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Abstract. The article presents the results of a study of vibration process in pipelines conveying fluid or gas. A
mathematical model pipeline was used in the form of cylindrical shell and a viscoelastic foundation in the form
of two-parameter model of the Pasternak. The hereditary Boltzmann-Volterra theory of viscoelasticity is used
to describe viscoelastic properties. The effects of the parameters of the Pasternak foundations, the singularity
in the heredity kernels and geometric parameters of the pipeline on vibrations of structures with viscoelastic
properties are numerically investigated. It is found that an account of viscoelastic properties of the pipeline
material leads to a decrease in the amplitude and frequency of vibrations by 20-40 %. It is shown that an
account of viscoelastic properties of soil foundations leads to a damping of vibration process in pipeline.

1. Introduction

Pipeline systems provide a safe and uninterrupted operation of the objects in fuel and energy industry.
The pipelines provide population with basic resources: fresh water, natural gas, oil, etc. Wide networks of
pipelines, both domestically and abroad, support the vital functions of states, and are one of the main factors
of economic development. The failure of even small sections of pipelines, often accompanied by explosions
and fires, can cause serious consequences associated with the loss of the product, the high cost of repairs,
and can lead to a significant pollution of the environment.

Currently, the objects of agriculture, oil and gas industry, housing and communal services and others
face the problems of repair and restoration of metal pipelines due to the impact of various external factors.
One of the ways to solve this problem is to use composite polymer material that has a number of advantages.
Due to their characteristics, pipes made of composite materials have found wide application in such areas as
housing and communal services, agriculture, oil production and energy industry. They are used in cold and
hot water supply systems for pressure and pressure-free systems of domestic and industrial sewerage, in
pipeline systems construction in irrigation and melioration, in engineering systems for hydroelectric power
plants, etc.

Trunk pipelines for transportation of gas and oil products represent complex engineering structures.
When designing underground and underwater pipelines the engineers should correctly evaluate the properties
of pipe material and soil foundation.

At present, the problem of vibration processes of pipelines resting on elastic and viscoelastic foundation
with a fluid flowing through it is of great theoretical and practical interest. To date, many approaches have
been developed to solve these problems, but none of them is able to adequately reflect the real picture of a
pipeline — underlying soil interaction. Basically, these approaches describe the individual stages of the
processes occurring in the pipelines. There are a significant number of publications devoted to solving the
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problems of calculating the characteristics of elastic and viscoelastic thin-walled structures [1-19]. Results of
the theory are compared in some cases with experimental data [6].

Pengyu Jia et al. [8] have studied the effects of crack geometries, pipe geometry, and material properties
on the reference strain. An effective empirical formula is proposed to estimate the reference strain. Taolong
Xu et al. [9] have conducted combined computational and analytical study to investigate the lateral impact
behavior of pressurized pipelines. David Carrier Il et al. [10] have analyzed the vibration of a pipeline using
the nouniform Winkler soil model with randomized spring constants. W.Q. Chen et al. [11] have studied
vibrations of thick beams resting on a Pasternak elastic base. The effects of Poisson's ratio and Pasternak
foundation parameters on natural frequencies are analyzed. Deep beam-columns on two-parameter elastic
foundation with account of the effect of shear strain, depth change and rotation inertia are analyzed in [12].
Results obtained on the basis of approximate theory are compared with the results obtained by the
Timoshenko theory and the classical beam theory. Nonlinear responses of planar motions of fluid-conveying
pipe are investigated with allowance for nonlinear elastic foundations [13]. Kameswara Rao Chellapilla [14]
has derived an analytical expression for computation of critical velocity of a fluid flowing through a pipeline.
The Pasternak two-parameter foundation is used to take into account the effect of foundation properties. The
conclusions on the influence of foundation on the critical velocity of a fluid are presented. Haryadi Gunawan
Tj et al. [15] have studied vibrations of cylindrical shells partially buried in elastic foundations. The effects of
rigidity ratio of foundation and shell are analyzed as well as vibrations of shells on elastic foundations. I. Lottati
and A. Kornecki [16] have studied the effect of an elastic foundation and dissipative forces on the stability of
fluid-conveying pipes. Results of numerical calculations are compared to the results in previously published
papers. The problem of stability of fluid-conveying carbon nanotubes embedded in an elastic medium is
considered in [17]. For the critical flow velocity, taking into account the rigidity parameters of the Winkler and
Pasternak foundation, analytical expressions are obtained. In [18] a synchronization phenomenon of two
equivalent fluid-conveying pipes coupled by a nonlinear spring is studied. On the basis of the Bubnov-Galerkin
method the discrete systems of equations are obtained.

