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Abstract. The article presents the results of a study of vibration process in pipelines conveying fluid or gas. A 
mathematical model pipeline was used in the form of cylindrical shell and a viscoelastic foundation in the form 
of two-parameter model of the Pasternak. The hereditary Boltzmann-Volterra theory of viscoelasticity is used 
to describe viscoelastic properties. The effects of the parameters of the Pasternak foundations, the singularity 
in the heredity kernels and geometric parameters of the pipeline on vibrations of structures with viscoelastic 
properties are numerically investigated. It is found that an account of viscoelastic properties of the pipeline 
material leads to a decrease in the amplitude and frequency of vibrations by 20–40 %. It is shown that an 
account of viscoelastic properties of soil foundations leads to a damping of vibration process in pipeline. 

1. Introduction 
Pipeline systems provide a safe and uninterrupted operation of the objects in fuel and energy industry. 

The pipelines provide population with basic resources: fresh water, natural gas, oil, etc. Wide networks of 
pipelines, both domestically and abroad, support the vital functions of states, and are one of the main factors 
of economic development. The failure of even small sections of pipelines, often accompanied by explosions 
and fires, can cause serious consequences associated with the loss of the product, the high cost of repairs, 
and can lead to a significant pollution of the environment. 

Currently, the objects of agriculture, oil and gas industry, housing and communal services and others 
face the problems of repair and restoration of metal pipelines due to the impact of various external factors. 
One of the ways to solve this problem is to use composite polymer material that has a number of advantages. 
Due to their characteristics, pipes made of composite materials have found wide application in such areas as 
housing and communal services, agriculture, oil production and energy industry. They are used in cold and 
hot water supply systems for pressure and pressure-free systems of domestic and industrial sewerage, in 
pipeline systems construction in irrigation and melioration, in engineering systems for hydroelectric power 
plants, etc. 

Trunk pipelines for transportation of gas and oil products represent complex engineering structures. 
When designing underground and underwater pipelines the engineers should correctly evaluate the properties 
of pipe material and soil foundation. 

At present, the problem of vibration processes of pipelines resting on elastic and viscoelastic foundation 
with a fluid flowing through it is of great theoretical and practical interest. To date, many approaches have 
been developed to solve these problems, but none of them is able to adequately reflect the real picture of a 
pipeline – underlying soil interaction. Basically, these approaches describe the individual stages of the 
processes occurring in the pipelines. There are a significant number of publications devoted to solving the 
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problems of calculating the characteristics of elastic and viscoelastic thin-walled structures [1–19]. Results of 
the theory are compared in some cases with experimental data [6]. 

Pengyu Jia et al. [8] have studied the effects of crack geometries, pipe geometry, and material properties 
on the reference strain. An effective empirical formula is proposed to estimate the reference strain. Taolong 
Xu et al. [9] have conducted combined computational and analytical study to investigate the lateral impact 
behavior of pressurized pipelines. David Carrier III et al. [10] have analyzed the vibration of a pipeline using 
the nouniform Winkler soil model with randomized spring constants. W.Q. Chen et al. [11] have studied 
vibrations of thick beams resting on a Pasternak elastic base. The effects of Poisson's ratio and Pasternak 
foundation parameters on natural frequencies are analyzed. Deep beam-columns on two-parameter elastic 
foundation with account of the effect of shear strain, depth change and rotation inertia are analyzed in [12]. 
Results obtained on the basis of approximate theory are compared with the results obtained by the 
Timoshenko theory and the classical beam theory. Nonlinear responses of planar motions of fluid-conveying 
pipe are investigated with allowance for nonlinear elastic foundations [13]. Kameswara Rao Chellapilla [14] 
has derived an analytical expression for computation of critical velocity of a fluid flowing through a pipeline. 
The Pasternak two-parameter foundation is used to take into account the effect of foundation properties. The 
conclusions on the influence of foundation on the critical velocity of a fluid are presented. Haryadi Gunawan 
Tj et al. [15] have studied vibrations of cylindrical shells partially buried in elastic foundations. The effects of 
rigidity ratio of foundation and shell are analyzed as well as vibrations of shells on elastic foundations. I. Lottati 
and A. Kornecki [16] have studied the effect of an elastic foundation and dissipative forces on the stability of 
fluid-conveying pipes. Results of numerical calculations are compared to the results in previously published 
papers. The problem of stability of fluid-conveying carbon nanotubes embedded in an elastic medium is 
considered in [17]. For the critical flow velocity, taking into account the rigidity parameters of the Winkler and 
Pasternak foundation, analytical expressions are obtained. In [18] a synchronization phenomenon of two 
equivalent fluid-conveying pipes coupled by a nonlinear spring is studied. On the basis of the Bubnov-Galerkin 
method the discrete systems of equations are obtained. 

