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Abstract. The problem of calculating bending plates by the finite element method with considering of shear
deformations is considered. The bending plates are widely used as common structures of various objects of
civil and industrial construction. The solution was obtained on the basis of the principles of the minimum of
additional energy and possible displacements. For approximation of moment fields, piecewise constant
functions are used. Shear forces can be approximated by constant or piecewise constant functions. The
necessary relations for rectangular and triangular finite elements are obtained. It is shown that the proposed
method can be used in combination with traditional finite elements for thin plates obtained by the finite element
method in displacements. A comparison of the solutions, obtained by the proposed method, with other known
solutions for bending plates, with assuming of shear deformations, is given. A numerical estimate of the
accuracy and convergence of the proposed method, when crushing the finite element mesh, is given.

1. Introduction

The bending plates are widely used as common structures of various objects of civil and industrial
construction. Often, in modern constructions thick and multi-layered slabs are used. In calculating, such thick
slabs, we should consider, besides the bending deformations, the shear strains, which can significantly affect
the values of the plate displacements. The classical theory of Kirchhoff plate bending is based on assumption
of the direct normals assumption and, therefore, does not allow for the shear deformations. The finite elements,
which are developed based on the Kirchhoff theory, are can used only for the calculation of thin plates [1-2].
Therefore, Timoshenko—Mindlin theory of bending plates [3-4] are widely application for calculating thick
plates. According to this theory, angles of rotation of the normals and the vertical displacements are considered
as independent variables. Such an approach lowers the maximum order of derivatives in the strains energy
functional and makes it possible to use the first-order function-forms for approximating the displacements.
Studies have shown that the direct use of the Timoshenko—Mindlin theory for constructing finite elements in
displacements leads to the effect of «locking», or to the impossibility of using these finite elements to calculate
thin plates.

To overcome the «locking» effect, various procedures are used, such as putting the assumption of direct
normals at discrete points or applying high order shift theories [5—6]. The finite elements based on the putting
the assumption of direct normals in the middle points of the finite element sides are widely used in program
complexes. The new methods for considering for shear deformations, based on equations in displacements,
are also offered in [7—8]. In [9-10], nonlinear solutions for rod systems with considering for shear deformations
of cross sections are considered. The high order shear theories, when deformations along a cross section
change by to a law other than linear, are used in constructing analytical solutions to bending problems of
rectangular plates [11-12]. To construct finite elements, that considering shear deformations, the theory of the
third order is successfully applied [13—14]. In [14], the quadrangular finite element is presented, that has seven
degrees of freedom at each node: three displacements along the axes of coordinates, two shear angles and
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two angles of rotation of the normals. This approach allows us to more accurately consider shear deformations,
when the properties of the material change in various directions.

The procedure for introduction shear deformations in existing finite elements designed for the calculation
of thin plates is proposed in [15]. The deformations of the transverse shear can be accounting since the direct
use of the equations of the three-dimensional theory of elasticity. This method and the Galerkin’s method in a
weak form is used to construct a quadrilateral finite element [16]. Also, the Galerkin’s method is used to
construct triangular and quadrangular finite elements according to the Timoshenko-Mindlin theory in [17].

Another way to construct finite elements with accounting shear deformations is the use of mixed and
hybrid variational formulations [18—20]. This approach, on the one hand, simplifies the consideration of shear
deformations due to the use of transverse forces and moments as unknowns, together with displacements.
On the other hand, in order to ensure convergence of solution, it is necessary to agree on approximations of
displacements and forces. Note the work [21-23], in which the solution of the problem of plate bending with
consider the shear deformations, the modified Mindlin’s theory is used. The modification of the Mindlin’s theory
consists in the introduction of an additional unknown parameter in the form of an angle of rotation in the plane
of the plate.

Thus, construction the models with considering shear deformations, which are alternatives by the finite
element method in displacements, is actual for the bending plates. The purpose of this work is to develop the
method for calculating the plates with accounting shear deformations based on the functional of additional
energy and the principle of possible displacements [24—27], as well as comparing the solutions obtained for
plates with different support conditions with solutions of the other methods.

2. Methods

Solving the problems of plate bending with considering the shear deformations due to transverse forces,
we will obtain based on the functional of additional energy for an isotropic plate (for simplicity, we assume that
there are no specified displacements) [1]:

L 1( 12 1( 2k(1+v _
I :Z(E.thj(Mf+Mj—2vl\/IXMy+2(1+v)Mfy)dQ+2(I(E.J[)].[(QerQj)dQ—)mln.(l)

E is the modulus of elasticity of the material; t is the plate thickness; v is Poisson's ratio; K is
coefficient, which considering the parabolic law of change of the tangential stresses across the thickness of
the plate. The functional (1), also called the Castigliano's functional, is also considered in [2]. In [1] it was

shown that in the linear theory of elasticity the value T1° for the equilibrium state is minimal.

