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Abstract. The ballistic behaviour of a bi-layer ceramic-metal target against steel projectile 
with varying layer thicknesses has been investigated using a three-dimensional finite element 
model. The bi-layer target was made of alumina 99.5 % ceramic front layer and aluminium 
2024-T3 metallic back layer with an areal dimension of 100×100 mm and the thickness of 
both layers were varied, with the total thickness of the composite being kept as 10 mm and 
20 mm. A steel 4340 cylindrical blunt-nosed projectile was used with 30 grams mass and 
10.9 mm diameter. The Johnson-Holmquist 2 (JH-2) constitutive model was used for 
reproducing the high strain behavior of alumina and Johnson-Cook (JC) model was used for 
aluminium alloy and steel. The impact velocity of the projectile was varied in the range  
200-700 m/s for 10 mm total thickness and 500-800 m/s in the case of 20 mm total thickness 
for studying the effects of thickness ratios on ballistic resistance of the bi-layer target. The 
residual velocities were compared and the ratio of front to back layer providing the highest 
ballistic limit velocity was found for both cases. 
Keywords: Ballistic resistance, Ceramic-metallic target, ballistic limit velocity 
 
 
1. Introduction  
The behaviour of ceramic under large deformation and high strain rate loading has been 
extensively studied for its application in protective structures. The ceramic is widely used in 
composite armours due to its higher compressive strength, higher hardness, and lower density. 
In case of a ballistic impact, the ceramic layer shatters and erodes the high-velocity incoming 
projectile leading to distortion of the nose and drop in the momentum of the projectile. The 
ceramic based composite armour has its primary application as protective layers in mobile 
structures like vehicles, aircraft, and body armour, where lightweight is a prime 
requirement [1].  

When the projectile impacts the ceramic layer of the composite target, the ceramic is 
broken instantly. The functional utility of the metallic layer in composite armour is to support 
the ceramic fragments and absorbing the remaining kinetic energy of the projectile while 
undergoing plastic deformation. The alloys of aluminium have lesser weight density and are 
commonly used as backing material having sufficient tensile strength to support ceramic layer 
during a ballistic impact. The ballistic resistance capacity of alumina based bi-layer composite 
target with different aluminium alloys as the backing layer was varied significantly at lower 
velocities when impacted by steel 4340 blunt cylindrical projectile. The performance of 
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alumina backed by four different aluminium alloys; namely 1100-H12, 6061, 2024-T3 and 
7075 was being compared. The bi-layer target with aluminium alloys 7075 backing layer 
shows the best ballistic resistance. The ballistic resistance of bi-layer target was found to be 
lower in the case of aluminium alloy 6061 backing layer in comparison of alloy 2024 and 
1100 backing layer although 6061 alloy has higher yield strength than alloy 2024 and 1100. 
The performance of the bi-layer target was found to be not showing dependence only on the 
yield strength of the backing material [2]. The tensile strength and hardness of aluminium 
2024 were reported to be increased with heat treatment leading to superior ballistic 
performance of alumina-aluminium composite target against 7.62 mm AP projectiles. The 
addition of cover plate by reducing the thickness of other components to maintain a constant 
thickness reduces the ballistic efficiency of a composite target. The alumina-aluminum bi-
layer target was found to be having higher ballistic resistance for the ratio of front layer 
alumina to back layer aluminium lying in the range of 1-3 [3]. The depth of penetration in an 
aluminium block of 100 mm cube with alumina layer protection and without alumina layer 
protection was compared against high velocity impact of steel spheres of 6.35 mm diameter. 
The alumina layer of 4 mm thickness backed by 2 mm aluminium layer was provided with a 
gap of 30 mm in front of aluminum cube. The depth of penetration was always found to be 
lesser for alumina layer protected block. The weight saving for the same level of protection 
with alumina layer protection was higher for impact velocities under 1800 m/s. The diameter 
of the damage zone in the aluminium block was measured and found to be higher in the case 
of alumina protection due to the shattering of the projectile after interaction with the ceramic 
layer. The brittle nature of the projectile leads to lesser depth of penetration for incidence 
velocities higher than 1800 m/s for aluminium block without alumina protection [4]. The 
ballistic behaviour of 100 mm square alumina (Al2O3) target of 5 mm thickness without any 
back layer was investigated against the impact of steel 4340 ogival projectile of 10.9 mm 
shank diameter. The velocity of the impacting projectile was achieved in a range of  
52-275 m/s. The damage area in ceramic was found to be increasing and ceramic fragment 
size was found to be decreasing with the increase in incidence velocity of the projectile. The 
damage in the projectile and ceramic target was found to be increased in the case of oblique 
impact of 15º and 30º obliquity [5]. The diameter to length ratio (D/L) of a steel 4340 
projectile was varied while maintaining constant mass to study the effects of D/L ratio on the 
ballistic behaviour of a bi-layer alumina-aluminium target. The bi-layer target attained higher 
ballistic limit velocity against projectiles having higher D/L ratios [6]. The properties of 
metallic backing layer as mentioned like tensile strength, hardness, and nature of impacting 
projectile and ratio of the front layer to back layer effects the performance of a bi-layer target. 
The thickness ratios of the front layer to the back layer is found to be of paramount 
importance for design optimization in terms of weight, for providing desired level of 
protection at minimum possible weight. The optimization of thickness of layers in terms of 
constant total thickness involves the determination of the ratio providing maximum ballistic 
limit velocity for a given total thickness of a composite target.  

In the present study, a finite element three-dimensional model has been developed to 
compare the ballistic behaviour of alumina 99.5% and aluminium 2024-T3 composite target 
of varying layer thickness ratios. The optimum ratio of front to back layer thickness for a 
constant total thickness has been achieved. Two cases of 10 mm total thickness and 20 mm 
total thickness of the target have been considered. The residual velocities for three different 
ratios have been compared for both cases. 
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2. Constitutive Models 
The Johnson-Holmquist-2 (JH-2) model has been used for brittle ceramic and Johnson-Cook 
(JC) model has been applied for metallic projectile and back layer for reproducing their 
behaviour under ballistic load. 

Johnson-Holmquist-2 (JH-2). The JH-2 [7] model proposed by Johnson and 
Holmquist has been widely used for modelling the behaviour of ceramic under loading 
conditions resulting in high strain rate, large deformation, and high pressure and high stress 
[6,8-9]. The model gives the equivalent strength related to pressure and damage, see Fig. 1. 
The normalized equivalent stress for strength:  
𝜎𝜎∗ = 𝜎𝜎𝑖𝑖∗ − 𝐷𝐷 �𝜎𝜎𝑖𝑖∗ − 𝜎𝜎𝑓𝑓∗� (1) 

Where, 𝜎𝜎𝑖𝑖∗ and 𝜎𝜎𝑓𝑓∗ are normalized intact and fracture strength, D is the damage varying 
between 0 for intact material and 1 for fully fractured material. The equivalent stresses are 
normalized by dividing the value by the equivalent stress value at Hugoniot elastic limit 
(HEL). The HEL is the net compressive stress corresponding to the uniaxial strain (shock 
wave) exceeding the elastic limit of the material. The HEL contains both the pressure and 
deviator stress components [10]. 

 

 

 
Fig. 1. The JH-2 Model [10] 
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The intact and fracture strength are:  
𝜎𝜎𝑖𝑖∗ = 𝐴𝐴(𝑃𝑃∗ + 𝑇𝑇∗)𝑁𝑁(1 + 𝐶𝐶 ln 𝜀𝜀̇∗) (2) 
𝜎𝜎𝑓𝑓∗ = 𝐵𝐵(𝑃𝑃∗)𝑀𝑀(1 + 𝐶𝐶 ln 𝜀𝜀̇∗) (3) 

Where, 𝐴𝐴,𝐵𝐵,𝐶𝐶,𝑀𝑀, and 𝑁𝑁 are the material constants. The normalized pressure 𝑃𝑃∗ is the 
actual pressure divided by pressure at HEL; whereas normalized maximum tensile hydrostatic 
pressure 𝑇𝑇∗ is the maximum tensile hydrostatic pressure the material can withstand divided by 
pressure at HEL. The dimensionless strain rate 𝜀𝜀̇∗ is the actual equivalent strain rate divided 
by reference strain rate. The damage for fracture accumulated in the JH-2 model as:  

𝐷𝐷 = ∑∆𝜀𝜀𝑝𝑝
𝜀𝜀𝑝𝑝
𝑓𝑓 , (4) 

where ∆𝜀𝜀𝑝𝑝 is the equivalent plastic strain during a cycle of integration and is 𝜀𝜀𝑝𝑝
𝑓𝑓 the plastic 

strain to fracture, calculated as:  
𝜀𝜀𝑝𝑝
𝑓𝑓 = 𝐷𝐷1(𝑃𝑃∗ + 𝑇𝑇∗)𝐷𝐷2, (5) 

where 𝐷𝐷1 and 𝐷𝐷2 are the damage constants. The pressure is related to volumetric strain (𝜇𝜇) 
before and after damage accumulations are:  
𝑃𝑃 = 𝐾𝐾1𝜇𝜇 + 𝐾𝐾2𝜇𝜇2 + 𝐾𝐾3𝜇𝜇3, (6) 
𝑃𝑃 = 𝐾𝐾1𝜇𝜇 + 𝐾𝐾2𝜇𝜇2 + 𝐾𝐾3𝜇𝜇3 + ∆𝑃𝑃, (7) 
where 𝐾𝐾1, 𝐾𝐾2 and 𝐾𝐾3 are pressure constants, and 𝐾𝐾1 is the bulk modulus of the material. The 
material parameters have been taken from [5], see Table 1. The parameters determination of a 
material needs extensive work consisted of experiments at high strain rate and high pressure 
and exhaustive numerical study [10].  
 
Table 1. JH-2 constitutive model parameters for alumina 99.5% [5] 
Material parameters Numerical values 
Density (kg/m3) 3700 

 
EOS Polynomial 
Bulk modulus, K1 (GPa) 130.95 
Pressure constant, K2 (GPa) 0 
Pressure constant, K3 (GPa) 0 

 
Strength model JH-2 
Shear modulus, G (GPa) 90.16 
Hugoniot elastic limit (HEL) (GPa) 19 
Intact strength constant, A 0.93 
Intact strength exponent, N 0.6 
Strain rate constant, C 0 
Fracture strength constant, B 0.31 
Fracture strength exponent, M 0.6 
Normalized maximum fractured strength 1 
Pressure at HEL (GPa) 1.46 

 
Failure model JH-2 
Damage constant, d1 0.005 
Damage exponent, d2 1 
Bulking factor, β 1 
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Johnson-Cook (JC). The behaviour of aluminium backing layer and steel 4340 
projectile under the impact load have been modelled using the Johnson-Cook (JC) elasto-
viscoplastic material model [11-12]. The JC model has been used for aluminium [13-14] and 
steel [15-16] under large deformations at high strain rate loading in the available literature. 

The JC model is used for modelling the flow and fracture behaviour of metals 
incorporating the effects of material yielding, plastic flow, isotropic strain hardening, strain 
rate hardening, and thermal softening. The equivalent von Mises stress 𝜎𝜎�  represented as:  
𝜎𝜎� = {𝐴𝐴 + 𝐵𝐵(𝜀𝜀�̅�𝑝𝑝𝑝)𝑛𝑛} �1 + 𝐶𝐶 ln �𝜀𝜀�̇

𝑝𝑝𝑝𝑝

�̇�𝜀0
�� �1 − 𝑇𝑇�𝑚𝑚�, (8) 

where 𝐴𝐴, 𝐵𝐵, 𝑛𝑛, 𝐶𝐶 and 𝑚𝑚 are the material parameters. 𝜀𝜀�̅�𝑝𝑝𝑝 , 𝜀𝜀̅̇𝑝𝑝𝑝𝑝 𝜀𝜀0̇ are equivalent plastic strain 
and the equivalent plastic strain rate and a reference strain rate. 𝑇𝑇�  is the non-dimensional 
temperature:  

𝑇𝑇� = �

0                                                        for T < T0
(T−T0)

(Tmelt−T0)                                              for T0 ≤ T ≤ Tmelt
1                                                        for T > Tmelt

 (9) 

where T0 is the transition temperature and Tmelt is the melting point temperature. The damage 
is accumulated in a similar manner as discussed in JH-2 model, see Eqn. (4). The equivalent 
plastic strain at failure represented as a function of stress-triaxiality, strain rate, and adiabatic 
effects:  

𝜀𝜀�̅�𝑓
𝑝𝑝𝑝𝑝 =  �𝐷𝐷1 + 𝐷𝐷2𝑒𝑒𝑒𝑒𝑒𝑒 �𝐷𝐷3

𝜎𝜎𝑚𝑚
𝜎𝜎�
�� �1 + 𝐷𝐷4𝑙𝑙𝑛𝑛 �

�̇̅�𝜀
𝑒𝑒𝑙𝑙

�̇�𝜀0
�� [1 + 𝐷𝐷5𝑇𝑇�], (10) 

where 𝐷𝐷1 – 𝐷𝐷5 are the material damage parameters. The determination of all the parameters of 
JC model has been discussed in detail in Iqbal et al. [16]. The JC model parameters for 
aluminium 2024-T3 and steel 4340 are given in Table 2 [6].  
 
Table 2. The parameters of JC Model [6] 
Constants with units Al 2024-T3 Steel 4340 
Density (Kg/m3) 2785 7770 
EOS Shock Linear 
Strength Model JC JC 
Shear Modulus, G (GPa) 26.92 77 
Static Yield Strength, A (GPa) 0.167 0.950 
Strain Hardening Constant, B (GPa) 0.596 0.725 
Strain Hardening Exponent, n 0.551 0.375 
Strain Rate Constant, C 0.001 0.015 
Thermal Softening Exponent, m 0.859 0.625 
Melting Temperature, K 893 1793 
Reference Strain Rate 1 1 
Failure Model JC JC 
Damage Constant, D1 0.112 -0.8 
Damage Constant, D2 0.123 2.1 
Damage Constant, D3 1.5 -0.5 
Damage Constant, D4 0.007 0.002 
Damage Constant, D5 0 0.61 
 
3. Validation 
The experimental data of a previous study was used for the validation of the numerical model 
developed in the present study [5]. The alumina 99.5% ceramic with 95×95 mm areal clear 
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span and 5 mm thickness was impacted on by steel 4340 ogival nosed projectiles of 10.9 mm 
shank diameter and 30 grams mass. The residual velocity was reported to be 153 m/s 
corresponding to an incidence velocity of 215 m/s. The numerical simulation model 
developed in the present study gave the residual velocity of 151 m/s with a minor error of 
only 1%. The mode of failure of ceramic was also closely matched. Henceforth, the model 
developed was found to be giving rational predictions. 
 
4. Numerical Model 
The finite element simulations have been performed on ABAQUS/Explicit finite element code 
employing validated JH-2 and JC model for the target and the projectile material. The 
alumina 99.5% with a planar dimension of 95 × 95 mm has been used with varied thickness. 
The alumina is backed by aluminium 2420-T3 layer of 95×95 mm planar dimension. The 
interaction between both the layers has been provided as general contact with the kinematic 
contact algorithm having a coefficient of friction 0.5. The projectile has been taken as a 
10.9 mm diameter cylinder with length 46 mm, weighing equivalent to 30 grams. The 
interaction between the projectile and centre zone of the target was modelled using the surface 
to surface contact with kinematic contact algorithm assuming negligible friction due to high 
velocity of the projectile and small thickness of the target.  
 The target was restrained with respect to translation and rotation at the peripheral edges. 
A typical model of the target with and without meshing is shown in Fig. 2, showing the 
meshing style and boundary conditions. The central portion of the target of size  
50 mm × 50 mm is provided with linear C3D8R elements of size 0.6 mm × 0.6 mm × 0.6 mm, 
while the remaining portion of the plate was modelled using 1 mm × 1 mm × 1 mm sized 
linear C3D8R elements. The linear C3D8R elements of size 0.6 mm × 0.6 mm × 0.6 mm were 
used for the meshing of the projectile. 
 

 
 

Fig. 2. The typical target (a) Meshing of the target (b) restrained against all degrees of 
freedom at the edges 

 
Six cases of different thickness of the layers have been investigated in the present study, 

see Table 3. The total thickness of bi-layer composite target has been taken as 10 mm and 
20 mm. Three ratios of front layer to back layer thickness (1, 1.5 and 2.3) were considered for 
both 10 mm and 20 mm thickness. The least thickness ratio of front layer to back layer has 
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been taken equivalent to unity as the ballistic resistance of a bilayer target reduced 
significantly for the ratio of front layer to back layer thickness less than unity [17].  
 
Table 3. The different configuration based on ratio of front layer to back layer thickness 
S. No.  Cases Front layer thickness 

(mm) 
Back layer thickness 
(mm) 

Ratio of front layer to 
back layer 

1 10R1 5 5 1 
2 10R2 6 4 1.5 
3 10R3 7 3 2.3 
4 20R1 10 10 1 
5 20R2 12 8 1.5 
6 20R3 14 6 2.3 
 
5. Results and discussions 
The bi-layer alumina-aluminium target has been impacted by 10.9 mm diameter cylindrical 
blunt projectile with incidence velocity ranging, 200-700 m/s for 10 mm total thickness and 
500-800 m/s for 20 mm total thickness. When the projectile impacts the ceramic front layer, 
the ceramic gets comminuted in front of the projectile, and cracks are initiated and propagates 
in the ceramic. The fracture conoid is formed in the ceramic layer by the interaction of radial 
and circumferential cracks. The load is transferred to the backing layer through this fracture 
conoid. The remaining energy of the projectile is dissipated by plastic deformation of the 
backing layer. As the stresses in the backing layer reaches to failure stress of the metallic 
backing layer, the plugging occurs, see Fig. 3. 
 

 
Fig. 3. The failure mechanics of 10R1 configuration (a) 40 µs (b) 80 µs when impacted with 

an 300 m/s incidence velocity 
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The residual velocities have been compared for three cases of the different front layer to 
back layer thickness ratios, see Table 4. At the incidence velocity of 200 m/s the 10R1 ratio 
gave the best performance with the lowest residual velocity among the three cases. In the 
variation of incidence velocities from 300 to 700 m/s with an interval of 100 m/s, the 10R2 
configuration seems to perform better with lesser residual velocities among the three cases. 
Although, the difference in the residual velocities is of very small order but overall best 
ballistic performance was found for the 10R2 configuration in terms of residual velocities.  
 
Table 4. The residual velocities of the projectile at different incidence velocities for three 
cases of varying front to back layer thickness ratio 
S. No.  Incidence Velocity (m/s) Residual Velocity (m/s) 

10R1 10R2 10R3 
1 200 27 46 45 
2 300 170 168 163 
3 400 259 253 255 
4 500 342 335 342 
5 600 439 426 444 
6 700 532 518 521 

 
The variation in the ballistic limit velocity is also found to be very small. The ballistic 

limit velocity is worked out as the average of lowest incidence velocity with complete 
perforation and the highest incidence velocity with no perforation. The ballistic limit 
velocities are presented in Table 5. The best performance in terms of ballistic limit velocity is 
found to be for 10R1 configuration; the ratio of front layer to back layer thickness is 
equivalent to unity. 

 
Table 5. The values ballistic limit velocities for 10 mm composite bi-layer target 
S. No. Configuration Ballistic limit velocity (m/s) 

1 10R1 185 
2 10R2 175 
3 10R3 165 

 
The failure of both the layer in the bi-layer target of 20 mm total thickness is shown in 

Fig. 4. The failure of the ceramic layer with formation of fracture conoid is evident at 20 µs 
and plugging of the back layer aluminium is occurred at 80 µs. The mushrooming of the 
projectile has also occurred in the initial phase of the interaction of the projectile with the 
ceramic layer. 
 

166 M.K. Khan, M.A. Iqbal, V. Bratov, N.F. Morozov, N.K. Gupta



 
Fig. 4. The failure mechanics of 20R1 configuration (a) 20 µs (b) 80 µs when impacted with 

an 700 m/s incidence velocity 
 

The residual velocities for 20 mm total thickness have been compared in Table 6. The 
incidence velocities has been taken in the range, 500-800 m/s, with an interval of 100 m/s. 
The 20R2 case was found to be having minimum residual velocities among the three ratios. 
The residual velocities are much higher for both the case 20R1 and 20R2 than 20R2 at 
relatively lower incidence velocities. 

 
Table 6. The residual velocities of the projectile at different incidence velocities for three 
cases of varying front to back layer thickness ratio 
S. No.  Incidence Velocity (m/s) Residual Velocity (m/s) 

20R1 20R2 20R3 
1 500 109 0 244 
2 600 236 133 298 
3 700 295 235 353 
4 800 336 321 427 
 

The ballistic limit velocities are given in Table 7. The highest ballistic limit velocity has 
been achieved in the case of 20R2; the ratio of front layer thickness to back layer thickness 
was 1.5. The ballistic limit velocity is very close for 20R1 and 20R2, although 20R2 is also 
found to be giving lesser values of residual velocities for corresponding incidence velocities 
which means higher level of dissipation of the kinetic energy of the incoming projectile.  

 
Table 7. The values ballistic limit velocities for 10 mm composite bi-layer target 
S. No. Configuration Ballistic limit velocity (m/s) 

1 20R1 490 
2 20R2 505 
3 20R3 415 

 
The ratio of front layer to back layer thickness giving the highest ballistic limit velocity 

was found to be 1 and 1.5 for 10 mm and 20 mm total thickness respectively among the three 
cases considered for both the thicknesses.  
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6. Conclusion 
The variation of ballistic performance of alumina 99.5% ceramic backed by aluminium  
2024-T3 with varying thickness of the layers was studied. The thickness of front layer and 
back layer of the composite target was varied with the total thickness being kept constant at 
10 and 20 mm. 

Three ratios of front layer to back layer thickness 1, 1.5, and 2.3 were considered. The 
composite bi-layer target was impacted by blunt-nosed cylindrical steel 4340 projectile. 

The residual velocities for three ratios were compared for 10 mm composite target 
under incidence velocities in the range, 200-700 m/s. The variation in the residual velocities 
was not very high, although overall 1.5 ratio was giving lesser residual velocities for most of 
the incidence velocities. 

The ballistic limit velocity was found to be highest when the ratio of front layer to back 
layer thickness was equivalent to unity for 10 mm composite target. Although, the 
performance of the three cases was not significantly varying in the range of ratios considered.  

The 20 mm composite target was impacted with incidence velocities lying in the range, 
500-800 m/s. The residual velocities were found to be significantly lesser for 1.5 ratio and 
also the ballistic limit was highest for this ratio.  

The ratio of front layer to back layer thickness giving the highest ballistic limit velocity 
was found to be varying with the variation in total thickness of the composite target. 
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Abstract. We apply the memory-dependent derivative theory of thermoelasticity to the one-
dimensional problem for a viscoelastic spherical cavity subjected to thermal loading. The 
predictions of the theory are discussed and compared with those for the coupled theory of 
thermoelasticity. 
Keywords: thermo-viscoelasticity, thermoelectric properties, memory-dependent derivative, 
spherical cavity, Laplace transforms, numerical results 
 
 
1. Introduction 
Biot [1] formulated the theory of coupled thermoelasticity to eliminate the paradox inherent in 
the classical uncoupled theory that elastic changes have no effect on temperature. Lord and 
Shulman [2] introduced the theory of generalized thermoelasticity in one relaxation time by 
using the Maxwell-Cattaneo law of heat conduction instead of the conventional Fourier's law. 
The heat equation associated with this theory is hyperbolic and hence eliminates the paradox 
of infinite speeds of propagation inherent in both the uncoupled and the coupled theories of 
thermoelasticity.  

The uniqueness of solution for thermoelasticity theory was proved under different 
conditions by Ignaczak [3], Sherief [4], Chandrasekharaiah [5], and thermo-viscoelasticity 
theory by Ezzat and El-Karamany [6,7]. Ezzat and Awad [8,9] extended this theory to deal 
with micropolar materials. 

An immediate change amongst electricity and heat by utilizing thermoelectric materials 
has pulled in much consideration as a result of their potential applications in Peltier coolers 
also, thermoelectric power generators [10]. Among the commitments in continuum mechanics 
of thermoelectric materials are crafted by Shercliff [11] and Ezzat and Youssef [12,13] in 
MHD. 

Differential equations of fractional order have been the focal point of numerous 
examinations because of their continuous appearance in different applications in liquid 
mechanics, viscoelasticity, science, material science, and building. Povstenko [14] 
investigated new thermoelasticity models that use fractional derivatives. The fractional-order 
theory of thermoelasticity was derived by Sherief et al. [15]. As of late, Ezzat [16-19] and 
Ezzat, El-Karamany [20,21] and Ezzat et al. [22,23] set up another model of partial heat 
conduction equation utilizing the Taylor-Riemann series extension of time-fractional order.  
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Wang and Li [24] proposed the memory-dependent derivative (MDD) to characterize 
the memory effect of systems and materials. Yu et al. [25] introduced the first-order MDD 
model to describe the rate of heat flux in the Lord and Shulman generalized thermoelasticity. 
In this model, the heat transfer equation has been modified, which may be better than 
fractional equations. It may be mentioned that the definition of MDD is more intuitive in the 
perception of physical importance, and therefore, the resultant differential equations based on 
memory-dependent are more efficient in real-world applications [25]. Recently, memory-
dependent heat transfer has been applied to solve many related thermoelastic and thermo-
viscoelastic problems [26–28]. 

Ezzat et al. [29] proposed the generalized Ohm and Fourier laws for elasto-
thermoelectric materials subjected to MDD heat transfer when the medium is permeated by an 
external magnetic field, as 

= +o o ok T
t

σ µ∂ ∧ − ∇ ∂ 
uJ E H , (1) 

,oD k Tωω π+ = − ∇ +q q J  (2) 
where q is the heat flux vector and ω  is the time delay.  

Among the few works devoted to MDD applications of heat transfer equation for 
thermoelectric materials, we can refer to the survey of Ezzat and El-Bary [30],  
Ezzat et al. [31], Hendy et al. [32] and Ezzat [33].  

In light of the advantage in describing the memory effect of thermoelectric materials, 
we solve a 1D thermal shock problem for a viscoelastic spherical cavity by using the memory-
dependent derivative theory. The solution is obtained for different values of the parameters of 
the MDD model. Some comparisons are made and shown in figures to estimate the effects of 
the time-delay parameter for different forms of kernel function on all studied fields. 
 
2. Physical problem  
Let ( , , )r ψ ϕ  denote spherical polar coordinates. We shall consider a homogeneous, isotropic, 
thermoelectric viscoelastic medium occupying the region a r≤ < ∞ , where a is the radius of 
the spherical cavity. The surface of the cavity is taken to be traction-free and subjected to a 
thermal shock that is a function of time. A constant magnetic field of intensity H with 
components (0, , 0)oH  permeates the medium in the absence of an external electric field E. 
Since no external electric field is applied, and the effect of polarization of the ionized medium 
can be neglected, it follows that the total electric field E vanishes identically inside the 
medium [34]. 

Because of spherical symmetry, the displacement vector u will have the components 
( , ), 0, 0ru u r t u uψ ϕ= = = . (3) 

The components of the electric current density vector J are [17] 

, 0,r o o o o
T uJ k u u H
r tψ ϕσ µ∂ ∂

= − = =
∂ ∂

. (4) 

The components of the electromagnetic induction vector are given by [18] 
=constant, 0o o o rB H B B Bψ ϕµ= = = = . (5) 

The Lorentz force components are given by [19]  
2 2 , 0, 0r o o o

uF H F F
t ψ ϕσ µ ∂

= − = =
∂

. (6) 

The components of strain tensor are given by [37]: 

, , 0rr r r
u ue e e e e e
r rψψ ϕϕ ψ ϕ ψϕ
∂

= = = = = =
∂

. (7) 

Thermoelectric viscoelastic spherical cavity with memory-dependent derivative 171



The figure-of-merit oZT at some reference temperature oT [35]:  
2

.o o
o o

kZT T
k

σ
=  (8) 

The first Thomson relation at oT [36]:  
,o o ok Tπ =  (9) 

where oπ  is the Peltier coefficient at To. 
The components of the stress tensor are given by [38, 39] 

2 ( )
3rr o o o

uK e R K T T
r

σ γ
 ∂ = + + − −   ∂   



, (10) 

2 ( )
3o o o

uK e R K T T
rψψ ϕϕσ σ γ   = = + + − −   

   



, (11) 

0r rψ ϕ ψϕσ σ σ= = = , (12) 
where e is the cubical dilatation given by 

2
2

2 1 ( )rr
u ue e e e r u
r r r rψψ ϕϕ
∂ ∂

= + + = + =
∂ ∂

, (13) 

and ( )R t


is relaxation function given by 

* * * 1

0

( ) 2 1
t

tR t A e t dtβ αµ − − 
= − 

 
∫



, (14) 

where α*, β*, and A* are non-dimensional empirical constants and *)(αΓ  is the Gamma 

function, *
*

*0 1, * 0, 0 * , ( ) 0, ( ) 0
( )

dA R t R t
d t

βα β
α

< < > ≤ < > <
Γ

 

[40]. 