At present, there are a number of approaches for improving mechanical model of soil foundation, but, 
apparently, the simplest mathematical statement of the problem (except for the Winkler model) is the 
development of the model of two-parametric viscoelastic Pasternak foundation. The model of two-parameter 
Pasternak foundation, on the one hand, makes it possible to take into account the distribution capacity of soil, 
and on the other hand it does not complicate the mathematical statement of the problem in comparison with 
the Winkler model. 

From the above review, it can be concluded that the development of adequate models describing 
viscoelastic properties of structure material and accounting the work of the viscoelastic soil foundation is a 
rather complex and relevant research task that is directly solved in this paper, along with the construction of 
appropriate mathematical models.  

The aim of this study is to create a mathematical model, a numerical algorithm and a computer program 
for solving the problem of nonlinear oscillations of viscoelastic thin-walled pipelines of large diameter on the 
basis of shell theory into account the two-parameter viscoelastic Pasternak foundation. 

2. Methods 
2.1. Governing equation 

 Consider the behavior of a thin circular viscoelastic cylindrical shell, with an ideal fluid flowing inside it 
at a constant velocity. The fluid velocity is U and its direction coincides with the direction of the Ox axis 
(Figure 1). The impact of external medium is described by the Pasternak model of two-parametric foundation 
(Figure 2). The Kirchhoff-Love conventional hypotheses are used under the assumption that the deflections 
are small in comparison with thickness. 

 Under the assumption in [20] and assuming that, y = Rθ, Marguerre equations with respect to 
displacements , ,u v w  can be written in the following form:  
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where D is the cylindrical rigidity of the pipe,  
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µ is the Poisson's ratio of the pipe material,  

E is the modulus of elasticity of the pipe material,  

ρ is its density;  

k1, k2 are the coefficients of the Pasternak's foundation, characterizing the properties of external 
environment; R is the radius of curvature of the middle surface;  

h is the thickness of the pipe wall;  

R* and 1R∗  are the integral operators with the Koltunov-Rzhanitsyn relaxation kernels, R(t) and R1(t), 
respectively: 

1 11
1 1 1( ) exp( ) ; ( ) exp( ) ;−−= ⋅ − ⋅ ⋅ = ⋅ − ⋅ ⋅R t A t t R t A t tααβ β  

0, 0, 0 1,> > < <А β α  1 1 10, 0 0 1,,> > < <А β α  1,A А  – the viscosity parameters;  

β, β1 are the attenuation parameters;  

α, α1 are the singularity parameter determined by experiment 
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where R(t –τ), R1(t – τ) are relaxation kernel; 

 t is the time of observation;  

τ is the time before observation;  

ϕ(τ) is the functions to be determined; the operators ( )1 ,L w  ( )2 ,L w  ( )*
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q is a pressure of fluid on the pipeline wall [21]: 
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where ∗− mαϕ  is an associated mass of fluid;  

m is the number of waves formed along the circumference,  

α is the wave number or the constant of phase propagation.  

