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Abstract. In the present paper a plane round double-hinged arch under the potential dead load is
investigated. To describe the stress-strain state and the equilibrium stability the geometrically exact theory
is used. According to this theory every point of the bar has two translational degrees of freedom and one
rotational, which is independent from the previous two. To solve the problem no displacements are simplified
and all the stiffnesses are used: axial, shear and bending. Exact nonlinear differential equations are found
for the static problem. A variational definition for the problem is defined as finding a stationary point of
Lagrange functional. The match of the differential and variational formulations is shown. Exact stability
equations accounting non-linear geometric deformations in pre-buckling state were worked out. The
problem of the equilibrium stability of the round arch under the potential dead load was solved using the
obtained equations regarding all the bar’s stiffnesses. The characteristic transcendental equation and its
asymptotic solution as simple formulas, suitable for practical application, were worked out. The comparison
of described solution which regards all the bar’s stiffnesses and classical solution, based on bending
stiffness, was made.

1. Introduction

Arches are one of the most widespread structural systems. On the one hand, this is due to their
architectural expression; on the other hand, they are efficient at mechanics due to their curvature which can
neglect the effect of the bending moment. As a result, the arch can be rather flexible as the size of the cross
section can be relatively small. That is why the problem of arch equilibrium stability is one of the main problems
for engineers to consider.

Historically, the most popular problem in the theory of stability of arches is the problem of stability of
round arch under the radial pressure. This implication is typical for different underground structures — tunnels,
pipelines and hull ribs of the submarines. The solution for this problem for the semi-ring was derived according
to the fact that the loads, despite the bending of the axis of the bar, maintain the line of action. Besides, lines
of action don't move in case of buckling [1-4]:

or =3%- 1)

The solution for the problem of the stability of the plane arch under the radial pressure, when the load
maintains the line of action, but the application points move with the axis of the arch were worked out by N.V.
Kornoukhov [5] and A.N. Dinnik [6]. In case of the semi-ring the critical force is:

Ok =3.27%. )
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In practice arches usually suffer different loads. A lot of problems were solved about the non-linear
stability and the post-buckling deformation of round arches under the single force in the center [7-9]; under
vertical or horizontal pressure, distributed on whole length [10-14] or located only on the part of the arch [15,
16]. Some other problems and their solutions can be found in the papers of V.N. Paimushin [17, 18],
I.A. Karnovsky [19, 20], V.V. Galishnikova [21].

The critical force value is influenced not only by external loads but by the other parameters: flexibility of
the supports, material properties and shape of the axis of the arch. The effect of the horizontal and vertical
support stiffness on the stability of the round arch and frames was analyzed in [22, 23]. The effect of the
physical properties, inconstant through the cross-section was analyzed with the help of functionally graded
materials in [9, 14, 24, 25]. The problems of linear stability of plane parabolic arches can be found in [12, 13,
26]. Experimental researches of pre-buckling deformation, ultimate equilibrium and the failure behavior in case
of buckling are described in [27-30].

Despite the big amount of analytical study, all the mentioned researches consider only the bending
stiffness of the bar, and for this reason should be considered as approximate. There are no problem
formulations and their solutions about the stability of arches, considering both axial and shear stiffness.

Variational method as the principle of virtual displacements is the most popular method to research the
problems of stability [16—18, 31]. However, the variational definition for the problem as finding a stationary
point of some functional was used only for straight bars [32], not for the arches. Note, that exact stability
equations can be obtained from the second variation of the functional [31].

Thus, the purpose of this paper is to solve the problem of stability of plane double-hinged arch under
the potential dead load regarding all the stiffnesses of the bar: axial, shear and bending by variational
approach.

The aims of this paper are:

1. to work out a variational definition for the problem of deformation of the geometrical non-linear plane
elastic round arch regarding axial, shear and bending stiffnesses as finding the stationary point of Lagrange
functional,

2. to work out the stability equations as the result of the second variation of the Lagrange functional;

3. solving the problem of the stability of the arch with the help of the obtained equations under the
potential dead load regarding all the stiffnesses of the bar: axial, shear and bending.