We write the functional (1) in matrix form that is more convenient for solving by the finite element
method:

¢ 1 - 1 - .
I :EJ{M}T[E]l{M }dQ+§j{Q}T[E5h]1{Q}dQ—>m|n. 2
In expression (2) the following notation is entered:
M 1 -—v 0
' Q, 1 12 L 12(+v)[1 0
T e 5 R R I A LN NE
Q, E-t 5E-t |0 1
M., 0 0 21+v)

In the functional (2), the first member is associated with the bending deformations of the plate, the
second — with shear deformations by transverse forces. M, and Q, are the bending moment directed along

the X axis and the corresponding shear force; M y and Qy are the bending moment directed along the Y axis

and the corresponding shear force; M Xy is torque. The bending moments are positive if the lower fibers of
the plate are stretched.

In accordance with the principle of minimum of additional energy, the functions of moments and shear
forces must satisfy the corresponding differential equations of equilibrium and static boundary conditions.
Since, in the general case, it is almost impossible to select such functions, we will operate as follows. Divide
the plate into rectangular or triangular finite elements. On the region of the finite element, we approximate the
moment and shear force fields by piecewise constant functions (Figure 1a). Below we show that transverse
forces can also be approximated by the functions, which are constant over the finite element region
(Figure 1b).
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Figure 1. Approximation of moments and shear forces in the region of finite elements:
a) piecewise constant moments and shear forces; b) constant transverse forces.

Then the functional (2) can be written in the following form:
1 1 .
0 =~ M [DJM )+ {QF [P, JQ}-—> min @

{M } is vector of unknown nodal moments for the whole system;
[D] is flexibility matrix for the whole system under bending;

[Dsh] is flexibility matrix for the whole system under shear.

Then, using the principle of possible displacements, we are construct algebraic equilibrium equations
of the nodes of the grid of finite elements. In this case, independently, possible displacements causing only a
bending state and possible displacements causing only a shift are considered. In Figure 2, it is showing such
possible displacements by the example of beam elements. Under the possible bend (Figure 2a), the cross
sections rotate and remain perpendicular to the neutral axis, and the nodal moments do the work. Under shear
(Figure 2b), the cross sections remain vertical and only transverse forces perform a work. For triangular and
rectangular finite elements of a plate, possible states are like to those shown in Figure 2.

M M
e i 1 == [ v
2 1 3 2 1 3
a) b)

Figure 2. Possible displacements of node 1: a) bending state; b) shear state.
Under bending, the equilibrium equations are expressed through the nodal moments and can be
represented in the following matrix form:
M j+P=0, ieg, (5)

1 z

Static boundary conditions we write in the following form:

2 =2 H
Mn’i :MX’i cos (/)i+|\/|y’i sin §0i—2Mxy,i sing, cose, — M, =0,

n,i

M, =(=M,, +M, Jsing, COS(pi+Mxy’i(COSZ(pi—Sin2¢)i)—M =0, ieZE,

ns,i

Under shear, the equilibrium equations are expressed only through the transverse forces and are
represented in follow form:

{Csh,i}T {Qi}+|5i:0’ ieZ,. (6)

Static boundary conditions for transverse forces are as follows:

Qi =Q,, Cosy, +Qy'i3in¢7i -Q,; =0, ieZE,

@, is the angle between the tangent to the border at node i and the axis X; I\Wmi ) (jn’i are the values

of setting moments and shear forces, which are normal to the boundary; Mns,'

i is the values of the setting

moments, which are tangent to the boundary; M., M ., M

virM i, M, ; are unknown nodal moments; Q,;, Q,; are

unknown nodal shear forces; {M i }, {Qi} are vectors of unknown nodal moments and shear forces of all finite

elements adjoining to node i; =, are set of nodes that have free displacement along the vertical axis Z; =
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are set of nodes lying on the border; ISI is the generalized force corresponding to the potential of external loads

under single possible displacement of the node i along the Z axis; {Ci }, {Csh,i} are vectors, which contain

coefficients at unknown nodal moments and at shear forces in the equilibrium equations of node i along the

vertical axis Z. Algebraic equilibrium equations provide the equilibrium of moments and shear forces in a
discrete sense.