At present, there are a number of approaches for improving mechanical model of soil foundation, but,
apparently, the simplest mathematical statement of the problem (except for the Winkler model) is the
development of the model of two-parametric viscoelastic Pasternak foundation. The model of two-parameter
Pasternak foundation, on the one hand, makes it possible to take into account the distribution capacity of soil,
and on the other hand it does not complicate the mathematical statement of the problem in comparison with
the Winkler model.

From the above review, it can be concluded that the development of adequate models describing
viscoelastic properties of structure material and accounting the work of the viscoelastic soil foundation is a
rather complex and relevant research task that is directly solved in this paper, along with the construction of
appropriate mathematical models.

The aim of this study is to create a mathematical model, a numerical algorithm and a computer program
for solving the problem of nonlinear oscillations of viscoelastic thin-walled pipelines of large diameter on the
basis of shell theory into account the two-parameter viscoelastic Pasternak foundation.

2. Methods
2.1. Governing equation

Consider the behavior of a thin circular viscoelastic cylindrical shell, with an ideal fluid flowing inside it
at a constant velocity. The fluid velocity is U and its direction coincides with the direction of the OX axis
(Figure 1). The impact of external medium is described by the Pasternak model of two-parametric foundation
(Figure 2). The Kirchhoff-Love conventional hypotheses are used under the assumption that the deflections
are small in comparison with thickness.

Under the assumption in [20] and assuming that, Y = RO, Marguerre equations with respect to
displacements U, v, W can be written in the following form:

0 R*){azu 1-u dtu Lru &N

+ + L (W) - p— 2 o,
2 2R206% 2R ox00 1 )} PTE o2

|1 0% 1-uov 1+u d% 1-u® 8%y
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where D is the cylindrical rigidity of the pipe,
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M is the Poisson's ratio of the pipe material,

E is the modulus of elasticity of the pipe material,

p s its density;
ki, ko are the coefficients of the Pasternak's foundation, characterizing the properties of external
environment; R is the radius of curvature of the middle surface;

h is the thickness of the pipe wall;
R"and R, are the integral operators with the Koltunov-Rzhanitsyn relaxation kernels, R(t) and Ri(t),
respectively:
R(t) = A-exp(=4-1)t""; Ry(t)=A-exp(-f 1)t

A>0, >0, O<a<l 4>0, B>0, O0<ea <1l A 4 -the viscosity parameters;

P, [1 are the attenuation parameters;

o, o1 are the singularity parameter determined by experiment
t . t
Rig(t) = £ Rt-7)p(z)dz; Ro(t) = { R (t-7)p(z)dr,

where R(t —7), Ri(t — 7) are relaxation kernel;
tis the time of observation;
7is the time before observation;

¢(7) is the functions to be determined; the operators L, (w), L,(w), L (u,v,w) are:
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Rox ox ox*  2R® 00 oxd6 2R* ox 00
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2 2
() =(1-R ) E A B (2] —%(@j -
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ox RoO R
g is a pressure of fluid on the pipeline wall [21]:
. [0*w o°w
q = _(Damp( atZ +U ’ aXZ J (3)

where —¢.  is an associated mass of fluid;

m is the number of waves formed along the circumference,

o is the wave number or the constant of phase propagation.
The boundary conditions have the form

x=0, x=L: w=0; v=0; NX=0; M, =0. 4

Under bending in the middle surface, there arise normal and tangential forces:
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h/2 h/2
N, = j odz (xXey), N,= J. o,,dz. (5)
-h/2 -h/2

Physical dependence between stresses 0,,0,,T,, and strains £_,& Ve is taken in the form [20]:

E * E . E .
o, = 7 (1— R )(gx +,ugy), o, = 2 (1— R )(gy +,ugy), Oy =m(1— R )gxy. (6)
Here ¢, g, &, are the components of finite strain determined by:
&u 1(owY v 1(ow) u_ v owow
gX:——ka+— — 1, gy:——kyW+— — | &= — @)
X 2| oOXx oy 2\ oy ay 6x ox 8y
where Ky, k) are the curvature parameters.
Moments My, My and My are determined through the deflection function w:
0° W
, < >( W)
=D~ (1-R )82W ®)
“ oxoy

Figure 1. Geometry of the cylindrical shell. Figure 2. Pasternak’s foundation.
2.2. Discret model

The solution of IDE systems in partial derivatives (1) under various boundary conditions and in the
presence of singular heredity kernels represents a significant mathematical difficulty. Therefore, the natural

way to solve these systems is to discretize them with respect to spatial variables and obtain a system of
resolving nonlinear IDE with respect to time functions.

An approximate solution of system (1) is sought for in the form:
nzx .
(x,0,t) ZZunm )cos——sinmé,
n=1lm=1 L
N M

v(x,0,t)=> >V, (t)sinnLLXcosmH, 9)

n=1m=1

(x,0,t) ZZ sm—smm@

n=1m=1

where U, ('[), Vi (t), W ('[) are the unknown time functions.
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Substituting (9) in system (1) and applying the Bubnov-Galerkin method, the following system of integro-

differential equations is obtained:
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Here 5:%, y=—, Mlzvi, M = f \E/Z, V« is the sound speed Klklnmir, szlnmir,

Askinmir, Aakinmir, Askinmir, Aekinmir, A7kinmir, Askinmir are the dimensionless coefficients related to

coordinate functions and their derivatives; dots over a variable denote the time derivatives of the corresponding
order.

2.3. Computational algorithm

Solution of IDE (10) is sought for by a numerical method based on the use of quadrature formulas
[22-27]. This method is based on various analytic transformations that make it possible to reduce the initial
systems to the systems of integral equations with regular kernels and stable numerical integration ensuring
the solution of problems with a high degree of accuracy. Since the integral entering system (10) has a weak

Abel-type singularity, it is impossible to use a quadrature formula. Therefore, by changing the variables
1

t—r=2z%, 0<z<t* 0<a<l) (11)
the integral at the Koltunov-Rzhanitsyn kernel with singularity of the following form
t
Aj t —7)*Fexp(-B(t—1))w(r)dr (12)
0
has the form
At 1 1
—'[exp(—ﬁ ze)w(t—z+)dz. (13)
a 0

Note that after the change of variables, the integrand with respect to Z becomes regular. Assuming

that t =1, ti= iAt, | =1, 2, ... (At = const — the integration step) and replacing the integrals by some
guadrature formulas (in particular, the trapezoid one), we get

A
_z Bk exp(—,B tk)Wi—k’ (14)
& k=0
where the coefficients are B, :%; B = A _Z(I - );
Bszt (k+D)* (k-1 )’ K=li 1 (15)

2

Based on this method, an algorithm for the numerical solution of system (10) is described. Integrating the
system (10) twice with respect to t, it can be written in integral form; by rational transformation the singularities of

the integral operators R” and Rl* are eliminated. Then, assuming that t =t,, t. =i-At, 1=12,... (At isthe
integration step) and replacing the integrals with quadrature trapezoid formulas for the computation of
Uy =Uy (6), Viy =V, (t) and W, =W, (t;), we obtain the following recurrence formulas for the Koltunov-

Rzhanitsyn kernel (R(t) = A-exp(—ﬂt)-t“‘l, O<a <1) :

‘ pt Ad. A
Upg = Ugg +Uq £ = DA, (tp _ti){wkl (“jkl —;ZBSe ﬂtsuj-s,m}—‘//kl (Vm _EZ;,BSE ﬂtSVj-s,m}L
5=

j=0 s=0

A J _ﬂts 5}/ A J _ﬁts
+ o ijl —ZZBSG Wj—s,kl +T Z z Dklnmir anijir —EZBSE Wj—s,anj—s,ir
s=0 s=0

n,i=lm,r=1
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= Ad,
V _Vokl+vokltp ZAj (tp _tj){N ( j _EZBe/ﬁSVJ sklj_l//kl (ujkl_;zBse ﬂtsvjs,m]_
j=0
3
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s=0 s=0