The boundary conditions have the form 

 0; 0.0, : 0; 0; = == = = = Mx xx x L w v N   (4)
 

 
Under bending in the middle surface, there arise normal and tangential forces:
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Physical dependence between stresses , ,х у xyσ σ τ  and strains , ,х у xyε ε γ  is taken in the form [20]: 
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Here ,   ,   х у хуε ε ε  are the components of finite strain determined by: 
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where кх, ку  are the curvature parameters. 

Moments Мx, My and Mxy are determined through the deflection function w: 
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 Figure 1. Geometry of the cylindrical shell. Figure 2. Pasternak’s foundation. 

2.2. Discret model 
The solution of IDE systems in partial derivatives (1) under various boundary conditions and in the 

presence of singular heredity kernels represents a significant mathematical difficulty. Therefore, the natural 
way to solve these systems is to discretize them with respect to spatial variables and obtain a system of 
resolving nonlinear IDE with respect to time functions. 

An approximate solution of system (1) is sought for in the form:  

 ( ) ( )
1 1

, , ,
= =

=∑∑
N M

nm
n m

n xu x t u t cos sinm
L
πθ θ  

 ( ) ( )
1 1

, , ,
= =

=∑∑
N M

nm
n m

n xv x t v t sin cosm
L
πθ θ  (9)  

 ( ) ( )
1 1

, , ,
= =

=∑∑
N M

nm
n m

n xw x t w t sin sinm
L
πθ θ

 

where ( ) ( ) ( ), ,nm nm nmu t v t w t  are the unknown time functions. 
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Substituting (9) in system (1) and applying the Bubnov-Galerkin method, the following system of integro-
differential equations is obtained: 
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Here 1 2, , ,,
∞ ∞

= = = =E
R R U EM M
h L V V

δ γ
ρ

 V∞ is the sound speed   

      are the dimensionless coefficients related to 
coordinate functions and their derivatives; dots over a variable denote the time derivatives of the corresponding 
order.  

2.3. Computational algorithm  
Solution of IDE (10) is sought for by a numerical method based on the use of quadrature formulas 

[22–27]. This method is based on various analytic transformations that make it possible to reduce the initial 
systems to the systems of integral equations with regular kernels and stable numerical integration ensuring 
the solution of problems with a high degree of accuracy. Since the integral entering system (10) has a weak 
Abel-type singularity, it is impossible to use a quadrature formula. Therefore, by changing the variables  
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Here Aj, Bs are the numerical coefficients that do not depend on the choice of integrands and acquire 
different values depending on the use of quadrature formulas; ,klϕ  ,klψ  ,ℵkl  Θ ,kl  ηkl, ωk, de, Dklnmir, Gklnmir, 
Cklnmir, Fklnmir, Hklnmir, Zklnmir are the dimensionless coefficients related to the coordinate functions and their 
derivatives.  

2.4. Example of Test Solutions 
Verification of efficiency of the proposed numerical method and programs, based on the solution of 

test cases, is a necessary stage to confirm the reliability of research results obtained in solving specific 
problems. The problems for which an exact solution is known [22] have been considered as test cases. Table 
1 show a satisfactory agreement of approximate solutions with exact ones; this shows the reliability and high 
accuracy of calculation results. 

Consider a non-linear integro-differential equation of the form 

2 2
0 1 2 3

0 0 0

( ) ( ) ( ) ( ) ( ) ( ) ;+ + = − − − − − −∫ ∫ ∫ 
t t t

w w w q R t w d w R t w d R t w dλ ω λ τ τ τ λ τ τ τ λ τ τ τ  

 w(0) = 1,  (0) ,=−w β   (17)  

where 

 1( ) exp( ) ,−= −R t A t tαβ   0 < α < 1;   

 [ ]( )2 2
0 1 2 3 exp( ) exp( )

 
= + − − + + − − 
 

Atq t t
α

β ω λ β λ λ λ β β
α

 

Equation (17) has an exact solution w = exp(–β t), which satisfies the initial conditions. 