Thus, we have obtained the problem of minimizing quadratic function of several variables (4) with
constraints in the form of system of linear algebraic equations. Unknown parameters are nodal moments and
shear forces. To solve this problem, we use the well-known Lagrange multipliers method for account the
equilibrium equations and static boundary conditions. Then, we get the following expression of the extended
functional:

=~ My [Dlm}+ 2 Q) .o}

Sl 12 T 6. 0)7)

-11 (M, ; cos? g, + M'e—;inz 0, —2M, sing, cosp, ~ M, )+ e
(M~ M, Jsing, cosg, + M, (cos? o, —sin? g, )~ M, )+

Teirl&i @, cosp, +Q, ;sing, -Q, ) - min.

Static boundary conditions can also be considered using the penalty function method, then we get

me = MY DI+ Q) . o)+

;méﬁ bR ) X (i T R} + P+

Z}a(M L COS?p + M, ;;nz 9, —2M,,sing, cosp, - M, | + (7b)
Ea((lvl i~ M, Jsing, cosg, + M (cos? g, —sin® g, )- M., f +

Ea(Qx,i cosg, +Q,;sing, —Q, )2 — min.

W, is vertical displacement of the node i, associated with the bend of the plate; Wy, ; is vertical

displacement of the node i, associated with the shear of the plate cross sections; « is penalty parameter
(large number). Obviously, the total displacement will be equal to the sum of these two values.

The use of penalty functions to account for static boundary conditions eliminates the introduction of
additional unknowns, as compared to the Lagrange multipliers method. The calculation of the derivatives of
the penalty functions along the unknown nodal forces leads to the appearance of additional addends to the

elements of the flexible matrix [D] and to the elements of the load vectors {F M } and {F Q } If the static
boundary conditions are zero, then the elements of the vectors {F M } and {F Q} are equal to zero. With

considering the static boundary conditions, the matrix of flexibility will be denoted with the index I"- [DF].

Then, the expression of the functional (7) can be represented in a more compact matrix form:
1 TIHT 1 T[T T =M T
=My fm}+ R [Df b+ My o) fFo )+
Wy’ ({F = [LJM )+ twe, ) (F = [l Q) — min.

{W}, {Wsh} are vectors of global displacements of nodes, associated with bending and shearing,

(8)

respectively; {F} is the loads vector, whose elements are equal to the works of external forces on the single
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vertical displacements of nodes; [L], [Lsh] are matrices of equilibrium equations, the rows of which are formed

from the vectors {Ci} and {Csh,i}' respectively.

Equating to zero the derivatives of the functional I1°along the vectors {M } and {W} we obtain the
system of equations, consisting of the equations of the compatibility of deformations and the equilibrium

equations for bending:
U—D[H _%]] H{{Tv}}} i {_—{I{:FM}}} ©

If piecewise constant approximations are used for the moment fields, then the we easily get inverse

1
matrix [DFT analytically. Therefore, we can easily express the vector {M } from the first matrix equation:

(M= T[T fw+ [P R (10)

Substituting expression (10) into the second matrix equation of (9), we obtain the system of linear
algebraic equations for determining the vector {W}:

[KJw}={F )+ (LD [HF™ ) K]=[DT LT GE

The expressions for the elements of the vector {F } matrices [D] [L] the algorithm of their formation
and examples of the calculation of bent plates corresponding to the Kirchhoff theory, are given in [27].

To determine the displacement vector {Wsh} and the vector of transverse forces {Q} associated with

shear deformations, we equate to zero the derivatives of the functional I1°along the vectors {Q} and {Wsh}
. Then we get the following system of equations, like the system of equations (9):

o -

The solution of the system of equations (12) can be performed in the following sequence:

[Ksh ] = [Lsh ][Dsrh ]_1 [Lsh ]! [Ksh ]{Wsh } = {F }+ [Lsh ][D; ]_l {F ? }’
Q}=[D5 T (LT fw -+ P5 ]P0}

Thus, solving the minimization problem of the functional (7) is reduced to solving two independent
systems of linear algebraic equations (9) and (12). This allows, if necessary, to analyze the state of bending
and state of shear of plates separately from each other. For example, one can solve the problem of plate
bending, without considering the shear, by the finite element method in displacements, and the additional
displacements, associated with the shear of cross sections, can be determined from the solution of the system
of equations (12).

(13)

We will obtain the necessary expressions for the elements of the matrix [Dsh], [Lsh] and vector {F },

when using the rectangular and triangular finite elements for the discretization of the subject area (Figure 3).
To approximate the fields of transverse forces on a finite element region, we consider piecewise-constant
(Figure 1a) and constant (Figure 1b) functions.