4. comparing the obtained solution with the Kornoukhov-Dinnik solution (2), where only bending
stiffness was considered.

2. Methods

This paper is based on geometrically exact bar theory [32—-37], whereby each point of the plane bar has

two translational degrees of freedom — displacements U, W and one rotational — angle ¢, which is independent
form the previous ones.

Consider a plane round double-hinged arch with radius R under the potential dead load: uniformly
applied forces and moments. Each point of the arch can be described with the local trinedron (t, n, K): tangent
basis vector t is directed towards the increasing &, normal basic vector N is away from the center of curvature
C. The direction of the basic binormal vector K can be found using the vectoral product txn =K. All the
unknowns, describing the stress-strain state of the bar can be found via angular coordinate 8, 0< 0 < 9,
where 0 is the central angle (Figure 1).

Figure 1. Arch state in basic condition (condition before deformation).
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Definition of the problem of geometrically non-linear deformation of the round arch consists of three
groups of differential equations: static (equilibrium equations), geometrical and physical. The equations for the
static problem in the vector form were derived in [32-33]. The scalar form for the vector equations in the
curvilinear coordinates will be derived below.

Equilibrium equations for the problem of the plane non-linear deformation of the arch are:
(Ncosp—Q sing) +(Nsing+Qcosg)+Rg, =0;

(Nsing+Qcosg) —(N cosp—Q sing)+Rg, =0; (3)
M'+(u"+w+R)(Nsing+Qcosp)—(W —u)(Ncosp—Q sing)+Rm =0,
where N is axial force;
Q is shear force;
M is bending moment;

Ot, On are projection of the distributed loads on the tangential and normal (radial) direction;
M is distributed moment load;

U, W are tangential and normal displacements;

@is rotating angle. Henceforward differentiation is made according to angle 0( )l =d ( )/d@.

Geometrical equations for the plane problem are:

g:%(u’+w+ R)COS(p+%(W'—U)Sin(o—1,

y:—%(u’+w+ R)sin¢+%(W'—U)C05(0' (4)
_1

l//_ R¢’

where &, y, W are axial, shear and bending deformations.

Physical equations for the linear elastic material are
N =ke Q=k,y; M=Kk, (5)

where ki = EA is axial stiffness; ko = GAK is shear stiffness; ks = El is bending stiffness; E is Young’s

modulus; A is cross-section area of the bar; G is shear modulus; K is cross-section form coefficient; | is
moment of inertia.

The equations (3)—(5) are the exact equations of geometrical non-linear round arch, taking into account
all stiffnesses of round arch. To get the closed system on each end of the arch three boundary conditions are
needed. For the double-hinged arch they are as follows:

0=0:u(0)=0, w(0)=0,M (0)=0;

6
6-0: u(®)=0, w(®)=0,M(6)=0. ©
3. Results and Discussion
3.1. Variational formulation of non-linear static problem
Lagrange functional can be written as follows:

®

L(u,w, )= Rj[%(klgz + Ko + kswz)—qtu —Q,W— mgo}de. )
0
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It can be proved, that variational definition for the problem, defined as finding a stationary point of
functional £

L — STAT 8
in case the fulfillment of the essential boundary conditions
u(0)=w(0)=u(®@)=w(®)=0 9)

is equivalent to the initial problem (3)—(6). The first variation of the functional (7) is:

®
5£(u,w,(p):—j{uv((N cosqo—Qsingo)'+(Qc05¢>+ Nsing)+ th)+
0

+WV((N singo+QCOSgo)'+(Qsingo—Nc03¢>)+ an)+ (10)
+¢, (M"+(u'+w+R)(Qcosp+ Nsing)+(w —u)(Qsinp— N cosp) + Rm)}d6+
+[u, (N cosp-Qsing)+w, (Nsinp+Qcosg)+¢,M :'S ,
where the variations are labeled as follows:
u, =ou, W, =ow, @, = 9. (11)

The solution of the variational problem are the functions U, W, ¢, satisfying the essential boundary
conditions (6), that 0L =0 for any variations u,, W,, @, . Initial nonlinear equilibrium equations (3) are the
Euler equations of the variational problem (8)—(9), according to (10).

