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Abstract. This article is aimed at determining the absorption of moisture by diffusion of mineral wool
and polyisocyanurate over a long-term period. The task of increasing the thermal insulation properties of
enclosing structures is most relevant for the erection of new buildings or structures, as well as for the repair
of existing. The method models operating conditions in which thermal insulation product absorb moisture
from both sides at high relative humidity of air (100%) and pressure difference of water vapour over a long-
term period. The moisture absorption by diffusion of mineral wool and polyisocyanurate were obtained after
28 days of exposure to temperature and pressure drop of water vapor. Significant changes in moisture
content of mineral wool were observed. From the results obtained, it can be concluded that
polyisocyanurate has a lesser absorption property of water vapor, which is an important attribute in its
operation.

AHHoTauuA. loBbieHVe TENNOU3ONALUMOHHBIX CBOWMCTB OMPadKOalLLMX KOHCTPYKUMA sIBNAETCA
O[HOM M3 OCHOBHbIX 33434 CTPOMTENbCTBA Ha CEroAHAWHWA AeHb. MeTon, npuBeAeHHbI B JAaHHOW
cTaTbe, MoAenupyeT YCrNoBMs SKCnyaTauum, Npy KOTOPbIX TEMMOM30MSLMOHHBIN MaTtepran nornowiaet
Brnary ¢ obemx CTOPOH Npu BbICOKOW OTHOCUTENBHOW BnaxHocTu Bo3ayxa (100%) n pa3HoOCTU AaBneHun
BOOSHOrO Mapa B TeyeHuWe [AONUTENbHOro nepuoda BpeMeHW. bBbbino npov3BeneHo cpaBHEHUE
anddy3noHHOro BrnaronornoLeHns obpasuos nonumsounaHypata (PIR) u MuHepanbHow BaThbl B TeYEHUE
28 cytok. PesynbraTtbl nokasanu, 4To AMQQY3MOHHOE BAronormoweHne y TennonsonsaunoHHoro
matepuana ns nonunsoumanypara (PIR) 3HauMTenbHO HXKe, YeM Y TENNOM30NALMOHHOrO MaTepmana 13
MUWHepanbHON BaTbl, YTO UMEET BOorbLIOE 3HAYEHNE B XOe €ro aKcnnyatauum.

1. Introduction

The demand for environmentally friendly and healthy products is steadily increasing. This also
applies to building materials, which can have great effect on human health. It is not surprising that new
environmental friendly construction materials including thermal insulation are still actively studied. Demand
for thermal insulation materials is increasing due to the growing costs of energy resources. Obtaining
natural and environmentally friendly thermal insulation materials has become a topical issue nowadays,
when thermal insulation materials are being extensively used (Muizniece, 2016). The most important
challenge in the building sector worldwide is the reduction of the energy consumptions. In 2010, buildings
accounted for 32% of total global final energy use (equal to 117 hexaJoules), 19% of energy-related GHG
emissions, 51% of global electricity consumption, 33% of black carbon emissions, and an eighth to a third
of F-gasses emission according to different accounting conventions in F-gasses data [1]. Control of indoor
climate systems, ventilation, heating and air conditioning systems usually implies a high energy and
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economic costs. For heat exchange between the flows of supply and exhaust air are typically used air-to-
air heat exchangers. Heat exchangers produce a transfer of tangible (visible) energy due to temperature
difference on the surfaces. However, after a long period, the temperature difference between the air flows
in the air intake is usually reduced and as a consequence some of the energy becomes insignificant.
Another typical energy-saving solution is the introduction of ventilated facades using external or internal
air, for reduction of thermal loads [2]. The GHG emissions from the building sector more than doubled
between 1970 and 2010, reaching nowadays a value around 10 GtCoZ2 eg/y (Naldi, 2017). In harsh climatic
conditions, the use of thermal insulation in buildings is necessary and is gradually becoming a mandatory
requirement in many countries particularly as energy becomes more precious and demand increases
(A.Abdou). In this regard, the problem related to the search of technology for energy-efficient construction
has become a vital one. It is necessary to introduce not only energy-efficient designs, but also to apply
meters and energy-saving technologies that allow to achieve and save on normative indicators of heat
energy consumption, the corresponding class assigned to the building [3].