asO

Z'_\l: i I:klnmir (anmw __ZB e_ﬁtSWj sanj—s,ir}}

s=0

. 1 p-1
kal =Wok| +Wok| tp _WZAJ (tp _t] ){@kl ( ——ZB e 'BtSWJ sk j“r‘

__Z Z lenmlr ( Jnm __ZB e_ﬁtswj - anjs,irj-’_

n i=1m,r=1

(16)

n,i=1l m,r=1

+— i i W < klnmlr( __ZB € ’Btsuj swj Zklnmlr[ __ZB e ﬁtsvj snrj

4
AL Bt 2 202 21,2, 2 A1 Bt
Cranmir | Wi ——ZBSe Wigir | )70 W +6° (57K + 77Ky °k,) | Wy ZBe Wiy

a o a0
p=123,..; k=L2,..,N; 1=12, .., M.
Here Aj, Bs are the numerical coefficients that do not depend on the choice of integrands and acquire

different values depending on the use of quadrature formulas; @y, ¥, N, O, 7K, &, de, Dxinmir, Gkinmir,

Cuinmir, Fxinmir, Hxinmir, Zkinmir are the dimensionless coefficients related to the coordinate functions and their
derivatives.

2.4. Example of Test Solutions

Verification of efficiency of the proposed numerical method and programs, based on the solution of
test cases, is a necessary stage to confirm the reliability of research results obtained in solving specific
problems. The problems for which an exact solution is known [22] have been considered as test cases. Table
1 show a satisfactory agreement of approximate solutions with exact ones; this shows the reliability and high
accuracy of calculation results.

Consider a non-linear integro-differential equation of the form

W+ A, W+’ W=(q —ﬂlj R(t—r)W(r)dr—ZZWj‘ R(t—r)W(r)dr—ﬂaj. R(t—)wW?(r)dz;

w(0) =1, W(0)=—2, 17)
where

R(t)=Aexp(-pt)t*?, 0<a<l;

:[ﬂ2+a} ~ 2 (/11+[/1 +7; ]exp(- ﬂt))}eXp( £

Equation (17) has an exact solution W = exp(—/£ t), which satisfies the initial conditions.

According to (16), the approximate values W, =w(t.) (t=th=nAt,n=0, 1, 2, ... ) are found from
the relationships
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1

n-1 ) MZ
=oAL LAL AWt a) et R

(18)
<Y, exXp(- L)W, +2 Y B, ep(- AL (4 + 2, exp(-f L))

n=1,2,...,; where 4, Bs are the coefficients of the quadrature formula of trapezoids.

Table 1 gives approximate results of calculations by formulas (18) within the interval from 0 to 1 with
At = 0.01 step, and exact solutions. The following initial data have been used: Ao=1.1; A1 =1.2; A2 = 1.3;
A3=1.4; A=0.01; §=0.03; o= 0.01. It follows from the table that the maximum error A of calculations

performed by described method represents the value const-At?. The efficiency of this numerical method
and programs is shown in other test cases as well.

From the table it follows that the error Ah of calculations performed by described method coincides
with the error of the quadrature formulas used and has the same order of smallness relative to the interpolation
step (for the trapezoid formula the error of the method with respect to the interpolation step is of second-order,
for the Simpson formula — of third order, etc.).

Table 1. Comparison of exact and approximate solutions of IDE.

i Solution . Ah
Exact Approximate

0 1.000000 1.000000 -

1 0.970445 0.970373 0.7-10*
2 0.941764 0.941622 1.4.10%
3 0.913931 0.913644 2.8-10*
4 0.886920 0.886569 3.5-10*
5 0.860707 0.860271 4.3-104
6 0.835270 0.834855 4.1.10*
7 0.810584 0.810278 3-10*
8 0.786627 0.786113 5.1.10*
9 0.763379 0.763126 2.5.10*
10 0.740818 0.740509 3-10*

3. Results and Discussion
Based on the developed algorithm, a package of applied computer programs in Delphi language has
been created. Results of calculations are reflected by the graphs shown in Figures 3-10.
The influence of the viscoelastic properties of material on the vibration process of the pipeline on a two-
parameter foundation was investigated (Figure 3, a, b, C). On the ordinate, displacements W (Figure 3, a),
u (Figure 3, b), v (Figure 3, C) are plotted. On the abscissa, the parameter of dimensionless time is plotted.