As it can be seen from (9), variations of the displacements on the boundaries equal to zero:
u, (0)=w,(0)=u,(®@)=w,(©)=0. (12)
Considering (12), the terms outside the integral (10) are:
M(©)p,(©)-M(0)g,(0). (13)

From the stationary condition of the functional for any ¢, (@) and ¢, (0) are, it can be seen, that their
factors should equal to zero. So, the natural boundary conditions are:

M (©)=0, M(0)=0. (14)
Thus, the equivalence of differential (3)—(6) and variation (8)—(9) formulations is proved.

3.2. Stability problem formulation

The second variation of the functional (7) is:
®
5°L(u,w, ) :%J'{kl[((u; +W, )cosp—@, (u'+w+R)sing + (W, —u, )sin g+
0
+ @, (W’—u)COS(p)2 +((u+w+R)cosp+(w'—u)sinp—R)(-2¢, (u, +w,)sing -
— @ (U'+W+R)cosg+2¢, (W, —u, )cosp—gpZ (W —u)sin (p)+ as)
+k, [(—(u\’, +W, )sinp—g, (W' +w+R)cosp+(W, U, )cosp—g, (W —u)sin (p)2 +

+(—(u"+w+R)sin ¢>+(w’—u)c03(p)(—2gov () +w, )cosp+@? (u'+w+R)sing -

—2¢, (W, —u, )sinp— g’ (W’—u)COS(p)}L k3go§2}d6’.

Let us label %525 = For (u,, W, ¢, ), where For (u,, W, @, ) is static stability functional.
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To derive Euler equations for the variational problem of finding a stationary point of functional
F;T — STAT in carrying out essential boundary conditions (12) the first variation of the stability functional
should be computed:

®
SFar (Uy, W, gov):j(éuv(—(chosw—govN sing—Q, sinp—9,Qcosp) —
0

— N, sinp—g, Ncosp—Q, cosp+¢,Qsin ¢)+5WV(—(NVsin @+ @,N cosg+
+Q, cosp—,Qsin go)' +N, cosp—@,Nsinp—-Q, sin ¢—¢VQc05(p)+
+ 0, (M, = (u'+W+R)N,sing+(w —u) N, cosp—(u; +Ww, )N singp- (16)
—@, (U'+W+R)Ncosp+ (W, —u, )N cosp—g, (W -u)Nsing -

—(u'+w+R)Q, cosp—(W —u)Q,sing—(u, +w, )Qcosp+¢, (u'+w+R)Qsinp -
—(w, —uV)Qsingo—gov(W’—u)QCOS¢)dH+[5uV(NVCOSgo—gostin p-Q,sinp-

~0,Qcosp)+w, (N, sing+¢,N cos+Q, cos ¢ —¢,Qsin ¢)+5¢VMVf,

where the following labels are introduced:
N, =kig,, Q =k, M, =kgy,;

&y =%((WQ —~U,)cosp— @, (U'+W+R)sing+(W, —u, )sing+g, (W -u)cose),

7 :%(—(u(, +W, )sing—g, (U'+w+R)cosp+(W, —u, ) cosp—gp, (W —u)sing), 40
V=50
Euler equations resulting from the condition & FQT =0 are the further equations:
9, (N cosp—-Qsing)+(N,sing+Q, cosp)—(p, (Nsinp+Qcosg)—
—(N, COS(p—QVSinq)))’ =0;
9, (Nsinp+Qcosg)—(N, cosp—-Q,sing)+(p, (N cosp—Qsing)+
+(N,sinp+Q, cos (0)), =0; (18)

M, +(u;, +w, )(Nsing+Qcosg)— (W, —u, )(N cosp—Qsing) +
+(u'+w+R)(¢, (Ncosp—Qsing)+(N,sinp+Q, cosp))+
+(wW'—u)(e, (Nsinp+Qcosp)—(N, cosp—Q,sing))=0.