Consider the variant of piecewise constant approximations of transverse forces. We introduce the

following notation: {6,}: {X’i} is vector of shear forces at node i in the local coordinate system X,OY,.
y.i

Qi :
{Qi } = {QX’I is vector of shear forces at node I in the global coordinate system XOY..
y,i
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X1 X3 X2

Figure 3. Triangular and rectangular Figure 4. The division of triangular finite
finite elements. element into areas with constant transverse
forces: a) arbitrary triangle; b) orthogonal
triangle.

If the shear forces are piecewise constant, the expression of the additional strain energy in the global
coordinate system can be written as simple sum:

0 -ty Al E Q) a0

Ni R 1 Nt
A= ZsﬂZAS + ZSzl A‘s' (15)
m is total number of nodes;

N, g is the number of rectangular elements adjoined to node i;
N, ; is the number of triangular elements adjoined to node i;
A® is area of the S-th finite element;

As is the area of the part S-th of the triangular finite element with constant transverse forces, adjoined
to the node I (Figure 4a).

For rectangular finite element, the division of the finite element into regions with constant moments is
uniquely — into four equal regions. For triangular element, each side must be divided equally, but there must
also be the point, inside the element, at which the three areas connected to the nodes intersect. This point
can be defined as the intersection point of perpendiculars drawn from the middle of the sides (Figure 4a). If
the greatest angle of the triangle is more than 90 degrees, then such the point will lie outside the triangle.
In this case, the triangle is divided into zones by lines passing through the midpoints of the sides. These
lines will be parallel to the sides of the triangle. The proposed division of the triangular element into regions
with constant moments, allows to obtain more accurate results, than when simply dividing into three equal

parts — %AS.

In Figure 4a point O is the center of the circle, described around triangle. OA, OB, OC are
perpendiculars, which drawn from the midpoints of the corresponding sides of the triangle. Denote the lengths

of the sides of the triangle as |, |,5, |,,. From geometric scheme in Figure 4a we get:

I12|23|31 S IlZ\/ 2 I122 |31\/ 2 |321
R=-2288L A2 Q212 4w Rz sl
4A 4 44 4 16
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1 1
Obviously, for orthogonal triangle (Figure 4b) we get — A’ = A :ZAS, A :EAS. If one of the

corners of the triangle is greater than 90°, then, as well as for orthogonal triangle, we get:

1 1
A=A == A, A, == A°. In addition, it is obvious, that it is better not to use too long triangles.
4 2

We introduce the notation for the flexible matrix [Dsh’i] of “neighborhoods” of node 1 and for the global

flexible matrix for the whole system [Dsh], which consists of matrices for all nodes of the system:

[...]
[Dsh,i ] = AlE,]", [D,]= : 17)
[Ds.]

The matrix [Dsh] has the block-diagonal form and is easily invertible analytically.

[Dsh,l]»1
[D,.]" = - (18)

[Dsh,m ]>1

If the shear forces are constant on the finite element region (Figure 1b), then

U = ;z:_l A {Qk }T [Esh ]71{ k }’

where A, is the area of the finite element;

N is the total number of finite elements;

{Qk}: {Qx’k} is vector of unknown transverse forces of the finite element in the global coordinate
y.k

system. In this case, the flexible matrix for the whole system is determined by formulas like formulas (17)—(18),

with the replacement of the index M by the index n.

We obtain the equilibrium equation for the possible displacement of a node of the rectangular finite
element in the local coordinate system (Figure 3). For the rectangular finite element, we also introduce the
local coordinate system, associated with its center, and the functions, which are expressed in normalized local
coordinates in the following form:

Ni(X' y):

Qe&ehienmn) . _2x 77=2by, i=1234.

9
4 a (19)

The index I denotes the local node of the finite element; X,y are coordinates of the node along the

axes X, and Y,, respectively; & ,7, are local normalized coordinates of node i, taking values of 1 or —1.
Nodes are numbered counterclockwise, starting with the lower left node.

Possible displacements of the points of the finite element, for the possible shearing displacement of a
node, are expressed in the following form:

SW, = (1+ égié:)(l"‘ 77i77)_
’ 4
As a result of the possible displacement of the node, such shear deformations will arise in sections:
Sy, = a(é‘Nsh,i)z &(L+nm) Sy, = a(éWsh,i)= 7L+ élg)
* ox 2a oy 2b

Then, for the case of piecewise constant approximations, the work of internal transverse forces for finite
element K, on possible displacements of node I, can be expressed as follows:

(20)

(21)
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&, = a4b flf_ll(c% Q, +67,,Q,&dn = Z‘}_l(bé‘ (1+ s ]  + 2 (1+ %) jQy, ,—} (22)

8 2 8 2
Substituting in (22) | equal to from 1 to 4, we obtain, for the considered finite element, expressions for
the work of internal transverse forces for possible displacements of nodes, from the first to the fourth.