According to (16), the approximate values ( )=n nw w t  (t = tn = n∆t, n = 0, 1, 2, … ) are found from 
the relationships 
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n = 1, 2, …, ; where Аi, Bs are the coefficients of the quadrature formula of trapezoids. 

Table 1 gives approximate results of calculations by formulas (18) within the interval from 0 to 1 with 
∆t = 0.01 step, and exact solutions. The following initial data have been used: λ0 = 1.1; λ1 = 1.2; λ2 = 1.3; 
λ3 = 1.4; A = 0.01; β = 0.03; α = 0.01. It follows from the table that the maximum error ∆ of calculations 
performed by described method represents the value const·∆t2. The efficiency of this numerical method 
and programs is shown in other test cases as well. 

From the table it follows that the error Δh of calculations performed by described method coincides 
with the error of the quadrature formulas used and has the same order of smallness relative to the interpolation 
step (for the trapezoid formula the error of the method with respect to the interpolation step is of second-order, 
for the Simpson formula – of third order, etc.). 

Table 1. Comparison of exact and approximate solutions of IDE. 

t 
Solution 

∆h 
Exact Approximate 

0 1.000000 1.000000 – 

1 0.970445 0.970373 0.7⋅10-4 

2 0.941764 0.941622 1.4⋅10-4 

3 0.913931 0.913644 2.8⋅10-4 

4 0.886920 0.886569 3.5⋅10-4 

5 0.860707 0.860271 4.3⋅10-4 

6 0.835270 0.834855 4.1⋅10-4 

7 0.810584 0.810278 3⋅10-4 

8 0.786627 0.786113 5.1⋅10-4 

9 0.763379 0.763126 2.5⋅10-4 

10 0.740818 0.740509 3⋅10-4 

3. Results and Discussion 
Based on the developed algorithm, a package of applied computer programs in Delphi language has 

been created. Results of calculations are reflected by the graphs shown in Figures 3–10. 

The influence of the viscoelastic properties of material on the vibration process of the pipeline on a two-
parameter foundation was investigated (Figure 3, а, b, c). On the ordinate, displacements w (Figure 3, а), 
и (Figure 3, b), ν (Figure 3, c) are plotted. On the abscissa, the parameter of dimensionless time is plotted. 

The first of these curves is constructed for elastic pipelines 0.0(1),A =   the second and the third curves reflect 
the effect of the viscosity parameter at the following values: 0.05(2); 0.1(3).A A= =  The following 

parameter values were used for calculations: µ = 0.3; V∞ = 330 m/s; M1 = 0.1; γ = 0.02; δ = 4; 
ρ = 7800 kg/сm3; k1 = 1; k2 = 1; N = 5; M = 2.  

As seen from the figure, the viscoelastic properties of material lead to a decrease in the amplitude and 
frequency of the pipeline vibration.  

Figure 4 shows the effect of rheological parameter α on the vibration process. Calculations have been 
carried out at α = 0.05; 0.1 and 0.5. The pipeline data and flow parameters were as follows: A = 0.03; 
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β = 0.005; A1 = 0.1; α1 = 0.25; β1 = 0.005; k1 = 1; k2 = 1; γ = 0.02; δ = 3; V∞ = 330 m/s; µ = 0.3; 1M = 0.1; 

ρ = 7800 kg/cm3; 1k = 1; 2k = 1; N = 5; M = 2. 
The figure shows that an increase in parameter α leads to an increase in the amplitude and frequency 

of vibrations. At t = 0,75, 1.5, 2.3 and 3.2 the amplitude of oscillations reaches a maximum value. At t = 1.2 
the amplitude of vibrations becomes minimal. Further calculations show that the change in the third rheological 

viscosity parameter β (0 1)< <β  does not have a significant effect on the pipeline vibration process; this 
confirms the unacceptability of application of exponential relaxation kernels in calculating the dynamic 
problems of viscoelastic systems. These conclusions and results fully agree with the conclusions and results 
obtained in [22, 28]. 