Expression (18) is the system of equations involving functions u,, W,, @,. Functions U, w, ¢, N, Q, M
are known and are the solution of nonlinear static problem, the stability of which is being researched.

Equations (18) are the exact stability equations of the elastic round arch under the potential dead load,
taking into account all stiffnesses of round arch. To get these equations no hypothesis was made about the
value of displacements and type of stress-strain state of the bar.

The natural boundary conditions can be derived from the terms outside the integral (16) regarding the
essential boundary conditions (12):

M, (©)=0, M,(0)=0. (19)
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Thus, the formulation of the stability problem consists of stability equations (18) and six boundary conditions
(12), (19). The exact solution for the problem of stability can be derived if the exact solution of the nonlinear static
problem (3)—(6) is put in system (18). There are no exact analytical solutions for the nonlinear static problems of
the curvilinear bars. That is why the solution of the stability problem is derived in a linearized formulation [31]. This
means, that solution of the original static problem in linear formulation is put in system (18).

3.3. Solving the problem of arch equilibrium stability

Consider the problem of half ring equilibrium (an arch with central angle @ = 7) of radius R, under the
dead radial pressure (Figure 2).

Figure 2. Structural model of the half-ring under the radial pressure.

Statically acceptable solution in linear formulation [19] can be written as follows:
N=-qgR, Q=0, M =0. (20)

As the physical equations (5) and functionals (7) and (15) are valid only for the elastic material, then the
distributed pressure shouldn’t outnumber the following values:

oyA 21
q<—— (21)

where oy is elastic limit.

Substitution of the static solution (20) into stability equations (18) leads to the following system:
!
(Ne, +Q,)+(N,) =0;
—NV+(N¢)\,+Q\,)':0; (22)
M, -N(w,—u,)+R(Ng, +Q,) =0,
where, according to the (17), are made the following labels:
k

k 1 k ! !
N, :ﬁl(uv +W,), Q, :%(—R(ﬁv +(wW, —u,)), M, :%gpv.

The solution of the system (22) are the following functions:

u, =%GC1 c039+%GC16’sin 6’+%GC29c036’+ HC, cosv/AG+ HC, sinvAG +

+C5cos6+Cgsin g,

W, = —%Gclecoséhrkﬂlclsin ¢9+kﬂlc2 cos@+%GCzasin 9—%@02 cos O+ 23)

+VAHC, sin VA9 —AHC, cos~/Ab + C sin @ — C, cs 0;
?, =kﬂHclcosé)—kﬂ HC, sin 6+ C; cos</A8 +C, sin /A6,
3 3

where Ci is integration constants and the following labels are used:

qR )R’ (H?(R)R 1.1 dR R
A=|1+= , H= 2 , G=| 24+ —H|1+ = || 24
( kzj Ks (1 qung (kl K ( kzij @9
A e A |
k2 k3
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Boundary conditions (12), (19) lead to the system of linear equations involving integration constants.
After the equivalent transformations it can be derived:

"GC, =0;
VAH sin(JAz)C, =0;
~H-2C, +Asin(JAz)C, =0, (25)
i —%Gn\/xsin (\/K?Z')CZ +2+/AH sin (\/Kﬂ)(cos(\/xzz)ﬂ)q =0.

According to the numerical test, a critical load, calculated from the first two equations of the set (25),
outnumbers the critical load from the last system of two equations. Hence the transcendental equation relative
to the minimal value of the critical load can be derived:

@Hzﬂ(cos(ﬁﬁ)u)—%msin(ﬁ )=0, (26)

k3
Using the labels from (24) and trigonometric transformations, (26) can be rewritten:

T AR\AR® | _
tgz (1+k2]k3 B

2
qu 2
1+7— | 7
( ky ) ks _ 27)

2
2
0 2
1+ﬁ qR3 l.}-é{_ ( ZJ k3 1— 1+qR CIR3
k, k q

k, ) ks 1 K 1_(1+QR)

Transcendental equation (27) makes it possible to determine the value for the critical load (cr for the
circle arch under the dead pressure considering all the stiffnesses of the bar. Equation (27) can be solved
numerically for any arch with any cross-section, though you can’t get a general correlation between loading
and bar stiffness. Moreover, it is very uncomfortable to use such an equation in practice. To get the simple
form for the critical load an asymptotic solution for the equation (27) will be done.