Unite the nodal transverse forces, expressed in the local coordinate system, for the finite element K into
the vector {Q X }

{ak}T:(ax,l ay,l 6><,2 Qy,2 @,3 6y,3 Qx,4 Qy,A) (23)

Also, we introduce vector combining the values of the work of internal transverse forces for possible
displacements of all nodes of the finite element:

ulf =(auf, aul, aul, oul,) 24
Then, we can write the following expression:
ouif=[u o' (25)

Using (22) we get the expressions of the elements of matrix [D( ]

-3h -323 -3b -a -b -a -b -3a
113 —-a 3b -3a b -3a b -a
L ]== - (26)
161 b a b 3a 3b 3a 3b a

-b 3a -b a -3 a -3 3a

Nodal forces {Qik}, expressed in the local coordinate system, and {Qik}, expressed in the global
coordinate system, are connected by the matrix of direction cosines

cosa Sina
[I]{ . } (27)
—sina cosa

a —the angle between the Y1 axis and the Y axis (Figure 3). Using (27) we obtain the matrix of direction
cosines for the finite element

[s¥]= | (28)
1]

The work of the internal forces (25) can be represented as follows:
o=l [ = (e Is*) @)

The matrix [Lth ] conditionally, can be called as local «equilibrium» matrix of finite element for shearing

in the global coordinate system. From matrices for finite elements [L';h], in accordance with the numbering of

the nodes and elements, the global matrix [Lsh] for the whole system is formed (see (12)).

Consider the case, when the transverse forces are approximated, in finite element region, by constant
functions (Figure 1b). Then, the work of internal transverse forces for finite element Kk on the possible
displacement of node i can be expressed as follows:

U, = a4b [.] (67..Q. +67,,Q, Jaedn = "

a

nq,.. (30)

)
2 Qx,k+ 2
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Qi ka are transverse forces for finite element, expressed in the local coordinate system, are

combined into the vector of unknowns for finite element {(jk }T = (6x,k 6”) The matrix [D( ] in this case,
will have the following form:

-a -b

1l a =b
[ (31)

-a b

The matrix of directional cosines will coincide with the matrix [I] (see (27)).

The potential of the external concentrated and uniformly distributed loads, for possible displacements
of the node i along the global coordinate axis, is determined by (32).

éVi:Pi+L11qkab:Ri. (32)

P, is force concentrated in node;

qk is uniformly distributed load.

The generalized forces R, in accordance with the numbering of nodes, are placed in the vector {F}
(see (12)).

We obtain the equilibrium equations for triangular finite elements. The equilibrium equation for possible
displacement of node of the triangular finite element can be obtained directly in the global coordinate system.

For this, the possible displacements of the points of the finite element K on shearing will express using the
triangular coordinates:

Swg, (x,y)=T,, =123 T,= z/ik (a +bx+cyy) (33)
& = Xii1Yiv2 = Xi2Yii bi =VYia ~ Yisr G =X — Xy (34)

AXis area of the triangular element;

X, Y; are coordinates of the node I (Figure 3). Triangular coordinates are natural coordinates of
triangular area.

The function T, takes the value 1 at node i and the value zero at other two nodes. With the possible
displacement of node, constant shear deformations arise in cross sections:
a(&Nsh,i ) b, a(&Nsh,i ) Ci

Sy = L N . -G 35
Te o ToAc T T oAk (%)

Consider the case of piecewise constant approximations of transverse forces in finite element region.
The vector of nodal forces for triangular finite element, expressed in the global coordinate system, will have
the following form:

{Qk }T = (Qx,l Qy,l Qx,z Qy,2 Qx,s Qy,3)‘ (36)