The equation of motion is given by [41]: 
2

2
2

2 .
3 o o o

u e u TR K B
t r t r

r σ γ∂ ∂ ∂ ∂ = + − − ∂ ∂ ∂ ∂ 



 (15) 

The MDD energy equation [28]: 

( ) ( )21 1o E o
T ek ZT T D C T
t tωω r γ∂ ∂ + ∇ = + + ∂ ∂ 

 , (16) 

where 2∇  is the one-dimensional Laplace's operator in spherical polar coordinates, given by 
2

2 2
2 2

2 1 r
r r r r r r
∂ ∂ ∂ ∂ ∇ = + =  ∂ ∂ ∂ ∂ 

 

and in the memory-dependent derivative theory, the first order of function f which is 
essentially characterized in a vital type of a typical subordinate with a part work on a slipping 
interim [24]: 

1( ) ( ) ( ) d
t

t

D f t K t fω
ω

ξ ξ ξ
ω −

′= −∫ , 

where ω is the time delay and ( )K t ω−  is the kernel function in which they can be chosen 
freely.  
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Let us introduce the following non-dimensional variables:  
2 *

3

2 2
2

( ), , , , , ,

2/ , ,  ,  , , ' .
3

 

o
o o o o o o

o o o o

o
o E o o

E o o

T Tr c r u c u t c t q q
K K k c

K H KC k c M T R R
C K K

o o o

o

σ γ γζ ζ ζ σ q
r ζ

γ σ µζ r ε
r r η γ

*−′ ′ ′ ′= = = = = =

= = = = = =
 

   

 

The Equations (15), (16), (10) and (11) in non-dimensional form become 

( )
2

2 1u e uR M
t r t r

q∂ ∂ ∂ ∂
= + − −

∂ ∂ ∂ ∂



, (17) 

( )2(1 ) 1o
eZT D

t tω
qq ω ε∂ ∂ + ∇ = + + ∂ ∂ 

, (18) 

( )1rr
ue R
r

σ q
 ∂

= + + − ∂ 



, (19) 

( )1 ue R
rψψ ϕϕσ σ q = = + + − 

 



. (20)  

The boundary conditions are taken as follows: 
(i) The warm limit condition is that the outside of the cavity exposed to a warm stun that is 

a component of time 
( , ) ( ),r t f t r aq = = . (21) 
(ii) The outside of the cavity are without footing (zero stress) i.e. 
( , ) 0,rr r t r aσ = = . (22) 

Condition (21) means that the surface of the cavity is traction-free, that is, there are no 
mechanical loads on the surface while Condition (22) means that the surface of the cavity is 
kept at a known temperature that is a function of time. 

The initial conditions are taken to be homogeneous, that is, we take 

0
0

( , )( , ) 0, 0
t

t

u r tu r t
t=

=

∂
= =

∂
, (23a) 

0
0

( , )( , ) 0, 0,
t

t

r tr t
t

qq
=

=

∂
= =

∂
 (23b) 

0
0

( , )( , ) 0, 0rr
rr t

t

r tr t
t

σσ
=

=

∂
= =

∂
, (23c) 

0
0

( , )
( , ) 0, 0,

t
t

r t
r t

t
ψψ

ψψ

σ
σ

=
=

∂
= =

∂
 (23d) 

0
0

( , )
( , ) 0, 0

t
t

r t
r t

t
ϕϕ

ϕϕ

σ
σ

=
=

∂
= =

∂
. (23e) 

 
3. The analytical solutions in the Laplace-transform domain 
Playing out the Laplace transform characterized by the connection 

0

( , ) { ( , )} e ( , ) dstg x s L g x t g x t t
∞

−= = ∫  

of both sides Eqs. (17)-(22), and using the initial Conditions (23), we obtain 
2( ) es s M u

r r
qβ ∂ ∂

+ = −
∂ ∂

,  (24) 
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( )2 eϖ q ϖ ε∇ − = , (25) 

2
rr

ue
r

σ β q
 ∂

= + − ∂ 
, (26) 

2 ue
rψψ ϕϕσ σ β q = = + − 

 
, (27) 









+
Γ

−= **)(
*)(*1

3
4)( αβ

αµ
s
A

sK
sR

o

, (28) 

where 
2 2

2
2 2

2 2 2( ) (1 )(1 ) ( 2 )s sn m mG s e m n e
s s s

ω ω

ω ω ω
− −= − − + − − + , (29) 

and 
2 2

2 2( )u uL R sR s
x x

 ∂ ∂
= ∂ ∂ 



, 2 1 sRβ = + , 1 ( )
1 o

G ss
ZT

ϖ
 +

=  + 
.  

Applying the divergence operator on both sides of Equation (24) we obtain the equation 
of motion in the form 

2 2 2( )s s M eβ q ∇ − + = ∇  . (30) 

Removing q between Eqs. (25) and (30), we are getting 

{ }2 4 2 2( ) ( ) ( ) 0s s M s s M eβ ϖ β ε ϖ ∇ − + + + ∇ + + =  . (31) 

The above equation can be made as a factor 
( ) ( )2 2 2 2

1 2 0eξ ξ∇ − ∇ − = , (32) 

where 1 2,ξ ξ  are the roots with positive real parts of the characteristic equation 
2 4 2 2( ) ( ) ( ) 0s s M s s Mβ ξ ϖ β ε ξ ϖ − + + + + + =  . (33) 

The roots of the characteristic equation are given by 
22 2 2

1,2 2

1 ( ) ( ) ( ) ( ) 4 ( )
2

s s M s s M s s Mξ ϖ β ε ϖ β ε ϖε
β

  = + + + ± + − + + +   
. 

Because of linearity, Eq. (32) solution can be written as 
1 2e e e= + , (34) 

where  
( ) ( )2 2 2 2

1 1 2 20, 0e eξ ξ∇ − = ∇ − = . (35) 
We consider the equation 

( )2 2 0fξ∇ − = , 
this can be written as 

2
2

2

2 0.f f f
r r r

ξ∂ ∂
+ − =

∂ ∂
 

Taking the replacement 
hf
r

= , 

the equation above is reduced to 
2

2 2 2
2

d d 1 0.
d d 4

h hr r r h
r r

ξ + − + = 
 

 

The solution of this equation bounded at infinity has the form 
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1/2 ( )h K rξ= , 
where 1/2 ( )K ⋅  is the modified Bessel function of the second kind of the order of 1/2. 

The solution of Eq. (32) can be written on the basis of the above outcomes as 
2 2

1 1/2 1 2 1/2 2
1 ( ) ( )e A K r B K r
r

ξ ξ ξ ξ = +  , (36) 

where A and B are parameters depending on s. 
Eliminating e between Equations (25) and (30), we obtain 

( )( )2 2 2 2
1 2 0ξ ξ q∇ − ∇ − = . (37) 

The solution of Eq. (32) that is compatible with Eqs. (25) and (36) is given by 

( ) ( )2 2 2 2
1 1/2 1 2 1/2 2

1 ( ) ( ) ( ) ( ) .A s s M K r B s s M K r
r

q β ξ ξ β ξ ξ = − + + − +   (38) 

Differentiating Eqs. (36) and (38) with respect to r and substituting the results into 
Eq. (24) gives 

[ ]1 3/2 1 2 3/2 2
1 ( ) ( )u A K r B K r
r

ξ ξ ξ ξ= − + . (39) 

Substituting from Equations (36), (38) and (39) into Equations (26), (27), we obtain 
2

2
1 1/2 1 1 3/2 1

2
2
2 1/2 2 2 3/2 2

1 2[ ( )] ( ) ( )

2                + [ ( )] ( ) ( )

rr A s s M K r K r
rr

B s s M K r K r
r

βσ ξ ξ ξ ξ

βξ ξ ξ ξ

  
= + + +  

 
 

+ + +  
 

 , (40) 

2
2 2

1 1/2 1 1 3/2 1

2
2 2

2 1/2 2 2 3/2 2

1 [(1 ) ( )] ( ) ( )

                + [(1 ) ( )] ( ) ( )

A s s M K r K r
rr

B s s M K r K r
r

ψψ ϕϕ
βσ σ β ξ ξ ξ ξ

ββ ξ ξ ξ ξ

  
= = − + + −  

 
 

− + + −  
 

. (41) 

The boundary conditions (21) and (22) can be written in the Laplace transform domain 
as 

( , ) ( ),r s f s r aq = = , (42) 
( , ) 0,rr r s r aσ = = . (43) 

Using the boundary conditions (42) and (43) into Eqs. (38) and (40), we get  
( ) ( )2 2 2 2

1 1/2 1 2 1/2 2( ) ( ) ( ) ( ) ( )A s s M K a B s s M K a a f sβ ξ ξ β ξ ξ− + + − + = ,             (44) 
2

2 2
1 1/2 1 1 3/2 1

2
2 2

2 1/2 2 2 3/2 2

[(1 ) ( )] ( ) ( )

                + [(1 ) ( )] ( ) ( ) 0

A s s M K a K a
a

B s s M K a K a
a

ββ ξ ξ ξ ξ

ββ ξ ξ ξ ξ

 
− + + − 

 
 

− + + − = 
 

. (45) 

From now on, we shall utilize the exponential type of the modified Bessel functions of 
the second kind, in particular 

1/2 3/2
1( ) , ( ) 1 .

2 2
z zK z e K z e

z z z
π π− − = = + 

 
 (46) 

By solving the system of two Equations (43) and (45) and using Eq. (46), we get the 
values of the two parameters andA B  as 
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( )12 2 2 2
1 1 2

1

2 [(1 ) ( )] ( 1) ( )aaA a s s M a e f sξξ β ξ β ξ
γ π

 = − + + + +  ,   (47a) 

( )22 2 2 2
2 2 2

2 [(1 ) ( )] ( 1) ( )aaB a s s M a e f sξξ β ξ β ξ
δ π

 = − − + + + +  ,   (47b) 

where ( )2 2 2 2
1 2 1 1 2 1 2( ) [(1 ) ( )] [ ( ) ]a s s M as s M aδ ξ ξ β ξ β ξ ξ ξ ξ= − − − + + + + + + .  

This completes the solution in the Laplace transform domain. 
 

4. Inversion of Laplace transforms 
We shall now outline the method used to invert the Laplace transforms in the above 
equations. Let ( )f s  be the Laplace transform of a function ( )f t . The inversion formula for 
Laplace transforms can be written as described in Honig and Hirdes [42]:  

( ) ( ) d
2

dt
ityef t e f d iy y

π

∞

−∞

= +∫ , 

where d  is an arbitrary real number greater than all the real parts of the singularities of ( )f s . 
Expanding the function ( ) exp( ) ( )h t dt f t= −  in a Fourier series in the interval [0, 2L], 

we obtain the approximate formula [42] 

0
1

1( ) ( )
2

N

N k
k

f t f t c c
=

≈ = + ∑ , for 0 2t≤ ≤  , (48) 

where 

( )/Re /
dt

ik t
k

ec e f d ikπ π = + 






. (49) 

Two methods are used to reduce the total error. First, the "Korrektur" method is used to 
reduce the discretization error. Next, the ε-algorithm is used to reduce the truncation error and 
therefore to accelerate convergence.  

The "Korrektur" method uses the following formula to evaluate the function ( )f t  
2( ) ( ) ( ) (2 )d

NK N Nf t f t f t e f t−
′= = − +

 . (50) 
We shall now describe the ε-algorithm that is used to accelerate the convergence of the 

series in (48). Let N be an odd natural number and let 
1

m

m k
k

s c
=

=∑  be the sequence of partial 

sums of (48). We define the ε-sequence by 
0, 1,0, , 1, 2,3,...m m ms mε ε= = =  

and ( )1, 1, 1 , 1 ,1/ , , 1, 2,3,....n m n m n m n m n mε ε ε ε+ − + += + − =   

It can be shown that the sequence 1,1 3,1 ,1, , ..., ,...Nε ε ε  converges to 0( ) / 2f t c−  faster 
than the sequence of partial sums. 
 
5. Numerical results and discussion 
In this area, we intend to outline numerical consequences of the scientific articulations got in 
the past segment and explain the impact of time-delay ω  and figure-of-merit ZT on the 
conduct of the field amounts for different forms of the kernel function. So as to translate the 
numerical calculations, we consider the material properties of Polymethyl Methacrylate 
(Plexiglas) which has wide applications in industry and prescription. Following the values of 
physical constants are shown in Table 1 [26]: 
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Table 1. Value of the constants 
3 31 2 10. kg / mr = ×  0 55k . J / m.sec .K=  293 KoT =  

31 4 10EC . x J / kg.K=  7 2453 7 10. N / mλ = ×  7 2194 10 N / mµ = ×  
4 2210 10 N / m Kγ = ×  6 2

0 3 36 10. sec/ mη = ×  2200oc m / sec=  
513 10Tα
−= ×  4 / 3 0.8oKµ =  0.12ε =  

* 0.005β =  * 0.106A =  * 0.5α =  
1o oHµ = Tesla 1a =   

     
The calculations were carried out for the function ( )f t , which represents a time-

dependent
 
thermal shock: 

2
1( ) ( ) or ( )f t t H t f s
s

= = .             

Thinking about the above physical information, we have assessed the numerical 
estimations of the field amounts with the assistance of a PC program created by utilizing the 
Fortran 90 programming language on a personal computer with a 17 processor. The amount of 
calculation (and hence the execution time) depends on several parameters within the program. 
First, there is a parameter "nsig" which is the number of significant digits defining the relative 
error as (10)-nsig. We usually take nsig = 5. Near points of discontinuity of the function, the 
program might fail to converge, and we have to decrease nsig. Another parameter is the 
maximum number of terms in the Fourier series to be added within one saw-tooth of the  
ε-algorithm. This is taken as 10000. The last parameter is the number of saw-teeth of the  
ε-algorithm to be considered. This is taken as 50. All in all, the program evaluates the value of 
q at 50 points in less than 2 minutes [43]. 

The calculations were completed for certain parameters, where an estimation of time, 
namely, t = 0. The investigation of the effects of the time delay and the figure-of-merit for 
different forms of kernel function as well as the magnetic number on thermoelectric material 
within the sight of a consistently attractive field was done in the former areas. Run-of-the-mill 
numerical outcomes have appeared in Figs. 1-8. 

Figure 1 speaks to the dimensionless estimation of heat flux for a wide scope of 
outspread separation r ( 0 1r≤ ≤ ) and for different forms of the kernel function. In these 
figures, strong lines speak to the arrangement got in the casing of Biot theory ( 0)ω = and 
broken lines represent the solution corresponding to using generalized electro-thermoelasticity
( 0)ω > with MDD when the kernel function is taken as the form [ ]21 ( ) /t ξ ω− − , while 
dotted lines when the kernel function is 1 ( )t ξ− − . We noticed that the maximum value of 

heat fluxes when [ ]21 ( ) /K t ξ ω= − −  and 1 ( )K t ξ= − −  are 2.02 and 1.8 and cut r-axis at 
1.0r = . So, we learned from these figures that vital wonder saw in these assumes that the 

arrangement of any of the considered capacity in the new model is confined in a limited 
locale. Past this area, the varieties of these appropriations try not to occur. This implies to the 
arrangements concurring the new generalized hypothesis show the conduct of limited rates of 
wave spread. 

Figure 2 indicates the variation of heat flux against the figure-of-merit for Biot theory 
( 0)ω =  and for the generalized electro-thermoelasticity theory with MDD ( 0)ω >  when the 

kernel function has two forms, namely, [ ]21 ( ) /t ξ ω− −  and 1 ( )t ξ− − . We noticed from this 
figure that the efficiency of a thermoelectric material figure-of-merit is proportional to the 
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temperature of the solid particles and the choice of the kernel function forms has a significant 
effect on the heat flux field. 

 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. The variation of heat flux vs. distance for different forms of kernal function K(t, ξ) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. The variation of heat flux q versus figure of merit ZT for different forms of kernal 
function K(t, ξ) 

 
Figure 3 exhibits the space variation of the temperature distribution. In this figure, the 

solid line represents the solution obtained in the frame of dynamic coupled theory (Biot 
theory, 0ω = [1]) and the other lines represent the solutions obtained in the case 0ω > . We 
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observed that the temperature fields have been influenced when delayω , where the expanding 
of the estimation of the parameter causes diminishing in temperature fields. The warm waves 
are consistent capacities, smooth, and reach to unfaltering state contingent upon the 
estimation of time-delayω , which implies that the particles transport the warmth to different 
particles effectively and this makes the diminishing rate of the temperature more noteworthy 
than different ones. Additionally, the warm waves cut the x-hub all the more quickly when 
increments. 
 

 
Fig. 3. The variation of temperature vs. distance for different values of time-delay ω 

 
Figures 4, 5, and 6 show the variety of temperature, displacement, and stress 

circulations in thermoelectric circular depression with spiral separation r for three values of 
figure-of-merit at room temperature ZTo, namely, ZTo = 1, 3 and 5. We noticed that the stress 
and displacement field has been affected by the figure-of-merit values, where the expanding 
of the estimation of figure-of-merit causes decreasing in the magnitude of the stress and 
displacement field while causes increasing in the temperature. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. The variation of temperature vs. distance for different values of figure-of-merit at 
room temperature ZTo 
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Fig. 5. The variation of displacement vs. distance for different values of figur-of-miret at 

room temperature ZTo 
 

 
Fig. 6. The variation of stress vs. distance for different values of figur-of-miret at room 

temperature ZTo 
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Figures 7 and 8 display the displacement and stress distributions with distance for two 
different theories; Biot theory, 0ω = and MDD theory, 0ω > when the magnetic number has 
two values M ( 0M = , absent of the magnetic field and 0M >  in the presence of the 
magnetic field). We find that the attractive field acts to diminish the displacement and stress 
fields. This is generally known as attractive damping. It is possible to compare the results 
with those for the generalized thermoelasticity theory [44,45] and generalized thermo-
viscoelasticity theory [46]. It was found that thermoelectric viscoelasticity's memory-
dependent theory predicts a value for less than the generalized theory predicts. On the other 
hand, the stress value in the memory-dependent theory is greater. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. The variation of displacement vs. distance for different values of magnetic number M 

 
Fig. 8. The variation of  stress  component vs. distance for different values of magnetic 

number M 
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6. Conclusions 
• The main goal of this work is to introduce a new mathematical model for the Fourier law 

of heat conduction with memory-dependent derivative and include the thermoelectric 
figure-of-merit. According to this new theory, we have to construct a new classification for 
materials according to a time-delay and kernel function where these variables become the 
new indicator of its ability to conduct heat in conducting medium. The certain issues of 
warm excitations in the hypothesis of coupled fields have a place with the electro-thermo-
viscoelasticity. The expanding wide use in detecting and activation has pulled in much 
consideration towards hypotheses about materials displaying couplings between versatile, 
electric, attractive, and thermal fields. This model is more intuitionistic for understanding 
the physical significance and the comparing memory-dependent derivative condition is 
progressively expressive. The conditions of wave hypothesis of electro-thermo-
viscoelasticity exposed to MDD based on the change of the Fourier law was built rough 
phenomenological conditions of thermo-electromagnetic versatility described by a limited 
speed of engendering of electromagnetic and flexible excitations. From the considered 
model we can set up some fundamental hypotheses on the straight coupled and generalized 
speculations of electro-thermo-viscoelasticity; for example, the coupled hypothesis 
( 0)ω =  and the generalized case hypothesis ( 0)ω > . As per the after-effects of the work, 
we can see the nearness of MDD's parameters in Fourier law of warmth conduction can 
assume a crucial job in expanding or diminishing the speed of the wave proliferation of all 
fields through the thermoelectric medium. This model is more intuitionistic for 
understanding the physical significance and the comparing memory-dependent derivative 
condition is progressively expressive. 

• This model enables us to improve the efficiency of a thermoelectric material figure-of-
merit ZT. For a material to be a good thermoelectric cooler, it must have a high 
thermoelectric figure of merit, ZT. The result provides a motivation to investigate 
conducting thermoelectric materials as a new class of applicable thermoelectric materials 
[47]. The efficiency of a thermoelectric figure-of-merit is proportional to the temperature 
of the material particles. 

• Owing to the complicated nature of the governing equations for the generalized thermo-
viscoelasticity, few attempts have made to solve different problems in this field. These 
attempts utilized an approximate method valid for only a specific range of some 
parameters [48]. In this work, a simple method is introduced in the field of generalized 
thermoelectric viscoelasticity with memory-dependent derivative heat transfer and applied 
to the one-dimensional problem for a viscoelastic spherical cavity. This method gives exact 
solutions in the Laplace transform domain without any assumed restrictions on either the 
temperature or the displacement distributions. A numerical method based on a Fourier- 
series expansion has been used for the inversion process. 

• Representative results for all functions for generalized theory are distinctly different from 
those obtained for the coupled theory. This due to the fact that thermal waves in the 
coupled theory travel with an infinite speed of propagation as opposed to finite speed in the 
generalized case. It is clear that for small values of time the solution is localized in a finite 
region. This region grows with increasing time and its edge is the location of the 
wavefront. This region is determined by the values of time t and time-delay. The 
predictions of the new theory are discussed and compared with dynamic classical coupled 
theory. 

• The advantage of the considered a new model consists in: 
i) The discontinuities in temperature distribution disappeared. 
ii) The negative values of temperature that usually appear in the generalized theories of 
thermoelasticity vanished.  
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iii) The Kernel functions and time-delay of memory-dependent derivative can be arbitrarily 
chosen freely according to the necessity of applications [25]. 
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Nomenclature 

µλ,   Lame' constants 
r    mass density 
t   time 
T    absolute temperature 
q    0T T= − , such that 0 1/Tq <<  

ijε   components of strain tensor 
e    = iiε , dilatation  

ije   components of strain deviator tensor 

ijσ   components of stress tensor 
ko   Seebeck coefficient 

oπ   Peltier coefficient 
k     thermal conductivity 

EC    specific heat at constant strains 

oK   = µλ )3/2(+ , bulk modulus 

2
οc   =

K
r

, longitudinal wave speed 

Tα    coefficient of linear thermal expansion 
γ  3 TKα=  

oT    reference temperature 

oc     =[ ]1/2( 2 )/λ µ r+ , speed of propagation of isothermal elastic waves 

oη     = /ECr κ  

ε     =
2

2
  o

o o

T
k c
γ
η r

, Thermal coupling parameter 

Z   thermoelectric figure-of-merit 
Γ(.)    Gamma function  

* * *, ,A β α  empirical constants 
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Abstract. The stress field in the cylindrical shell with the circular hole is considered. 
Thoroughly analyzing previous works we concluded that up to the present there are no 
explicit formulae useful for applications despite numerous works on this subject. Moreover, 
the classical analytical approach lacks a rigorous mathematical foundation. Its applicability is 
limited to cases that slightly differ from the plane Kirsch problem. The numerical results of 
various researches show a significant discrepancy. This paper proposes a new analytical 
approach based on a different form of representation for the fundamental system of solutions 
of governing equations. Since, in contrast to previous works, cutting of series is not required 
the boundary conditions are satisfied with a very high degree of accuracy. Our model works 
in all ranges that mechanics allows and there are no mathematical restrictions. Some 
numerical results are presented.  
Keywords: cylindrical shell, cutouts, stress state, circular hole, elasticity theory 
 
 
1. Introduction 
Motivation. The purpose of this article is to develop a new approach to the analytical 
derivation of the stress state in a cylindrical shell with a circular hole under axial tension. The 
buckling problem, nonlocal fracture mechanics, and some other problems require a full stress 
field, but not just the values of stresses at the boundary. 

The problems of determining the stress field in cylindrical shells with a hole for various 
loading conditions are considered in a number of recent works in connection with numerous 
engineering applications [1,2,11]. 

Analysis of numerous papers of 1940-70 as Lurie, Guz, Savin, Lekkerkerker, Eringen, 
and Naghdi, Murthy, Van Dyke [3-10] revealed that there are no explicit formulas that can be 
used for further investigations or for engineering applications. The problem was formulated 
by Lurie [3]. His followers Guz, Savin, Naghdi, Murthy [4,5,7,9], and some others tried to get 
an analytical solution but without proper mathematical justification. Besides that their 
approach is applicable in a very narrow range of parameters that will be discussed below in 
more detail. Some other researchers as Eringen, Lekkerkerker, and Van Dyke [8,6,10] used 
numerical procedures based on the collocation method. There were significant discrepancies 
in the results obtained in different papers and we estimate the results of Van Dyke [10] as 
more realistic since they are in good agreement with the results obtained in this paper.   

Materials Physics and Mechanics 47 (2021) 186-195 Received: September 9, 2020

http://dx.doi.org/10.18149/MPM.4722021_3 
© 2021, Peter the Great St. Petersburg Polytechnic University 
© 2021, Institute of Problems of Mechanical Engineering RAS 



Therefore we assume that it is time to reconsider some approaches with more high 
accuracy in ideas and calculations. 

 
2. Formulation of the Problem 
Government equation. The cylindrical shell with a circular hole under axial tension (in 𝒙𝒙-
coordinate) is considered. A dimensionless parameter that takes into account the curvature of 

the circular cylinder is 𝜷𝜷𝟐𝟐 =
𝒓𝒓𝟎𝟎
𝟐𝟐�𝟑𝟑 �𝟏𝟏−𝝂𝝂𝟐𝟐�

𝟒𝟒𝟒𝟒𝟒𝟒
 [3]. The limit case 𝜷𝜷 → 𝟎𝟎 corresponds to the plane 

Kirsch problem. In classical works, in the frame of analytical approach, the ratio between the 
size of the hole and dimensions of the shell is considered to be 𝜷𝜷 ≪ 𝟏𝟏 while numerical 
approach allows us to consider 𝜷𝜷 > 𝟏𝟏. E.g., in the paper of Van Dyke parameter 𝜷𝜷 varies up 
to 4 [10]. 

The solution of this problem is represented as a composition of two  
solutions – perturbated and unperturbated. The first one is responsible for the problem with a 
hole and the second one – for axial tension applied along 𝑥𝑥-coordinate at the edge of the 
infinite cylinder that can be expressed through shell forces as 
𝑇𝑇𝑥𝑥 = 𝑝𝑝,    𝑇𝑇𝑥𝑥𝑥𝑥 = 0,    𝑇𝑇𝑥𝑥 = 0.                                                 (1) 

The system of equilibrium equations of the membrane shell for the search of the 
perturbated problem solution can be reduced to the equation [3,12] 

ΔΔΦ + 8𝑖𝑖𝛽𝛽2 𝜕𝜕
2Φ
𝜕𝜕𝑥𝑥2

= 0, (2) 

where Φ = 𝐸𝐸ℎ
8𝛽𝛽2𝑅𝑅

𝑤𝑤 − 𝑖𝑖𝑖𝑖, 𝑤𝑤 – displacement normal to the middle surface, 𝑖𝑖 – stress function. 
The connection between shell forces in Cartesian coordinates and stress function is given by 

�
𝑇𝑇𝑥𝑥 𝑇𝑇𝑥𝑥𝑥𝑥
𝑇𝑇𝑥𝑥𝑥𝑥 𝑇𝑇𝑥𝑥

� = �

𝜕𝜕2𝑈𝑈
𝜕𝜕𝑥𝑥2

− 𝜕𝜕2𝑈𝑈
𝜕𝜕𝑥𝑥𝜕𝜕𝑥𝑥

− 𝜕𝜕2𝑈𝑈
𝜕𝜕𝑥𝑥𝜕𝜕𝑥𝑥

𝜕𝜕2𝑈𝑈
𝜕𝜕𝑥𝑥2

�.  (3) 

In order to split an operator into conjugate let us introduce substitution 
𝛼𝛼 = (1 + 𝑖𝑖)𝛽𝛽    =>    𝛼𝛼2 = 2𝑖𝑖𝛽𝛽2        =>     8𝑖𝑖𝛽𝛽2 = −(2𝑖𝑖𝛼𝛼)2 (4) 

that follow us to the next equation: 

�ΔΔ − (2𝑖𝑖𝛼𝛼)2
𝜕𝜕2

𝜕𝜕𝑥𝑥2
�Φ = 0. 

Since Δ and 𝜕𝜕
𝜕𝜕𝑥𝑥

 commute, we get 

�Δ − 2𝑖𝑖𝛼𝛼 𝜕𝜕
𝜕𝜕𝑥𝑥
� �Δ + 2𝑖𝑖𝛼𝛼 𝜕𝜕

𝜕𝜕𝑥𝑥
�Φ = 0.  (5) 

It should be noted that operators 𝐿𝐿1 = �Δ − 2𝑖𝑖𝛼𝛼 𝜕𝜕
𝜕𝜕𝑥𝑥
� and 𝐿𝐿2 = �Δ + 2𝑖𝑖𝛼𝛼 𝜕𝜕

𝜕𝜕𝑥𝑥
� are 

commutative: 
𝐿𝐿1𝐿𝐿2 = 𝐿𝐿2𝐿𝐿1,    Ker𝐿𝐿1 + Ker𝐿𝐿2 ⊆ Ker𝐿𝐿1𝐿𝐿2 . 

In this problem Ker𝐿𝐿1 + Ker𝐿𝐿2 are being found which means that some solutions of 
equation (5) can be missed. However, obtained solutions are enough to satisfy boundary 
conditions.  

Function Φ can be introduced in form Φ = 𝑒𝑒𝑖𝑖𝑖𝑖𝑥𝑥 ∙ Ψ. Since the symmetry of equation (5) 
relative to transform 𝛼𝛼 ⟷ (−𝛼𝛼)   the function Φ = e−𝑖𝑖𝑖𝑖𝑥𝑥 ∙ Ψ is also the solution. Hence 
equation (5) can be rewritten in the following form 
𝑒𝑒𝑖𝑖𝑖𝑖𝑥𝑥 ∙ (ΔΨ − (𝑖𝑖𝛼𝛼)2Ψ) = 0    =>    ΔΨ + 𝛼𝛼2 Ψ = 0.  (6) 

Polarizing and separating variables in (6) Ψ(𝑥𝑥,𝑦𝑦) = Ψ(𝑟𝑟,𝜗𝜗) = 𝑧𝑧(𝑟𝑟) ⋅ 𝑓𝑓(𝜗𝜗) we obtain 
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𝑟𝑟2�𝑧𝑧′′(𝑟𝑟)+1𝑟𝑟∙𝑧𝑧
′(𝑟𝑟)+𝑖𝑖2∙𝑧𝑧(𝑟𝑟)�

𝑧𝑧(𝑟𝑟) = −𝑓𝑓′′(𝜗𝜗)
𝑓𝑓(𝜗𝜗) = 𝐶𝐶 = +𝑛𝑛2.  (7) 

Due to  2𝜋𝜋-periodicity of the solution regarding 𝜗𝜗 we get the condition 𝐶𝐶 = +𝑛𝑛2 that 
brings us integers 𝑛𝑛: 
𝑓𝑓′′ + 𝐶𝐶𝑓𝑓 = 0, 𝐶𝐶 = 𝑛𝑛2, 𝑓𝑓1 = cos√𝐶𝐶𝜗𝜗,           𝑓𝑓2 = sin√𝐶𝐶𝜗𝜗. 