SHIS

Consider the labels for the non-dimensional values:

_ _ ks _
b= I fl—szgl S =

k3
k,R?

(28)

For the cross-sections, widely used in practice, shear and axial stiffnesses are much more than bending
stiffness, that is why &1, & can be considered as small parameters: &, & << 1.

According to (28), (27) can be written as follows:

1+b%& ’
9 50\v%4)) -2 ( (1+b:eZ i
b(1+b% )| & +& + .

1-(1+b% )b

(29)

(1—(1+ b2§1)b2)2

The parameter & can be considered to be dependent on & through the K coefficient, where K is a
certain constant value.

& =&k, (30)
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According to (30), (29) can be written as follows:

(1+ b2, )2
tg(lb (1+b2§1)):i !
2 T 2 2
b (1+b2§) é: (k+1)+ (1+b gl) (1_(1+b2§)b2)2 (31)
H 1-(1+b2 )b? .
The unknown b can be estimated as an asymptotic series with a small parameter &1
b=b, +b& +b,& +..., (32)

where by = \/qKRg/ k3 relatives the value of the critical force gk neglecting axial and shear yielding, i.e. when
ki — o0, ko — o0, which is equivalentto & — 0, & — 0.

In fact, when &1 — 0, & — 0, (29) transforms into

Ap|=4__1
to(%) Ty 33)

The minimal positive root of the transcendental equation (33) is b, ~1.80866. Using the first
expression in (28) a Kornoukhov-Dinnik solution (2) can be derived:

k k
Q. =1.80866° R—f; ~ 3.27R—33. (34)

An approximate formula for the critical force can be derived by substitution of the asymptotic series with

a small parameter (32) into the equation (31), expanding both parts of the equation into a series, setting
coefficients of the same powers equal and considering only terms of the first order of smallness:

O = O (1-0.223‘*%-1.223%). (35)
1

The solution for the model neglecting axial stiffness (Timoshenko beam theory) can be obtained from
the (35) by letting kK1 — oo

0y =y (1—1.223‘1‘5—R). (36)
2

The solution for the model regarding only bending stiffness can be obtained from the (35) by letting
ki — oo, k2 — co.. In that case the Kornoukhov-Dinnik solution (2) is derived.

Using the value for the critical load from (27) or (35) the mode of buckling can be found:

u, = lGC,CZH cosf+H_C,sin /A, 0;

2
w, = %Gcrczesin 9—%GWC2 cos(9+kﬂlc2 cos@—./A, H_,C,cos/A, 6 (37)

o, =—H_BC,sin0+C,sin (A0,
3

where A, , H., G, are labels from (24), where the critical force value was substituted.

cr?

It is easy to prove, that each of the terms in (37) has no left-to-right symmetry, so the buckling mode is
antisymmetry. This goes with the results of the experiments [38], shown in Figure 3.

The comparison of the numerical exact solution (27), asymptotic solutions (35), (36) and a Kornoukhov-
Dinnik solution (2) can be made. Consider an arch with radius R = 12 m, cross-section is a thin-walled tube

with a thickness of 10 mm and a variety of diameters: from 355.6 mm till 1420 mm. Geometrical and stiffness
values can be found in Table 1.
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Figure 3. Buckling mode of the arch under the dead radial load: a — analytical model; b — experiment.

Table 1. Geometrical and stiffness values of the cross-section.