The work of the internal transverse forces of the K-th finite element on the possible displacement of the
node i is expressed as an integral:

b
2A

3 K C, 3 K
k Zj:levj Ai + ijle,j Aj : (36)

&Jikz: 5XZQX+5 ZQ A=
, ;\[( 7 7y y)d A

A;‘ is area of part of k-th triangular finite element is adjoined to the node j (Figure 4a) and is determined

by (16). We introduce the vector, that combines the values of the works of transverse forces on possible
displacements of finite element nodes:
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furf =(ouy, aut, aul,) 37)
Then we get
o= ot (38)
[BA oA BA Al bAoA
[Lléh]=2Ak bzAik CzAlk bzA': CzA; bzAsk CzAsk- (39)

b3 Alk C3 Alk b3 A; C3 A; b3 A3k C3 Ai;(

In the case of using constant approximations of transverse forces, the vector of unknowns for the
triangular element will have the following form:

R =@ Q) (40)

Calculating the integral (36), we get:

b, ¢
Lt ]—E b, ¢ (41)
sh 1™ 2 2 2
b3 C3

From matrices [L';h] for triangular finite elements, in accordance with the numbering of the nodes and

the elements, the global matrix [Lsh] for the whole system is formed (see (12)).

The potential of the external concentrated and uniformly distributed loads for possible displacements of
the node i, along the global axis of coordinates, is calculated by (42).

évi:Pi+;qkA":Ri. (42)

The global «equilibrium» matrix [Lsh] for the whole system will have tape structure of nonzero elements.

The number of rows of the matrix [Lsh] is equal to of the number of loose nodes of the system. Numbering of
unknown are assigned according to the numbering of nodes and finite elements. Therefore, the width of the
tape of nonzero elements of the matrix [Lsh] will be determined by the maximum difference in the numbers of
nodes of all finite elements adjoined to the node. After calculating the width of the tape for each of the rows,

its maximum value | is determined. Then, for the elements of the matrix [Lsh], you can use a rectangular

array consisting of columns |ma and m rows. The tape structure of nonzero elements is used in constructing

X

the matrix multiplication algorithm, when we calculate the elements of matrix [Ksh]. Note, using constant

approximations of transverse forces in finite element region, the value of |rna and, thus, the width of the tape

X
of matrix will be significantly smaller.

3. Results and discussion

To assess the accuracy of the proposed method, rectangular plates were calculated with different
conditions for supporting the sides (Figure 5) on the action of uniformly distributed load.

In Figure 5, the dashed line and the letter S denote the hinged supported side along the X axis, the

skew hatch and the letter C denote the clamped side, the letter F denote the free side. Table 1 presents the
results of calculations of the SS plate, given in [8] for various theories, and the results obtained by the proposed
method — SFEM. For approximation of shear forces, piecewise constant functions were used (Figure 1a). For
crushing the plates, square finite elements with a side size of 0.05 m. were used. And the size b = 6 m.
Poisson's ratio is v = 0.3. The results of calculations in Table 1 are presented in the dimensionless form:

3 3
W = Et4w(a,b], T, = Lryz (a,O), T, = LTXZ (O,bj, T, = &, T, = & (43)
ga 2 2 ga 2 ga 2 2t 2t

N
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Figure 5. Conditions of supports and the sizes of sides of the Levi's plates.
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Table 1. Displacements and stresses for the SS plate under the action of uniformly distributed

load.
b/a alt Methods W Ty, T,
1 5 ABACUS 0.0536
CRT 0.0444 0.4909 0.4909
FSDT 0.0536 0.4909 0.4909
TSDT 0.0535 0.3703 0.3703
Analytical [8] 0.0536 0.4909 0.4909
SFEM 0.0536 0.5064 0.5064
10 ABACUS 0.0467
CRT 0.0444 0.4909 0.4909
FSDT 0.0467 0.4909 0.4909
TSDT 0.0467 0.4543 0.4543
Analytical [8] 0.0467 0.4909 0.4909
SFEM 0.0467 0.5064 0.5064
100 ABACUS 0.0444
CRT 0.0444 0.4909 0.4909
FSDT 0.0444 0.4909 0.4909
TSDT 0.0444 0.4909 0.4905
Analytical [8] 0.0444 0.4909 0.4909
SFEM 0.0444 0.5064 0.5064
2 5 ABACUS 0.1248
CRT 0.1106 0.5240 0.6813
FSDT 0.1248 0.5240 0.6813
TSDT 0.1248 0.4569 0.5615
Analytical [8] 0.1248 0.5240 0.6813
SFEM 0.1249 0.5541 0.6969
10 ABACUS 0.1141
CRT 0.1106 0.5240 0.6813
FSDT 0.1142 0.5240 0.6813
TSDT 0.1142 0.5051 0.6448
Analytical [8] 0.1142 0.5240 0.6813
SFEM 0.1146 0.5541 0.6969
100 ABACUS 0.1106
CRT 0.1106 0.5240 0.6813
FSDT 0.1106 0.5240 0.6813
TSDT 0.1106 0.5238 0.6809
Analytical [8] 0.1106 0.5240 0.6813
SFEM 0.1107 0.5541 0.6969