Figure 5 shows the curves corresponding to various values of viscosity parameter of the foundation А1. 
On the ordinate the parameter of the pipeline deflection is plotted, on the abscissa – the time parameter. The 
curves are plotted for the pipeline at the following values of the viscosity parameter: А1 = 0 (curve 1), 

1A =  0.1 (curve 2). The value of geometric and physical constants is assumed to be: A =  0.05; α =  0.25; 

β =  0.005; 1α =  0.25; 1β =  0.005; 1k =  1; 2k =  1; γ =  0.02; δ =  5; µ =  0.3; V∞ = 330 m/s; 1M = 0.1; 

ρ =7800 kg/cm3; E =  2⋅105 MPa; N = 5; M = 2. 

a)  

b)  
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c)  

Figure 3 (a, b, c). Displacements versus time at А = 0(1); 0.05(2) 0.1(3). 

 

Figure 4. Deflection versus time at α = 0.05(1); 0.1(2); 0.5(3). 

 
 

Figure 5. Deflection versus time at A1 = 0(1); A1 = 0.1(2). 
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Figure 6. Deflection versus time at α1 = 0.2 (1); α2 = 0.75 (2). 

 

Figure 7. Deflection versus time at γ = 0.01(1); 0.06(2); 0.1(3). 

 
Figure 8. Deflection versus time at the values of k1 and k2: 

k1 = 0; k2 = 0 (curve1); k1 = 1; k2 = 1 (curve 2); and k1 = 3; k2 = 3 (curve 3) 
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Figure 9. Deflection versus time at various values of M1: 0.1(1); 1.8(2). 

 
Figure 10. Deflection versus time at various values  
of δ parameter: 2 (curve 1); 5 (curve 2); 8 (curve 3). 

 
Figure 11. Linear theory (1); nonlinear theory (2). 

As seen from Figure 5, an account of viscoelastic properties of soil foundation leads to the damping of 
vibration process. Though the solution of elastic and viscoelastic problems in the initial period of time differ 
little from each other, viscoelastic properties exert a significant influence over time. The amplitude of vibrations 
attenuates, and the vibration phase shifts to the right. 
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Figure 6 shows the nature of the pipeline motion under various rheological parameters of the foundation 

1α . At 1α = 0.2; 1α =  0.75 the amplitude of pipeline vibration attenuates over time. An increase in rheological 

parameter 1α =  0.75 leads to an increase in the frequency and amplitude of pipeline vibrations. The following 

values of geometric and physical constants are used in calculation: A = 0.05; α = 0.25; β = 0.005; A1 = 0.1; 

β1 = 0.005; k1 = 1; k2 = 1; γ = 0.02; δ = 3; µ = 0.3; V∞ = 330 m/s; 1M = 0.1; ρ = 7800 kg/cm3; 

E =  2⋅105 MPa; N = 5; M = 2.  

The influence of parameter γ, equal to the ratio of the radius and length of the pipeline is shown in 
Figure 7. The numbers indicate the results obtained at the following values of parameter γ: 1 – 0.01; 2 – 0.06; 
3 – 0.1. An increase in parameter γ (which corresponds to an increase in the radius or a decrease in the length 
of the pipeline) causes an increase in the amplitude and frequency of vibrations of the pipeline. 

Figure 8 shows the graphs of the function w(t) in time at different values of k1 and k2. Curves 1-3 
correspond to the values k1 = 0; k2 = 0 (curve 1); k1 = 1; k2 = 1 (curve 2); and k1 = 3; k2 = 3 (curve 3). Analyzing 
the results obtained, it can be concluded that the presence of a viscoelastic foundation leads to a decrease in 
the amplitude of vibrations, and the frequency of vibrations increases. At k1 = 3; k2 = 3 (curve 3), the amplitude 
of vibrations rapidly decays.  