The task of increasing the heat-insulating properties of enclosing structures is most relevant for the
erection of new buildings or structures, as well as for the renovation of existing facilities. Thermal protective
properties of the fence depend on the design solutions used in this construction materials, the operating
conditions of the building. There are many ways to insulate buildings, the most common are insulation with
fibrous structure and polymer insulation. Along with the traditional and well-developed materials in the
construction industry, new thermal insulation materials are appearing on the market, the physical and
mechanical characteristics of which are not fully understood. PIR also belongs to this material. In the
technical characteristics of this material, indicated by the manufacturer, there is no such indicator, important
from the point of view of thermos-physical properties of the material, as sorption humidity. The manufacturer
indicates only the value of the thermal conductivity of the material in the dry state. Meanwhile, it is known
that, depending on the level of humidity under operating conditions and the sorption properties of the
thermal insulation material, its actual (operational) value of thermal conductivity can differ significantly from
the experimental values in the dry state.

The thermal conductivity of insulation materials is greatly affected by their operating temperature
and moisture content, yet limited information is available on the performance of insulating materials when
subjected to actual climatic conditions. Many parameters should be considered when selecting thermal
insulation, including cost, compression strength, water vapor absorption and transmission and, most
importantly, the k-value of the material when considering thermal performance of buildings and relevant
energy conservation measures [2]. Together with heat transfer modes, phase changes of vapor moisture,
although not strictly an energy transfer mechanism, should also be considered in heat transfer analysis
since state changes absorb and release large quantities of heat [9]. This means that both vapour flow and
moisture absorption are important, and they typically are more critical in insulating materials with open cell
structures than with closed cell ones (Naldi, 2017).

The way thermal insulating materials resist to heat flow depends on microscopic cells in which air or
other gasses are trapped. Thermal insulating materials resist heat flow as a result of the countless
microscopic dead air-volumes. In fact, the thermal resistance of the air entrapped within insulating materials
is mainly responsible for their low thermal conductivity. Meanwhile, creating small cells or a closed cell
structure within the thermal insulation across which the temperature difference is not large, reduces the
radiation heat transfer mode (Naldi, 2017).

Typically, air-based insulating materials do not exceed the thermal resistance of still air. However,
some foam insulations such as the polyurethane encapsulate fluorocarbon gas instead of air within the
insulation cells to obtain higher thermal resistance (R-value) than the air (Naldi, 2017).

PIR plate based on polyisocyanurate, as the thermal insulation material with the lowest the indicator
of heat conductivity, has been extensively used in the USA and Western Europe for a long time, more than
10 years (Nastya). In North America, the roof insulation market shows that polyisocyanurate is the most
widely used roof insulation, covering more than 50 % of all commercial new or re-roofing applications. This
is probably due to the often nominal double of thermal resistance of the polyisocyanurate when compared
to fiberglass or rock wool insulation. These last products have generally a larger market share for vertical
building elements and in several European countries (Naldi, 2017).

Due to high performance indicators, the insulation is a considerable interest both for developers
wishing to improve the energy efficiency of the constructed buildings, and for private clients interested in
the most effective heat insulating material (Nastya). Many benefits justify the adoption of thicker layers of
thermal insulation in buildings. In fact, the use of thermal insulation in buildings helps in reducing the
reliance on mechanical air-conditioning systems to realize comfortable buildings, and it allows to save
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energy by reducing the heat flux through the building envelope. Meanwhile, the reduced energy demand
achieved by using more effective thermal insulating layers also reduces the needed HVAC equipment. The
thermal insulation in building enclosure extends the periods of indoor thermal comfort, especially between
seasons, and by keeping buildings with smaller temperature fluctuations, it helps in preserving the integrity
of building structures, increasing their lifetime (Naldi, 2017).

The basis for the preparation of polyisocyanurate is methylene diphenyl diisocyanate, which at a
high temperature and in the presence of catalysts is able to react with itself, partially transforming into a tri-
isocyanate-isocyanurate chemical compound. It is a rigid molecule of the ring structure, which is positively
reflected on the physical properties of the final product.

This high-tech insulation polyisocyanurate (abbreviated — PIR) — a close a relative of a well-known
polyurethane foam (PUR). Polyurethane possesses exceptional properties such as the high resistance to
open fire (group combustibility G1) and low thermal conductivity (in the dry state) among the polymers is
not more than 0.024 W/m2. In addition, the PIR plate does not absorb moisture and is distinguished by a
high resistance to compression.

At present, a number of articles have been written on the sorption humidity of insulating materials
with a fibrous structure showing a change in this parameter over time during operation, which leads to its
increase [4], or reflecting the efficiency of using multi-layered enclosing structures with mineral wool
insulation in comparison with with an unheated wall, in which the sorption characteristics are greater [5].
For polymer insulation, foam polyisocyanurate, only the main characteristics characterizing the material
have been studied and determined, such as: low flammability (G1), high heat-saving capacity, lightness
and strength [6, 7].