Table 1 shows the results of calculations performed: by the ABACUS program; according to the classical
Kirchhoff plate theory (CRT); according to the theory of plate bending with first order shear theory (FSDT);
according to the theory of plate bend with third order shear (TSDT); by an analytical method, based on the
third-order shear theory [8].
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Comparison of calculation results shows, that the proposed calculation method (SFEM) in stresses,
allows us to obtain solutions of the same accuracy for both thin and thick plates. This indicates the absence
of a «locking» effect, which does not allow to obtain correct results for thin plates, when we use some types
of finite elements. The values of displacements, obtained by the proposed method in stresses, practically
coincide with the values obtained by other methods, that considering the shear deformations.

It should also be noted that the values of tangential stresses (in dimensionless form), obtained by the
proposed method, do not depend on the thickness of the plate. For square plates, the maximum tangential
stresses, obtained by the proposed method, are larger than the corresponding values, obtained by other
methods, by about 3 %. For rectangular plates: the maximum tangential stresses, obtained along the short
side of the slab, are 5.7 % larger, than the values obtained by other methods, and values along the long side
are 2.2 % larger, than the values, obtained by other methods. Accounting for shear deformations is most
important, when calculating flexural plates on stability, and, when determining the frequencies of free vibrations
of plates. The values of the critical forces and frequencies of free oscillations will be affected by a decrease in
the rigidity of the plates, due to additional shear deformations, therefore the accuracy and correctness of
considering shear deformations is important. The proposed method for considering shear deformations is
based on the fundamental principles of the minimum of additional energy and possible displacements. No
additional techniques, such as the satisfaction of the Kirchhoff hypothesis at individual points (DKT —
elements), or double approximation of displacements (MITS — elements), are not used in the proposed
method.

Table 2. Displacement the center of the plate W=Wx100D/(qa4) for different conditions
of supporting of sides, under the action of uniformly distributed load (b =2a =6m).

Bounders conditions

alt Methods cC cs SS CF SF FF
5 ABACUS 10000 1.0703 1.1429 1.2089 1.2842 1.4280
FCDT 1.0000 1.0704 1.1430 1.2090 1.2844 1.4283
Analytical [8] 0.9357 1.0373 1.1430 1.1757 1.2849 1.4293
SFEM 0.9792 1.0617 1.1474 1.1992 1.2876 1.4325
10 ABACUS 0.8850 0.9637 1.0453 1.0980 1.1827 1.3225
FCDT 0.8850 0.9637 1.0454 1.0981 1.1829 1.3228
Analytical [8] 0.8673 0.9546 1.0454 1.0893 1.1834 1.3239
SFEM 0.8813 0.9637 1.0495 1.0964 1.1848 1.3248
25 ABACUS 0.8511 0.9329 1.0180 1.0663 1.1545 1.2935
FCDT 0.8511 0.9330 1.0181 1.0664 1.1547 1.2938
Analytical [8] 0.8481 0.9314 1.0181 1.0651 1.1550 1.2944
SFEM 0.8539 0.9363 1.0221 1.0676 1.1561 1.2947
1000 ABACUS 0.8445 0.9270 1.0128 1.0604 1.1494 1.2884
FCDT 0.8445 0.9270 1.0129 1.0605 1.1496 1.2887
Analytical [8] 0.8445 0.9270 1.0129 1.0605 1.1496 1.2887
SFEM 0.8485 0.9311 1.0169 1.0613 1.1496 1.2877

Table 2 presents the results of determining the displacement of the center of a rectangular slab, for
different variants of supporting the sides, and, for different ratios of the slab thickness to the size of short side
of the slab. For crushing the slab, square finite elements with a side size of 0.05m were also used. For ratio
a/t=5, when the effect of shear deformations is greatest, the displacements, obtained by the proposed
method (SFEM), differ from the displacements, obtained by the ABACUS program and the FCDT method by,
no more than 2 %. At the same time, for some boundary conditions, the obtained values of displacements, are
larger, and for others, less, than the compared ones. For thinner plates, the values of displacements for all the
methods listed in Table 2, differ a little.

