note that the condition (8) is met “automatically” by both functions (9).

In the obtained system of eight Equations (12—19) we expand hyperbolic functions in a Fourier series
with the following formulae:

sinhak(x_7)=_3 3 (D" o +,Usilnhaky

> Sin uX,
Y s=13,. oy + U

sin u X, (20)
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A coshé
coshé (y-1) =2 ————>=sin Y. (21)
k; A+ &
Expansions  sinh f, (x —y), cosh S, (x—y), sinhn,(y—1), coshn,(y—1) result from the
above-mentioned by substituting ok for Sk and &sfor #s.
The formulae (17) and (19) lead to
a
Dk - __k¢ka1 Hs = _QWSGS : (22)
B s
where
1-VA —w 1-v)u’ —o
0 R ol Vet 9
-4 +o Qv +o
Insert (22) into (12) and (13), then solve the equations due to Cx and Gs
_ A +B, _ E.+F (24)
S.sinha,y’ r.sinh &,
Where
A = A cosha,y, B, =B, cosh By, E, =E coshé&, , F, =F, coshn,
sinh sinh (25)
5k=_ﬂ¢k! ﬂky'rsz _és! 775‘
B sinheyy s sinh¢,

Now substitute (22), (24), and expansions (20), (21) in (14) and (15), change the order of summation
in double series, disable the external summation. Then obtain the equations:

a,A +a,B =b, &,E +4,F =b, (26)
where
cotha, y cosh gy
=q, | ——| 1—p ——K | _tanh .
% a{ 5, ( P coshey y A
{ cothaky coshﬁk;/]_tanhaky]
“cosha,y
ﬂk — &y +Fs* #_Eﬁ( !
\ e A+l -o
- _cothf coshp
— ]y ——5 |—tanh &, |,
a‘.l.l gs I TS ( l/js COSh ésj é:s:|
- &, coth§ coshn
> |—tanh &, |.
aj, =1 [775 . Vs o 3 S
~ 0 * /,l * /«l
__~ s +B | —— . 27
bl yk;;j’kli&[lkz_i_ﬂsz_i_a) stj k(ﬂf*'ﬂsz—a) stj:l ( )
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Here
& = 1 (_1)k*§s +ﬂk3inh§s _é (_1)k*775 +ﬂ'k8inh775
$TTsinng | A+idte 0 Ad-o )
_ 1 (=D e +psinha,y _9 (=1 B, + psinh By
P ssimay | K+dvo B A+m-o )

Now substitute (22), (24), and expansions (20), (21) in (16) and (18), change the order of summation
in double series, disable the external summation. Then obtain the equations:

a21Aj +ay, B; = bz* éZlEs* + azz Fs* = bz , (28)

where

-k +o o = -V -

cosha, y 2 coshfy

*[Ak[(l—vmf—vw]g J

21

b, =2 3 ~1)"E
2 Z( ) s ﬂf*‘,usz'*‘a)

s=1,3,...

+F:[/1k [(12— v),ths2 +va)] §SKJ |
Aty @

(29)
. _-vgre -V -o
dy = ay = '
cosh &, cosh,

| -V)A —vo |
Peidvo e

i (_1)k*+l A: [

+B;(us[(1_vw+m]%J |

A+ -

Here

.1 [(—1)“55+ﬂksi”hfs[<1-v)y2—vw]

5k_z'ssinhis W+t +o

S

_é (_1)k*775 +ﬂ’k5inh U8 _ 2
S R -w U1W%+mﬂ'

- 1 )%, + p sinhg
Kks = . [( ) gk lLi k}/[(l_v)ﬂ'kz _Va)]
o.sinha, y Ae + U+ @

a ~1)* B, + p.sinh
__k¢k ( ) ﬂzk ILZS 'Bky[(l—‘/)lkz‘ﬂ/w]j-
ﬂk ﬂk T U —O
Now the Equations (26), (28) are combined into two symmetric homogeneous systems, from which
it is required to find values w to provide non-trivial solutions
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a11A1:+a128: :bl = bl(E:’ Fs*)
aZlAj + azzB: = bz = bz (E:’ Fs*)
a~11E: +§12Fs* = 61 = Bl(A;’ B:)