» _!‘L=L_ _—

Magazine of Civil Engineering, 89(5), 2019

b

Cross- Outer diameter, Cross-section Moment of Axial stiffness ~ Shear stiffness Bending stiffness
section [mm] area A, [cm? inertial, [m4 ki =EA/[N] ko=GAKk [N] k3=El [N-m?
355.6x10 355.60 108.57 1.62E-04 2.1714E+09 4.1758E+08 1.5698E+08
377x10 377.00 115.29 1.94E-04 2.3058E+09 4.4342E+08 1.9832E+08
406.4x10 406.40 124.53 2.45E-04 2.4906E+09 4.7896E+08 2.6780E+08
426x10 426.00 130.69 2.83E-04 2.6138E+09 5.0265E+08 3.2332E+08
478x10 478.00 147.02 4.03E-04 2.9404E+09 5.6546E+08 5.1252E+08
530x10 530.00 163.36 5.52E-04 3.2672E+09 6.2831E+08 7.7465E+08
630x10 630.00 194.77 9.36E-04 3.8954E+09 7.4912E+08 1.5465E+09
720%x10 720.00 223.05 1.41E-03 4.4610E+09 8.5788E+08 2.6383E+09
820x10 820.00 254.46 2.09E-03 5.0892E+09 9.7869E+08 4.4387E+09
920x10 920.00 285.88 2.96E-03 5.7176E+09 1.0995E+09 7.0332E+09
1020x10 1020.00 317.29 4.05E-03 6.3458E+09 1.2203E+09 1.0627E+10
1120x10 1120.00 348.71 5.37E-03 6.9742E+09 1.3412E+09 1.5448E+10
1220x10 1220.00 380.12 6.96E-03 7.6024E+09 1.4620E+09 2.1749E+10
1420x10 1420.00 442.95 1.10E-02 8.8590E+09 1.7037E+09 3.9917E+10

Consider the non-dimensional values of critical forces (27), (35), (36) by dividing them by gk and
construct a plot (Figure 4). An equation (27) is solved using the iterative Newton’s method with the help of
Wolfram Mathematica software.

ger [ gK

1.01

1.00

0.99

0.98

0.97

0.96

F____‘_-———-___‘_‘___
i YA
p| {1
BN
LA,
t=10mm
o o o o o o o
> < > > X > >
S EIB8E S 3
8 o 8 == = v ©
) <

720X10

820X10
920X10
1020X10

—— Exact solution with all stiffness (formula (27))
Kornoukhov-Dinnik solution with onlybending stiffness (formula (2))
Asymptotic solution with all stiffness (formula (35))
Asymptotic solution with bending and shear stiffness (formula (36))

1120X10

1220X10
1420X10

Figure 4. The comparison for the critical load values.

Lalin, V.V., Dmitriev, A.N., Diakov, S.F.

47



WmxeHepHo-cTpouTenbHbIi xypHai, Ne 5(89), 2019

According to the comparison of the critical loads, the one, that considers all stiffnesses is tends to be
less, than the one, that regards only bending stiffness. It is worthwile noticing, that inaccuracy between the
Kornoukhov-Dinnik solution (2) and transcendental equation (27) increases as the size of the cross-section
grows. Critical loads, estimated using the asymptotic formulas (35) and (36) are always smaller, than the exact
values, so they improve the margin of safety. Moreover, inaccuracy between the asymptotic formulas and the
solution (27) is less than 0.3 %.

The results can be used in the analytical defining of the stress-strain state of structures, where tensile-
compression and shear stiffnesses make a significant contribution. Such structures include masonry and
concrete arches [39-42], curvilinear elements of dams [43, 44] and long-span steel roofs [45, 46].

4. Conclusions

1. An analytical model of a geometrical non-linear deformation and stability of the plane elastic round
arch taking into account all stiffnesses was worked out. This model contains:

1.1. exact non-linear equilibrium equations;

1.2. variational formulation for the problem is defined as finding stationary point of Lagrange functional,
1.3. static stability functional,

1.4. exact stability equations.

2.Based on the derived equations the problem of the equilibrium stability of the round arch under the
dead radial load was solved. The characteristic transcendental equation and its asymptotic solution as a
number of simple formulas, suitable for practical application, were worked out.