The influence of the flow velocity 1M on the vibration process of the pipelines is studied. Figure 9 shows 

the graphs of the function ( )w t  in time at different values of 1M  not exceeding the critical value. The solution 

is obtained at the following values of physical and geometric coefficients: A = 0.05; α = 0.25; β = 0.005; 
A1 = 0.01; 1α =  0.25; β1 = 0.005; k1 = 1; k2 = 1; γ = 0.02; δ = 5; µ = 0.3; V∞ = 330 m/s; ρ = 7800 kg/cm3; 

E =  2⋅105 MPa. Curves 1 and 2 correspond to the values 1M = 0.1 (curve 1) and 1M = 1.8 (curve 2). Note 
that with an increase in M1 at the initial time, the amplitude and frequency of vibrations remain constant. At 
greater values of M1 the vibration period increases with time. 

 Figure 10 shows the time variation of the deflection of the pipeline w at various values of the parameter 
δ: 2 (curve 1); 5 (curve 5); 8 (curve 3). As seen from the graph, the growth of the parameter δ contributes to a 
significant decrease in the amplitude of vibrations. An increase in the parameter δ makes it possible to 
significantly improve the stability of the pipeline. 

Figure 11 shows the time variation of the displacement w of the midpoint of viscoelastic cylindrical shell, 
obtained from various theories: the linear theory (curve 1) and the nonlinear theory (curve 2). According to 
Figure 11, the results of linear and nonlinear theories differ significantly from each other. Although the solutions 
of the problems of linear and nonlinear theories differ little in the initial period of time, in the course of time the 
geometric nonlinearity exerts a significant influence on the solution. 

4. Conclusions 
It should be noted that the algorithm of the proposed method makes it possible to investigate in detail 

the influence of viscoelastic properties of structure material, geometric nonlinearities, and Pasternak two-
parameter viscoelastic foundation on vibration processes of pipelines with fluid flowing inside. 

When studying pipelines vibrations with a flowing fluid, a number of dynamic effects are obtained: 

1. It has been established that an account of viscoelastic properties of the pipeline material leads to a 
decrease in the amplitude and frequency of vibrations by 20–40 %; 

2. It is shown that an increase in the geometric parameter γ (which corresponds to an increase in the 
radius or a decrease in the length of the pipeline) and dimensionless flow velocity 1M  leads to an increase in 
the amplitude and frequency of vibration; 

3. It has been established that an account of viscoelastic foundation leads to a decrease in the 
amplitude of vibrations, and the frequency of vibration increases. 

The obtained results of numerical simulation may be implemented at the enterprises of oil and gas 
industry, agriculture, housing and communal services and design organizations.  
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Нелинейные колебания трубопроводов  
на вязкоупругом основании, транспортирующего жидкость 

Б.А. Худаяров*, Ф.Ж. Тураев, 
Ташкентский институт инженеров ирригации и механизации сельского хозяйства, г. Ташкент, 
Узбекистан 
* E-mail: bakht-flpo@yandex.ru 

Ключевые слова: колебательный процесс; основания; трубопровод; математическая модель; 
численный алгоритм; цилиндрическая оболочка  

Аннотация. В статье представлены результаты исследования процесса колебания трубопроводов, 
транспортирующих жидкость или газ. При исследовании колебаний трубопроводов с протекающей 
внутри газо-жидкостью используется моделью в виде цилиндрических оболочек и 
двухпараметрической модели вязкоупругого основания Пастернака. Для описания вязкоупругих 
свойств использована наследственная теория вязкоупругости Больцмана-Вольтерра. Численно 
исследованы влияния параметров оснований Пастернака, влияние сингулярности в ядрах 
наследственности и геометрических параметров трубопровода на колебания конструкций, 
обладающих вязкоупругими свойствами. Установлено, что учет вязкоупругих свойств материала 
трубопровода приводит к уменьшению амплитуды и частоты колебаний на 20–40 %. Показано, что учет 
вязкоупругих свойств оснований грунта приводит к затуханию колебательного процесса трубопровода. 
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