The first of these curves is constructed for elastic pipelines A=0.0Q), the second and the third curves reflect
the effect of the viscosity parameter at the following values: A =0.05(2); A=0.1(3). The following
parameter values were used for calculations: x4 =0.3; Vo=330 m/s; M1=0.1; y=0.02; 6=4;
p=7800kglcm3 ki=1; ko=1;,N=5 M=2,

As seen from the figure, the viscoelastic properties of material lead to a decrease in the amplitude and
frequency of the pipeline vibration.

Figure 4 shows the effect of rheological parameter & on the vibration process. Calculations have been
carried out at & = 0.05; 0.1 and 0.5. The pipeline data and flow parameters were as follows: A = 0.03;
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£ =0.005; A1 =0.1; o1 = 0.25; f1=0.005; K1 = 1; ka=1; y=0.02; 6=3; V_ =330 m/s; £=0.3; M, =0.1;
p=7800 kglcm3; k =1; k,=1; N=5 M =2.

The figure shows that an increase in parameter ¢ leads to an increase in the amplitude and frequency

of vibrations. At t = 0,75, 1.5, 2.3 and 3.2 the amplitude of oscillations reaches a maximum value. At t = 1.2
the amplitude of vibrations becomes minimal. Further calculations show that the change in the third rheological

viscosity parameter (0<p<D) does not have a significant effect on the pipeline vibration process; this
confirms the unacceptability of application of exponential relaxation kernels in calculating the dynamic
problems of viscoelastic systems. These conclusions and results fully agree with the conclusions and results
obtained in [22, 28].

Figure 5 shows the curves corresponding to various values of viscosity parameter of the foundation A1.
On the ordinate the parameter of the pipeline deflection is plotted, on the abscissa — the time parameter. The
curves are plotted for the pipeline at the following values of the viscosity parameter: 41 =0 (curve 1),

A = 0.1 (curve 2). The value of geometric and physical constants is assumed to be: A = 0.05; o= 0.25;
[=0.005 o, =025 pf=0005 k=1; kK,=1; y=002, §=5; u=0.3; V_ =330m/s; M,;=0.1;
L =7800 kg/cm3; E= 2.10°MPa; N=5; M =2.
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Figure 5. Deflection versus time at A1 = 0(1); A1 = 0.1(2).
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Figure 11. Linear theory (1); nonlinear theory (2).

As seen from Figure 5, an account of viscoelastic properties of soil foundation leads to the damping of
vibration process. Though the solution of elastic and viscoelastic problems in the initial period of time differ
little from each other, viscoelastic properties exert a significant influence over time. The amplitude of vibrations

attenuates, and the vibration phase shifts to the right.
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Figure 6 shows the nature of the pipeline motion under various rheological parameters of the foundation

a;. At a, =0.2; o = 0.75 the amplitude of pipeline vibration attenuates over time. An increase in rheological

parameter ¢, = 0.75 leads to an increase in the frequency and amplitude of pipeline vibrations. The following

values of geometric and physical constants are used in calculation: A =0.05; o =0.25; = 0.005; A1 = 0.1;

p1=0.005 ki=1; ke=1; yp=0.02; 6=3; w=03; V_=330m/s; M,;=0.1; p=7800 kg/cm?;
E=2.10°MPa; N=5; M =2.

The influence of parameter y, equal to the ratio of the radius and length of the pipeline is shown in
Figure 7. The numbers indicate the results obtained at the following values of parameter . 1 — 0.01; 2 — 0.06;
3-0.1. Anincrease in parameter y (which corresponds to an increase in the radius or a decrease in the length
of the pipeline) causes an increase in the amplitude and frequency of vibrations of the pipeline.

Figure 8 shows the graphs of the function w(t) in time at different values of k1 and k2. Curves 1-3
correspond to the values k1 = 0; k2 = 0 (curve 1); k1 = 1; k2 = 1 (curve 2); and k1 = 3; k2 = 3 (curve 3). Analyzing
the results obtained, it can be concluded that the presence of a viscoelastic foundation leads to a decrease in

the amplitude of vibrations, and the frequency of vibrations increases. At K1 = 3; k2 = 3 (curve 3), the amplitude
of vibrations rapidly decays.