é‘ZlE: + azst* = bz = bz(A:’ B;)

(30)

(1)

The right-handed parts of the system (30) have ratios E*s, F*s in the sigma notation, which are found
from solving the system (31). Besides, in its right-handed parts under the summation sign the system (31)
has ratios A*k, B"k, which can be regarded as ratios of the previous iteration. The ratios for the initial
iteration, for example, can be fixed as equal to one. Ratios E”s, F*s, which resulted from the system (31),
are substituted in the system (30) to obtain ratios A*k, B"k of a new iteration. Hereby the iterative process
of finding ratios A'x, Bk, E’s, F*s is organized.

Both systems as a parameter contain vibration frequency @, which should be set. Changing the
frequency, it is possible to pick up its value in such a way that corresponding ratios for all subsequent
iterations, starting from a certain one, will be similar (and non-trivial). This frequency is the required natural
frequency, with which the systems (30), (31) will have non-trivial solutions. It is in line with mode shapes of
the free vibration which can be obtained in a 3D format, using the formulae (9). This method was effectively
used in the papers [19-21] for a cantilever or clamped plate.

3. Results and Discussion

The spectrum of natural frequencies was determined using software product Maple in the course of
the iterative process of finding non-trivial solutions to the reduced homogeneous system of linear algebraic
equations. The following parameters were variable: the frequency of vibrations, the ratio of sides of the
plate, the number of terms held in the series (the size of the reduced system), the number of iterations, the
number of significant digits in calculations, the number of digits displayed on the screen as a result of
calculations, the initial values of the ratios Ao, B ko. The following basic ratios A"k, Bk, E's, F*s were
displayed at each iteration, which allowed us to control the iterative process. The standard values of the
number of iterations were M = 20, 25, i.e. it was assumed to be sufficient to conclude about the iterations
convergence or divergence at the chosen frequency when the ratios of the neighboring iterations were
compared. If the ratios, while decreasing in absolute value, tended to zero or increased indefinitely, a new
frequency value was assigned. The number of terms in the series was chosen to be equal to N =29, 39,
49, 59, 69 to clarify the results in the neighborhood of the desired natural frequency. If the process turned
out to be poorly converging in the area of separate frequencies, the number of iterations was increased up
to 50, 100, 200, ..., 1000 and more.

We considered a square plate as a numerical example. Note that the values obtained by other
authors served as a reference to select intervals to search for the first six natural frequencies. The criterion
for the closeness of the frequency to the natural one was a slow change in the ratios, beginning from a
certain iteration. The frequency at which the neighboring iterations began to coincide up to 4-5 signs was
taken as a natural frequency. The search for natural frequencies whose mode shapes were symmetric with
respect to the main diagonal did not take much time.

It was much more difficult to search for the natural frequencies of antisymmetric mode shapes. Due
to a slow convergence of the process in the neighborhood of the desired natural frequency, it was

necessary to increase greatly the number of iterations. The antisymmetric frequencies w2 and w7 take a
special position here. When searching for w2 it was found from the behavior of the ratios that in the