Many of the works are related to the determination of the thickness of thermal insulation by
calculating the temperature fields and aimed at improving the individual bearing elements of the enclosing
structure [8].

The purpose of this work was to determine the thermo-physical properties of slabs from foam
polyisocyanurate with soft liners (PIR) with a density of between 30 and 45 kg/ms and analogues. plates
from mineral wool ROCKWOOL Facade Batts, density p = 130 kg/ms

To achieve this goal, it was necessary to solve the following tasks:

1. Using experimental methods based on National Standards of Russia GOST and GOST EN
methods, to determine physical and mechanical characteristics of two types of insulation.

2. Analyze the results and obtain the main evidence base for the correction of normative documents
in the field of heat-insulation materials. At this stage, experimental studies were carried out to determine
water absorption, diffusion moisture absorption for a long time, sorption humidity and thermal conductivity
of the samples.

2. Methods

The test methods were selected in accordance with the work program presented by NAPPAN-
Russian Association of Manufactures of Polyurethane Sandwich Panels.

The method simulates the operating conditions under which the samples absorb moisture from both
sides at high relative humidity, approximately 100 % and the difference in water vapor pressure over a long
period of time, from water to the form. The sample is subjected to a temperature and pressure drop of water
vapor for 28 days while maintaining the water temperature (50 £ 1) °C and the temperature on the opposite
side of the sample (1 + 0.5) °C.

Materials:

e plates of mineral wool with a thickness of 50 mm;
¢ PIR plates 50 mm thick with double-sided lining aluminum foil 50 um thick;
¢ PIR plates with a thickness of 50 mm without lining.

The experiments were carried out according to the requirements of the National Standard of Russia
EN 12088-2011 Thermal insulating products in building applications. Method for determination of long-term
moisture absorption by diffusion.
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Sizes of samples were measured in accordance with EN 12085. A panel of mineral wool was cut
using an insulation knife, in order to obtain the required lengths and widths equal to 500 and 500 mm,
respectively. Samples were weighed to the nearest 0.1 g to determine the initial mass. The sample was
then placed on the frame of the container. Since the sample was lined on both sides, experiments will be
proceeded with a lined surface, with either side of the sample being placed on the frame facing upwards.
The lower edge of the sample is sealed around the perimeter of the frame. The width of the sealant was
equal to 10 mm. A thermally insulated cooling plate is placed on the upper surface of the sample.

The sample is exposed to temperature level and pressure drop of water vapor for 28 days, while
maintaining the water temperature (50 = 1) °C and the temperature on the opposite side of the sample
(1 £ 0.5) °C. Every 7 days the sample is turned over. After 28 days, the sample is removed from the
container and the water with its surface is removed with a paper or other suitable tissue. The sample is
weighed and the final mass is determined.

N

Figure 1. Heating plate with water and Cooling plate

A panel of mineral wool was cut using an insulation knife, in order to obtain the required lengths and
widths equal to 500 and 500 mm, respectively. The size and shape of the specimens were determined
according to the standard EN 12085. Linear dimensions of the PIR panels were received in prefabricated
sizes of 500 and 500 mm. The apparatus for providing hot air, i.e. the hot disk, does not require particular
restrictions regarding the shape but must be capable of heating the container with water at a constant
temperature of (50 + 1) °C: for this reason, a thermostat was connected to regulate the temperature inside
the container.

The samples were conditioned for at least 6 hours at a temperature of (23 + 5) °C before the test in
a climatic chamber. In case of disagreement, the samples were kept at a temperature of (23 £ 2) °C and
relative air humidity (50 = 5) % for the time specified in the standard, and in its absence — in the technical
conditions for the product of a particular type, but not less than 6 h. The samples were then weighed to an
accuracy of 0.1 g to determine the initial mass (m0). A thermally insulated cooling plate is then placed
above the upper surface of the sample to subject the sample to a lower temperature as a simulation of the
winter period. Figure 1 shows a picture of the cooling plate with the sample thermally insulated to prevent
air from escaping and support a balanced temperature and humidity conditions. On the other hand, the
opposite side of the sample is placed in a thermally insulated container holding with water. Temperature in
the container is controlled by a thermostat regulator at 50 °C. The sample is subjected to a temperature
and differential pressure of water vapor for 28 days while maintaining the water temperature (50 £ 1) °C
and the temperature on the opposite side of the sample (1 + 0.5) °C. The sample is turned in the opposite
direction every 7 days. After 28 days, the sample is removed from the container and water is removed from
its surface with a paper or other suitable tissue. The sample is weighed and the mass after 28 days (mD)
is obtained. For each sample, the amount of absorbed moisture is estimated by mass Wqp in kg/m2 or by
volume Wav in percentage.