Considering the left part of the equation (7) regarding 𝑟𝑟 we got Bessel equation 
𝑟𝑟2 ∙ 𝑧𝑧′′(𝑟𝑟) + 𝑟𝑟 ∙ 𝑧𝑧′(𝑟𝑟) + (𝛼𝛼2𝑟𝑟2 − 𝑛𝑛2) ∙ 𝑧𝑧(𝑟𝑟) = 0,  (8) 
that after substitutes 𝑧𝑧(𝑟𝑟) = �̃�𝑧(𝛼𝛼𝑟𝑟) and 𝑡𝑡 =  𝛼𝛼𝑟𝑟 appears in its classical form: 
�̃�𝑧′′(𝑡𝑡) + 1

𝑡𝑡
∙ �̃�𝑧′(𝑡𝑡) + �1 − 𝑛𝑛2

𝑡𝑡2
� ∙ �̃�𝑧(𝑡𝑡) = 0.  (9) 

The fundamental system of solutions for the equation (9) is expressed through Hankel's 
functions that are linear combinations of Bessel and Neiman functions:  
𝐻𝐻𝑛𝑛

(1)(𝑡𝑡) = 𝐽𝐽𝑛𝑛(𝑡𝑡) + 𝑖𝑖𝑌𝑌𝑛𝑛(𝑡𝑡), 𝐻𝐻𝑛𝑛
(2)(𝑡𝑡) = 𝐽𝐽𝑛𝑛(𝑡𝑡) − 𝑖𝑖𝑌𝑌𝑛𝑛(𝑡𝑡).  (10) 

The choice of Hankel functions here is due to the fact that they are the only functions 
from Bessel functions class that tends to zero with an unlimited increase of their complex 
argument modulus 
lim𝑟𝑟→+∞ 𝐻𝐻𝑛𝑛

(1)�𝑟𝑟 𝑒𝑒𝑖𝑖𝜗𝜗� = lim𝑟𝑟→+∞ 𝐻𝐻𝑛𝑛
(2)�𝑟𝑟 𝑒𝑒−𝑖𝑖𝜗𝜗� = 0 ,    𝜗𝜗 ∈ [𝜀𝜀;  𝜋𝜋 − 𝜀𝜀].  (11) 

Since 𝛼𝛼 = (1 + 𝑖𝑖)𝛽𝛽 corresponds to the value 𝜗𝜗 = 𝜋𝜋
4
∈ [0;𝜋𝜋] we should use only 𝐻𝐻𝑛𝑛

(1)(𝑡𝑡) 
function. 
 Thus similar to the paper [4] the solution of equation (5) can be written as 
Φ = Φ1 + Φ2  (12) 

Φ1 = 𝑒𝑒𝑖𝑖𝑖𝑖𝑥𝑥 ∙ Ψ = 𝑒𝑒𝑖𝑖𝑖𝑖𝑥𝑥 � 𝐶𝐶𝑛𝑛 ∙ 𝑒𝑒𝑖𝑖𝑛𝑛𝜗𝜗 ∙ 𝐻𝐻𝑛𝑛
(1)(𝛼𝛼𝑟𝑟)

+∞

𝑛𝑛=−∞

= �𝐶𝐶𝑛𝑛 = 𝑖𝑖−𝑛𝑛𝑎𝑎𝑛𝑛
(1)� = 

= 𝑒𝑒𝑖𝑖𝑖𝑖𝑥𝑥 � 𝑖𝑖−𝑛𝑛 ∙ 𝑒𝑒𝑖𝑖𝑛𝑛𝜗𝜗 ∙ 𝐻𝐻𝑛𝑛
(1)(𝛼𝛼𝑟𝑟) ∙ 𝑎𝑎𝑛𝑛

(1)
+∞

𝑛𝑛=−∞

, 

Φ2 = 𝑒𝑒−𝑖𝑖𝑖𝑖𝑥𝑥 ∙ Ψ = 𝑒𝑒−𝑖𝑖𝑖𝑖𝑥𝑥 � 𝑖𝑖𝑛𝑛 ∙ 𝑒𝑒𝑖𝑖𝑛𝑛𝜗𝜗 ∙ 𝐻𝐻𝑛𝑛
(1)(𝛼𝛼𝑟𝑟) ∙ 𝑎𝑎𝑛𝑛

(2)
+∞

𝑛𝑛=−∞

. 

Due to the symmetry of the problem, it is convenient to change the basis of linear 
independent solutions 

⎝

⎜⎜
⎛
𝑒𝑒𝑖𝑖𝑖𝑖𝑥𝑥 ∙ 𝐻𝐻𝑛𝑛

(1)(𝛼𝛼𝑟𝑟) ∙ cos(𝑛𝑛𝜗𝜗)
𝑒𝑒𝑖𝑖𝑖𝑖𝑥𝑥 ∙ 𝐻𝐻𝑛𝑛

(1)(𝛼𝛼𝑟𝑟) ∙ sin(𝑛𝑛𝜗𝜗)
𝑒𝑒−𝑖𝑖𝑖𝑖𝑥𝑥 ∙ 𝐻𝐻𝑛𝑛

(1)(𝛼𝛼𝑟𝑟) ∙ cos(𝑛𝑛𝜗𝜗)
𝑒𝑒−𝑖𝑖𝑖𝑖𝑥𝑥 ∙ 𝐻𝐻𝑛𝑛

(1)(𝛼𝛼𝑟𝑟) ∙ sin(𝑛𝑛𝜗𝜗)⎠

⎟⎟
⎞

= �

1
0
1
0

    0
    1
    0
    1

   𝑖𝑖
    0
  −𝑖𝑖
   0

   0
   𝑖𝑖
   0

   −𝑖𝑖

�

⎝

⎜⎜
⎛

cos(𝛼𝛼𝑥𝑥) ∙ 𝐻𝐻𝑛𝑛
(1)(𝛼𝛼𝑟𝑟) ∙ cos(𝑛𝑛𝜗𝜗)

cos(𝛼𝛼𝑥𝑥) ∙ 𝐻𝐻𝑛𝑛
(1)(𝛼𝛼𝑟𝑟) ∙ sin(𝑛𝑛𝜗𝜗)

sin(𝛼𝛼𝑥𝑥) ∙ 𝐻𝐻𝑛𝑛
(1)(𝛼𝛼𝑟𝑟) ∙ cos(𝑛𝑛𝜗𝜗)

sin(𝛼𝛼𝑥𝑥) ∙ 𝐻𝐻𝑛𝑛
(1)(𝛼𝛼𝑟𝑟) ∙ sin(𝑛𝑛𝜗𝜗)⎠

⎟⎟
⎞

 

where only cos(𝛼𝛼𝑥𝑥) ∙ 𝐻𝐻𝑛𝑛
(1)(𝛼𝛼𝑟𝑟) ∙ cos(𝑛𝑛𝜗𝜗) with even 𝑛𝑛 и sin(𝛼𝛼𝑥𝑥) ∙ 𝐻𝐻𝑛𝑛

(1)(𝛼𝛼𝑟𝑟) ∙ cos(𝑛𝑛𝜗𝜗) with 
odd 𝑛𝑛 are remained. Thus the form of solution for Φ is obtained in the following form 

Φ = −𝑖𝑖 𝑝𝑝𝑥𝑥
2

2
+ ∑ (𝐴𝐴𝑛𝑛 + 𝑖𝑖𝐵𝐵𝑛𝑛) ∙ �

cos(𝛼𝛼𝑥𝑥) ∙ 𝐻𝐻𝑛𝑛
(1)(𝛼𝛼𝑟𝑟) ∙ cos(𝑛𝑛𝜗𝜗)

sin(𝛼𝛼𝑥𝑥) ∙ 𝐻𝐻𝑛𝑛
(1)(𝛼𝛼𝑟𝑟) ∙ cos(𝑛𝑛𝜗𝜗)

�∞
𝑛𝑛=0 , (13) 

𝛼𝛼𝑥𝑥 = (1 + 𝑖𝑖)𝛽𝛽 ∙ 𝑟𝑟 cos𝜗𝜗, 
term −𝑖𝑖 𝑝𝑝𝑥𝑥

2

2
  added from unperturbated solution and satisfies the boundary condition 

𝑇𝑇𝑥𝑥 = −
𝜕𝜕2𝑖𝑖
𝜕𝜕𝑦𝑦2

= 𝑝𝑝. 
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Lurie and his followers [3,4,7,9] used the expansion of basic functions cos(𝛼𝛼𝑥𝑥) ∙
𝐻𝐻𝑛𝑛

(1)(𝛼𝛼𝑟𝑟) ∙ cos(𝑛𝑛𝜗𝜗) and sin(𝛼𝛼𝑥𝑥) ∙ 𝐻𝐻𝑛𝑛
(1)(𝛼𝛼𝑟𝑟) ∙ cos(𝑛𝑛𝜗𝜗) into power series in 𝛽𝛽𝑟𝑟. The attempts to 

determine coefficients 𝐴𝐴𝑛𝑛 and 𝐵𝐵𝑛𝑛 were based on the expansions  
𝐴𝐴𝑛𝑛 = ∑ 𝑎𝑎𝑛𝑛𝑘𝑘 𝛽𝛽2𝑘𝑘∞

𝑘𝑘=0 , 𝐵𝐵𝑛𝑛 = ∑ 𝑏𝑏𝑛𝑛𝑘𝑘  𝛽𝛽2𝑘𝑘∞
𝑘𝑘=0   (14) 

using stress-free boundary conditions 

⎩
⎪
⎨

⎪
⎧𝑇𝑇𝑟𝑟𝑟𝑟|𝑟𝑟=𝑟𝑟0 = 0
𝑇𝑇𝑟𝑟𝜗𝜗|𝑟𝑟=𝑟𝑟0 = 0
𝑀𝑀𝑟𝑟|𝑟𝑟=𝑟𝑟0 = 0
𝑄𝑄𝑟𝑟|𝑟𝑟=𝑟𝑟0 = 0.

 (15) 

It should be mentioned that a reasonable algorithm had not been proposed. Eringen and 
Naghdi [7] continued this approach with correct boundary conditions; the work of Murthy is 
an extension of Lurie's ideas for an elliptic case [9]. 

The other approach to the determination of coefficients in formulae (13-14) used the 
collocation procedure. Lekkerkerker, Eringen and Naghdi, Van Dyke [6,8,10] got some 
numerical results.  

Classical approaches discussion. The idea of the expansion by small parameter 𝜷𝜷 
leads to the representation of the solution through a linear combination of Kirsch's solution 
and terms depending on 𝜷𝜷: 
𝜎𝜎 = 𝜎𝜎0 + 𝛽𝛽2𝜎𝜎2 + 𝛽𝛽4𝜎𝜎4 + ⋯ (16) 
where 𝜎𝜎0 – Kirsch stresses. The authors of this paper have repeated this way and have got the 
explicit second term 𝜎𝜎2 in polar coordinates as final formulae for stress field are not yet 
prescribed anywhere: 
𝜎𝜎2𝑟𝑟𝑟𝑟 = 𝑝𝑝𝜋𝜋

8
�1 − 4

𝑟𝑟2
+ 3

𝑟𝑟4
� cos(2𝜗𝜗), 

𝜎𝜎2𝑟𝑟𝑟𝑟 = −𝑝𝑝𝜋𝜋
8
�1 + 2

𝑟𝑟2
− 3

𝑟𝑟4
� sin(2𝜗𝜗), (17) 

𝜎𝜎2𝑟𝑟𝑟𝑟 = −
𝑝𝑝𝜋𝜋
8
�1 +

3
𝑟𝑟4
� cos(2𝜗𝜗). 

The term 𝛽𝛽4𝜎𝜎4 and following terms contain Poison's coefficient and are very heavy for 
prescribing however for small 𝛽𝛽 they do not improve the solution as it was previously 
expected (see Fig. 1). 

For small 𝛽𝛽 just a very small difference with the solution of the Kirsсh problem is 
observed. For bigger 𝛽𝛽 the analytical theory based on expansion in a small parameter is not 
valid hence some other methods like the collocation procedure should be used. In the works 
of Lekkerkerker, Eringen, Naghdi, Van Dyke [6,8,10] numerical solutions were presented in 
form of tables. However, there were contradictions between the results presented in different 
papers of the same authors. 

The general feature of this approach is an expansion of expressions that contain the 
Hankel function in parameter 𝛽𝛽. Since the argument of Hankel functions also contains 
parameter 𝛽𝛽 it leads to a significant loss of accuracy. So it is more reasonable to calculate 
values of these functions at certain points. 
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Fig. 1. Membrane stress σϑϑ depending on ϑ on the boarder up to β = 0.1 (a) and 
β = 0.2 (b) 

 
It is also worth mentioning that normal displacement which is given by the formula 

𝑤𝑤 = �
𝐸𝐸ℎ

8𝛽𝛽2𝑅𝑅
�
−1

Re Φ 

in papers [3,9] does not vanish with 𝛽𝛽 → 0 as one would expect for the plane problem. This 
contradiction is eliminated by adding some constant to the solution [3,9]. 
 
3. Our Approach 
We propose to consider the fundamental system of solutions of equation (2) in the following 
form 

�
cos(𝛼𝛼𝑥𝑥) ∙ 𝐻𝐻𝑛𝑛

(1)(𝛼𝛼𝑟𝑟) ∙ cos(𝑛𝑛𝜗𝜗)
sin(𝛼𝛼𝑥𝑥) ∙ 𝐻𝐻𝑛𝑛

(1)(𝛼𝛼𝑟𝑟) ∙ cos(𝑛𝑛𝜗𝜗)
� = 

 = (−1)�
𝑛𝑛
2� ∙ 𝐻𝐻𝑛𝑛

(1)�(1+𝑖𝑖)𝛽𝛽𝑟𝑟�

𝐻𝐻𝑛𝑛
(1)�(1+𝑖𝑖)𝛽𝛽�

∙ �𝐽𝐽𝑛𝑛�(1 + 𝑖𝑖)𝛽𝛽𝑟𝑟� +         

+∑ (−1)𝑙𝑙 ∙ �𝐽𝐽𝑛𝑛+2𝑙𝑙�(1 + 𝑖𝑖)𝛽𝛽𝑟𝑟� + 𝐽𝐽𝑛𝑛−2𝑙𝑙�(1 + 𝑖𝑖)𝛽𝛽𝑟𝑟�� ∙ cos 2𝑙𝑙𝜗𝜗∞
𝑙𝑙=1 �. (18) 

The full derivation of this formula demands special attention and is published in a 
separate paper [13]. 

Thus the general solution is presented as 
Φ = −𝑖𝑖 𝑝𝑝𝑥𝑥

2

2
+ ∑ (𝑎𝑎𝑛𝑛 + 𝑖𝑖𝑏𝑏𝑛𝑛) ∙ 𝑓𝑓𝑛𝑛∞

𝑛𝑛=0 , (19) 
where 𝑓𝑓𝑛𝑛 is a right-hand side of the equation (18), 𝑎𝑎𝑛𝑛, 𝑏𝑏𝑛𝑛 – unknown coefficients that should 
be found by using boundary conditions. There is no need to expand these coefficients into 
series. 

The advantage of this representation is in the separation of variables. It should be noted 
that in this case there are no functions that depend on both 𝜗𝜗 and 𝛽𝛽. It is easy to see that 
Bessel and Hankel's functions depend only on 𝛽𝛽𝑟𝑟 while cosine depends only on 𝜗𝜗. The 
validity of the equality (18) is proved in a separate paper. The combination of Bessel 
functions with different indexes in this expansion has a deep mechanical sense since the 
frequency and amplitude of perturbed solution are observable. 

One more advantage of this approach is the more convenient representation of boundary 
conditions. Since no cutting of series is needed we get high accuracy for the satisfaction of 
boundary conditions and a wide range of parameter 𝛽𝛽 can be considered. 

Let us introduce 

𝑔𝑔𝑛𝑛,𝑙𝑙 = (−1)�
𝑛𝑛
2�+𝑙𝑙 ∙

𝐻𝐻𝑛𝑛
(1)�(1 + 𝑖𝑖)𝛽𝛽𝑟𝑟�

𝐻𝐻𝑛𝑛
(1)�(1 + 𝑖𝑖)𝛽𝛽�

∙ �𝐽𝐽𝑛𝑛+2𝑙𝑙�(1 + 𝑖𝑖)𝛽𝛽𝑟𝑟� + 𝐽𝐽𝑛𝑛−2𝑙𝑙�(1 + 𝑖𝑖)𝛽𝛽𝑟𝑟�� 

which are trigonometric coefficients of Fourier in (18).  
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Expansion into Fourier series in 𝜗𝜗 of four boundary conditions gives us the next 
algebraic system. 

 
Table 1. First boundary condition 𝑇𝑇𝑟𝑟𝑟𝑟|𝑟𝑟=𝑟𝑟0 = 0  

𝐜𝐜𝐜𝐜𝐜𝐜 𝟎𝟎 𝑝𝑝
2
− Im�(𝑎𝑎𝑛𝑛 + 𝑖𝑖𝑏𝑏𝑛𝑛) ∙

𝑔𝑔′(𝑛𝑛, 0)
2

∞

𝑛𝑛=0

 

𝐜𝐜𝐜𝐜𝐜𝐜 𝟐𝟐𝟐𝟐 𝑝𝑝
2

+ Im�(𝑎𝑎𝑛𝑛 + 𝑖𝑖𝑏𝑏𝑛𝑛) ∙ �4𝑔𝑔(𝑛𝑛, 1) − 𝑔𝑔′(𝑛𝑛, 1)�
∞

𝑛𝑛=0

 

𝐜𝐜𝐜𝐜𝐜𝐜 𝟒𝟒𝟐𝟐 
Im�(𝑎𝑎𝑛𝑛 + 𝑖𝑖𝑏𝑏𝑛𝑛) ∙ �16𝑔𝑔(𝑛𝑛, 2) − 𝑔𝑔′(𝑛𝑛, 2)�

∞

𝑛𝑛=0

 

𝐜𝐜𝐜𝐜𝐜𝐜 𝟔𝟔𝟐𝟐 
Im�(𝑎𝑎𝑛𝑛 + 𝑖𝑖𝑏𝑏𝑛𝑛) ∙ �36𝑔𝑔(𝑛𝑛, 3) − 𝑔𝑔′(𝑛𝑛, 3)�

∞

𝑛𝑛=0

 

… … 
𝐜𝐜𝐜𝐜𝐜𝐜 𝟐𝟐𝟐𝟐𝟐𝟐 

Im�(𝑎𝑎𝑛𝑛 + 𝑖𝑖𝑏𝑏𝑛𝑛) ∙ �4𝑙𝑙2𝑔𝑔(𝑛𝑛, 𝑙𝑙) − 𝑔𝑔′(𝑛𝑛, 𝑙𝑙)�
∞

𝑛𝑛=0

 

 
Table 2. Second boundary condition 𝑇𝑇𝑟𝑟𝜗𝜗|𝑟𝑟=𝑟𝑟0 = 0 

𝐜𝐜𝐬𝐬𝐬𝐬 𝟐𝟐𝟐𝟐 
−
𝑝𝑝
2
− Im� 2(𝑎𝑎𝑛𝑛 + 𝑖𝑖𝑏𝑏𝑛𝑛) ∙ �𝑔𝑔′(𝑛𝑛, 1) − 𝑔𝑔(𝑛𝑛, 1)�

∞

𝑛𝑛=0

 

𝐜𝐜𝐬𝐬𝐬𝐬 𝟒𝟒𝟐𝟐 
−Im� 4(𝑎𝑎𝑛𝑛 + 𝑖𝑖𝑏𝑏𝑛𝑛) ∙ �𝑔𝑔′(𝑛𝑛, 2) − 𝑔𝑔(𝑛𝑛, 2)�

∞

𝑛𝑛=0

 

𝒔𝒔𝒔𝒔𝒔𝒔 𝟔𝟔𝟐𝟐 
−Im� 6(𝑎𝑎𝑛𝑛 + 𝑖𝑖𝑏𝑏𝑛𝑛) ∙ �𝑔𝑔′(𝑛𝑛, 3) − 𝑔𝑔(𝑛𝑛, 3)�

∞

𝑛𝑛=0

 

… … 
𝐜𝐜𝐬𝐬𝐬𝐬 𝟐𝟐𝟐𝟐𝟐𝟐 

−Im� 2𝑙𝑙(𝑎𝑎𝑛𝑛 + 𝑖𝑖𝑏𝑏𝑛𝑛) ∙ �𝑔𝑔′(𝑛𝑛, 𝑙𝑙) − 𝑔𝑔(𝑛𝑛, 𝑙𝑙)�
∞

𝑛𝑛=0

 

 
Table 3. Third boundary condition 𝑀𝑀𝑟𝑟|𝑟𝑟=𝑟𝑟0 = 0 

𝐜𝐜𝐜𝐜𝐜𝐜 𝟎𝟎 
Re�(𝑎𝑎𝑛𝑛 + 𝑖𝑖𝑏𝑏𝑛𝑛) ∙ �

𝜈𝜈𝑔𝑔′(𝑛𝑛, 0) + 𝑔𝑔′′(𝑛𝑛, 0)
2

�
∞

𝑛𝑛=0

 

𝐜𝐜𝐜𝐜𝐜𝐜 𝟐𝟐𝟐𝟐 
Re�(𝑎𝑎𝑛𝑛 + 𝑖𝑖𝑏𝑏𝑛𝑛) ∙ �−4𝜈𝜈𝑔𝑔(𝑛𝑛, 1) + 𝜈𝜈𝑔𝑔′(𝑛𝑛, 1) + 𝑔𝑔′′(𝑛𝑛, 1)�

∞

𝑛𝑛=0

 

𝐜𝐜𝐜𝐜𝐜𝐜 𝟒𝟒𝟐𝟐 
Re�(𝑎𝑎𝑛𝑛 + 𝑖𝑖𝑏𝑏𝑛𝑛) ∙ �−16𝜈𝜈𝑔𝑔(𝑛𝑛, 2) + 𝜈𝜈𝑔𝑔′(𝑛𝑛, 2) + 𝑔𝑔′′(𝑛𝑛, 2)�

∞

𝑛𝑛=0

 

𝐜𝐜𝐜𝐜𝐜𝐜 𝟔𝟔𝟐𝟐 
Re�(𝑎𝑎𝑛𝑛 + 𝑖𝑖𝑏𝑏𝑛𝑛) ∙ �−36𝜈𝜈𝑔𝑔(𝑛𝑛, 3) + 𝜈𝜈𝑔𝑔′(𝑛𝑛, 3) + 𝑔𝑔′′(𝑛𝑛, 3)�

∞

𝑛𝑛=0

 

… … 
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𝐜𝐜𝐜𝐜𝐜𝐜 𝟐𝟐𝟐𝟐𝟐𝟐 
Re�(𝑎𝑎𝑛𝑛 + 𝑖𝑖𝑏𝑏𝑛𝑛) ∙ �−4𝑙𝑙2𝜈𝜈𝑔𝑔(𝑛𝑛, 𝑙𝑙) + 𝜈𝜈𝑔𝑔′(𝑛𝑛, 𝑙𝑙) + 𝑔𝑔′′(𝑛𝑛, 𝑙𝑙)�

∞

𝑛𝑛=0

 

 
Table 4. Forth boundary condition 𝑄𝑄𝑟𝑟|𝑟𝑟=𝑟𝑟0 = 0 

𝐜𝐜𝐜𝐜𝐜𝐜 𝟎𝟎 
Re�(𝑎𝑎𝑛𝑛 + 𝑖𝑖𝑏𝑏𝑛𝑛) ∙ �

−𝑔𝑔′(𝑛𝑛, 0) + 𝑔𝑔′′(𝑛𝑛, 0) + 𝑔𝑔′′′(𝑛𝑛, 0)
2

�
∞

𝑛𝑛=0

 

𝐜𝐜𝐜𝐜𝐜𝐜 𝟐𝟐𝟐𝟐 
Re�(𝑎𝑎𝑛𝑛 + 𝑖𝑖𝑏𝑏𝑛𝑛)

∞

𝑛𝑛=0
∙ (4(3 − 𝜈𝜈)𝑔𝑔(𝑛𝑛, 1) − (9 − 4𝜈𝜈)𝑔𝑔′(𝑛𝑛, 1) + 𝑔𝑔′′(𝑛𝑛, 1)
+ 𝑔𝑔′′′(𝑛𝑛, 1)) 

𝐜𝐜𝐜𝐜𝐜𝐜 𝟒𝟒𝟐𝟐 
Re�(𝑎𝑎𝑛𝑛 + 𝑖𝑖𝑏𝑏𝑛𝑛)

∞

𝑛𝑛=0
∙ (16(3 − 𝜈𝜈)𝑔𝑔(𝑛𝑛, 2) − (33 − 16𝜈𝜈)𝑔𝑔′(𝑛𝑛, 2) + 𝑔𝑔′′(𝑛𝑛, 2)
+ 𝑔𝑔′′′(𝑛𝑛, 2)) 

𝐜𝐜𝐜𝐜𝐜𝐜 𝟔𝟔𝟐𝟐 
Re�(𝑎𝑎𝑛𝑛 + 𝑖𝑖𝑏𝑏𝑛𝑛)

∞

𝑛𝑛=0
∙ (36(3 − 𝜈𝜈)𝑔𝑔(𝑛𝑛, 3) − (73 − 36𝜈𝜈)𝑔𝑔′(𝑛𝑛, 3) + 𝑔𝑔′′(𝑛𝑛, 3)
+ 𝑔𝑔′′′(𝑛𝑛, 3)) 

… … 
𝐜𝐜𝐜𝐜𝐜𝐜 𝟐𝟐𝟐𝟐𝟐𝟐 

Re�(𝑎𝑎𝑛𝑛 + 𝑖𝑖𝑏𝑏𝑛𝑛)
∞

𝑛𝑛=0

∙ �4𝑙𝑙2(3 − 𝜈𝜈) ∙ 𝑔𝑔(𝑛𝑛, 𝑙𝑙) − �1 + 4𝑙𝑙2(2 − 𝜈𝜈)�𝑔𝑔′(𝑛𝑛, 𝑙𝑙)

+ 𝑔𝑔′′(𝑛𝑛, 𝑙𝑙) + 𝑔𝑔′′′(𝑛𝑛, 𝑙𝑙)� 
 
For convenience in this paper, we take 𝑟𝑟0 = 1. Thus we got a system that has a block 

structure and all elements can be found easily. A more detailed analysis of this system and 
technique of founding coefficients is written in a separate paper [13]. 
 
4. Results and Discussion  
Stresses can be found using formulae (3) and (19) with coefficients 𝑎𝑎𝑛𝑛, 𝑏𝑏𝑛𝑛 that are determined 
as a solution of the linear system presented in Tables 1-4. According to [4] from the point of 
view of mechanics, such model works for small and middle cutouts for 0 ≤ 𝛽𝛽 ≤ 3,5 − 4,5. 
This paper shows the first analytical approach that allows getting results for all acceptable 
range of parameter 𝛽𝛽. Membrane circumferential stresses obtained for various curvature 
parameters are presented below. The reason to choose the value of parameter 𝛽𝛽 = 0.3/√2 
(Fig. 1) is determined by comparison with the results obtained in the work of Eringen and 
Naghdi [8]. Their data have a significant difference from those  of Van Dyke [10] with whom 
we have almost 100 % agreements in the results (Fig. 5). 
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Fig. 2. Membrane stress 𝜎𝜎𝜗𝜗𝜗𝜗 for 𝛽𝛽 = 0.3
√2
≈ 0.212 and 𝜈𝜈 = 0.3  

 

 
 

 

Fig. 3. Membrane stress 𝜎𝜎𝜗𝜗𝜗𝜗 for 𝛽𝛽 = 2.0 and 𝜈𝜈 = 0.3 
 

  
Fig. 4. Membrane stress 𝜎𝜎𝜗𝜗𝜗𝜗 for 𝛽𝛽 = 3.5 and 𝜈𝜈 = 0.3 
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Fig. 5. Comparison with data of paper [10]: lines correspond to results of P.Van Dyke, dots 

for 𝛽𝛽 = 0.212; 2.0; 3.5 are results of current paper 
 

Considering researches of recent years it is observed the prevalence of approaches 
based on Finite Elements Method (FEM) [2,11]. However, results obtained by FEM need to 
be compared with analytical results and exact solutions. This explains the importance and 
value of the development of theoretical approaches. 
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Appendix A 
Nomenclature 
𝑅𝑅,ℎ – radius and thickness of the 
cylindrical shell 
𝑟𝑟0 – radius of the hole 
𝑟𝑟0 = 1 in the present paper 
𝜈𝜈 – Poisson's ratio 
𝐸𝐸 – Young's modulus 

𝛽𝛽2 = 𝑟𝑟02�3 (1−𝜈𝜈2)
4𝑅𝑅ℎ

 – curvature parameter 
𝑤𝑤 – displacement normal to the shape 
𝑖𝑖 – stress function 
𝑇𝑇𝑥𝑥,𝑇𝑇𝑥𝑥𝑥𝑥,𝑇𝑇𝑥𝑥 – forces of the shell in 
Cartesian coordinates 

𝑇𝑇𝑟𝑟𝑟𝑟 ,𝑇𝑇𝑟𝑟𝜗𝜗 ,𝑇𝑇𝜗𝜗𝜗𝜗 – forces of the shell in 
polar coordinates 
𝜎𝜎 = 𝑇𝑇/ℎ – middle surface stresses 
𝑝𝑝 – axial tension applied at the edge of 
an infinite cylinder along 𝑥𝑥-coordinate 
𝛼𝛼 = (1 + 𝑖𝑖)𝛽𝛽 
𝑡𝑡 =  𝛼𝛼𝑟𝑟  
𝐻𝐻𝑛𝑛

(1),𝐻𝐻𝑛𝑛
(2) – Hankel function 

𝐽𝐽𝑛𝑛 – Bessel function 
𝑌𝑌𝑛𝑛 – Neiman function 
  𝑀𝑀𝑟𝑟 – bending moment 
𝑄𝑄𝑟𝑟 – Kirchhoff shear 
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Abstract. Wave propagation and some basic theorems like variational principle, uniqueness 
theorem, and theorem of reciprocity are studied for an anisotropic piezothermoelastic solid 
with two-temperature and fractional order derivative. The basic governing equations are used 
to study the interesting problem. Also, we characterize an alternative formulation of the 
mixed initial boundary value problem. These theorems are also summarised for a special case 
of orthotropic piezothermoelastic solid with the consideration of two-temperature theory and 
fractional order derivative. The non-trivial solution of the system is insured by a quartic 
equation whose roots represent the complex velocities of four attenuating waves in the 
medium. The different characteristics of the waves like phase velocity and attenuation quality 
factor are plotted three-dimensionally with the change in direction for two different models. 
Some special cases are also deduced from the present investigation.  
Keywords: piezothermoelastic, orthotropic, variational principle, uniqueness, plane waves, 
phase velocity 
 
 
1. Introduction 
The two-temperature theory of thermoelasticity with two distinct temperatures (conductive 
temperature ϕ and the thermodynamic temperature T) was introduced by Chen and Gurtin [1], 
and Chen et al. [2,3]. Said et al. [4] investigated a problem of rotating-micropolar 
thermoelastic medium with two-temperature under influence of the magnetic field. Kumar et 
al. [5] studied the propagation of plane waves in an anisotropic thermoelastic medium with 
void and two-temperature in the context of three phase lag theory of thermoelasticity. 