neighborhood of value w = 23.49015 (N = 49), the ratios with growing iterations (we investigated the range
up to 9000 iterations. The computing time is about 30 minutes) changed roughly in accordance with the
Law of Harmony A(m)sin(m/2) with a variable amplitude. Moreover, the amplitude slowly decreased down
to the specified value and then increased. At a value of 23.49015, amplitude A remained constant, the
sequence became almost strictly periodic, i.e. it did not tend to any limit. Comparison of the 3D mode
shapes at adjacent iterations showed that for amplitude values of the ratios the mode shape was close to
the expected one (with a nodal line at the main diagonal). The maximum deviation from the straight line
was approximately 3.5 % with respect to the maximum amplitude of the mode shape. Then the mode was
distorted and after six iterations acquired the same shape again, but of the opposite direction. This
phenomenon was unexpected. Perhaps the paradox is due to the instability of the very shape of
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antisymmetric vibrations, its "blurring”. A negative result was achieved in thorough search for any other
value in the frequency range 23 < w < 25, which could be the natural frequency. The study made it possible
to take the approximate value ~ 23.49 as the second natural (unstable) frequency w2.

Search for the next antisymmetric natural frequency ws was standard, in contrast to w2. The
frequency ws = 62.7025 and the corresponding mode shape could be found for N = 49 after 1000 iterations.
There was a coincidence of the values of the neighboring iterations by three significant digits (the difference
in the fourth one is not more than one). When N = 59 we obtained ws = 62.7038 after 2500 iterations, with
an error in the fourth digit not more than one.

Like the first frequency w7, the third antisymmetric frequency w7 = 82.2325 was found roughly after
numerous calculations with a wide variation in the number of terms in the series, the number of iterations,
the initial values of the base ratios. With a growth in iterations the ratios changed around this value roughly
in accordance with the harmonic law A(m)sin(m) with a variable amplitude: on the left it was decreasing,
on the right it was increasing. At a value of 82.2325, the amplitude became constant. The corresponding
mode shape was also unstable. The best mode shape had the greatest deviation from the main diagonal
of about 10 % with respect to the maximum amplitude of the mode shape.

The numerical results obtained in this work are given in the upper rows of Table 1.The corresponding
mode forms of natural vibrations are shown in Figures 2-9. The following rows of the table show the
theoretical results of other authors, as well as the experimental data of Singal et al. [8].

Table 1. Comparison of the dimensionless natural frequencies of the square CCFF plate

(w=pb’y/ph/D)forv=0.3

Natural frequencies

Theory ™1 2 ®3 W4 () W6 7 s
S A S S A S A S
Present theory m=20 — m=50 m=25 m=2500 m=25 — m=300
n=69 6.9189 - 26.5845 | 47.6487 | 62.7038" | 65.5293 - 88.34705
m=20 | m=3000 m=25 m=25 m=1000 m=25 m=3000 m=80
n=49 6.9188 23.49 26.5843 | 47.6505 | 62.7025 | 65.5298 | 82.2325 | 88.3448
Young [1] 6.958 24.08 26.80 48.05 63.14 - - -
Leissa[2] 6.9421 | 24.034 26.681 47.785 63.039 65.833 - -
Dickinson[3] 7.1631 | 23.974 26.687 47.753 62.967 65.772 - -
Bhat[4] 6.9243 | 23.923 26.591 47.670 62.850 65.685 - -
Mizusawa[5] 6.883 23.70 26.56 47.34 62.54 - - -
Kerboua[11] 6.92 23.96 26.50 47.23 62.77 65.65 - -
Patil[12] 7.007 24.208 - - - - - -
Monterrubio[7] 6.92 23.905 26.585 47.653 62.708 65.535 - -
Singal[8] 6.86 23.59 26.53 47.20 62.26 65.46 - -
Experiment - -
Singal[8] 6.85 23.61 26.58 48.33 63.08 65.75 - -

S is a symmetric mode shape, A is an antisymmetric mode shape (with respect to the diagonal); the
value 62.7038* is obtained for N = 59.