The influence of the flow velocity M, on the vibration process of the pipelines is studied. Figure 9 shows
the graphs of the function w(t) in time at different values of M, not exceeding the critical value. The solution
is obtained at the following values of physical and geometric coefficients: A =0.05; a =0.25; £ =0.005;
A1=0.01; ;= 0.25; f1=0.005; k1 =1; ko=1; y=0.02; §=5; 4=0.3; V_ =330 m/s; p=7800 kg/cm?;
E = 2.105MPa. Curves 1 and 2 correspond to the values M;=0.1 (curve 1) and M, =1.8 (curve 2). Note
that with an increase in M1 at the initial time, the amplitude and frequency of vibrations remain constant. At
greater values of M1 the vibration period increases with time.

Figure 10 shows the time variation of the deflection of the pipeline w at various values of the parameter
0: 2 (curve 1); 5 (curve 5); 8 (curve 3). As seen from the graph, the growth of the parameter ¢ contributes to a
significant decrease in the amplitude of vibrations. An increase in the parameter 0 makes it possible to
significantly improve the stability of the pipeline.

Figure 11 shows the time variation of the displacement w of the midpoint of viscoelastic cylindrical shell,
obtained from various theories: the linear theory (curve 1) and the nonlinear theory (curve 2). According to
Figure 11, the results of linear and nonlinear theories differ significantly from each other. Although the solutions
of the problems of linear and nonlinear theories differ little in the initial period of time, in the course of time the
geometric nonlinearity exerts a significant influence on the solution.

4. Conclusions

It should be noted that the algorithm of the proposed method makes it possible to investigate in detail
the influence of viscoelastic properties of structure material, geometric nonlinearities, and Pasternak two-
parameter viscoelastic foundation on vibration processes of pipelines with fluid flowing inside.

When studying pipelines vibrations with a flowing fluid, a number of dynamic effects are obtained:

1. It has been established that an account of viscoelastic properties of the pipeline material leads to a
decrease in the amplitude and frequency of vibrations by 20-40 %;

2. Itis shown that an increase in the geometric parameter y (which corresponds to an increase in the
radius or a decrease in the length of the pipeline) and dimensionless flow velocity M, leads to an increase in
the amplitude and frequency of vibration;

3. It has been established that an account of viscoelastic foundation leads to a decrease in the
amplitude of vibrations, and the frequency of vibration increases.

The obtained results of numerical simulation may be implemented at the enterprises of oil and gas
industry, agriculture, housing and communal services and design organizations.
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AHHOTauuA. B ctatbe npeactaBneHbl pesynbTatbl UCCNeaoBaHUsA npouecca konebaHuns TpybonpoBoaoB,
TPaAHCNOPTUPYIOLLMX XUOKOCTb unu ras. lNpn nccnegoBaHum konedaHum TpybonpoBOAOB C NpOTEKalLLEeN
BHYTPM  raso-XWUAKOCTbIO  WUCMOMNb3yeTCd  MOoAenbd B BuAe  UunuHApudeckux  obornoyek v
OBYyXnapameTpuyeckon MoAenu BS3KOYNpPYyroro ocHoBaHus [lacTepHaka. [nsi onvcaHus BS3KOYMpPYrnx
CBOWCTB MCMONb30BaHa HacneacTBeHHass Teopus Baskoynpyroctu bonbumaHa-Bonbteppa. YucneHHo
uccnepoBaHbl BNUSHWSA MNapaMeTpoB OCHOBaHWW [lacTepHaka, BRVSHWE CUHIYNSAPHOCTM B siapax
HacrneaCTBEHHOCTU UM FeoOMeTpuUYeckux napameTpoB TpybonpoBoda Ha KonebaHust KOHCTPYKLMM,
obnagaroLwmx BA3KOYNPYrvMMM CBOWCTBaMWU. YCTAHOBMIEHO, YTO Y4eT BSI3KOYMPYrMx CBOWCTB MaTepuana
TpybonpoBoaa NPUBOAUT K YMEHbLLEHWIO aMNNnTyabl U YacToTbl konebaHuit Ha 20—40 %. MNokasaHo, 4To yyeT
BSI3KOYMNPYrMx CBOMCTB OCHOBaHWIA rpPyHTa NPMBOAUT K 3aTyXaHuio konebaTtenbHoro npotecca Tpybonposoaa.
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