Figure 2 shows a flowchart scheme of the experiment to obtain the long-term moisture absorption
by diffusion.

Vatin, N.I., Pestryakov, I.I., Sultanov, Sh.T., Ogidan, T.O., Yarunicheva, Y.A., Kiryushina, A.P. Water vapour by
diffusion and mineral wool thermal insulation materials. Magazine of Civil Engineering. 2018. 81(5). Pp. 183-192.
doi: 10.18720/MCE.81.18.

186



HNHkeHepHO-CTpOUTENbHBIH sKypHas, Ne 5, 2018

thermostat

thermostat

{ heat) heating plate
~

electric heating

Figure 2. Flowchart scheme of the experiment

The thickness of the samples is equal to 50 mm for mineral wool and PIR (Table 1). Figure 5 shows
a picture of the investigated samples.

In a second stage, the same samples were conditioned by setting temperature at (23 + 5) °C and
relative humidity at (50 + 5) % under environmental conditions for the time necessary to reach the weight
stabilization, in order to obtain moist samples.

Figure 3. Cooling plate with mineral wool

Water content (WC) was measured using the gravimetric method by means of Equation (1):
WC = (Ws — Wd)/Wd 100% (1)

where Ws and Wd are the weights of the examined and of the dried samples, respectively. A precision
scale with a graduation of 0.01 g was used to measure weights.

Measurements of water vapour diffusion were performed on samples after different number of days
for one of the PIR panels. In particular, four stages of measurements were performed: after 7 days, after
14 days, after 21 days and after 28 days.

In view of the fact that the samples were received with a delay, to date only one PIR sample has
been exposed to temperature and a pressure drop of water vapor for 28 days. Table 2 shows the amount
of moisture absorbed after 28 days.
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Figure 4. Installation for testing in accordance with GOST EN 12088-2011

Sizes of samples were measured in accordance with EN 12085. Samples were weighed to the
nearest 0.1 g to determine the initial mass. The sample was then placed on the frame of the container.
Since the sample was lined on both sides, experiments will be proceeded with a lined surface, with either
side of the sample being placed on the frame facing upwards. The lower edge of the sample is sealed
around the perimeter of the frame. The width of the sealant was equal to 10 mm. A thermally insulated
cooling plate is placed on the upper surface of the sample.

The sample is exposed to temperature level and pressure drop of water vapor for 28 days, while
maintaining the water temperature (50 = 1) °C and the temperature on the opposite side of the sample
(1 £ 0.5) °C. Every 7 days the sample is turned over. After 28 days, the sample is removed from the
container and the water with its surface is removed with a paper or other suitable tissue. The sample is
weighed and the final mass is determined.

3. Results and Discussion

In view of the fact that the samples were received with a delay, to date only one PIR sample has
been exposed to temperature and a pressure drop of water vapour for 28 days. Table 1 shows the amount
of moisture absorbed after 28 days.

Table 1. Moisture absorption after 28 days

Sample A, m2 D, m mo, kg md, kg Wav, %
PIR1.1 0.25 0.05 0.53 0.563 0.3
PIR 1.2 0.25 0.05 0.52 0.566 0.4
MW 1 0.25 0.05 1.66 3.864 17.6
MW 2 0.25 0.05 1.69 3.622 15.5

A similar result is expected after 28 days. It is also predicted that mineral wool panels will absorb
more moisture than both PIR panels.

Previously, no one has tested the diffusion moisture absorption of samples from polyisocyanurate.
The obtained results confirm the presence of the dependence of the vapour content of thermal insulation
materials of PIR and mineral wool on the relative thermal properties of the material. PIR with polymer
structure of closed pores absorbs less moisture. MW with fibrous structure absorbs more moisture.
Absolute values of the moisture absorption of the MW significantly exceed the analogous values for mineral
wool by about 50 times
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4. Conclusion

The obtained results testify to the differences in physical and thermal properties of the materials. It
is shown that the PIR is more reliable than mineral wool by this indicator. However, due to the difference
in structure of this material compared with mineral wool, it is not possible to make a final conclusion about
which of the materials considered is more efficient in heat-insulating structures without additional studies.
For a final conclusion, it is necessary to conduct a study to determine the thermal conductivity of the PIR
in the wet state and compare these values with the analogous values for mineral wool or other competing
materials. This will be used in the further of this material especially during operating conditions. The
increase in the thermal insulation characteristics of the materials of the enclosing structures also makes it
possible to avoid the costs of upgrading the sources of thermal energy.
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