The theory of thermopiezoelectric material was first proposed by Mindlin [6] and 
derived governing equations of a thermopiezoelectric plate. The physical laws for the 
thermopiezoelectric material have been explored by Nowacki [7,8]. Sharma [9] investigated 
the piezoelectric effect on the velocities of waves in an anisotropic piezo-poroelastic medium. 
Vashishth and Sukhija [10] studied the inhomogeneous waves at the boundary of an 
anisotropic piezothermoelastic solid. Kumar and Sharma [11] established basic theorems and 
discussed wave propagation in a piezothermoelastic medium with the consideration of dual 
phase lag. 

Fractional Calculus is a field of mathematic study that grows out of the traditional 
definitions of the calculus integral and derivative operators in much the same way, fractional 
exponents is an outgrowth of exponents with an integer value. Meral and Royston [12] 
investigated the response of the fractional order on viscoelastic half-space to surface and 
subsurface sources. Bassiouny and Sabry [13] discussed the two-temperature thermo-elastic 
behaviour of piezoelectric materials with fractional order derivative. Kumar and Sharma [14] 
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discussed the effect of fractional order derivative on energy ratios at the boundary surface of 
the elastic-piezothermoelastic medium. Lata [15] discussed the fractional order thermoelastic 
thick circular plate with two temperatures in the frequency domain. 

Youssef and Bassiouny [16] proposed the generalised two-temperature theory of 
thermoelasticity to solve the boundary value problems of one dimensional piezothermoelastic 
half-space with heating its boundary with different types of heating. Ezzat et al. [17] 
formulated the theory of two-temperature theory of thermoelasticity for 
piezoelectric/piezomagnetic materials. Bassiouny and Sabry [18] investigated the propagation 
of a thermal wave through a semi-infinite slab subjected to thermal loading of the fractional 
order of exponential type applied for a finite period of time. 

Comprehensive work has been done on uniqueness, reciprocity theorems and variational 
principle by different authors in different media notable among them are Nickell and 
Sackman [19], Iesan [20], Karamany and Ezzat [21], Othman [22], Ezzat,  
Kumar et al. [23], Kuang [24], Vashishth and Gupta [25], and Kumar and Sharma [26,27].  

In the present investigation, the variational principle, reciprocity theorem, and the 
uniqueness theorem have been proved. The mixed initial boundary value problem and its 
alternative approach are also discussed. Further, wave propagation in an orthotropic 
piezothermoelastic medium with the effect of the two-temperature and fractional order 
parameter is studied and characteristics like phase velocity and attenuation quality factor of 
waves are demonstrated graphically depicting the effect of fractional order and two-
temperature parameter. The established results will be helpful for further investigation of the 
various problems. 

 
2. Basic Equations 
Following Kumar et al. [5] and Kumar and Sharma [11], the governing equations in a 
homogeneous, anisotropic piezothermoelastic medium with two-temperature and fractional 
order derivative in the absence of thermal sources and independent of free charge density are:  

Constitutive equations: 
,ij ijkl kl ijk k ijc e E Tσ e α= − −  (1) 

, 0 ,i iq T Sρ− =   (2) 
,ij ij i iS E rTρ α e τ= + +  (3) 

,i ij j ijk jk iD E e Tξ e τ= + +  (4) 

, , ( , , , 1, 2,3).i iE i j k l=−Φ =  (5) 
Equations of motion: 

, ( u ) 0.ij j i iFσ ρ+ − =  (6) 
Equation of heat conduction: 

, 1 ,ij j q iK q
t

α

αϕ τ
 ∂

− = + ∂ 
 (7) 

such that ,ϕ ϕ− = ij ijT a . 
Gauss equation: 

, 0.i iD =  (8) 
In the equations (1)-(8), the Cartesian reference frame system is used and repeated 

subscripts imply summation. The subscripts preceded by comma notations are used to 
represent the partial derivatives with respect to the space variables and the superposed dots 
denote the order of time differentiation. 

( )= = =ijkl klij jikl ijlkc c c c  – Elastic constants,  
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ρ  – Mass density,  

iq  – Components of heat flux vector q ,  

iF  – Components of the external forces per unit mass,  
u i  – Components of the displacement vector u ,  
σ ij  – Stress tensor, 
e ij  – Strain tensor, 

ijK  – Thermal conductivity tensor, 
S  – Entropy per unit mass, 

iE  – Electric field intensity, 

iD  – Electric displacement,  
Φ  – Electric potential, 

,ϕT  – Absolute and conductive temperature of the medium, 
( 0)>ija  – Two-Temperature parameters,  

0T  – Reference temperature of the body,  
, , , ,α τ ξij i ij ijke r  – Piezothermal moduli, respectively, 

τ q  – Thermal relaxation time,  
α  – Fractional order derivative such that 0 1α≤ < .  
   
3. Variational Principle 
The principle of virtual work with a variation of displacements for the elastic deformable 
body of volume V  and surface A is written as 

0( u ) u u ( ) u ( ) ,i i i i i ij j i i i
V A A A A

F dV h dA c dA n dA D n dAρ d d d σ d d− + + Φ = + Φ∫ ∫ ∫ ∫ ∫  (9)

 where σ=i ij jh n  and 0 = i ic D n . 
On the left hand side, we have the virtual work of body forces iF , inertial forces uρ i , 

surface forces ih , whereas, on the right hand side, we have the virtual work of internal forces 
and in  denotes the outward normal of ,∂V 0c is the electric charge density. Using divergence 
theorem and the symmetry of the stress tensor, equation (9) can be written in the alternative 
form as  

0 , ,( u ) u u ( u ) ( ) .i i i i i ij i j i i
V A A V V

F dV h dA c dA dV D dVρ d d d σ d d− + + Φ = + Φ∫ ∫ ∫ ∫ ∫  (10) 

Substituting the value of σ ij  from the relation (1) in the equation (10), we obtain  

( )

0

,

( u ) u u ( )

,

i i i i i ijkl kl ijk k ij ij i i
V A A V V

ijk k ij ij ij ij ij i i
V V V

F dV h dA c dA c e E T dV D E dV

W e E dV a dV D E dV

ρ d d d e α de d

d de α ϕ ϕ de d

− + + Φ = − − −

= − − − −

∫ ∫ ∫ ∫ ∫

∫ ∫ ∫



 (11)

 
where , , ,

1 ,  u ,  ,
2

e e d de d d ϕ ϕ= = Φ =− = −∫ ijkl kl ij i j ij i i ij ij
V

W c dV E T a . 

The equation (11) formulated the uncoupled problem of anisotropic piezothermoelastic 
with two temperature and fractional order derivative where ϕ andΦ  are known functions. In 
this case, when we take into account the coupling of the deformation field with the 
temperature, there arises the necessity of considering an additional relation characterizing the 
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phenomenon of the thermal conductivity. Following Biot [28] we define a vector J  
connected with the entropy through the relation  

, .i iS Jρ =−  (12) 
Equations (2) and (12) implies  

0i iq J T=  . 
Combination of equations (2), (3), (7), and (12) yield 

1

0 ,1 0,ij q i jT L J
t t

α

ατ ϕ
+

+

 ∂ ∂
+ + = ∂ ∂ 

 (13) 

, ,i i ij ij i iJ E rTα e τ− = + +  (14) 
where ijL  the resistivity matrix, is the inverse of the thermal conductivity ijK . Multiplying 
both sides of the equation (13) by d jJ  and integrating over the region of the body, gives 

1

, 0 1 0.i i
j ij q j

V

J JT L J dV
t t

α

αϕ τ d
+

+

  ∂ ∂
+ + =  ∂ ∂  

∫  (15) 

Also, we have, 
( ), ,,

.j j j j jj
V V V

J dV J dV J dVϕ d ϕd ϕd= −∫ ∫ ∫  (16) 

Applying the divergence theorem defined by  
( ) ( )

,
,j j jj

V A

J dV J n dAϕd ϕd=∫ ∫  (17) 

in the equation (16), yield 
( ), , .j j j j j j

V A V

J dV J n dA J dVϕ d ϕd ϕd= −∫ ∫ ∫   (18) 

Substituting equation (18) in equation (15), we obtain 

( )
1

, 0 1 0.i i
j j j j ij q j

A V V

J JJ n dA J dV T L J dV
t t

α

αϕd ϕd τ d
+

+

 ∂ ∂
− + + = ∂ ∂ 

∫ ∫ ∫  (19) 

Making use of equation (14) in equation (19), yield the second variational equation 
( ) , ( ) 0,j j ij ij j j ij ij

A V V V

J n dA dV E dV r a dV M Hϕd ϕα de ϕτ d ϕ ϕ d+ + − + + =∫ ∫ ∫ ∫  (20) 

where dM  is defined by  
,

V

M r dVd ϕdϕ= ∫  (21) 

and dH  is  
1

0 1 .i i
ij q j

V

J JH T L J dV
t t

α

αd τ d
+

+

 ∂ ∂
= + ∂ ∂ 
∫  (22) 

Thus, we obtain the variational principle in the following form  
( )

( )

0

, ,

( u ) u u

.

i i i i i i i ijk k ij
V A A V V

j j j j ij ij ij ij ij ij
A V V V

W M H F dV h dA c dA D E dV e E dV

J n dA E dV a dV r a dV

d ρ d d d d de

ϕd ϕτ d α ϕ de ϕdϕ

+ + = − + + Φ + +

− − − +

∫ ∫ ∫ ∫ ∫

∫ ∫ ∫ ∫



 (23) 

On the right-hand side of equation (23), we find all the causes, the mass forces, inertial 
forces, the surface forces, the heating, the electric potential on the surface A  bounding 
the body. 
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Mixed initial boundary value problem. For the mixed initial boundary value problem 
we assume, that V denotes the closure of an open, bounded, and connected set characterizing 
anisotropic piezothermoelastic solid with two-temperature such that the constitutive and field 
equations are defined on [0, )= × ∞V V . Let ∂V  denotes the boundary of V . Let 

( 1, 2,3, 4,5,6)∂ =iV i  denotes the subsets of ∂V  such that ∂ =V  1 2 3 4∂ ∂ = ∂ ∂ V V V V  

5 6= ∂ ∂V V  and 1 2 3 4 5 6V V V V V V∂ ∂ = ∂ ∂ = ∂ ∂ =∅    with initial conditions on the surface 
at 0=t , 

0 0 0 0 0 0u u ,u u , , , , on ,i i i i i i i iq q q q Vϕ ϕ= = = Φ=Φ = =     (24) 
and boundary conditions on the surface are 

1 1 1 2 1 3

1 4 0 01 5 1 6

u u on [0, ), on [0, ), on [0, ),

on [0, ), on [0, ), on [0, ).
i i i ij j i i i i

i i

V h n h V q q n q V
V c D n c V V

σ

ϕ ϕ

= ∂ × ∞ = = ∂ × ∞ = = ∂ × ∞

= ∂ × ∞ = = ∂ × ∞ Φ = Φ ∂ × ∞
 (25) 

where 0 0 0 0 0 0u ,u , , , ,ϕ Φ i i i iq q  are the known initial displacements, temperature, electric 
potential, heat flux, and heat flux rate, respectively and 1 1 1 1 01 1u , , , , ,ϕ Φi i ih q c  denotes the 
surface displacement, tractions, temperature, heat flux, electric charge density, and electric 
potential. In order to meet the smoothness requirements and the other regularity assumptions 
these functions are introduced as the hypothesis on the data 

(i) 0 0 0 0u , , ,ϕ Φi iq  are continuous on [0, )= × ∞V V . 
(ii) 0 0u , i iq  are continuously differentiable on [0, )= × ∞V V . 
(iii) 1 1 1u , ,ϕ Φi  are continuous on 1 4 6[0, ), [0, ), [0, ),∂ × ∞ ∂ × ∞ ∂ × ∞V V V  respectively. 
(iv) 1 1 01, ,i ih q c  are piecewise continuous on 2 3 5[0, ), [0, ), [0, ),∂ × ∞ ∂ × ∞ ∂ × ∞V V V  

respectively. 
Further, we assume that the material constants satisfy the following inequalities  

00, 0, 0, 0,e qC T τ ρ> > > >   (26a) 
and , ,αijkl ij ijc L  are smooth on V  such that  

0e e >ijkl ij klC  for all tensors e ij and 0ϑϑ >ij i jL for any real ϑi defined on .V  (26b) 
A solution of the mixed initial boundary value problem is defined as an admissible state

[u , , , , , , , , ]e σ= Φi ij ij i i iR T q D E S , an ordered array of functions with properties 2,2u C ,∈i  
1,0 2,2 1,2 1,0 1,0 0,1C , C , C , C , C , Cσ ϕ∈ ∈ ∈ ∈ Φ∈ ∈ij i iq D S  on [0, )× ∞V . The set of all admissible 

states is a linear space as it satisfies the addition of admissible states and scalar multiplication 
of an admissible state. R  satisfies the equations (1)-(8), initial conditions (24), and boundary 
conditions (25). Now, we assume that the virtual displacements ud i , the virtual increment of 
the temperature dϕ , etc. correspond to the increments occurring in the body. Then 

u
u u , , etc.i

i idt dt dt dt
t t

ϕd dϕ ϕ
∂ ∂

= = = =
∂ ∂

  (27) 

and equation (23) reduces to the following relation 

( )

( )

0

,

,

u u u u

                        .

i i i i i i i i
V V A A V

ijk k ij j j j j ij ij ij ij
V A V V

ij ij
V

d W M H F dV dV h dA c dA D E dV
dt

e E dV J n dA E dV a dV

r a dV

ρ ρ

e ϕ ϕτ α ϕ e

ϕϕ

+ + = − + + Φ +

+ − − −

+

∫ ∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

∫



   

 

 



 (28) 

Now, 
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u u ,i i
V

KdV
t

ρ ∂
=
∂∫    (29) 

where 1 u u
2

ρ= ∫  i i
V

K dV , is the kinetic energy of the body enclosed by the volume V .  

Using equation (29) in the equation (28), we obtain  

( )

2
0

, ,

1 u u
2

.

i i i i ijk k ij
V V A A V

i i j j j j ij ij ij ij ij ij
V A V V V

d W H K r dV F dV h dA c dA e E dV
dt

D E dV J n dA E dV a dV r a dV

ϕ ρ e

ϕ ϕτ α ϕ e ϕϕ

 
+ + + = + + Φ + 

 

+ − − − +

∫ ∫ ∫ ∫ ∫

∫ ∫ ∫ ∫ ∫



 

  

 

 (30) 

The above equation is the basis for the proof of the following uniqueness theorem.  
Theorem1: The mixed initial boundary value problem with two-temperature theory has 

only one solution of the equations (6)-(8), subject to the initial conditions (24) and boundary 
conditions (25). 

Proof: Let (1) (1) (1)u , ,ϕ Φi  and (2) (2) (2)u , ,ϕ Φi  be two solutions sets of equations (1)-(8). 
Let us take  

(1) (2) (1) (2) (1) (2)u u u , , .i i i ϕ ϕ ϕ= − = − Φ = Φ −Φ  (31) 
The functions u ,ϕi  and Φ  satisfy the governing equations with zero body forces and 

homogeneous initial and boundary conditions. Thus, these functions satisfy an equation 
similar to the equation (30) with zero right hand side, that is, 

21 0.
2 V

d W H K r dV
dt

ϕ
 

+ + + = 
 

∫  (32) 

Since we have  
,=ij jiL L  

therefore, from equation (22) and with the aid of the definition of fractional order derivative 
given by Riemann Liouville i.e. 

1

1 ( )( ( )) , ( 1) ,
( ) ( )

α
α

τ τ α
α τ − +

 = − ≤ < Γ − −  ∫
n t

a t n
a

d fD f t d n n
n dt t

 where n  is an integer and α  is 

a real number, we obtain 

0
0

0

( ) .
(1 ) ( )α
τ τ τ
α τ

  
= +   

Γ − −   
∫ ∫ ∫



  

t
q i

ij i j ij j
V V

T JdH dT L J J dV L d J dV
dt dt t

              (33) 

 
Substitution of equation (33) in the equation (32), yields 

02
0

0

( )1 0.
2 (1 ) ( )α

τ τϕ τ
α τ

   
 + + + + =   Γ − −    

∫ ∫ ∫ ∫


  

t
q i

ij j ij i j
V V V

T Jd W K r dV L d J dV T L J J dV
dt t

    (34) 

Integrating equation (34) twice with respect to time variable over the interval (0, )t and 
using homogeneous initial conditions we thus, see that 

02

0 0

0
0 0

( )1
2 (1 ) ( )

             0.

t t
q i

ij j
V V

t t

ij i j
V

T JW K r dV L d J dV d
t

T L J J dVd d

α

τ τϕ τ ζ
α τ

ζ ζ

   
 + + + +   Γ − −    

+ =

∫ ∫ ∫ ∫

∫ ∫ ∫





 

  (35) 
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We also note that the expression 2ϕ∫
V

r dV  occurring in the equation (35) is always 

positive, since by the laws of thermodynamics Nowacki [7], 
20 .< <a rT Following Kothari 

and Mukhopadhyay [29], the inequalities (26) implies,  

02
0

0 0 0 0

( )1 .
2 (1 ) ( )α

τ τϕ τ ζ ζ ζ
α τ

   
 + + + +   Γ − −    
∫ ∫ ∫ ∫ ∫ ∫ ∫



  

t t t t
q i

ij j ij i j
V V V

T JW K r dV L d J dV d T L J J dVd d
t

 (36) 

The component in each integrand of expression (36) is non-negative. Thus, we conclude 
that each term in the expression (36) must be zero, which implies that u 0ϕ e σ= Φ = = = =i ij ij

on [0, )× ∞V . This proves the uniqueness of the solution to the complete system of field 
equations subjected to the displacement- electric potential-temperature, initial and boundary 
conditions.  

Alternative formulation: Following Nickel and Sackman [19] and Iesan [20], an 
alternative approach to solving the mixed initial boundary problem is formulated by 
incorporating the initial conditions explicitly into the field equations. Let ,χ ψ  be the two 
functions defined on [0, )= × ∞V V , and their convolution is defined as 

 
0

[ * ] ( , ) ( , ) , ( , ) [0, ),χ ψ χ ψ= − ∈ × ∞∫
t

x t s x s ds x t V                     (37) 

and satisfy the following properties 
(i)  .χ ψ ψ χ∗ = ∗  
(ii)  ( ) ( ) ( ).χ ψ τ χ ψ χ τ∗ + = ∗ + ∗   
(iii)  ( ) ( ) .χ ψ τ χ ψ τ∗ ∗ = ∗ ∗  
(iv)  0 0 or 0.χ ψ χ ψ∗ = ⇒ = =   

Consider Laplace transform of equations (2), (6). Using initial conditions (24), we 
obtain 

( )0 0 0 0
, , 0 , 0 , 0u 0,ρ ϕ ϕ α τ ρ− − − + Φ + =i i e ij ij ij i j i iq C a T T T S                                (38a) 

0 0 2
, u u u ,σ ρ ρ ρ+ + + =ij j i i i iF s s                                                                (38b) 

, , , , ,u 0,ξ τ+ Φ − − =i i i j ji ijk j ki i iD e T                                                               (38c) 
where " s " is the transformation parameter and a superimposed bar indicates the transformed 
function. Applying the inverse transformation, yields  

0 ,' ,ρ = − ∗ i iT S h g q                                                    (39a) 

,u ,ρ σ= ∗ +i ij j ig f                                                                          (39b) 

, , , , ,u 0,ξ τ+ Φ − − =i i i j ji ijk j ki i iD e T                                                  (39c) 
where , ', ig g f  and h  are 

( ) , '( ) 1, [0, ),= = ∈ ∞g t t g t t                                                                 (40a) 
0 0( , ) ( , ) u ( ) u ( ),ρ ρ= ∗ + + i i i if x t g F x t t x x   (40b)  

( )0 0 0 0
, 0 , 0 ,( ) ( ) u ( ) ( ),ρ ϕ ϕ α τ= − + − Φe ij ij ij i j i ih x C a x T x T x                                      (40c) 

with the aid of equations (38)-(40), alternative formulations of the problem can be made. 
Theorem 2: Let 0,2 0,1u , ,σ∈ ∈i ijC C  and suppose σ σ=ij ji . Then, u ,σi ji  satisfy the 

equations of motion (6) as well as the initial conditions (24) on u i  iff 

, u , on [0, ).σ ρ∗ + = × ∞ij j i ig f V                                                              (41) 
Following Gurtin [30], the proof of this theorem is trivial.  
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Theorem 3: Let 0,2 0,1, ,∈ ∈iS C q C  suppose the equation (3) holds for 0=t . Then, , iS q  
satisfy the energy equation (2) as well as the initial conditions (24) iff 

, 0' on [0, ).ρ− ∗ = × ∞i ih g q T S V                                                            (42) 
Proof: Suppose equations (2), (3) and initial conditions (24) hold for 0=t . Then, 

equations (2) and (40a) implies  

, 0 0 0
0

' ( , ) ( , ) ( ,0).
t

i ig q T S x d T S x t T S xρ ζ ζ ρ ρ− ∗ = = −∫   

Since at 0=t , ( )0 0 0 0
, 0 , 0 ,( ,0) ( ) u ( ) ( )ρ ϕ ϕ α τ= − − + Φe ij ij ij i j i iS x C a x T x T x . Therefore, 

( )0 0 0 0
, 0 , 0 , 0 ,' ( , ) ( ) u ( ) ( ).ρ ρ ϕ ϕ α τ− ∗ = − − − + Φi i e ij ij ij i j i ig q T S x t C a x T x T x        (43) 

Then, by equation (40c), , 0' ( , )ρ− ∗ =i ih g q T S x t .  
Hence, equation (42) is proved on [0, )× ∞V . Conversely, suppose equation (42) holds. 

Then, by reversing the argument, and utilizing the equations (40), it is directly verified that 
, iS q  meet energy equation (2). Since equations (3), (40a), (40b), (40c), (42) imply initial 

conditions (24) onϕ , and therefore the proof of the theorem is complete. 
Theorem 4: Let [u , , , , , , , , ]e σ ϕ= Φi ij ij i i iR q S D E be an admissible state. Then R  is a 

solution to the mixed initial boundary value problem of piezothermoelasticity with two-
temperature iff it meets the equations (1), (2), (4), (39a), (39b), (39c) and the boundary 
conditions (25). 
The result of this theorem is the trivial consequence of Theorem 2 and Theorem 3. 
This provides an alternative formulation of the solution of the mixed initial boundary value 
problem by incorporating initial conditions explicitly into field equations. 
 
4. Reciprocity Theorem 
We shall consider a homogeneous anisotropic piezothermoelastic body with two-temperature 
occupying the region V  and bounded by the surface A . We assume that the stresses σ ij  and 
the strains e ij  are continuous together with their first derivatives whereas the displacements 
u i , temperatureϕ and the electrical potential Φ  are continuous and have continuous 
derivatives up to second order, for , 0∈ + >x V A t . The components of surface traction, the 
normal component of the heat flux, the normal component of the electric displacement at 
regular points of ∂V , are given by 

0, , , 1, 2,3,σ= = = =i ij j i i i ih n q q n c D n i                                                   (44) 
respectively. To the system of field equations, we must adjoin boundary conditions and initial 
conditions. We consider the following boundary conditions: 

1 1 1u ( , ) u ( , ) , ( , ) ( , ) , ( , ) ( , ),ϕ ϕ= = Φ = Φi ix t x t x t x t x t x t                              (45) 
for all , 0∈ >x A t and the homogeneous initial conditions 
u ( ,0) u ( ,0) 0, ( ,0) ( ,0) 0,
an for all( .d ( ,0) ,0) 0, , 0

ϕ ϕ= = = = 


Φ =Φ = ∈ = 





i ix x x x
x x x V t

                                   (46) 

We derive the dynamic reciprocity relationship for a generalised piezothermoelastic 
bounded body V with two- temperature, which satisfies equations (1)-(8), the boundary 
conditions (45) and the homogeneous initial conditions (46), and are subjected to the action of 
body forces ( , )iF x t , surface traction ( , )ih x t , the heat flux ( , )q x t , and the surface charge 
density 0 ( , )c x t . We define the Laplace transform as 
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0

( , ) ( ( , )) ( , ) .
∞

−= = ∫ stf x s L f x t f x t e dt                                   (47) 

Applying the Laplace transform defined by the equation (47) on the equations (1)-(8) 
and omitting the bars for simplicity, we obtain 

,σ e α= − −ij ijkl kl ijk k ijc e E T                                            (48) 

, 0 ,ρ− =i iq T sS                                                                                  (49) 
,ρ α e τ= + +ij ij i iS E rT                                                                                                  (50) 

2
, F u ,σ ρ ρ+ =ij j i is                                                                                                           (51) 

, (1 ) ,αϕ τ− = +ij j q iK s q                                                                                                    (52) 

, 0,=i iD                                                                                                             (53) 
,ξ e τ= + +i ij j ijk jk iD E e T                                                                                                   (54) 

, , ( , , , 1, 2,3).=−Φ =i iE i j k l                                                                          (55)  
We now consider two problems where applied body forces, surface temperature, and the 

electric potential are specified differently. Let the variables involved in these two problems be 
distinguished by superscripts in parentheses. Thus, we have (1) (1) (1) (1) (1)u , , , ,e σ ϕ Φi ij ij  for the 

first problem and (2) (2) (2) (2) (2)u , , , ,e σ ϕ Φi ij ij  for the second problem. Each set of variables 
satisfies the equations (48) - (55). Using the assumptionσ σ=ij ji , we obtain 

( )(1) (2) (1) (2) (1) (2) (1) (2)
, ,,

u u u .σ e σ σ σ= = −∫ ∫ ∫ ∫ij ij ij i j ij i ij j ij
V V V V

dV dV dV dV                      (56) 

Using the divergence theorem in the first term of the right hand side of equation (56) 
yields 

(1) (2) (1) (2) (1) (2)
,u u .σ e σ σ= −∫ ∫ ∫ij ij ij i j ij j i

V A V

dV n dA dV                                                    (57) 

Equation (57) with the aid of equations (44) and (51) gives 
(1) (2) (1) (2) 2 (1) (2) (1) (2)u u u u .σ e ρ ρ= − +∫ ∫ ∫ ∫ij ij i i i i i i

V A V V

dV h dA s dV F dV                               (58) 

A similar expression is obtained for the integral (2) (1)σ e∫ ij ij
V

dV , from which together with 

the equation (58), it follows that 
(1) (2) (2) (1) (1) (2) (2) (1) (1) (2) (2) (1)( ) ( u u ) ( u u ) .σ e σ e ρ− = − + −∫ ∫ ∫ij ij ij ij i i i i i i i i

V A V

dV h h dA F F dV       (59) 

Now multiplying equation (48) by (2)e ij  and (1)e ij  for the first and second problems 
respectively, subtracting and integrating over the region V , we obtain  

(1) (2) (2) (1) (1) (2) (2) (1) (2) (1) (1) (2)
, ,

(1) (2) (2) (1) (1) (2) (2) (1)
, ,

( ) ( ) ( )

( ) ( ) .