Table 3. Displacement of the center of the hinge plate under the action of uniformly distributed
load q=10kN /m?.

b/a n n Constant Q Piecewise-constant Q
a b Rectangular elements Triangle elements Rectangular elements Triangle elements
1 5 5 0.28875 0.28610 0.28842 0.28534
10 10 0.28214 0.28184 0.28205 0.28155
20 20 0.28049 0.28050 0.28047 0.28042
30 30 0.28020 0.28021 0.28019 0.28017
2 5 10 0.69531 0.69810 0.69515 0.69724
10 20 0.68753 0.68869 0.68749 0.68840
20 40 0.68559 0.68539 0.68558 0.68531
30 60 0.68523 0.68544 0.68523 0.68536

Table 3, to assess the convergence of the proposed solution, for different numbers of finite elements
along the sides (Na and Np) presents the results for plate 0.6 m thick. The modulus of elasticity
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E =10000 kN /m? and Poisson’s ratio v = 0.3. Piecewise-constant and constant approximations of shear

forces, as well as rectangular and triangular finite elements were considered. The grid of triangular finite
elements was formed by dividing rectangular finite elements into two triangular elements. For the square
hinged plate (b / @ = 1) in [28], an analytical solution was obtained for displacement of the center of plate with
considering for shear deformations:

a‘q 1+4.6(;)2 1201-17)

w =0.00406 e =0.2785m. (44)

Comparison with the values from Table 3 shows, that the values, getting by the proposed method, differs
from the analytical value by less than 1 % for fine grid, and by about 4 %, for the coarsest grid. Note, that the
results differ very slightly, both when using rectangular and triangular finite elements. The influence of the
choice of the type of approximation of transverse forces is also insignificant. Thus, for solving using the
proposed method, one can use constant approximations of transverse forces, which are more convenient for
calculating branched systems.

4. Conclusion

1. The method for considering shear deformations, when bending plates are calculating by the finite
element method, is proposed. The method is based on the fundamental principles of the minimum of additional
energy and possible displacements and is applicable for the calculation of both thin and thick plates.

2. For approximation of shear forces, piecewise constant and constant approximations in finite element
region can be used. To calculate branched systems, one can use constant approximations of shear forces
without loss of accuracy.

3. Displacements from shear deformations are determined independently of bending-related
displacements, therefore, the proposed method can be used in combination with traditional finite elements for
thin plates, which was obtained by the finite element method in displacements.

4. Comparison of the solutions, obtained by the proposed method, with other known solutions for
bending plates, considering shear cross sections, shows its good accuracy and convergence, when crushing
the finite element mesh.
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AHHOTaumsa. PaccmoTpeHa 3agada pacyeTa UarnbaemblX MAUT METOOOM KOHEYHbIX 3NIEMEHTOB C y4eTOM
AedopmMaumii cagura. Marmbaemble NANTLI LUMPOKO NMPUMEHSIIOTCS Af1s Pa3fnYHbIX 06 bEKTOB rpaXkaaHCKoro u
MPOMbILLUSIEHHOTO CTpoWTEeNbCcTBa. PelueHMe 3adayyM MOMyyYeHO Ha OCHOBE MPUHLWMOB  MUHMMyMa
JOMOJSIHUTENbHON 3HEPTMM U BO3MOXHbLIX MepemelleHVid. [ns  annpokcumauuu Morieil MOMEHTOB
UCMOMb3YTCA KYCOYHO-NOCTOAAHHbIE (PYHKUMM. [lonepeyHble CUMbl MOTYT 6biTb anMpPOKCUMMUPOBaHbI
MOCTOSIHHLIMW UM KYCOYHO-NMOCTOSAHHBIMU - PYHKUMAMKU. [lonyyeHbl HeobXoauMble COOTHOLUEHUA Ans
MPSAMOYrOMbHLIX M TPEYrofbHbIX KOHEYHbIX 3rnemeHToB. [okasaHo, YTO npeadnaraemblii MeTod MOXeT
MCMOMb30BaTbCA B COYETAHUW C TPAAULIMOHHLIMU KOHEYHbIMU 3NeMeHTaMuM [AnA TOHKMX MNacTuH,
MOMYYEHHbIMM METOAOM KOHEYHbIX 3MIEMEHTOB B nepemMelleHusx. [puBedeHO cpaBHeHWe peLleHui,
MOJSIyYEHHbIX MO NpeaniaraeMoMy MeTody, C OPYrMMU U3BECTHbIMU pelleHusMU Ans u3rmbaemblx NAuT C
y4yeToM caBura. [laHa YMcreHHast oLeHKa TOYHOCTM M CXOAMMOCTM NpeariaraemMoro MeToga npu usmernbYeHnm
CETKM KOHEYHbIX 31IEMEHTOB.
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