Note that Mizusawa [5] has confused data for the CFCF and FFCC plates. To match the formula
= pb%\/ph/ D, the data obtained by Singal et al. [8] divided by a conversion factor of 6.06, and the
data presented by Patil [12] is multiplied by 10.
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Figure 2. The first mode shape at frequency w; = 6.9189
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Figure 3. The second mode shape at frequency w2 = 23.49:
(a) 3D shape, (b) view from the diagonal

Figure 5. The fourth mode shape at frequency w4 = 47.6505:
(a) 3D shape, (b) view from the Ox axis
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Figure 6. The fifth mode shape at frequency ws= 62.7025: (a) 3D shape,
(b) view from the main diagonal, (c) view from the other diagonal
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Figure 7. The sixth mode shape at Figure 8. The seventh mode shape at
frequency ws = 65.5298 frequency w7 =82.2325

Figure 9. The eighth mode shape at frequency ws = 88.34705

The frequencies of the natural vibrations calculated in this work are in good agreement with the
experimental data obtained in the work by Singal et al. [8]. Comparison with the theoretical results
correspond well to the data by [8], Bhat [4], Kerboua et al. [11], Monterrubio and llanko [7], which has been
obtained with accurate calculations.

It should be noted here that it is difficult to provide a clamped edge in the experiment, so the
experimental frequencies for the CCFF plate [8] should be slightly lower than the corresponding sufficiently
accurate analytical frequencies. However, the authors [8] have reversed results, starting from the second
frequency. In our solution, the "correct" pattern is manifested for the first and third frequency, which is then
violated for higher frequencies, too. Such an effect can be explained by the influence of inertial forces and
deformation of the transverse shear at high frequencies, which are not considered in the theoretical
Kirchhoff model. Comparison with Young’s results [1] bears such evidence too.

Romakina [14] calculated the first three resonant frequencies and obtained the corresponding
symmetric 3D forms of plate oscillations from different materials in the presence of transverse sinusoidal
load. These forms are similar to those obtained in this paper.

The fact that the values of the second (antisymmetric) frequency differ significantly in the works by
different authors: from 23.59 to 24.08 indicates the instability of calculations at this frequency. We note that
the approximate value of 23.49 obtained in this work (the least value listed in the table) is the closest to the
values (experimental and theoretical) obtained in the work [8].

Note also that in the works [1-5, 7, 8, 11, 12] 3D forms of natural oscillations have not been obtained.

4. A note on the initial condition problem

If a certain spectrum of n natural frequencies and vibration forms is found, then the nearest solution
of the problem, according to (2), is written as follows:

N
W (x,y,t) = Y (Cy cos pit +Cy; sin pit)wi(x, y)

i=1

where i = 1, 2,..., N the order number of the eigenfrequencies found (in general, there should be an
infinite set);
Wi = W1j + Wai.
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The problem can be solved to the end if the initial conditions are given:

oW
W(x,y,t) |t:0:WO(X’ y), — |t:0:VO(X1 y)

where Wo(X, Y) and Vo (X, Y) are the initial deflections and velocities of the plate points.

Setting initial conditions is a separate complex task. The field of initial displacements of the plate
points Wo(X, Y) and the field of initial velocities Vo (X, ) should correspond to the real physical state of the
plate at the initial time. Often, free oscillations begin after the static transverse load is momentarily
terminated. Then it is necessary to solve the problem of bending such a plate, and the found function of
deflections will be the field of initial displacements. The initial velocity field will be zero. More complex are
the cases of application of shock load, etc.

If the initial conditions are set, the coefficients in the expression (2) will be found from the system of
equations

chivvi (X, y) =W, (x, y),

ZCZi W, (X’ Y) :Vo (X, Y)-

This will in turn require the decomposition of the functions on the right side of the equalities into rows
by the Wi own functions, which is also a separate challenge.

5. Conclusions

1. In this paper we propose an efficient algorithm for finding eigenfrequencies and vibration forms
of CCFF-plates.

2. The spectrum of eight eigenfrequencies for a square plate and corresponding 3D waveforms are
obtained with high accuracy.

3. Two special antisymmetric forms of oscillations from the mentioned spec-tra are revealed, for
which the computational process is unstable.

4. The obtained numerical results are shown to be in good agreement with the results of other
authors who used other high-precision methods.
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