σ e σ e e e e e e e

α ϕ e ϕ e α ϕ e ϕ e

− = − − Φ −Φ

− − + −

∫ ∫ ∫

∫ ∫

ij ij ij ij ijkl kl ij kl ij ijk k ij k ij
V V V

ij ij ij ij ij ij ij ij ij
V V

dV c dV e dV

dV a dV
 

Using the symmetry properties of ijklc , we obtain 
(1) (2) (2) (1) (2) (1) (1) (2) (1) (2) (2) (1)

, ,( ) ( ) ( )σ e σ e e e α ϕ e ϕ e− = − Φ −Φ − −∫ ∫ ∫ij ij ij ij ijk k ij k ij ij ij ij
V V V

dV e dV dV   

(1) (2) (2) (1)
, ,( ) .α ϕ e ϕ e+ −∫ ij ij ij ij ij ij

V

a dV                                (60) 
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Equating equations (59) and (60), we get the first part of the reciprocity theorem 
(1) (2) (2) (1) (1) (2) (2) (1) (2) (1) (1) (2)

, ,( u u ) ( u u ) ( )ρ e e− + − = − Φ −Φ∫ ∫ ∫i i i i i i i i ijk k ij k ij
A V V

h h dA F F dV e dV   

(1) (2) (2) (1) (1) (2) (2) (1)
, ,( ) ( ) .α ϕ e ϕ e α ϕ e ϕ e− − + −∫ ∫ij ij ij ij ij ij ij ij ij

V V

dV a dV                         (61) 

This contains the mechanical causes of motion iF  and ih . 
Now, taking the divergence of both sides of equation (52) and using equations (49), 

(50), we arrive at the equation of heat conduction, namely 

( ) ( )1
, 0 ( ).αϕ τ α e τ+∂
= + + +

∂ ij j q ij ij i i
i

K s s T E rT
x

                           (62) 

To derive the second part, multiplying equation (62) by (2)ϕ  and (1)ϕ  for the first and 
the second problems respectively, subtracting and integrating over V , we get 

( ) ( )( ) ( )

( ) ( )

(1) (2) (2) (1) (1) (2) (2) (1)
, , 1 0, ,

(1) (2) (2) (1) (1) (2) (2) (1)
1 0 , , 1 0

ϕ ϕ ϕ ϕ α e ϕ e ϕ

α e ϕ e ϕ τ ϕ ϕ

− =Ω −

−Ω − +Ω −

∫ ∫

∫ ∫

ij j ij j ij ij iji i
V V

ij ij ij ij ij ij i i i
V V

K K dV T dV

T a dV T E E dV
 

( )(1) (2) (2) (1)
1 0 , , ,ϕ ϕ−Ω −∫ ij i ij i ij

V

T ra E E dV                                (63) 

where, 1
1

ατ +Ω = + qs s . Now, 

( ) ( )(1) (2) (1) (2) (1) (2)
, , , ,, ,

ϕ ϕ ϕ ϕ ϕ ϕ= −ij j ij j ij j ii i
K K K and  

( ) ( )(2) (1) (2) (1) (2) (1)
, , , ,, ,

.ϕ ϕ ϕ ϕ ϕ ϕ= −ij j ij j ij j ii i
K K K  (64) 

Equation (63) with the help of equations (44), (45), (64) and the divergence theorem can 
be written as 

( ) ( )

( ) ( )

(1) (2) (2) (1) (1) (2) (2) (1)
1 1 0

(1) (2) (2) (1) (1) (2) (2) (1)
1 0 , , 1 0 , ,

ϕ ϕ α e ϕ e ϕ

α e ϕ e ϕ τ ϕ ϕ

Ω − =−Ω −

+Ω − +Ω Φ −Φ

∫ ∫

∫ ∫

ij ij ij
A V

ij ij ij ij ij ij i i i
V V

q q dA T dV

T a dV T dV
 

( )(1) (2) (2) (1)
1 0 , , , , .ϕ ϕ−Ω Φ −Φ∫ ij i ij i ij

V

T ra dV                                    (65) 

This constitutes the second part of the reciprocity theorem which contains the thermal 
causes of motion 1ϕ  and q . To derive the third part, multiplying equation (54) by (2)

iE  and 
(1)

iE  for the first and the second problems respectively, subtracting and integrating over V , 
we get 
( )(1) (2) (2) (1) (1) (2) (2) (1) (1) (2) (2) (1)

(1) (2) (2) (1) (1) (2) (2) (1)
, ,

( ) ( )

( ) ( ) .

ξ e e

τ ϕ ϕ τ ϕ ϕ

− = − + − +

− − −

∫ ∫ ∫

∫ ∫

i i i i ij j i j i ijk jk i jk i
V V V

i i i i ij ij i ij i
V V

D E D E dV E E E E dV e E E dV

E E dV a E E dV
 

Since ξ ξ=ij ji , therefore, we have 

( )(1) (2) (2) (1) (1) (2) (2) (1) (1) (2) (2) (1)( ) ( )e e τ ϕ ϕ− = − + −∫ ∫ ∫i i i i ijk jk i jk i i i i
V V V

D E D E dV e E E dV E E dV  

(1) (2) (2) (1)
, ,( ) .τ ϕ ϕ− −∫ i ij ij i ij i

V

a E E dV                      (66) 

Equation (66) with the aid of equation (55) yields 
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( )(1) (2) (2) (1) (1) (2) (2) (1) (1) (2) (2) (1)
, , , ,( ) ( )e e τ ϕ ϕ− = − Φ − Φ − Φ − Φ∫ ∫ ∫i i i i ijk jk i jk i i i i

V V V

D E D E dV e dV dV  

(1) (2) (2) (1)
, , , ,( ) .τ ϕ ϕ+ Φ − Φ∫ i ij ij i ij i

V

a dV                              (67) 

Also, using (55) with equation (67), we have 
( ) ( )(1) (2) (2) (1) (2) (1) (1) (2)

, , .− = Φ − Φ∫ ∫i i i i i i i i
V V

D E D E dV D D dV                              (68) 

Now,  

( )
( )

(2) (1) (2) (1) (2) (1)
, ,,

(1) (2) (1) (2) (1) (2)
, ,,

,

.

Φ = Φ − Φ 


Φ = Φ − Φ 

i i i i ii

i i i i ii

D D D

D D D
                                                              (69) 

Using equation (69), (54) and divergence theorem in equation (68), we obtain 

( ) ( ) ( )( ) ( )(1) (2) (2) (1) (2) (1) (1) (2) (1) (2) (2) (1)
, ,, ,

− = Φ − Φ + Φ − Φ∫ ∫ ∫i i i i i i i i i ii i
V V V

D E D E dV D D dV D D dV

( ) ( )( )(2) (1) (1) (2) .= Φ − Φ∫ i i i i
A

D n D n dA                                (70) 

With the aid of equation (44), we obtain 
( ) ( ) ( )( )(1) (2) (2) (1) (2) (1) (1) (2)

0 0 .− = Φ − Φ∫ ∫i i i i
V A

D E D E dV c c dA                                       (71) 

From equations (67) and (71), we have  

( ) ( )( )(1) (2) (2) (1) (1) (2) (2) (1) (1) (2) (2) (1)
0 0 , , , ,( ) ( )e e τ ϕ ϕΦ − Φ = Φ − Φ + Φ − Φ∫ ∫ ∫ijk jk i jk i i i i

A V V

c c dA e dV dV

(1) (2) (2) (1)
, , , ,( ) .τ ϕ ϕ− Φ − Φ∫ i ij ij i ij i

V

a dV                                (72) 

This constitutes the third part of the reciprocity theorem which contains the electric 
potential Φ and surface charge density 0c . Combining equations (61), (65), and (72) we obtain 

( )(1) (2) (2) (1) (1) (2) (2) (1) (1) (2) (2) (1)
1 0 0 0( u u ) ( u u )ρ


Ω − + − + Φ − Φ


∫ ∫ ∫i i i i i i i i
A V A

T h h dA F F dV c c dA

( )(1) (2) (1) (2) (1) (2) (2) (1)
, , , , 1 1 1( ) ( ) 0.τ ϕ ϕ ϕ ϕ


+ − Φ − Φ + Ω − =


∫ ∫i ij ij i ij i
V A

r a dV q q dA                   (73) 

This is the general reciprocity theorem in the Laplace transform domain. For applying 
inverse Laplace transform on the equations (61), (65), (72), and (73), we shall use the 
convolution theorem  

1

0 0

( ( ) ( )) ( ) ( ) ( ) ( ) ,ζ ζ ζ ζ ζ ζ− = − = −∫ ∫
t t

L F s G s f t g d g t f d                                           (74) 

and the symbolic notation 
( , )( ) 1 .

α

α

ζτ
ζ

∂
∧ = +

∂q
f xf                                                                                         (75)  

Equations (61), (65), (72) and (73) with the aid of equation (75) yield the first, second, 
third, and fourth parts of the reciprocity theorem in the final form 
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(1) (2) (1) (2)

0 0

(1) (2) (1) (2)
,

0

( ( , )u ( , ) ( ( , )u ( , )

( ( , ) ( , )) ( , ) ( , )

ζ ζ ζ ρ ζ ζ ζ

ζ e ζ ζ α ϕ ζ e ζ

− + −

− Φ − − −

∫ ∫ ∫ ∫

∫ ∫ ∫

t t

i i i i
A V

t

ijk k ij ij ij
V V

h x t x d dA F x t x d dV

e x t x d dV x t x dV
 

(1) (2) 12
, 21( , ) ( , ) ,α ϕ ζ e ζ+ − =∫ ij ij ij ij

V

a x t x dV S                             (76) 

(2) (2)
(1) (1)

0
0 0

(2) (2)
,(1) (1)

0 0 ,
0 0

( , ) ( ( , ))( , ) ( , )

( ( , )) ( ( , ))( , ) ( , )

t t

ij ij
A V

t t
ij

ij ij ij i i
V V

x xq x t d dA T x t d dV

x xT a x t d dV T x t d dV

ϕ ζ ϕ ζζ ζ α e ζ ζ
ζ ζ

ϕ ζ ϕ ζα e ζ ζ τ ζ ζ
ζ ζ

   ∂ ∧ ∂ ∧
− + −   ∂ ∂   
 ∂ ∧  ∂ ∧

− − − Φ −    ∂ ∂  

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫
 

(2)
,(1) 12

0 , 21
0

( ( , ))
( , ) ,

ϕ ζ
τ ζ ζ

ζ
 ∂ ∧

+ Φ − =  ∂ 
∫ ∫

t
ij

i ij i
V

x
T a x t d dV S            (77) 

and, 
(1) (2) (1) (2)

0 ,
0 0

( , ) ( , ) ( , ) ( , )
t t

ijk i jk
A V

c x t x d dA e x t x d dVζ ζ ζ ζ e ζ ζ− Φ + Φ −∫ ∫ ∫ ∫

(1) (2) (1) (2) 12
, , , 21

0 0

( , ) ( , ) ( , ) ( , ) .τ ζ ϕ ζ ζ τ ζ ϕ ζ ζ+ Φ − + Φ − =∫ ∫ ∫ ∫
t t

i i i ij i ij
V V

x t x d dV a x t x d dV S    (78) 

Here, 12
21S  indicates the same expression as on the left-hand side except that the 

superscripts (1) and (2) are interchanged. Finally, equation (73) with the aid of equation (74) 
gives the general reciprocity theorem in the final form 

(2) (2)
(1) (1)

0 0
(2)(2)

,(1) (1)
0 ,

0 0

(u ( , )) (u ( , ))( , ) ( , )

( ( , ))( ( , ))( , ) ( ) ( , )

t t
i i

i i
A V

t t
i

i ij ij
A V

x xh x t d dA F x t d dV

xxc x t d dA r a x t d dV

ζ ζζ ζ ρ ζ ζ
ζ ζ

ζζζ ζ τ ϕ ζ ζ
ζ ζ

∂ ∧ ∂ ∧
− + −

∂ ∂

∂ ∧ Φ∂ ∧ Φ
+ − + − −

∂ ∂

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫
(2)

(1) 12
21

0 0

1 ( , )( , ) .ϕ ζζ ζ
ζ

 ∂ ∧
+ − = ∂ 

∫ ∫
t

A

xq x t d dA S
T

                  (79) 

Special Cases. If we restrict our work to the following sub-cases with two-temperature, 
the constitutive relations change according to the following independent constants. The 
variational principle, uniqueness, and reciprocity theorems can be established by following 
similar steps.  
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Case 1: Monoclinic medium 
11 11 1,1 12 2,2 13 3,3 14 2,3 3,2 11 ,1 11

22 12 1,1 22 2,2 23 3,3 24 2,3 3,2 12 ,1 22

33 13 1,1 23 2,2 33 3,3 34 2,3 3,2 13 ,1 33

23 41 1,1 42 2,2 43 3,3 44 2,

u u u (u u ) ,
u u u (u u ) ,
u u u (u u ) ,
u u u (u

σ α

σ α

σ α

σ

= + + + + + Φ −

= + + + + + Φ −

= + + + + + Φ −

= + + +

c c c c e T
c c c c e T
c c c c e T
c c c c 3 3,2 14 ,1u ) ,






+ + Φ e

 

13 55 1,3 3,1 25 ,2 35 ,3

12 66 1,2 2,1 26 ,2 36 ,3

1 11 1,1 12 2,2 13 3,3 14 2,3 3,2 11 ,1 1

2 25 1,3 3,1 26 1,2 2,1 22 ,2 23 ,3 2

3 35 1,3 3,1 36 1,2 2,

(u u ) ,
(u u ) ,

u u u (u u ) ,
(u u ) (u u ) ,
(u u ) (u u

σ

σ

ξ τ

ξ ξ τ

= + + Φ + Φ

= + + Φ + Φ

= + + + + − Φ +

= + + + − Φ − Φ +

= + + +

c e e
c e e

D e e e e T
D e e T
D e e 1 23 ,2 33 ,3 3) ,ξ ξ τ








− Φ − Φ + T

                                   (80)  

Case 2: Orthotropic medium 

11 11 1,1 12 2,2 13 3,3 31 ,3 11

22 12 1,1 22 2,2 23 3,3 32 ,3 22

33 13 1,1 23 2,2 33 3,3 33 ,3 33

23 44 2,3 3,2 24 ,2

13 55 1,3 3,1 15 ,1

12 66 1,2 2,1

1 11 ,

u u u ,
u u u ,
u u u ,
(u u ) ,
(u u ) ,
(u u ),

σ α

σ α

σ α

σ

σ

σ

ξ

= + + + Φ −

= + + + Φ −

= + + + Φ −

= + + Φ

= + + Φ

= +

=− Φ

c c c e T
c c c e T
c c c e T
c e
c e
c

D 1 15 1,3 3,1

2 22 ,2 24 2,3 3,2

3 33 ,3 31 1,1 32 2,2 33 3,3 3

(u u ),
(u u ),
u u u ,

ξ

ξ τ











+ +


=− Φ + + 
=− Φ + + + + 

e
D e
D e e e T

                                            (81)  

Case 3: Transversely Isotropic medium 

11 11 1,1 12 2,2 13 3,3 13 ,3 11

22 12 1,1 11 2,2 13 3,3 13 ,3 11

33 13 1,1 13 2,2 33 3,3 33 ,3 33

23 44 2,3 3,2 15 ,2

13 44 1,3 3,1 15 ,1

12 66 1,2 2,1

1 15 1

u u u ,
u u u ,
u u u ,
(u u ) ,
(u u ) ,
(u u ),

(u

σ α

σ α

σ α

σ

σ

σ

= + + + Φ −

= + + + Φ −

= + + + Φ −

= + + Φ

= + + Φ

= +

=

c c c e T
c c c e T
c c c e T
c e
c e
c

D e ,3 3,1 11 ,1

2 15 1,2 2,1 11 ,2

3 13 1,1 13 2,2 33 3,3 33 ,3 3

u ) ,
(u u ) ,
u u u ,

ξ

ξ

ξ τ











+ − Φ


= + − Φ 
= + + − Φ + 

D e
D e e e T

                                                  (82)  

5. Plane wave propagation 
Formulation and solution of the problem. Substituting the constitutive relations (81) 
(Following Tzou and Bao [31]) into the field equations (6)-(8) without body forces, heat 
sources, yield  

11 1,11 12 2,21 13 3,13 31 ,31 66 1,22 2,12 55 1,33 3,13 11 11 ,11 22 ,22 33 ,33 ,1u u u (u u ) (u u ) ( )α ϕ ϕ ϕ ϕ+ + + Φ + + + + − − − −c c c e c c a a a  

15 ,13 1u 0,ρ+ Φ − =e                                                                               (83a)  

66 1,21 2,11 12 1,12 22 2,22 23 3,32 32 ,32 22 11 ,11 22 ,22 33 ,33 ,2 44 2,33 3,23(u u ) u u u ( ) (u u )α ϕ ϕ ϕ ϕ+ + + + + Φ − − − − + +c c c c e a a a c  
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24 ,23 2u 0,ρ+ Φ − =e                                                                                (83b)  

55 1,31 3,11 44 2,32 3,22 13 1,13 23 2,23 33 3,33 33 11 ,11 22 ,22 33 ,33 ,3(u u ) (u u ) u u u ( )α ϕ ϕ ϕ ϕ+ + + + + + − − − −c c c c c a a a  

15 ,11 24 ,22 33 ,33 3u 0,ρ+ Φ + Φ + Φ − =e e e                                                            (83c)  

11 ,11 15 1,31 3,11 22 ,22 24 2,32 3,22 33 ,33 31 1,31 32 2,23 33 3,33(u u ) (u u ) u u uξ ξ ξ− Φ + + − Φ + + − Φ + + +e e e e e  

3 11 ,11 22 ,22 33 ,33 ,3( ) 0,τ ϕ ϕ ϕ ϕ+ − − − =a a a                                                     (83d) 

11 ,11 22 ,22 33 ,33 0 11 1,1 22 2,2 33 3,3 3 ,3 11 ,11 22 ,22( ) 1 ( u u u (
α

αϕ ϕ ϕ τ α α α τ ϕ ϕ ϕ
 ∂

+ + − + + + − Φ + − − ∂ 


    qK K K T r a a
t

 

33 ,33 )) 0.ϕ− =a                                                                                             (83e) 
To facilitate a solution, we introduce the following dimensionless quantities 

( ) ( ) ( ) ( ) ( ) ( )
2

1 311 11 1
1 2 2

1 1 1 11 0 1

', u ' , u , ', ' , , ', ' , , ' , ' ,ωω α ωτ ω τ ϕ ϕ
ρ α

Φ
= = = Φ = =i i i i q q ij ij

ex x t t T T a a
c c c T c

 where 11
1 ρ
=

cc  and 
2
1

1
11

, 1, 2,3ρω = =ec c i
K

.

 
Incorporating these dimensionless quantities, the system of equations (83), after 

removal of prime ( ' ), reduces to the following form 
211 0

11 1,11 12 66 2,12 13 55 3,13 66 1,22 55 1,33 31 15 ,13 1 11 ,11
31

u ( ) u ( ) u u u ( ) (α ρ ϕ ϕ+ + + + + + + + Φ − −
Tc c c c c c c e e c a

e
 

2
22 ,22 33 ,33 ,1 1 1) u 0,ϕ ϕ ρ− − − =a a c                                                                             (84a) 

211 0 22
66 12 1,12 66 2,11 22 2,22 23 44 3,23 44 2,33 32 24 ,32 1 11 ,11

31 11

( ) u u u ( ) u u ( ) (α αρ ϕ ϕ
α

+ + + + + + + + Φ − −
Tc c c c c c c e e c a

e
 

2
22 ,22 33 ,33 ,2 1 2) u 0,ϕ ϕ ρ− − − =a a c                                                                      (84b) 

2 33
55 13 1,31 55 3,11 44 23 2,23 44 3,22 33 3,33 1 11 ,11 22 ,22 33 ,33 ,3

11

( ) u u ( ) u u u ( )αρ ϕ ϕ ϕ ϕ
α

+ + + + + + − − − −c c c c c c c c a a a  

211 0
15 ,11 24 ,22 33 ,33 1 3

31

( ) u 0,α ρ+ Φ + Φ + Φ − =

T e e e c
e

                                                   (84c) 

11 0
11 ,11 22 ,22 33 ,33 15 1,31 3,11 24 2,32 3,22 31 1,31 32 2,23 33 3,33

31

( ) (u u ) (u u ) u u uα ξ ξ ξ− Φ + Φ + Φ + + + + + + +
T e e e e e

e
 

2
1

3 11 ,11 22 ,22 33 ,33 ,3
11

( ) 0,ρτ ϕ ϕ ϕ ϕ
α

+ − − − =
c a a a                                                          (84d) 

1
11 ,11 22 ,22 33 ,33 0 11 1,1 22 2,2 33 3,3 3 ,3 11 ,11

11

( ) 1 ( u u u (
α

α

ρω ϕ ϕ ϕ τ α α α τ ϕ ϕ
α

 ∂
+ + − + + + − Φ + − ∂ 



   qK K K T r a
t

22 ,22 33 ,33 ))) 0.ϕ ϕ− − = a a                                                                                          (84e) 
For plane harmonic waves, we assume 

( ) ( )u , , u , , exp , 1,2,3,ϕ ϕ ω
ν

  Φ = Φ − =    
k k

k k
n x t ki                                              (85)

 
where,ω  – circular frequency, ν  – phase velocity of the wave propagating along the direction 
vector n , 1 2 3u , u , u ,Φ andϕ  – the undetermined amplitude vectors. 

Upon using equation (85) in the set of equations (84), we obtain a system 0,=PX  
where  
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2 2
11 11 12 13 14 12 11

2 2
15 11 16 17 18 14 12

2 2
19 20 11 21 22 15 13

2
23 24 25 26 16 14

2
27 28 29 30 17 15

ν ν
ν ν

ν ν
ν

ν ν ν ν ν

 + +
 + + 
 = + +
 

+ 
 + 

t x x x x t m
x t x x x t m

P x x t x x t m
x x x x t m
x x x x t m

 

and 1 2 3u u u ,ϕ = Φ 
tr

X  " tr " represents the transpose of the matrix. The symbols 
used in the matrix P  are mentioned in Appendix A. For this system to possess a non-trivial 
solution, the determinant of the matrix P  vanishes which yields a characteristic equation in 

2ν . On Solving this characteristic equation, we obtain four roots of 2ν , in which we are 
interested in those roots whose imaginary parts are positive. The complex phase velocities of 
the quasi-waves, given by , 1, 2,3, 4ν =i i  will be varying with the direction of phase 
propagation. Corresponding to these roots, there exist four waves corresponding to 
descending order of their velocities, namely quasi longitudinal wave (qP), two quasi 
transverse waves (qS1) and (qS2), and quasi thermal wave (qT). The complex velocity of the 

quasi-waves, i.e. ,ν ν ν= +R Ii  defines the phase propagation velocity 
2 2ν ν
ν

 +
=  
 

R I
i

R i

V and 

attenuation quality factor
2

1
2

Img(1/ ) , 1, 2,3, 4
Re(1/ )

ν
ν

− = =i
i

i

Q i , for the corresponding waves. 

Therefore, the four waves in such a medium are attenuating.  
 
Special cases.  
(a) For propagation of wave along the x1 axis, (1,0,0)=n  Then,  

2 2 211 0
11 1 12 1 13 11 14 15 16 0

31
2

17 1 11 11 12 13 14 15 16 66 17 18 19 20

21 55 22 15 23 24 25 15 26 11 27

, , , , 0, 0, 0, (1 ( ) ),

, , 0, , 0,
, , 0, , ,

αα ωωρ ρ ω τ ω τ

τ ρ ω ω
ω ω ξ

= − = = = = = = = + −

= = = = = = = = = = =
= = = = = − = =

s H q

H

s s

Tt c t c t t a t t t T
e

t r c x c x x x x x c x x x x
x c x t e x x x e x t x

i i

i

11 28 29 30

1
31 11 11 12 13 12 13 14 15 31 17 13

11

, 0,

, , 0, 0, 0, .

τ ωα
ρω ω
α

− = = =

= − = = = = = +

H x x x

x K m t t m m m m x t t

Substituting these expressions, we can solve the determinant i.e. det ( P ) = 0, and 
further, the obtained characteristic equation can be solved to find the characteristics of 
the waves. Similarly, if we consider wave propagating in x2 axis then its direction is 
given by (0,1,0)=n  and for a wave propagating along x3 axis then its direction is 
given by (0,0,1).=n  Further, we can solve the det ( P ) = 0 in order to find the 
characteristic equation and the characteristics of the waves. In these cases, the 
generated waves will not be known as quasi since the waves propagate along with the 
principal directions. 

(b) Let's consider the plane wave propagation in x1-x2 plane i.e. (sin ,cos ,0)θ θ=n such 
that 2 2

1 2 1+ =n n and, 
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2 2 2 2 2 211 0 22
11 1 12 1 13 11 22 14 1

31 11
2 2 2

15 16 0 17 1 11 11 66

, sin , , ( sin cos ), cos ,

0, 0, (1 ( ) ), , ( sin cos ),α

α ω αωρ θρ ω θ θ θρ
α

τ ω τ τ ρ ω θ θ

= − = = = + =

= = = + − = = +

s

H q H

Tt c t c t t a a t c
e

t t T t r c x c c

i i

i i
2 2

12 12 66 13 14 15 12 16 66 22
2 2 2 2

17 18 19 20 21 55 44 22 15 24

( )sin cos , 0, 0, , ( sin cos ),

0, ( sin cos ), ( sin cos ),

ω θ θ ω θ θ

ω θ θ θ θ

= + = = = = +

= = = = = + = +s

x c c x x x x x c c

x x x x x c c x t e e
 

2 2 2 2
23 24 25 15 24 26 11 22

21
27 11 28 22 29 30 31 11

11

0, ( sin cos ), ( sin cos ),

sin , cos , 0, ( sin

ω θ θ ξ θ ξ θ
ρωτ ωα θ τ ωα θ ω θ
α

= = = − + = +

= − = − = = = − +

s

H H

x x x e e x t

x x x x x K
 

2
22 11 12 13 12 14 13 13 14 15 31 17 13cos ), , , 0, 0, .θ = = = = = +K m t t m t t m m m x t t

 

Substituting these expressions in the matrix P and solving the det ( P ) = 0, we obtain 
the characteristic equation and further, the characteristics of the waves. Similarly, if 
we consider wave propagating in x2- x3 plane then its direction is given by 

(0,sin ,cos )θ θ=n  and for a wave propagating in x1- x3 plane then its direction is 
given by (sin ,0,cos ).θ θ=n  Further, we can solve the det ( P ) = 0 in order to find the 
characteristic equation and different characteristics of the waves like phase velocity, 
attenuation quality factor, specific heat loss, and penetration depth. 

Numerical results and discussion. The characteristics of the plane wave propagating 
in the orthotropic piezothermoelastic medium with the consideration of two- temperature and 
fractional order derivative can be explained through numerical examples. Matlab 9.0 software 
is used to solve the different characteristics like phase velocity, attenuation quality factor, 
specific heat loss, and penetration depth. Also, the effect of two-temperature parameter on 
phase velocity and attenuation quality factor with respect to thermal relaxation time is 
computed. The numerical values of cadmium selenide (CdSe) have been taken. Elastic 
constants (in units of GPa) are 11 12 1374.1, 45.2, 39.3,= = =c c c  

22 23 33 44 5579.4, 42.6, 83.6, 13.2, 15.1,= = = = =c c c c c  66c 14.7= . Thermoelastic coupling 
constants (in units of 5 1 210 − −NK m ) are given by 11 22 336.21, 5.93, 5.51α α α= = = , electric 
permittivity constants ( 1110− 2 1 2− −C N m ) are 11 22 338.26, 8.71, 9.03ξ ξ ξ= = = , thermal 
conductivity constants ( 1 1− −Wm K ) are 11 22 339, 7, 8= = =K K K . The pyroelectric constant is 

6 2 1
3 2.6 10τ − − −= − × Cm K , piezoelectric constants ( 3 210− −Cm ) are 15 3,=e

24 31 32 332, 35, 32, 34= = = =e e e e , thermal constants are given by 11 =a 5 5
225 10 , 3 10 ,− −× = ×a

5
33 7 10 .−= ×a Numerical values for the remaining constants are 3

05500 , 300 ,ρ −= =Kgm T K
8 1 1 8 610 , 260 , 2 10 , 2 10 Hz.τ τ ω π− − − − −= = = × = ×T e qs C JKg K s   A unit vector (cosφ= nn

sin ,θn sin sin ,cos ),φ θ θn n n  where θ  denotes the polar angle with x3-axis and φ  is the 
azimuthal angle between x1-axis and x2-axis.represents the direction of propagation of the 
waves such that θn  is varying from 0 to 200º. Using the above numerical values the variations 
of phase velocity and attenuation quality factor of four waves are displayed for the fixed 
different values of φ =30º,78º,156º, respectively but with the variation in the angle of 
incidence and fractional order parameter. These characteristics are compared for TT (Two-
Temperature i.e. 0≠ija ) model and for WTT (Without Two-Temperature i.e. 0=ija ) model. 
The comparison of corresponding plots in these figures signifies the effectiveness of two-
temperature and fractional order parameters with the change in direction as exhibited in 
graphs as follows. 
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Fig. 1. Profile of (a) 1V  (b) 2V  (c) 3V  (d) 4V  w.r.t. α and θ for φ =30º,78º,156º, respectively 
for TT model 
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Fig. 2. Profile of (a) 1V  (b) 2V  (c) 3V  (d) 4V  w.r.t. α  and θ  for φ =30º,78º,156º, respectively 
for WTT model 

 
Comparing Figures 1 and 2, it is clear that for the different values of φ , the phase 

velocity of qP wave ( 1V ) depict the significant impact of factional order parameter and two-
temperature parameters as the angle of incidence varies. It possesses the highest value which 
is near to 52.2 10×  for 78φ = °  and at 0, 200θ = ° . For 30 ,156φ = ° °  and for WTT, 1V  
increases when 100θ ≤ °  and decreases as θ  exceeds 100° . For the different values of α , the 

(b) 

(c) 

(d) 

(a) 
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phase velocities ( 2,3, 4)=iV i  of other waves depict the similar behaviour for both models 
with a slight difference in numerical values as φ  and θ  vary. It is noticed that the phase 
velocities of the waves for both TT and WTT models exhibit an abrupt change in trend at

100θ = ° . The variations of phase velocity of the respective waves clearly signify the impact 
of , ,φ θ α  and ija .   