3.The comparison of described solution which regards all the bar's stiffnesses and classical
Kornoukhov-Dinnik solution based on bending stiffness, was made. It was shown, that considering axial and
shear stiffnesses leads to decreasing the values of the critical forces.
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[eomeTpuyeckn HennHenHoe aeopmMmMpoBaHme U YCTONYNBOCTb
ynpyrnx apok

B.B. JlanuH, A.H. Jmumpues*, C.®. Obsikoe
CaHkm-lNemepbypackul nonumexHudyeckul yHugepcumem lempa Benukozo, CaHkm-lTemepbype, Poccus

Keywords: ycTOMYMBOCTE KOHCTPYKLMIA, MOTEPS YCTOMYMBOCTU, FTEOMETPUYECKN TOYHas TEOPUS, «<MepPTBasi»
Harpyska, KpyroBasi apka, >XeCTKOCTb, TOUKa CTalUMoHapHOCTH, doyHKUMoHanN JlarpaHxa

AHHOTaumAa. B crtaTbe paccmartpuBaeTcs Mrockas KpyroBas [ABYXWAPHUPHaa apka, HarpyxeHHas
noTeHUManbHOM «MepTBOM» Harpyskon. [na onucaHus HanpskeHHO-4eopMUMPOBaAHHOMO COCTOSHWUS W
YCTONYMBOCTU PaBHOBECUS UCMOMb3YEeTCs FEOMETPUYECKM TOYHAsA TEOPUS, B COOTBETCTBUN C KOTOPOW Kaxdas
TOYKa CTEPXHSA MMEeeT ABe TpaHCNAUMOHHbIE cTeneHn cBobodbl U OOHY BpallaTenbHyo, HEe 3aBUCSLLYHO OT
TPaHCAAUMOHHBIX. [INA nonyyYyeHWs pelleHnMs He UCNOMb3yITCA HUKaKMe YMpoLleHUs O BenuynHax
nepeMeLLeHnin 1 yrroB NoBOpOTa, a TaKkKe YYNTLIBAIOTCA BCE XECTKOCTU CTEPXKHS — NPOJoNbHas, caBMrosasi
n un3rmbHasa. [llonyyeHbl TOYHble HenuWHenHble auddepeHumanbHble YpaBHEHWS CTaTUYEeCKOW 3adadu.
CdopmynupoBaHa BapvaLoHHasa NOCTaHOBKa B BUAE 3a4a4vum Nnovcka TOYKM CTauMoHapHOCTU pyHKUMoHarna
Tuna Jlarpanxa. [lokazaHa akBMBarneHTHOCTb AMddepeHLnansHon n BapnaunmoHHOM NOCTaHOBOK. onyyeHs!
TOYHbIE YpaBHEHMS YCTOWYMBOCTU, Y4YUTbIBAIOLIME TFEOMETPUYECKU HernuHeHoe pAedopmupoBaHne B
OOKPUTUYECKOM COCTOSIHUW. Ha ocHOBE Nony4YeHHbIX ypaBHEHUI peLleHa 3afada yCTOMYMBOCTM paBHOBECUS
KPYroBom apku npu AenNCTBUM «MEPTBOro» pagmanbHOro AaBfieHUsi C YY4EeTOM BCEX XECTKOCTEN CTEpPXHS.
lMonyyeHO xapakTepucTUyeckoe TpaHCLEeHOEHTHOE YpaBHEHME, a TaKkKe acCUMNTOTUYECKOE peLleHne 3Toro
ypaBHEHUs B BUAe NPOCTbIX OPMYI, NPUrOAHLIX ANA NPaKTUYeCcKoro NpUMeHeHuns. BoinonHeHo cpaBHeHWe
NOSYyYEHHOro PEeLLEHUS, YYUTLIBAIOLLIErO BCE XECTKOCTU CTEPXKHS, C KNACCUYECKUM PELLEHNEM, YYUTLIBAIOLLUM
TONBKO N3rMBHYI0 KECTKOCTb.
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