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Profile of (a) 1
1
−Q  (b) 1

2
−Q  (c) 1

3
−Q  (d) 1

4
−Q w.r.t. α and θ for 30 ,78 ,156φ = ° ° ° , 

respectively for TT model 
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Fig. 4. Profile of (a) 1
1
−Q  (b) 1

2
−Q  (c) 1

3
−Q  (d) 1

4
−Q  w.r.t. α and θ for 30 ,78 ,156φ = ° ° ° , 

respectively for WTT model 
 

It is clear from Fig. 3(a) that for TT model the attenuation quality factor of qP wave 
initially tends to decrease then increases as θ  exceeds 100°  for the different values of φ  
while in the case of WTT, 1

1
−Q demonstrates an oscillatory behaviour as shown in Fig. 4(a). 

Evidently, two-temperature parameters and α have a substantial effect. Figure 3(b) depicts 
that for 78φ = °  and 100θ = ° , the attenuation quality factor of qS1 wave ( 1

2
−Q ) is less than 

the value obtained for 30 ,156φ = ° °  and 0100θ = . It gradually decreases for the same value of 
α  as the angle of incidence increases whereas, for WTT, it displays oscillatory behaviour 

(c) 

(b) 

(a) 

(d) 
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with variations in numerical values for different values of φ  and θ . The attenuation quality 
factor of qS2 wave ( 1

3
−Q ) is similar for WTT and TT models as shown in Figs. 3(c) and 4(c). 

1
3
−Q  and 1

4
−Q  of qS2 and qT waves are noticed as unaffected for both mediums attaining 

smaller values with some variations and may not be of that much significance. Both exhibit 
constant behaviour as θ  increases for different values of ,φ α .  

 
6. Conclusions  
A mathematical model of an anisotropic piezothermoelastic medium with two-temperature 
and fractional order derivative is presented. Also, the mathematical formulation for 
orthotropic piezothermoelastic medium with two-temperature and fractional order derivative 
is presented. Significant theorems like variational principle, uniqueness theorem for the mixed 
initial boundary value problem, and theorem of reciprocity are established. Some special 
cases of interest are also given. 

Appreciable effects of two-temperature parameters and fractional order parameters are 
observed on the various characteristics of the waves for the considered model. 

Phase velocity and attenuation quality factor are presented graphically for two different 
models (TT, WTT) to depict the response of the considered model.   

It is observed that the qP wave propagates with the highest phase velocity with the 
change in direction in comparison to the other plots. Phase velocities of qS1 qS2 and qT waves 
are also affected by both parameters as shown by variations in numerical values. 

Due to the effects of fractional order and two-temperature parameters, the attenuation 
quality factor of qP wave increases for different values of φ and 100 .θ ≥ °  Attenuation quality 
factor of qS1 wave also show the impact of both parameters. It attains the highest value for the 
intermediate values of θ .  

Attenuation quality factor of qS2 and qT waves are also affected by ,α φ  and θ .  
There is no independent wave mode in the electric field, whereas the electric potential 

wave still can propagate with the elastic wave modes via constitutive relations. 
The established results will be helpful for the investigators working on 

piezothermoelastic models. 
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Appendix A 
2 2 2 2 2 211 0
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Abstract. A crack arrest model is presented in this paper for multiple circular arc-cracks with 
coalesced yield zones. The geometry of cracks discussed in the article assumes as a prelude to the 
case of two equal circular arc-cracks. Further, the influence of variable stress distribution on the 
rims of the cracks is studied. Analytical expressions for stress intensity factors and applied load 
ratios are obtained using the complex variable method. Numerical results are obtained for applied 
load ratio, yield zone length, and reported graphically.  
Keywords: circular-arc cracks, Dugdale strip-yield model, yield zone length, stress intensity 
factor 
 
 
1. Introduction 
Due to considerable mathematical difficulties, the journey of determining the precise residual 
strength of engineering materials is always a hard nut to crack. Particularly, when the material is 
damaged due to the development/ presence of multiple cracks or crack-like defects. In the case of 
multiple cracks, two or more closely located small cracks when interacting with each other form 
a big crack, which may cause a severe problem to the integrity of the structure. Before the 
formation of a big crack, the yield zones developed at each internal tip of the cracks get coalesced 
due to an increase in applied stress at the infinite boundary of the plate. 

The residual strength of the structure containing cracks is inversely proportional to the 
crack size. Therefore, it is imperative to evaluate the residual strength of the structure as a 
function of crack size. In this connection, Dugdale [1] formulated the relationship between the 
residual strength of the structure and the crack size, which is now known as the Dugdale strip 
yield model. However, the model was used largely to study the size of the yield zone in the case 
of straight cracks. Moreover, the geometry of the crack also makes an impression on the residual 
strength of the structure. Therefore, large of work has been done in past to study the problem of 
multiple circular-arc cracks which includes the work of Smith [2], Chen [3], [4], Bhargava et al. 
[5], [6], Jagannadham [7], Zhang [8], etc. The problem of circular arc cracks may be considered 
as a generalization to the Dugdale model due to the complexity of the crack geometries. 

Furthermore, the problem of circular-arc cracks, using different mathematical approaches, 
was discussed by several researchers e.g., Shiah [9] used a complex variable approach to solve a 
circular arc crack under partial loading conditions and Zhong et al. [10] used it to analyze the 
problem of a circular arc-crack in piezoelectric materials under antiplane shear and in-plane 
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electric field. Gao et al. [11] used Green's function approach for the treatment of a circular arc-
crack at the interface between a circular piezoelectric material and an infinite matrix. Semi 
inverse method used to solve the problem of arc crack by Shen et al. [12]. The boundary 
collocation method was applied by Cheung et al. [13] to calculate the stress intensity factor at the 
crack tip of a circular-arc crack in an infinite plate. Bhargava et al. [14] using the complex 
variable approach obtained the analytical expressions of the residual strength of an infinite 
isotropic plate containing a single circular arc crack. Gdoutos et al. [15] discussed the problem of 
two asymmetric circular arc cracks in an infinite isotropic plate and also the case of two equal 
and symmetrically positioned cracks. Bhargava et al. [16] addressed the issue of coalescence of 
yield zones between two adjacent circular-arc cracks. The theoretical and experimental study is 
carried for various arrangements of arc cracks by Pourseifi [17]. Stress intensity factors for 
circular-arc cracks in finite plates were calculated using finite element analysis by Shim et al. 
[18]. 

In the present study, an effort has been made to obtain a closed-form expression for the 
residual strength of a damaged plate in the presence of four circular-arc cracks with unified yield 
zones. Thomson's [19] and Muskhelishvili's [20] complex variable approach is used to obtain 
analytical expressions for stress intensity factor, yield zone ratio at each crack tip. The Crack-
arrest model under general yielding condition was discussed recently [21] for similar cracks 
configuration. 

 
2. Circular-arc-crack problem 
A schematic diagram of the problem of four circular-arc cracks with coalesced yield zones is 
depicted in two Fig. 1 and Fig. 2. The cracks, 𝐿𝐿𝑖𝑖(𝑖𝑖 = 1,2,3,4), occupy the intervals [𝑏𝑏1 = 𝑅𝑅𝑒𝑒−𝑖𝑖𝛽𝛽, 
𝑑𝑑1 = 𝑅𝑅𝑒𝑒−𝑖𝑖𝑖𝑖] , [𝑐𝑐1 = 𝑅𝑅𝑒𝑒𝑖𝑖𝑖𝑖 , 𝑎𝑎1 = 𝑅𝑅𝑒𝑒𝑖𝑖𝛽𝛽] , [−𝑏𝑏1 = −𝑅𝑅𝑒𝑒−𝑖𝑖𝛽𝛽,  −𝑑𝑑1 = −𝑅𝑅𝑒𝑒−𝑖𝑖𝑖𝑖] , and [−𝑐𝑐1 = −𝑅𝑅𝑒𝑒𝑖𝑖𝑖𝑖, 
−𝑎𝑎1 = −𝑅𝑅𝑒𝑒𝑖𝑖𝛽𝛽] , respectively on the circumference of a circle |𝑧𝑧| = 𝑅𝑅  in an infinite elastic 
perfectly-plastic plate occupy the entire complex-plane.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. Configuration of the problem when loading condition sin𝜃𝜃 𝜎𝜎𝑦𝑦𝑦𝑦 
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Fig. 2. Configuration of the problem when loading condition cos 𝜃𝜃 𝜎𝜎𝑦𝑦𝑦𝑦 
 

Rims of the cracks open in mode-I type deformation as the infinite boundary of the plate 
are subjected to stress distribution 𝜎𝜎∞. As a result, the formation of yield zones takes place at 
each crack tip. Stresses applied at the infinite boundary of the plate increases to such a limit that 
the yield zones developed at the inner crack tips 𝑑𝑑1, 𝑐𝑐1 and −𝑑𝑑1, −𝑐𝑐1 get coalesced.  

The yield zones together with the coalesced yield zones are denoted by Γ𝑗𝑗(𝑗𝑗 = 1,2,3,4,5,6) 
and occupy the intervals (𝑏𝑏 = 𝑅𝑅𝑒𝑒−𝑖𝑖𝑖𝑖, 𝑏𝑏1 = 𝑅𝑅𝑒𝑒−𝑖𝑖𝛽𝛽), (𝑑𝑑1 = 𝑅𝑅𝑒𝑒−𝑖𝑖𝑖𝑖, 𝑐𝑐1 = 𝑅𝑅𝑒𝑒𝑖𝑖𝑖𝑖), (𝑎𝑎1 = 𝑅𝑅𝑒𝑒𝑖𝑖𝛽𝛽 ,𝑎𝑎 =
𝑅𝑅𝑒𝑒𝑖𝑖𝑖𝑖) , (−𝑏𝑏 = −𝑅𝑅𝑒𝑒−𝑖𝑖𝑖𝑖,−𝑏𝑏1 = −𝑅𝑅𝑒𝑒−𝑖𝑖𝛽𝛽) , (−𝑑𝑑1 = −𝑅𝑅𝑒𝑒−𝑖𝑖𝑖𝑖,−𝑐𝑐1 = −𝑅𝑅𝑒𝑒𝑖𝑖𝑖𝑖) , (−𝑎𝑎1 =
−𝑅𝑅𝑒𝑒𝑖𝑖𝛽𝛽 ,−𝑎𝑎 = −𝑅𝑅𝑒𝑒𝑖𝑖𝑖𝑖), respectively on one and the same circle |𝑍𝑍| = 𝑅𝑅. 

According to Gdoutos [22], materials may fail at stresses that are well below the yield 
stress of the material. Therefore, to study the behavior of yield zone length under the influence of 
variable yield stress distribution. Two different types of stress distributions have to be 
distinguished. First 𝜎𝜎𝑟𝑟𝑟𝑟 = sin𝜃𝜃𝜎𝜎𝑦𝑦𝑦𝑦  as shown in Fig. 1 and second 𝜎𝜎𝑟𝑟𝑟𝑟 = cos𝜃𝜃𝜎𝜎𝑦𝑦𝑦𝑦  presented in 
Fig. 2., where 𝜎𝜎𝑦𝑦𝑦𝑦 is the yield stress of the material and 𝑡𝑡 = 𝑅𝑅𝑒𝑒𝑖𝑖𝑖𝑖 is any point on the rims of the 
yield zones. Moreover, the article discussed two different cases of remotely applied stress. 
Firstly, when the infinite boundary is subjected to a uniform stress distribution as shown in Fig. 3 
and second when remote stress reduces to tension 𝑝𝑝 making an angle 𝜉𝜉 with positive 𝑥𝑥 −axis, 
shown in Fig. 4. 

 
3. Solution of the circular-arc-crack problem 
The solution of the problem discussed in section 2 for multiple interacting circular-arc cracks is 
obtained by dividing the problem into two different sub-problems, namely, opening case and 
closing case and denoted by subproblem-A and subproblem-B respectively. These subproblems 
are solved separately, and the solution of the main problem is then obtained by superposing the 

y

x
α β

γ

a
1a

1c

1d

1b
b

b−
1b−

1c−

1d−

1a−
a−

∞σ

∞σ

∞σ

∞σ

o

Modified dugdale model for multiple circular arc-cracks with unified plastic zones: a complex variable approach 221



solutions of them. 
Subproblem-A and its solution. The problem discussed in this section is related to the 

case of opening of circular-arc cracks due to remotely applied stresses at the infinite boundary of 
the plate. These cracks are assumed to be open in mode-I type deformation. Two different types 
of stress profiles were used to analyze the opening of the cracks theoretically. These cases of two 
different stress profiles, as shown in Fig. 3 and Fig. 4, are discussed here. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. Configuration of the Sub-problem A: uniform stress distribution 𝜎𝜎∞ 

 
Case-I: uniform tensile stress distribution. Consider the boundary of the plate is subjected 

to uniform remotely applied stress distribution, as shown in Fig. 3. Four circular arc cracks, 
weaken the plate, open in mode-I type deformation. In this case, the boundary conditions are: 

    1.  Remote stresses are distributed equally in all directions (𝜎𝜎𝑟𝑟𝑟𝑟± = 𝜎𝜎∞).  
    2.  Rotation vanishes at the infinite boundary of the plate.  
    3.  Body forces are absent.  
    4.  Displacement components are single-valued throughout the plate.  

Using the above boundary conditions and the mathematical formulation given in Appendix-
A the complex potential function for the opening case of the problem is,  

Φ𝐴𝐴
𝑚𝑚(𝑧𝑧) =

𝜎𝜎∞
2(2 − 𝐻𝐻2) �1 − 𝐻𝐻2 +

𝑧𝑧2 + 𝑅𝑅2(1 − 2𝐻𝐻2)
𝑋𝑋(𝑧𝑧)

�, (1) 

where 𝐻𝐻2 = 𝐸𝐸(𝑘𝑘)/𝐹𝐹(𝑘𝑘) and 𝐹𝐹(𝑘𝑘), 𝐸𝐸(𝑘𝑘) are complete elliptical integral of first and second kind 
respectively as defined by Byrd [23], 𝑘𝑘 = sin𝛼𝛼. The superscript m indicates that the function 
refers to the stress profile shown in Fig. 3. 

Stress intensity factor at the crack tip 𝑎𝑎 = 𝑅𝑅𝑒𝑒𝑖𝑖𝑖𝑖 for opening mode may be calculated by 
substituting Φ𝐴𝐴

𝑚𝑚(𝑧𝑧) from equation (1) into (41),  

(𝐾𝐾𝐴𝐴𝑚𝑚)𝐼𝐼 =
𝜎𝜎∞√𝑅𝑅𝑅𝑅
2 − 𝐻𝐻2 �𝐻𝐻

2√tan𝛼𝛼 − 𝑖𝑖(1 − 𝐻𝐻2)√cot𝛼𝛼�, 
(2) 
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here subscript I refer to the mode-I (opening mode) type of deformation. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 4. Configuration of the Sub-problem A: stresses acting at an angle 𝜉𝜉 to the 𝑜𝑜𝑥𝑥-axis 
 

Case-II: tensile stress distribution at a point. In this section, the case when applied remote 
stress reduces to a tension 𝒑𝒑 acting in the direction, making an angle 𝝃𝝃 with 𝒐𝒐𝒐𝒐-axis as depicted 
in Fig. 4 will be discussed. In view of that, the boundary conditions of the problem are as follows, 

1. Remote stresses 𝜎𝜎𝑟𝑟𝑟𝑟± = 𝜎𝜎∞, 𝜎𝜎𝑟𝑟𝑖𝑖
± = 0 are applied in a direction making an angle 𝜉𝜉 with ox-axis. 

2. The rims of the cracks are stress-free.  
3. Body forces are absent.  
4. Displacement components are single-valued throughout the plate.  

The complex potential function is then obtained under the boundary conditions and 
mathematical formulation given in Appendix-A yields the following  

Φ𝐴𝐴
𝑛𝑛(𝑧𝑧) =

𝜎𝜎∞
8
��
𝑧𝑧2 + 𝑅𝑅2(1 − 2𝐻𝐻2)

𝑋𝑋(𝑧𝑧) − 1�𝑄𝑄2 −
2𝑅𝑅2𝑒𝑒2𝑖𝑖𝑖𝑖

𝑧𝑧2
�
𝑅𝑅2

𝑋𝑋(𝑧𝑧)
+ 1�� 

(3) 

where 

𝑄𝑄2 =
2 + cos2𝜉𝜉cos2𝛼𝛼

2 − 𝐻𝐻2 − 𝑖𝑖
sin2𝜉𝜉cos2𝛼𝛼

𝐻𝐻2 , 
superscript n refers to the stress profile shown in Fig. 4. 

The state of stresses in the crack tip 𝑧𝑧 = 𝑅𝑅𝑒𝑒𝑖𝑖𝑖𝑖 may be obtained using equations (3) and (41) 
as  
(𝐾𝐾𝐴𝐴𝑛𝑛)𝐼𝐼 = 𝐾𝐾1 − 𝑖𝑖𝐾𝐾2 (4) 
where,  
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𝐾𝐾1 =
𝜎𝜎∞
2 √𝑅𝑅𝑅𝑅 tan𝛼𝛼  �

𝐻𝐻2

2 − 𝐻𝐻2 + cos2𝜉𝜉 �2 + cos2𝛼𝛼 −
2(1 + sin2𝛼𝛼)

2 − 𝐻𝐻2 �

+ sin2𝜉𝜉 cot𝛼𝛼 �1 + sin2𝛼𝛼 −
cos2𝛼𝛼
𝐻𝐻2 ��, 

𝐾𝐾2 =
𝜎𝜎∞
2 √𝑅𝑅𝑅𝑅 cot𝛼𝛼 �

1 − 𝐻𝐻2

2 − 𝐻𝐻2 − cos2𝜉𝜉 �cos2𝛼𝛼 −
1 + sin2𝛼𝛼

2 − 𝐻𝐻2 � − sin2𝜉𝜉 sin𝛼𝛼 cos𝛼𝛼�. 

 
Subproblem-B and its solution. The study of variable pressure arresting of arc cracks, in 

an infinite isotropic plate, is the main objective of subproblem-B. Presence of these cracks 
𝐋𝐋𝐢𝐢(𝐢𝐢 = 𝟏𝟏,𝟐𝟐,𝟑𝟑,𝟒𝟒) with unified yield zones (𝚪𝚪𝐣𝐣, 𝐣𝐣 = 𝟏𝟏,𝟐𝟐, … ,𝟔𝟔) influence the strength of the plate. 
Variable stress distribution applied over the rims of the developed yield zones seized the opening 
of cracks. Two different stress profiles of closing stresses are discussed in this section. 

    1.  Yield stresses are distributed in the form of 𝜎𝜎𝑟𝑟𝑟𝑟 = sin𝜃𝜃𝜎𝜎𝑦𝑦𝑦𝑦, as shown in Fig. 5.  
    2.  Yield stresses are distributed in the form of 𝜎𝜎𝑟𝑟𝑟𝑟 = cos𝜃𝜃𝜎𝜎𝑦𝑦𝑦𝑦, as shown in Fig. 6.  

Case of 𝝈𝝈𝒓𝒓𝒓𝒓 = 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝝈𝝈𝒚𝒚𝒚𝒚. The yield zones, developed at each crack tip of four circular arc 
cracks with unified yield zones, are subjected to a variable stress distribution 𝝈𝝈𝒓𝒓𝒓𝒓 = 𝐬𝐬𝐢𝐢𝐬𝐬𝒔𝒔𝝈𝝈𝒚𝒚𝒚𝒚 as 
shown in Fig. 5. To arrest the further opening of these cracks. Therefore, the boundary conditions 
for this case are as follows:  

1.  Rims of yield zones are subjected to 𝜎𝜎𝑟𝑟𝑟𝑟 = sin𝜃𝜃𝜎𝜎𝑦𝑦𝑦𝑦.  
2.  Boundary of the plate is stress-free.  
3.  Body forces are absent.  
4.  Displacement components are single-valued throughout the plate.  

Using methodology is given in Appendix-A and above boundary conditions, the complex 
potential function for this case is  

Φ𝐵𝐵1(𝑧𝑧) =
𝜎𝜎𝑦𝑦𝑦𝑦

2𝑅𝑅𝑖𝑖𝑋𝑋(𝑧𝑧)
�  
Γ

𝑋𝑋(𝑡𝑡)sin𝜃𝜃
𝑡𝑡 − 𝑧𝑧

𝑑𝑑𝑡𝑡 +
1

2𝑋𝑋(𝑧𝑧)
{𝐶𝐶0𝑧𝑧2 + 𝐶𝐶2} +

𝐷𝐷0
2

, 
(5) 

where 𝐶𝐶0 , 𝐶𝐶2  and 𝐷𝐷0  are the constants to be determined using the boundary conditions, and 
𝑋𝑋(𝑧𝑧) = √𝑧𝑧2 − 𝑅𝑅2𝑒𝑒2𝑖𝑖𝑖𝑖√𝑧𝑧2 − 𝑅𝑅2𝑒𝑒−2𝑖𝑖𝑖𝑖, �Γ = ⋃  6

𝑗𝑗=1 Γ𝑗𝑗�, Γ𝑗𝑗 denotes the yield zones. 

Integral on the right-hand side of the equation (5) is solved by substituting sin𝜃𝜃 = 𝑡𝑡−𝑡𝑡
2𝑖𝑖

 and 
𝑡𝑡𝑡𝑡 = 𝑅𝑅2. Thus,  

�  
Γ

𝑋𝑋(𝑡𝑡)sin𝜃𝜃
𝑡𝑡 − 𝑧𝑧

𝑑𝑑𝑡𝑡 

= −
1
𝑎𝑎
�𝑆𝑆1 + �𝑧𝑧2 − 𝑅𝑅2(1 + 2cos2𝛼𝛼)�𝑆𝑆2 + �𝑧𝑧4 − 𝑅𝑅2(𝑧𝑧2 − 𝑅𝑅2)(1 + 2cos2𝛼𝛼)�𝑆𝑆3

− (𝑧𝑧2 − 𝑏𝑏2)(𝑧𝑧2 − 𝑅𝑅2)𝑆𝑆4�. 

(6) 

where, 

𝑆𝑆1 =
𝑎𝑎4

3
�(𝑘𝑘2 − 1)𝑆𝑆3 − 2(𝑘𝑘2 − 2)

𝑆𝑆2
𝑎𝑎2

+ 𝑘𝑘2𝑆𝑆5�, 
𝑆𝑆2 = 𝑎𝑎2(𝐸𝐸(𝜃𝜃1,𝑘𝑘) − 𝐸𝐸(𝜃𝜃2,𝑘𝑘) + 𝐸𝐸(𝑘𝑘) − 𝐸𝐸(𝜃𝜃3,𝑘𝑘) + 𝐸𝐸(𝜃𝜃4, 𝑘𝑘)), 
𝑆𝑆3 = 𝐹𝐹(𝜃𝜃1,𝑘𝑘) − 𝐹𝐹(𝜃𝜃2, 𝑘𝑘) + 𝐹𝐹(𝑘𝑘) − 𝐹𝐹(𝜃𝜃3,𝑘𝑘) + 𝐹𝐹(𝜃𝜃4,𝑘𝑘), 
𝑆𝑆4 = Π(𝜃𝜃1,𝛼𝛼2,𝑘𝑘) − Π(𝜃𝜃2,𝛼𝛼2,𝑘𝑘) + Π�

𝑅𝑅
2

,𝛼𝛼2,𝑘𝑘� − Π(𝜃𝜃3,𝛼𝛼2,𝑘𝑘) + Π(𝜃𝜃4,𝛼𝛼2,𝑘𝑘)), 
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𝑆𝑆5 = sin𝜃𝜃1cos𝜃𝜃1�1 − 𝑘𝑘2sin2𝜃𝜃1 − sin𝜃𝜃2cos𝜃𝜃2�1 − 𝑘𝑘2sin2𝜃𝜃2 − sin𝜃𝜃3cos𝜃𝜃3�1 − 𝑘𝑘2sin2𝜃𝜃3
+ sin𝜃𝜃4cos𝜃𝜃4�1 − 𝑘𝑘2sin2𝜃𝜃4, 

𝜃𝜃1 = � 𝑒𝑒2𝑖𝑖𝑖𝑖 − 𝑒𝑒2𝑖𝑖𝛽𝛽

𝑒𝑒2𝑖𝑖𝑖𝑖 − 𝑒𝑒−2𝑖𝑖𝑖𝑖
,𝜃𝜃2 = �𝑒𝑒

2𝑖𝑖𝑖𝑖 − 𝑒𝑒−2𝑖𝑖𝛽𝛽

𝑒𝑒2𝑖𝑖𝑖𝑖 − 𝑒𝑒−2𝑖𝑖𝑖𝑖
,𝜃𝜃3 = � 𝑒𝑒2𝑖𝑖𝑖𝑖 − 𝑒𝑒2𝑖𝑖𝑖𝑖

𝑒𝑒2𝑖𝑖𝑖𝑖 − 𝑒𝑒−2𝑖𝑖𝑖𝑖
,𝜃𝜃4 = �𝑒𝑒

2𝑖𝑖𝑖𝑖 − 𝑒𝑒−2𝑖𝑖𝑖𝑖

𝑒𝑒2𝑖𝑖𝑖𝑖 − 𝑒𝑒−2𝑖𝑖𝑖𝑖
,     

𝛼𝛼2(𝑧𝑧) =
𝑎𝑎2 − 𝑏𝑏2

𝑎𝑎2 − 𝑧𝑧2
,𝑘𝑘2 = 1 − 𝑒𝑒−4𝑖𝑖𝑖𝑖. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 5. Configuration of the closing case for sin𝜃𝜃𝜎𝜎𝑦𝑦𝑦𝑦 loading 
  

Constants given in equation (5) are obtained using the condition of single valuedness of 
displacement and loading conditions of the problem  

𝐶𝐶0 =
𝜎𝜎𝑦𝑦𝑦𝑦

𝑖𝑖𝑎𝑎𝑅𝑅(3 − cos2𝛼𝛼) �
𝑆𝑆1
𝑅𝑅2

− 2cos2𝛼𝛼𝑆𝑆2 + 𝑅𝑅2cos2𝛼𝛼𝑆𝑆3 − 𝑏𝑏2(𝑆𝑆4 − 𝑆𝑆4) + 2𝑅𝑅2sin2𝛼𝛼𝑆𝑆4

+ 2𝐺𝐺1 − 𝐺𝐺3 − 𝐺𝐺4𝑆𝑆4 + 𝐺𝐺2(𝑆𝑆4 + 𝑆𝑆4)� =
𝜎𝜎𝑦𝑦𝑦𝑦
𝑖𝑖𝑎𝑎𝑅𝑅

𝐶𝐶00, (7) 

𝐶𝐶2 =
𝑅𝑅2𝜎𝜎𝑦𝑦𝑦𝑦
𝑖𝑖𝑎𝑎𝑅𝑅

(𝐺𝐺3 + 𝐺𝐺4𝑆𝑆4) − 𝐶𝐶0𝑅𝑅2cos2𝛼𝛼 =
𝑅𝑅2𝜎𝜎𝑦𝑦𝑦𝑦
𝑖𝑖𝑎𝑎𝑅𝑅

𝐶𝐶22, (8) 

𝐷𝐷0 =
𝜎𝜎𝑦𝑦𝑦𝑦
𝑖𝑖𝑎𝑎𝑅𝑅

(𝐺𝐺1 + 𝐺𝐺2𝑆𝑆4) − 𝐶𝐶0, (9) 

𝐺𝐺1 = 𝑆𝑆2 − 2𝑅𝑅2cos2𝛼𝛼𝑆𝑆3, (10) 

𝐺𝐺2 = 2𝑅𝑅2sin2𝛼𝛼 + 𝑏𝑏2, (11) 

𝐺𝐺3 =
𝑆𝑆1
𝑅𝑅2

− 2cos2𝛼𝛼𝑆𝑆2 +
𝑅𝑅2

4
(1 + 4cos2𝛼𝛼 − cos4𝛼𝛼)𝑆𝑆3, (12) 

𝐺𝐺4 =
𝑅𝑅2

2
(3sin22𝛼𝛼 − 4sin2𝛼𝛼(1 + 𝑒𝑒−2𝑖𝑖𝑖𝑖)). (13) 

Hence, substituting equations (6 – 13) into the equation (5), one gets the closed-form of the 
complex potential function for this case,  
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Φ𝐵𝐵1(𝑧𝑧) = −
𝜎𝜎𝑦𝑦𝑦𝑦

2𝑖𝑖𝑎𝑎𝑅𝑅𝑋𝑋(𝑧𝑧)
[𝑆𝑆1 + (𝑧𝑧2 − 𝑅𝑅2(1 + 2cos2𝛼𝛼))𝑆𝑆2 + (𝑧𝑧4 − 𝑅𝑅2(𝑧𝑧2 − 𝑅𝑅2)(1

+ 2cos2𝛼𝛼))𝑆𝑆3 − (𝑧𝑧4 − 𝑧𝑧2𝑅𝑅2 − 𝑏𝑏2(𝑧𝑧2 − 𝑅𝑅2))𝑆𝑆4] +
𝐶𝐶0𝑧𝑧2 + 𝐶𝐶2

2𝑋𝑋(𝑧𝑧)
+
𝐷𝐷0
2

. 

(14) 

The stress intensity factor is obtained by putting the value of Φ𝐵𝐵1(𝑧𝑧) from equation (14) 
into the equation (41) and can be written as,  

𝐾𝐾𝐵𝐵1
𝐼𝐼 =

𝜎𝜎𝑦𝑦𝑦𝑦√𝑅𝑅
𝑎𝑎𝑒𝑒𝑖𝑖𝑖𝑖√2𝑅𝑅sin2𝛼𝛼

�
𝑆𝑆1
𝑅𝑅2

− (1 + 𝑒𝑒−2𝑖𝑖𝑖𝑖)𝑆𝑆2 + 𝑅𝑅2𝑒𝑒−2𝑖𝑖𝑖𝑖𝑆𝑆3 − 𝑅𝑅2(𝑒𝑒4𝑖𝑖𝑖𝑖 − 1 − 2𝑖𝑖sin2𝛼𝛼)𝑆𝑆4

− 𝐶𝐶00𝑒𝑒2𝑖𝑖𝑖𝑖 − 𝐶𝐶22�. 
(15) 

Case of 𝝈𝝈𝒓𝒓𝒓𝒓 = 𝒄𝒄𝒐𝒐𝒔𝒔𝒔𝒔𝝈𝝈𝒚𝒚𝒚𝒚 . In this case, rims of the yield zone are subjected to stress 
distribution 𝝈𝝈𝒓𝒓𝒓𝒓 = 𝐜𝐜𝐜𝐜𝐬𝐬𝒔𝒔𝝈𝝈𝒚𝒚𝒚𝒚 and 𝝈𝝈𝒓𝒓𝒔𝒔=0. Pictorial representation for this case is given in Fig. 6.  

The complex potential functions for the case, when variable stress cos𝜃𝜃𝜎𝜎𝑦𝑦𝑦𝑦 is distributed 
over the rims of yield zones, may be written as  

Φ𝐵𝐵2(𝑧𝑧) =
𝜎𝜎𝑦𝑦𝑦𝑦

2𝑅𝑅𝑖𝑖𝑋𝑋(𝑧𝑧)�  
Γ

cos𝜃𝜃𝑋𝑋(𝑡𝑡)
𝑡𝑡 − 𝑧𝑧

𝑑𝑑𝑡𝑡 +
1

2𝑋𝑋(𝑧𝑧)
{𝐶𝐶0𝑧𝑧2 + 𝐶𝐶2} +

𝐷𝐷0
2

, 
(16) 

where 𝐶𝐶0, 𝐶𝐶2 and 𝐷𝐷0 are the constants and subscript 𝐵𝐵2 refers to the case of compressing stress 
profile cos𝜃𝜃𝜎𝜎𝑦𝑦𝑦𝑦. 

Using well-known relation 2 cos 𝜃𝜃 = 𝑡𝑡 + 𝑡𝑡. The integral given in equation (16) may be 
written as,  

�  
Γ

𝑋𝑋(𝑡𝑡)cos𝜃𝜃
𝑡𝑡 − 𝑧𝑧

𝑑𝑑𝑡𝑡 

= −
𝑖𝑖
𝑎𝑎

[𝑆𝑆1 + (𝑧𝑧2 + 𝑅𝑅2(1 − 2cos2𝛼𝛼))𝑆𝑆2 + (𝑧𝑧4 + 𝑅𝑅2(𝑧𝑧2 + 𝑅𝑅2)(1 − 2cos2𝛼𝛼))𝑆𝑆3 − (𝑧𝑧2

− 𝑏𝑏2)(𝑧𝑧2 + 𝑅𝑅2)𝑆𝑆4]. (17) 
Constants 𝐶𝐶0 , 𝐶𝐶2  and 𝐷𝐷0  given in equation (16) are obtained using the above boundary 

conditions,  

𝐷𝐷0 =
𝜎𝜎𝑦𝑦𝑦𝑦
𝑎𝑎𝑅𝑅

(𝐻𝐻1 + 𝐻𝐻2𝑆𝑆4) − 𝐶𝐶0, (18) 

𝐶𝐶2 =
𝑅𝑅2𝜎𝜎𝑦𝑦𝑦𝑦
𝑎𝑎𝑅𝑅

(𝐻𝐻3 + 𝐻𝐻4𝑆𝑆4) − 𝐶𝐶0𝑅𝑅2cos2𝛼𝛼 =
𝑅𝑅2𝜎𝜎𝑦𝑦𝑦𝑦
𝑖𝑖𝑎𝑎𝑅𝑅

𝐶𝐶33, (19) 

𝐶𝐶0 =
𝜎𝜎𝑦𝑦𝑦𝑦

𝑎𝑎𝑅𝑅(3 − cos2𝛼𝛼) �
𝑆𝑆1
𝑅𝑅2

+ 4sin2𝛼𝛼𝑆𝑆2 + 𝑅𝑅2(2 − 3cos2𝛼𝛼)𝑆𝑆3 + 𝑏𝑏2�𝑆𝑆4 + 𝑆𝑆4�

− 2𝑅𝑅2cos2𝛼𝛼𝑆𝑆4 + 2𝐻𝐻1 − 𝐻𝐻3 − 𝐻𝐻4𝑆𝑆4 + 𝐻𝐻2�𝑆𝑆4 + 𝑆𝑆4�� =
𝜎𝜎𝑦𝑦𝑦𝑦
𝑖𝑖𝑎𝑎𝑅𝑅

𝐶𝐶44, 
(20) 

𝐻𝐻1 = 𝑆𝑆2 + 2𝑅𝑅2sin2𝛼𝛼𝑆𝑆3, (21) 

𝐻𝐻2 = −2𝑅𝑅2cos2𝛼𝛼 + 𝑏𝑏2, (22) 

𝐻𝐻3 =
𝑆𝑆1
𝑅𝑅2

+ 2sin2𝛼𝛼𝑆𝑆2 −
𝑅𝑅2

2
(2cos2𝛼𝛼 − sin22𝛼𝛼)𝑆𝑆3, (23) 
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Fig. 6. Configuration of the closing case for cos𝜃𝜃𝜎𝜎𝑦𝑦𝑦𝑦 loading 

 
Thus, the final expression of the complex potential function for this case is then obtained 

by putting equations (17 – 24) in equation (16),  

Φ𝐵𝐵2(𝑧𝑧) = −
𝜎𝜎𝑦𝑦𝑦𝑦

2𝑎𝑎𝑅𝑅𝑋𝑋(𝑧𝑧)
[𝑆𝑆1 + (𝑧𝑧2 + 𝑅𝑅2(1− 2cos2𝛼𝛼))𝑆𝑆2 + (𝑧𝑧4 + 𝑅𝑅2(𝑧𝑧2 + 𝑅𝑅2)(1

− 2cos2𝛼𝛼))𝑆𝑆3 − (𝑧𝑧4 + 𝑧𝑧2𝑅𝑅2 − 𝑏𝑏2(𝑧𝑧2 + 𝑅𝑅2))𝑆𝑆4]   +
𝐶𝐶0𝑧𝑧2 + 𝐶𝐶2

2𝑋𝑋(𝑧𝑧)
+
𝐷𝐷0
2

. (25) 
The state of stress in the crack tip 𝑎𝑎 = 𝑅𝑅𝑒𝑒𝑖𝑖𝑖𝑖  for the present case may be obtained on 

inserting the value of Φ𝐵𝐵(𝑧𝑧) from equation (25) in equation (41) as,  

𝐾𝐾𝐵𝐵2
𝐼𝐼 =

𝜎𝜎𝑦𝑦𝑦𝑦√𝑅𝑅
𝑎𝑎𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖√2𝑅𝑅sin2𝛼𝛼

�
𝑆𝑆1
𝑅𝑅2

+ (1 − 𝑒𝑒−2𝑖𝑖𝑖𝑖)𝑆𝑆2 − 𝑅𝑅2𝑒𝑒−2𝑖𝑖𝑖𝑖𝑆𝑆3 − 𝑅𝑅2�𝑒𝑒4𝑖𝑖𝑖𝑖 − 1 + 2𝑖𝑖 sin 2𝛼𝛼�𝑆𝑆4

− 𝐶𝐶44𝑒𝑒2𝑖𝑖𝑖𝑖 − 𝐶𝐶33�. (26) 
 
4. Numerical Study 
A numerical study is carried out in this section to study the efficiency and accuracy of the 
analytical results obtained in the previous sections for various stress profiles. Analytical and 
numerical results for yield zone length have been acquired by superposing the solutions of two 
sub-problems, Subproblem-A (opening case) and Subproblem-B (closing case). 

Case of 𝐬𝐬𝐢𝐢𝐬𝐬𝒔𝒔𝝈𝝈𝒚𝒚𝒚𝒚. The length of yield zones at the crack tip, 𝒂𝒂, due to the stress distribution 
𝐬𝐬𝐢𝐢𝐬𝐬𝐬𝐬𝛔𝛔𝐲𝐲𝐲𝐲 is obtained by ensuring the Dugdale hypothesis that the stresses remain finite in the 
vicinity of the crack. Which is governed by the equation, (𝑲𝑲𝑨𝑨

𝒎𝒎)𝑰𝑰 = 𝑲𝑲𝑩𝑩𝟏𝟏
𝑰𝑰  and (𝑲𝑲𝑨𝑨

𝒔𝒔)𝑰𝑰 = 𝑲𝑲𝑩𝑩𝟏𝟏
𝑰𝑰 . Thus, 

using equations (2), (4) and (15) one can obtain two non-linear equations corresponding to two 
different stress profiles discussed in section 3.1 as, 
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�1 − 2𝐻𝐻2 + 𝑒𝑒2𝑖𝑖𝑖𝑖� �
𝜎𝜎∞
𝜎𝜎𝑦𝑦𝑦𝑦

�
𝑚𝑚

 

= −
2 − 𝐻𝐻2

𝑎𝑎𝑅𝑅
�
𝑆𝑆1
𝑅𝑅2

− �1 + 𝑒𝑒−2𝑖𝑖𝑖𝑖�𝑆𝑆2 + 𝑅𝑅2𝑆𝑆3𝑒𝑒−2𝑖𝑖𝑖𝑖 − 𝑅𝑅2�𝑒𝑒4𝑖𝑖𝑖𝑖 − 1 − 2𝑖𝑖sin2𝛼𝛼�𝑆𝑆4 − 𝐶𝐶00𝑒𝑒2𝑖𝑖𝑖𝑖

− 𝐶𝐶22�, (27) 

��1 + 𝑒𝑒2𝑖𝑖𝑖𝑖 − 2𝐻𝐻2� �
2 + cos2𝜉𝜉cos2𝛼𝛼

2 − 𝐻𝐻2 − 𝑖𝑖
sin2𝜉𝜉cos2𝛼𝛼

𝐻𝐻2 � −
2𝑒𝑒2𝑖𝑖𝑖𝑖

𝑒𝑒2𝑖𝑖𝑖𝑖
��

𝜎𝜎∞
𝜎𝜎𝑦𝑦𝑦𝑦

�
n

 

= −
4(2 − 𝐻𝐻2)

𝑎𝑎𝑅𝑅
�
𝑆𝑆1
𝑅𝑅2

− (1 + 𝑒𝑒−2𝑖𝑖𝑖𝑖)𝑆𝑆2 + 𝑅𝑅2𝑒𝑒−2𝑖𝑖𝑖𝑖𝑆𝑆3 − 𝑅𝑅2(𝑒𝑒4𝑖𝑖𝑖𝑖 − 1 − 2𝑖𝑖sin2𝛼𝛼)𝑆𝑆4

− 𝐶𝐶00𝑒𝑒2𝑖𝑖𝑖𝑖 − 𝐶𝐶22�. (28) 
It is almost impossible to solve the non-linear equations (27) and (28) in terms of yield 

zone length. However, normalized yield zone length at each crack tip is evaluated numerically 
against the applied load ratio 𝜎𝜎∞

𝜎𝜎𝑦𝑦𝑦𝑦
 for each stress profile and reported graphically. 

 

 
Fig. 7. 𝜎𝜎∞

𝜎𝜎𝑦𝑦𝑦𝑦
 versus 𝑖𝑖−𝛽𝛽

𝛽𝛽−𝑖𝑖
 for the case of sin𝜃𝜃𝜎𝜎𝑦𝑦𝑦𝑦 at different crack radius 
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Fig. 8.  𝜎𝜎∞

𝜎𝜎𝑦𝑦𝑦𝑦
 versus 𝑖𝑖−𝛽𝛽

𝛽𝛽−𝑖𝑖
 for the case of sin𝜃𝜃𝜎𝜎𝑦𝑦𝑦𝑦 at different crack length 

 
Figure 7 shows the behavior of normalized yield zone length, 𝑅𝑅(𝑖𝑖−𝛽𝛽)

𝑅𝑅(𝛽𝛽−𝑖𝑖)
, with respect to 

change in applied load ratio on the increasing radius of the circle (on which cracks lie). 
Increasing radius means an increase in inter crack distance. In the case of 𝑅𝑅 = 2 (angle 𝛾𝛾 is very 
small) plate shows a low bearing capacity vis a vis 𝑅𝑅 = 5 (𝛾𝛾 is much larger) and much more 
significant in case of stress distribution act at an angle 𝜉𝜉. Further, it may be noted that the load 
applied at the boundary of the plate is significantly different in both the stress profiles. Hence, the 
plate under stress distribution act at an angle 𝜉𝜉 be considered in a much safer position in the 
presence of the cracks as compared to the case of uniform stress distribution. 

The same variation has been plotted in Fig. 8. for different crack length 𝑅𝑅(𝛽𝛽 − 𝛾𝛾), means 
increasing crack length. It has been observed that as the crack length increases, the load-bearing 
capacity of the plate decreases, which means that bigger cracks are more dangerous for the safe 
operation of the structures. In other words, the figure shows that the length of the plastically 
deformed region is more at each tip of bigger cracks as compared to the smaller ones for the fixed 

load required ratio �𝜎𝜎∞
𝜎𝜎𝑦𝑦𝑦𝑦

= 0.1, 𝑠𝑠𝑎𝑎𝑠𝑠�.   

The effect of increasing angle of point stress applied at the boundary of the plate, in the 
case of four circular-arc cracks, is given in Fig. 9. It is found that as the angle 𝜉𝜉  of stress 
distribution is increased, the residual strength of the plate also increases. 
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Fig. 9. 𝜎𝜎∞
𝜎𝜎𝑦𝑦𝑦𝑦

 versus 𝑖𝑖−𝛽𝛽
𝛽𝛽−𝑖𝑖

 for sin𝜃𝜃𝜎𝜎𝑦𝑦𝑦𝑦 at different angles 𝜉𝜉 

 
Case of 𝐜𝐜𝐜𝐜𝐬𝐬𝒔𝒔𝝈𝝈𝒚𝒚𝒚𝒚. The length of developed yield enclaves for the case when yield stress 

distribution acting on the yield zones is varying as 𝐜𝐜𝐜𝐜𝐬𝐬𝐬𝐬𝛔𝛔𝐲𝐲𝐲𝐲 obtained in this section using the 
Dugdale hypothesis. Therefore, using equations (2), (4), and (26), one can get two non-linear 
equations corresponding to two different types of remote stress profiles in terms of applied and 
yield stress. These equations are  

�1 − 2𝐻𝐻2 + 𝑒𝑒2𝑖𝑖𝑖𝑖� �
𝜎𝜎∞
𝜎𝜎𝑦𝑦𝑦𝑦

�
𝑚𝑚

 

= −
2 − 𝐻𝐻2

𝑖𝑖𝑎𝑎𝑅𝑅
�
𝑆𝑆1
𝑅𝑅2

+ �1 − 𝑒𝑒−2𝑖𝑖𝑖𝑖�𝑆𝑆2 − 𝑅𝑅2𝑒𝑒−2𝑖𝑖𝑖𝑖𝑆𝑆3 − 𝑅𝑅2�𝑒𝑒4𝑖𝑖𝑖𝑖 − 1 + 2𝑖𝑖sin2𝛼𝛼�𝑆𝑆4 − 𝐶𝐶44𝑒𝑒2𝑖𝑖𝑖𝑖

− 𝐶𝐶33�, (29) 

�1 + 𝑒𝑒2𝑖𝑖𝑖𝑖 − 2𝐻𝐻2� �
2 + cos2𝜉𝜉cos2𝛼𝛼

2 − 𝐻𝐻2 − 𝑖𝑖
sin2𝜉𝜉cos2𝛼𝛼

𝐻𝐻2 ) −
2𝑒𝑒2𝑖𝑖𝑖𝑖

𝑒𝑒2𝑖𝑖𝑖𝑖
� �

𝜎𝜎∞
𝜎𝜎𝑦𝑦𝑦𝑦

�
𝑛𝑛

 

= −
4(2 − 𝐻𝐻2)

𝑖𝑖𝑎𝑎𝑅𝑅
�
𝑆𝑆1
𝑅𝑅2

+ (1 − 𝑒𝑒−2𝑖𝑖𝑖𝑖)𝑆𝑆2 − 𝑅𝑅2𝑒𝑒−2𝑖𝑖𝑖𝑖𝑆𝑆3 − 𝑅𝑅2(𝑒𝑒4𝑖𝑖𝑖𝑖 − 1 + 2𝑖𝑖sin2𝛼𝛼)𝑆𝑆4

− 𝐶𝐶44𝑒𝑒2𝑖𝑖𝑖𝑖 − 𝐶𝐶33�. (30) 
Yield zone length developed at the crack tip, 𝑎𝑎, may be calculated from equations (29) and 

(30) corresponding to two different stress profiles of remotely applied stresses. Yield zone length 
at crack tip 𝑎𝑎  is normalized with the corresponding crack length. In the following figures, 
normalised yield zone lengths are presented graphically with respect to the increasing values of 
the applied load ratio.  
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Fig. 10. 𝜎𝜎∞

𝜎𝜎𝑦𝑦𝑦𝑦
 versus 𝑖𝑖−𝛽𝛽

𝛽𝛽−𝑖𝑖
 for stress profile cos𝜃𝜃 𝜎𝜎𝑦𝑦𝑦𝑦 

 
Fig. 11. 𝜎𝜎∞

𝜎𝜎𝑦𝑦𝑦𝑦
 versus 𝑖𝑖−𝛽𝛽

𝛽𝛽−𝑖𝑖
 for stress profile cos𝜃𝜃 𝜎𝜎𝑦𝑦𝑦𝑦 

 
Figure 10 shows the variation of sizes of normalized yield zone length with increasing 

values of applied stresses at crack tip 𝑎𝑎 = 𝑅𝑅𝑒𝑒𝑖𝑖𝑖𝑖 for different crack radius. Solid lines show the 
case of uniform stress distribution, while dashed lines show the evidence of stress distribution act 
at an angle 𝜉𝜉. It has been observed from the figure that the length of the yield zone increases as 
the stress applied at the infinite boundary of the plate is increased. Therefore, the load-carrying 
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capacity of the plate is more in case of stress distribution act at an angle 𝜉𝜉 in comparison to the 
case of uniform remote stress distribution. 

Figure 11 shows the variation between applied load ratio with normalized yield zone length 
for increasing crack angles 𝛽𝛽. The load-carrying capacity of the plate becomes larger in case of 
the small cracks (𝛽𝛽 = 20∘) as compared to the big cracks (𝛽𝛽 = 30∘). Moreover, the less load-
bearing capacity of the plate is seen in the case of uniform stress distribution in comparison to the 
case of stress distribution act at an angle 𝜉𝜉. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Fig. 12. 𝜎𝜎∞

𝜎𝜎𝑦𝑦𝑦𝑦
 versus 𝑖𝑖−𝛽𝛽

𝛽𝛽−𝑖𝑖
 for different angles 𝜉𝜉 

  
Finally, variation has been plotted in Fig. 12 between yield zone length and applied load 

ratio at different angles 𝜉𝜉. It is observed that as the angle 𝜉𝜉 increases the load-bearing capacity of 
the plate will increases. 

 
5. Conclusions 
We considered the problem of multiple circular arc-cracks with coalesced yield zones. Analytical 
expressions for complex potential functions and stress intensity factors, for multiple circular-arc 
crack problems, were obtained for different types of mechanical loading conditions at the infinite 
boundary of the plate and variable yield stress distribution on the rims of yield zones. The 
analytical expressions for the opening-mode stress intensity factors given in equations (2), (4) are 
validated with the results provided by Tada [24]. The numerical study is carried out in the 
previous section to investigate the behaviour of yield zone length under variable loading 
conditions. It is seen that the yield zone length in the case of uniform stress distribution is larger 
as compared to point stress distribution. It is observed that as the angle of point stress distribution 
increases yield zone length decreases.  
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Appendix. A. Mathematical formulation for circular arc cracks 
This appendix is given to discuss the theory and methodology for solving the circular-arc crack 
problem as given by Muskhelishvili [20], Thomson [19] without any change. Here, the 
hypothetical thing is that n circular-arc cracks 𝐿𝐿𝑖𝑖  (𝑖𝑖 = 1,2,3, … ,𝑛𝑛) are appeared in an infinite 
isotropic elastic-perfectly plastic plate along with one and the same circle |𝑧𝑧| = 𝑅𝑅. 

In the two-dimensional theory of elasticity for isotropic plates, stresses (𝜎𝜎𝑟𝑟𝑟𝑟 ,𝜎𝜎𝑖𝑖𝑖𝑖,𝜎𝜎𝑟𝑟𝑖𝑖) are 
expressed in terms of two Muskhelishvili's complex potentials Φ(𝑧𝑧),Ψ(𝑧𝑧) as: 
𝜎𝜎𝑟𝑟𝑟𝑟 + 𝜎𝜎𝑖𝑖𝑖𝑖 = 2[Φ(𝑧𝑧) + Φ(𝑧𝑧)], (31) 

𝜎𝜎𝑟𝑟𝑟𝑟 + 𝑖𝑖𝜎𝜎𝑟𝑟𝑖𝑖 = Φ(𝑧𝑧) + Φ(𝑧𝑧) − 𝑧𝑧Φ′(𝑧𝑧) −
𝑧𝑧
𝑧𝑧
Ψ(𝑧𝑧). 

(32) 

Prime and bar over a function denote its first-order derivative and complex conjugate 
respectively. 

For the solution of circular-arc crack problems, instead of potential function Ψ(𝑧𝑧) a new 
complex potential function Ω(𝑧𝑧), related to Φ(𝑧𝑧) and Ψ(𝑧𝑧), may be introduced as,  

Ω(𝑧𝑧) = Φ�
𝑅𝑅2

𝑧𝑧
� −

𝑅𝑅2

𝑧𝑧
Φ′ �

𝑅𝑅2

𝑧𝑧
� −

𝑅𝑅2

𝑧𝑧2
Ψ�

𝑅𝑅2

𝑧𝑧
�. 

(33) 

Equation (32) is then re-written using equation (33) as  

𝜎𝜎𝑟𝑟𝑟𝑟 + 𝑖𝑖𝜎𝜎𝑟𝑟𝑖𝑖 = Φ(𝑧𝑧) + Ω�
𝑅𝑅2

𝑧𝑧
� + 𝑧𝑧 �

𝑧𝑧
𝑅𝑅2

−
1
𝑧𝑧
�Ψ(𝑧𝑧). 

(34) 

Under the assumption 

lim
𝑟𝑟→𝑅𝑅

�𝑒𝑒−𝑖𝑖𝑖𝑖 �
𝑟𝑟
𝑅𝑅2

−
1
𝑟𝑟
�Ψ(𝑧𝑧)� = 0, 

equation (34) may be converted into two subproblems of linear relationship, (since 𝑧𝑧𝑧𝑧 = 𝑟𝑟2)  
Φ+(𝑡𝑡) + Ω−(𝑡𝑡) = 𝜎𝜎𝑟𝑟𝑟𝑟+ + 𝑖𝑖𝜎𝜎𝑟𝑟𝑖𝑖+ ,    Φ−(𝑡𝑡) + Ω+(𝑡𝑡) = 𝜎𝜎𝑟𝑟𝑟𝑟− + 𝑖𝑖𝜎𝜎𝑟𝑟𝑖𝑖− , (35) 
where 𝑡𝑡 = 𝑅𝑅𝑒𝑒𝑖𝑖𝑖𝑖 be any point on 𝐿𝐿 = ⋃  𝑛𝑛

𝑖𝑖=1 𝐿𝐿𝑖𝑖, 𝜎𝜎𝑟𝑟𝑟𝑟± + 𝑖𝑖𝜎𝜎𝑟𝑟𝑖𝑖
±  represent stress components acting over 

the rims of the crack L and superscript (+) and (-) refers to the value of t from the inside (𝑟𝑟 < 𝑅𝑅) 
and from outside (𝑟𝑟 > 𝑅𝑅) of the circle on which cracks exist. 

Adding and subtracting the equations in Eq.(35), one gets  
[Φ(𝑡𝑡) + Ω(𝑡𝑡)]+ = 2𝑝𝑝(𝑡𝑡),    [Φ(𝑡𝑡) + Ω(𝑡𝑡)]− = 2𝑞𝑞(𝑡𝑡), (36) 
where  
2𝑝𝑝(𝑡𝑡) = (𝜎𝜎𝑟𝑟𝑟𝑟+ + 𝜎𝜎𝑟𝑟𝑟𝑟− ) + 𝑖𝑖(𝜎𝜎𝑟𝑟𝑖𝑖+ + 𝜎𝜎𝑟𝑟𝑖𝑖− ),    2𝑞𝑞(𝑡𝑡) = (𝜎𝜎𝑟𝑟𝑟𝑟+ − 𝜎𝜎𝑟𝑟𝑟𝑟− ) + 𝑖𝑖(𝜎𝜎𝑟𝑟𝑖𝑖+ − 𝜎𝜎𝑟𝑟𝑖𝑖− ). (37) 

In the absence of the body forces, the general solution of the boundary value problems 
expressed in Eq. (36) may be written directly from [20], as  

Φ(𝑧𝑧) = Φ0(𝑧𝑧) +
1

2𝑋𝑋(𝑧𝑧) �𝑃𝑃𝑛𝑛
(𝑧𝑧) +

𝐷𝐷1
𝑧𝑧

+
𝐷𝐷2
𝑧𝑧2
� +

𝐷𝐷0
2

+
Γ′

2𝑧𝑧2
, (38) 
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Ω(𝑧𝑧) = Ω0(𝑧𝑧) +
1

2𝑋𝑋(𝑧𝑧) �𝑃𝑃𝑛𝑛
(𝑧𝑧) +

𝐷𝐷1
𝑧𝑧

+
𝐷𝐷2
𝑧𝑧2
� −

𝐷𝐷0
2
−
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2𝑧𝑧2
, (39) 

where  
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1

2𝑅𝑅𝑖𝑖𝑋𝑋(𝑧𝑧)�  
𝐿𝐿
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+
1
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𝑡𝑡 − 𝑧𝑧

,     
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1

2𝑅𝑅𝑖𝑖𝑋𝑋(𝑧𝑧)
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−
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𝑡𝑡 − 𝑧𝑧

, 

𝑋𝑋(𝑧𝑧) = �  
𝑛𝑛

𝑘𝑘=1

�𝑧𝑧 − 𝑎𝑎𝑘𝑘�𝑧𝑧 − 𝑏𝑏𝑘𝑘,   

 𝑃𝑃𝑛𝑛(𝑧𝑧) = 𝐶𝐶0𝑧𝑧𝑛𝑛 + 𝐶𝐶1𝑧𝑧𝑛𝑛−1 + 𝐶𝐶2𝑧𝑧𝑛𝑛−2 + ⋯, 
  
𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘 denotes the endpoints of 𝑘𝑘𝑡𝑡ℎ crack. 

Constants 𝐷𝐷𝑖𝑖(𝑖𝑖 = 0,1,2)  and polynomial 𝑃𝑃𝑛𝑛(𝑧𝑧)  are determined from the boundary 
conditions of the considered problem and the condition of single valuedness of displacement 
around the rims of the cracks or cuts,  

2(𝜅𝜅 + 1) �  
𝐿𝐿𝑖𝑖

𝑃𝑃𝑛𝑛(𝑧𝑧)
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+(𝑧𝑧) −Φ0

−(𝑧𝑧)]𝑑𝑑𝑧𝑧 + �  
𝐿𝐿𝑖𝑖

[Ω0+(𝑧𝑧) − Ω0−(𝑧𝑧)]𝑑𝑑𝑧𝑧 = 0. (40) 

Stress intensity factor for mode-I type deformation at each crack tip 𝑧𝑧 = 𝑎𝑎 and 𝑧𝑧 = 𝑏𝑏 may 
be calculated from the formulae given in [4],  

𝐾𝐾 = 𝐾𝐾1 − 𝑖𝑖𝐾𝐾2 = −2√2𝑅𝑅 lim
𝑧𝑧→𝑎𝑎

�(𝑧𝑧 − 𝑎𝑎)𝑒𝑒−𝑖𝑖�
𝜋𝜋
2+𝑖𝑖�Φ(𝑧𝑧), (41) 

𝐾𝐾 = 𝐾𝐾1 − 𝑖𝑖𝐾𝐾2 = 2√2𝑅𝑅 lim
𝑧𝑧→𝑏𝑏

�(𝑧𝑧 − 𝑏𝑏)𝑒𝑒−𝑖𝑖�
3𝜋𝜋
2 −𝑖𝑖�Φ(𝑧𝑧). (42) 

Mathematical formulations given in this appendix are taken from [19], [20], and [4] to 
make the paper easily understandable and self-sufficient. 

 
Appendix B. List of constants 
𝐷𝐷𝑖𝑖(𝑖𝑖 = 0,1,2),𝐶𝐶𝑖𝑖(𝑖𝑖 = 0,1,2)   constants of the problem. 
𝐸𝐸   Young's modulus. 
𝐹𝐹(𝜃𝜃,𝑘𝑘),𝐸𝐸(𝜃𝜃,𝑘𝑘),Π(𝜃𝜃,𝛼𝛼2, 𝑘𝑘)   incomplete elliptic integral of first, second and third kind, 

respectively. 
𝐹𝐹(𝑘𝑘),𝐸𝐸(𝑘𝑘)   complete elliptic integral of first, second kind, respectively. 
𝐿𝐿𝑖𝑖(𝑖𝑖 = 1,2,3,4)   circular-arc cracks. 
𝑃𝑃𝑛𝑛(𝑧𝑧)   polynomial of degree n. 
𝑝𝑝(𝑡𝑡),𝑞𝑞(𝑡𝑡)   applied stresses on the yield zones. 
𝑧𝑧 = 𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖   complex variable. 
Γ′   −1

2
(𝑁𝑁1 − 𝑁𝑁2)𝑒𝑒−2𝑖𝑖𝑖𝑖,𝑁𝑁1  and 𝑁𝑁2  are the values of principal 

stresses at infinity, 𝛼𝛼 be the angle between 𝑁𝑁1 and the 𝑜𝑜𝑥𝑥-axis. 
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Γ𝑖𝑖(𝑖𝑖 = 1,2, . . . ,6)   developed plastic/ yield zones. 
Ω(𝑧𝑧) = 𝜔𝜔′(𝑧𝑧),Φ(𝑧𝑧) = 𝜙𝜙′(𝑧𝑧)   complex stress functions. 
𝛾𝛾   Poisson's ratio. 
𝜇𝜇   shear modulus. 
𝜅𝜅   = 3−𝑖𝑖

1+𝑖𝑖
 for the plane-stress, 

 = 3 − 4𝛾𝛾 for the plane-strain. 
𝜎𝜎𝑟𝑟𝑟𝑟 ,𝜎𝜎𝑖𝑖𝑖𝑖,𝜎𝜎𝑟𝑟𝑖𝑖   components of stress in polar coordinates. 
𝜎𝜎∞   remotely applied stress at infinite boundary of the plate. 
𝜎𝜎𝑦𝑦𝑦𝑦   yield stress of the plate. 
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Abstract. The molecular dynamics method was used to simulate the shear along the <111> 
direction in Hadfield steel and a pure fcc Fe crystal. The stress-strain curves are obtained 
depending on the shear rate, the size of the computational cell, and temperature. It is shown 
that the shear rate in the range of 10–100 m/s has little effect on the theoretical strength at a 
constant temperature. With increasing temperature, the slope of the stress-strain dependences 
in the elastic region decreased, which is due to the temperature dependence of the elastic 
moduli. In addition, the temperature significantly influenced the theoretical strength – with an 
increase in temperature, plastic deformation began in ideal crystals at lower deformation 
values. Moreover, this dependence was more pronounced for a pure fcc Fe crystal than for 
Hadfield steel, which initially had structural imperfections caused by the presence of 
impurities that facilitate the initiation of plastic shears in a pure crystal. In this regard, at 
medium and low temperatures, the theoretical strength of pure iron was higher than that of 
steel. But at high temperatures (above 1200 K), its values for both materials became almost 
the same. 
Keywords: molecular dynamics, theoretical strength, stress-strain curve, Hadfield steel 
 
 
1. Introduction  
Hadfield steel, due to its excellent ability to work hardening [1,2], has great practical 
importance and a long history of research into its unique properties. At the same time, today 
there are very few works devoted to modeling its atomic structure and the processes occurring 
in it under conditions of deformation at the atomic level, which is due, in particular, to the 
complexity of modeling such multicomponent systems. Currently, there are a number of 
issues related to the mechanisms of plastic deformation at the atomic level in steels and which 
can be solved mainly by computer simulation methods. Such questions include, for example, 
the features of the formation and propagation of dislocations depending on various factors, the 
mechanisms of interaction with each other, grain boundaries, twins, and other defects. 

The presence of impurity atoms in the metal lattice, as is the case in steel, complicates 
the process of dislocation motion. Impurity atoms of light elements (in this case, it is mainly 
carbon), even at low concentrations, strongly affect the mechanical properties of metals and 
alloys. Interacting with dislocations and preventing their movement, impurities lead to an 
increase in the strength, hardness, and frictional properties of metals, together, as a rule, with 
brittleness [3-5]. The energy of their bonding with dislocations is positive, as a result of which 
they tend to be fixed on dislocations and form the so-called Cottrell atmosphere [6-8]. In 
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addition to the Cottrell mechanism, impurities, like most other defects, are effective stoppers 
for moving dislocations, which was confirmed not only by experimental studies but also by 
computer simulations [9,10]. In [9], for example, using molecular dynamics, it was found that 
the critical stress at which a dislocation begins to slip in α-Fe increases with an increase in the 
concentration of carbon atoms. In [10], also carried out using the method of molecular 
dynamics, it was shown that with an increase in the carbon concentration, the slip rate of 
dislocations in iron decreases. In metals with an fcc lattice, in addition to the aforementioned 
mechanisms of deceleration of dislocations by impurities, the Suzuki mechanism is also 
connected – the pinning of impurity atoms at a stacking fault between partial dislocations 
[3,4]. 

This work is devoted to the study of stress-strain curves depending on various factors 
for γ-Fe and Hadfield steel ideal crystals at shear along the <111> direction. Separate 
consideration of the behavior of an ideal crystal of fcc iron is associated with the desire to 
highlight the role of impurities in Hadfield steel – manganese and carbon. It is known that in 
crystals with an fcc lattice, the {111}<110> slip system is predominant [11,12]. The choice of 
the <111> direction of shear is due to two reasons. First, in this case, two slip systems are 
involved, and it is of interest to study the joint operation and interaction of dislocations of two 
different systems. Second, this model is supposed to be used to further study the plastic 
deformation of samples containing a system of parallel twins oriented perpendicular to the 
shear direction. 
 
2. Description of the model 
Hadfield steel, as is known, is a multi-component system and, in addition to classical iron, 
manganese, and carbon, may contain some other alloying elements [1,2]. In this study, we 
limited to a system that included three elements: γ-Fe as a matrix, Mn, and C. 

To describe the Fe-Fe interactions in austenite matrix, it was used Lau EAM potential 
[13], which reproduces well the structural, energy, and elastic characteristics of austenite. 
These are classic EAM potentials, where the energy of the i-th atom is calculated as the sum 
of the pair and multiparticle components: 

𝐸𝐸𝛼𝛼,𝑖𝑖 = −𝐴𝐴𝛼𝛼�∑ 𝜌𝜌𝛽𝛽𝛼𝛼�𝑟𝑟𝑖𝑖𝑖𝑖�𝑖𝑖≠𝑖𝑖 + 1
2
∑ 𝜙𝜙𝛽𝛽𝛼𝛼�𝑟𝑟𝑖𝑖𝑖𝑖�𝑖𝑖≠𝑖𝑖 , 

𝜌𝜌𝛽𝛽𝛼𝛼�𝑟𝑟𝑖𝑖𝑖𝑖� = 𝑡𝑡1�𝑟𝑟 − 𝑟𝑟𝑐𝑐,𝜌𝜌�
2

+ 𝑡𝑡2�𝑟𝑟 − 𝑟𝑟𝑐𝑐,𝜌𝜌�
3

,          𝑟𝑟 ≤ 𝑟𝑟𝑐𝑐,𝜌𝜌 ,                                      (1) 
𝜙𝜙𝛽𝛽𝛼𝛼�𝑟𝑟𝑖𝑖𝑖𝑖� = �𝑟𝑟 − 𝑟𝑟𝑐𝑐,𝜙𝜙�

2(𝑘𝑘1 + 𝑘𝑘2𝑟𝑟 + 𝑘𝑘3𝑟𝑟2),         𝑟𝑟 ≤ 𝑟𝑟𝑐𝑐,𝜙𝜙 .     
We drew attention to this potential primarily because it was tested in detail in [14] when 

describing the structural, energy, and elastic characteristics of austenite. 
For all other five interactions, Morse potentials are proposed, the parameters of which 

were found from various experimental characteristics, in particular, the energy of dissolution 
and the energy of migration of an impurity in fcc iron crystal, the radius of atoms, their 
electronegativity, mutual binding energy, etc. The Morse potential is pair, but it is often used 
in molecular dynamics calculations, including the description of interatomic interactions in 
metals. Pair potentials are relatively often used by various researchers to describe interatomic 
interactions in metal-impurity systems [15-21]. The Morse potential determines the 
interaction energy of a pair of atoms located at a distance r from each other: 
𝜑𝜑(𝑟𝑟) = 𝐷𝐷𝐷𝐷𝑒𝑒−𝛼𝛼𝛼𝛼(𝐷𝐷𝑒𝑒−𝛼𝛼𝛼𝛼 − 2) ,                                                      (2) 
where α, β, D are the potential parameters.  

All Morse potentials were found for a cutoff radius of 4.7 Å, i.e. taking into account the 
three coordination spheres in fcc Fe. Considering a larger number, for example, of five 
spheres, as we did, for example, in [20-22], leads to a significant slowdown in the counting 
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speed compared to taking into account three spheres, but at the same time, to a relatively 
small increase in accuracy, not exceeding a few percent. 

 
Table 3. Parameters of Morse potentials for the considered interactions 

Bond α (А°-1) β D eV) 
Fe-C 1.82 41 0.41 
C-C 1.97 50 0.65 

Mn-Mn 1.321 39.792 0.373 
Mn-Fe 1.306 38.030 0.413 
Mn-C 1.87 43 0.777 

 
The standard ratio of components was used: Mn – 13 wt.% and C – 1.2 wt.% (12.63 

at.% и 5.33 at.%, respectively) [1,2]. Mn atoms were introduced into fcc iron lattice randomly 
by replacing Fe atoms. The sizes of Fe and Mn atoms are very close, therefore, Mn atoms 
create small distortions in the iron lattice. But at the same time, Mn atoms have a much 
stronger bond with carbon atoms. The binding energy of Mn and C atoms in austenite lattice 
is very high – 0.35 eV, according to [23], which is approximately the same as, for example, 
the binding energy of carbon atoms with vacancies (0.37-0.41 eV [24]). Both of them are a 
kind of effective “traps” for impurity carbon atoms, not allowing them, in particular, to form 
clusters on dislocations and grain boundaries. This has a positive effect on the mechanical 
properties of steel, since these accumulations of carbon atoms, as a rule, lead to the 
development of negative phenomena such as embrittlement and aging [6].  

In fcc, hcp, and bcc lattices of metals, impurity atoms of light elements (such as C, N, 
O, etc.), according to numerous studies, occupy octahedral voids, in which, as is known, the 
largest amount of free volume of the crystal lattice is concentrated [3,4]. In this connection, 
carbon atoms were introduced into the octahedral voids closest to Mn atoms. The number of 
carbon atoms corresponded to a given concentration. The choice of Mn atoms near which C 
atoms were introduced, as well as the selection of one of the neighboring octahedral voids, 
were made randomly. 

In pure fcc iron, which was considered in this work for comparison with Hadfield steel, 
the type of the crystal lattice remained constant over the entire temperature range; the 
polymorphic transformation was not taken into account in this work. As mentioned above, 
pure austenite was considered to determine the contribution of Mn and C impurities in the 
processes under study. 

The computational cell of fcc Fe contained 122760 atoms (of Hadfield steel – 130173 
atoms) and had a length of 27.2 nm, a height of 20.3 nm, and a thickness of 2.5 nm. Along the 
X and Y axes (Fig. 1), an endless repetition of the structure was simulated, i.e. periodic 
boundary conditions were imposed. The shear in the model was initiated by the displacement 
of atoms in the upper and lower regions highlighted by light gray in Fig. 1 in opposite 
directions along and against the Y-axis (the [111] direction). The areas in the upper and lower 
parts of the cell in the course of the computer experiment moved as a whole. The movement 
of the remaining atoms in the computational cell was not limited; it was described by the 
classical equations of motion of Newton. 

The strain rate usually varies from 10-5 to 105 s-1 [25]. At rates above 103 s-1, 
deformation is usually considered high-rate, which is characterized by a significant increase in 
strength and, as a rule, a brittle nature of fracture [25]. Due to the peculiarities of the 
molecular dynamics method, the deformation rate in the model can be set in the range  
108-1011 s-1. However, this does not mean that the imaginary "clamps" on the sample move at 
a tremendous speed, their speed is quite ordinary: 100-103 m/s. Such a high rate of 
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deformation is caused to the very small size of the sample (as a rule, only a few tens of nm), 
due to which the rate of change in the relative deformation is relatively high. 

 
 

 
Fig. 1. Computational cell for modeling shear along the [111] direction (Y axis) 

 
The time integration step in the molecular dynamics method was 2 fs. The temperature 

in the model was set through the initial velocities of the atoms according to the Maxwell-
Boltzmann distribution, taking into account the change in the lattice parameter due to thermal 
expansion. To keep the temperature constant during the simulation, a Nose-Hoover thermostat 
was used. 

 
3. Results and discussion 
In the present work, we investigated the effect of strain rate, computational cell size, and 
temperature on stress-strain curves. Figure 2a shows stress-strain plots obtained at shear rates 
(displacements relative to each other of the upper and lower regions of the computational cell) 
of 10, 20, 50, and 100 m/s. 

The theoretical shear strength of metal crystals is known to be very high and can reach 
more than ten GPa [26]. The introduction of just one dislocation into a pure crystal in the 
molecular dynamics model reduces the strength to several hundred MPa [27]. As seen from 
Fig. 2, plastic deformation in a pure fcc iron crystal at a temperature of 300 K began only 
when shear deformation along the [111] direction was more than 12% and shear stress of 
9 GPa. It should also be emphasized that the crystal was initially not only ideal but also did 
not contain any sources of dislocation formation, even a free surface. In this regard, the 
intervals of elastic deformation on the graphs were relatively large. 

The slope of the stress-strain dependence, as can be seen, does not change with 
increasing strain rate. The slope is essentially the shear modulus in Hooke's equation, i.e. the 
resistance of the crystal to elastic deformation does not change with an increase in the rate of 
this deformation. However, at the same time, as seen in Fig. 2a, the value of deformation 
changes slightly at which irreversible plastic shears begin in the computational cell. The 
crystal response is, as it were, lagged at very high shear rates. Because of this "lag" connected 
with the finite speed of propagation of elastic waves, the stepped nature of the stress-strain 
dependence at high strain rates is associated. Moreover, the higher the deformation rate, the 
greater these steps (in Fig. 2a, for example, steps for speeds of 50 and 100 m/s are clearly 
visible). 
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The results obtained at rates of 10 and 20 m/s were almost the same. However, it was 
decided to use a shear rate of 10 m/s for further research. In units of relative deformation, this 
is 4.9∙108 s-1. 

 

   
                                      a)                                                                        b) 
Fig. 2. Stress-strain curves for a pure fcc iron crystal at a temperature of 300 K: a) at different 
shear rates along the Y axis of 10, 20, 50, and 100 m/s; b) for four sizes of the computational 

cell at a shear rate of 10 m/s: 1 – 12.4×9.2 nm, 2 – 17.3×12.9 nm, 3 – 22.3×16.8 nm, 
 4 – 27.2×20.3 nm 

 
The second step was to study the effect of the size of the computational cell on the 

stress-strain curves. For this, we considered four cells of different sizes along the Y and Z 
axes: 12.4×9.2 nm, 17.3×12.9 nm, 22.3×16.8 nm, 27.2×20.3 nm. The thickness in all cases 
was the same – 2.5 nm. According to the results obtained (Fig. 2b), all the considered sizes of 
the computational cells give identical stress-strain dependences. The differences are 
completely insignificant and relate mainly to the plastic mode of deformation. In the rest of 
the computer experiments, we used cells No. 4 – 27.2×20.3 nm. 

Figure 3 shows the dependences τ(ε) for an ideal crystal of fcc iron (a) and Hadfield 
steel (b) at different temperatures. It is known that elastic moduli in a wide temperature range 
decrease almost linearly with increasing temperature, which is usually associated with thermal 
expansion [28]. In addition, it can be seen that the temperature significantly affects the 
probability of dislocation formation and the onset of the plastic phase – with increasing 
temperature, plastic deformation begins earlier. Moreover, this dependence is quite strong – at 
a temperature of 100 K, plastic shears in fcc Fe began at a deformation of about 14.5%, and at 
a temperature of 1200 K – already at 8%. This is most likely explained by the fact that the 
formation of dislocation is an activation process (i.e. certain finite activation energy is 
required for the formation of a dislocation), which obeys the classical Arrhenius law, i.e. the 
probability of dislocation formation is proportional to exp(-E/kT), where E is the activation 
energy of plastic shear formation in the considered computational cell, k is the Boltzmann 
constant, and T is the temperature. 

The shift of the point of the beginning of the plastic phase with increasing temperature 
occurs faster in iron than in steel, and at a temperature of 1200 K they almost coincide. At 
medium and low temperatures, the curves for steel and pure austenite differ greatly – in steel 
the plastic phase occurs at much lower deformation values than in pure iron. For example, at a 
temperature of 300 K, dislocations are formed in steel already at a shear of 9%, whereas in fcc 
iron at 12% (black graphs in Fig. 3). This is explained by the presence of imperfections in the 
steel, distortions of the crystal lattice, caused by the presence of impurities, which facilitates 
the initiation of plastic shears, i.e. the formation of dislocations in a pure crystal. 

Another noticeable difference between the graphs for iron and steel is that in steel, after 
the onset of the plastic phase, the stresses remain approximately two times higher than in iron. 

Molecular dynamics study of stress-strain curves for γ-Fe and Hadfield steel ideal crystals at shear along... 241



As for the similarity, it is the same slope of the dependencies in the elastic region for steel and 
iron at the same temperatures. This is due to the fact that, despite significant differences in the 
strength of iron and steel, their elastic characteristics, as a rule, are very close [29]. 

 

   
                                    а)                                                                     b) 

Fig. 3. The dependences τ(ε) for an ideal crystal of fcc iron (a) and Hadfield steel (b) at 
different temperatures 

 
Figure 4 shows examples of plastic shears in the computational cells of fcc iron and 

Hadfield steel deformed by 15%. For this type of loading, shears appear in two planes of the 
(111) type. The effect of impurities in steel is clearly seen: despite the fact that plastic shears 
are initiated earlier in steel than in pure iron dislocations propagate and develop much weaker, 
slip bands are smaller and their number is fewer (Fig. 4b). In pure iron, the process of 
formation of deformation twins was also more intense – wide vertical dark bands in Fig. 4a. 

 

  
                                    а)                                                                     b) 
Fig. 4. Dislocations in pure fcc Fe (a) and Hadfield steel (b) formed as a result of shear along 

the Y axis [111] by 15%. The computational cell is rotated so that the slip bands are better 
visible 

 
4. Conclusion 
The molecular dynamics method was used to simulate the shear along the <111> direction in 
Hadfield steel and a pure fcc Fe crystal. The stress-strain curves are obtained depending on 
the shear rate, the size of the computational cell, and temperature. It is shown that the shear 
rate in the considered range of 10–100 m/s has little effect on the theoretical strength at a 
constant temperature. One should, of course, expect a change in the theoretical strength at 
high strain rates, close in order to the speed of sound in the metal. 
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With increasing temperature, the slope of the stress-strain dependences in the elastic 
region decreased, which is due to the temperature dependence of the elastic moduli. In 
addition, the temperature significantly influenced the theoretical strength – with an increase in 
temperature, plastic deformation began in ideal crystals at lower deformation values. 
Moreover, this dependence was more pronounced for a pure fcc Fe crystal than for Hadfield 
steel, which initially had structural imperfections caused by the presence of impurities that 
facilitate the initiation of plastic shears in a pure crystal. In this regard, at medium and low 
temperatures, the theoretical strength of pure iron was higher than that of steel. But at high 
temperatures (above 1200 K), its values for both materials became almost the same. 

For the considered type of loading, shear along the <111> direction, dislocations arose 
in two slip systems. Moreover, in steel, due to the action of impurities, plastic shears occurred 
at lower deformation values than in pure iron, but the dislocations propagated and developed 
much weaker, slip bands were noticeably smaller, and their number was also smaller. 
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Abstract. Duplex Stainless Steels (DSS) fabricated from powder metallurgy method finds 
many applications in offshore, paper, and petrochemical industries. DSS consists of austenite 
and ferrite in equal volume in microstructure, used in various industries due to combined 
mechanical and corrosion properties. The need of DSS is increasing every year in the 
automobile industries. In this paper, two-phase structure steels manufactured through the 
powder metallurgy route are presented. DSS (A and B) are the two compositions made by 
pre-alloyed powders (310L & 430L) adding with elemental powders such as chromium, 
molybdenum, and nickel. The powders were mixed in a pot mill for 12 hours. Sintering of 
powder preforms was carried out at 1350°C in partial vacuum and hydrogen atmospheres 
respectively. Sintered compacts subjected to forging operation at 1150ºC and quenched in 
water. DSS (A and B) steels have exhibited the coefficient of friction of 0.52 to 0.602.   
Keywords: wear, duplex stainless steels, design of experiments, powder metallurgy 
 
 
1. Introduction 
Duplex Stainless Steels (DSS) consists of approximately equal volume fraction of austenite 
(fcc) structure and ferrite (bcc) structure. Austenite has a fcc lattice and ferrite has a bcc 
lattice [1]. This combined microstructure provides DSS with good resistance to stress 
corrosion better than Austenitic Stainless Steels (ASS) [2]. The microstructure plays a crucial 
role in the wear behaviour of metals [3]. The applications of DSS are in chemical plants, 
paper industries, and modern nuclear power plants. But these DSS have the drawback of 
forming embrittlement at a higher temperature of more than 250ºC [4]. The formation of 
embrittlement is due to the formation of sigma and chi phases in the temperature range of 
700-900ºC [5]. The embrittlement formed below 500ºC is popularly called 475ºC 
embrittlement, various mechanical properties have changed in the sigma and chi phases [6]. 
DSS can be produced by various manufacturing methods such as casting, powder metallurgy, 
etc. Generally, Powder metallurgy provides different methods of fabricating DSS. In that, the 
first method is obtaining stainless steel with the required duplex composition using pre-
alloyed powders [7]. The second method is mixing powders such as chromium, nickel, 
powders with pre-alloyed powders to achieve duplex structure [8-9]. Sintering is an essential 
step in powder metallurgy which affects phase balance and corrosion properties of sintered 
steels. By optimising sintering processing parameters, mechanical and corrosion features can 
be achieved [10]. The wear characteristics of powder metallurgy DSS are increased by adding 
aluminum oxide and yttria to the stainless steel [11-12]. The wear characteristics of Nitrogen 
sintered DSS were better than argon sintered DSS, owing to the presence of more lamellar 
constituents with ferrite matrix [13]. The wear behaviour of DSS is mainly influenced by 
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chromium content in DSS [14]. The wear characteristics of aluminum metal matrix composite 
influenced by sliding distance and are the main factor driving the wear features of composite 
[15]. Design of Experiments (DOE) employs the statistical technique to influence the variable 
used to find the outcome of the required process [16]. Very few works of literature are 
available in the specific wear rate and coefficient of friction for DSS analysed by DOE. In this 
paper the fabrication of DSS by using powder metallurgy route and the wear behaviour such 
as specific wear rate and coefficient of friction by Design of Experiments are present. 
 
2. Experimental procedure 
Two atomized powders are as 310L and 430L are combined with chromium, nickel, 
molybdenum, and manganese mixed for 12 hours in a pot mill (INSMART Systems).In 
Universal Testing Machine (FIE Model) at 550 MPa, the powders were compacted to the 
appropriate shape and size. The green compacts were sintered in a hot press (BIRSON, 100 T) 
at a temperature of 1350°C. At 1150°C Sintered compacts were forged and followed by 
quenching. The chemical constituents of pre-alloyed powders and DSS are given in Tables 1 
and 2 respectively. 

 
Table 1. Chemical constituents of stainless steels powders [17] 

Powder 
Grade 

Elements (%wt) 
Ni Cr C Si Mn Mo Fe 

310L 10 24 0.02 0.30 2.00 0.3 Balance 
430L - 16.6 0.02 1.20 0.10 - Balance 

 
Table 2. Chemical constituents of DSS [17] 

Composition Elemental Concentration (%wt) 
Ni Cr C Si Mn Mo Fe Nieq Creq PREN 

DSS A 5 20.3 0.02 0.75 1.05 0.15 Bal. 6.1 21.57 20.53 
DSS B 8.5 23.27 0.018 0.67 0.945 1.13 Bal. 9.51 25.41 27.01 

DSS A :  50 % 310L + 50 % 430L 
DSS B : 45 % 310L + 45 % 430L +4% Ni+ 5 %Cr + 1 % Mo 

 
Wear test – pin on disc machine. A Pin-on-disctype machine is deployed to find the 

wear properties of the stainless steel PM duplex preforms. Sliding velocity, sliding distance, 
load, and temperature conditions are the main variables which influence friction and wear. 
The wear testing unit consists of a rotating spindle attached by M6 counter bolt to the disc. A 
pivoting hanging arm has the provision to insert the pin and the holder to get them to have 
access to the diameter of the track. With the help of a screw, the pin was firmly fixed in the 
holder. The lever's arm rested on that disk after confirming the diameter of the track. The 
sample of the pin is shown in Fig. 1. 

The pin size is 6 mm in diameter and 34 mm in length respectively. DSS were used as 
the pin material, counter disc with 65 mm diameter and 10 mm thickness was fabricated using 
high carbon high chromium steel (die steel). The constituents of high carbon high chromium 
steel are chromium 11%, manganese, silicon 0.60%, cobalt 1.0%, carbon 1%, and remaining 
iron. The hardness of the counter disc is 62 HRC whereas the hardness for the pin is 70 HRA. 
The disc and the pin were washed with acetone to confirm that the wear tests were carried out 
in the dry sliding condition. The weight-loss calculation was used to determine the wear rate. 
At 20 N and 30 N, the tests were performed. The wear test is performed at ambient 
temperature. The duration of the test is 6 minutes. 
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Fig. 1. Sample of pin 

 
Taguchi method. The systematic application of design and analysis of experiments for 

the purpose of designing and improving product quality is the Taguchi method. Taguchi's 
approach to parametric design provides the design engineer with an efficient and systematic 
method for determining near optimum design parameters. The Taguchi method uses 
orthogonal arrays (OA) from DoE theory to study a large number of variables with a small 
number of experiments. To design an experiment is to select the most suitable OA and to 
assign the parameters and interactions of interest to the appropriate columns. 

Taguchi method uses a statistical measure of performance called signal-to-noise (S/N) 
ratio which is maximized to obtain optimal parametric combination. Usually, there are three 
types of signal-to-noise ratios such as lower-the-better (LTB), higher-the-better (HTB), and 
nominal-the-best (NTB) 

The type of S/N ratios used in this research is smaller the better for SWR and COF. 
Smaller the better: Here, the quality characteristic is continuous and non-negative. It 

can take any value between 0-∞. The desired value (the target) is zero. These problems are 
characterized by the absence of scaling factors (ex: surface roughness, specific wear rate, 
coefficient of friction, etc.). The S/N ratio (η) is given by 
η =  −10 log �  ∑ 𝑌𝑌𝑖𝑖2𝑛𝑛

𝑖𝑖=1𝑛𝑛
1 � ,            

where 𝑛𝑛 is the number of replications and 𝑌𝑌 is the responses. 
The process parameters and their levels are tabulated in Table 3. 
 

Table 3. Process parameters and their levels 
Level Load (N) Material Condition Atmosphere 

1 20 DSS A Sintered Partial Vacuum 
2 30 DSS B Forged Hydrogen 

 
3. Results and discussions 
Specific wear rate (SWR). Table 4 reveals the experimental results of specific wear rate and 
COF for DSS under sintered and forged conditions.  
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Table 4. Experimental results of SWR for DSS 
Exp 
No. 

Load 
(N) Material Condition Atmosphere SWR 

(mm3/Nm) COF 

1 20 DSS-A Sintered Hydrogen 0.0022 0.522 
2 20 DSS-A Sintered Partial-Vacuum 0.0026 0.602 
3 20 DSS-A Forged Hydrogen 0.0033 0.565 
4 20 DSS-A Forged Partial-Vacuum 0.0008 0.598 
5 20 DSS-B Sintered Hydrogen 0.0018 0.548 
6 20 DSS-B Sintered Partial-Vacuum 0.0021 0.62 
7 20 DSS-B Forged Hydrogen 0.0020 0.525 
8 20 DSS-B Forged Partial-Vacuum 0.0007 0.53 
9 30 DSS-A Sintered Hydrogen 0.0017 0.56 
10 30 DSS-A Sintered Partial-Vacuum 0.0020 0.633 
11 30 DSS-A Forged Hydrogen 0.0025 0.59 
12 30 DSS-A Forged Partial-Vacuum 0.0014 0.636 
13 30 DSS-B Sintered Hydrogen 0.0014 0.575 
14 30 DSS-B Sintered Partial-Vacuum 0.0016 0.669 
15 30 DSS-B Forged Hydrogen 0.0005 0.562 
16 30 DSS-B Forged Partial-Vacuum 0.0010 0.568 

 
DSS A and DSS B steels displayed a specific wear rate of 0.0007 mm3 / Nm to  

0.0033 mm3 / Nm. In a partial vacuum atmosphere, the lowest average wear rate of 
0.0007 mm3 / Nm was shown for forged DSS B. 

Specific wear rate of DSS – design of experiments. Figures 2 and 3 display the 
response graph for the specific wear rate of DSS and show the interaction plot for specific 
wear rate. The interaction plot shows that negligible interaction between the parameters 
material, condition, and atmosphere affecting the specific wear rate of DSS.  

Table 5 shows the response table for the specific wear rate of DSS. The response table 
reveals the mean of individual features for the individual level of the factor. The response 
table gives rank depends upon delta statistics, which measure the relative magnitude of 
effects.  

 

 
Fig. 2. Response graphs for specific wear rate 
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Fig. 3. Interaction plots for specific wear rate 

 
Table 5. Response table for specific wear rate 

Level Load Material Condition Atmosphere 
1 55.21 54.36 54.38 55.29 
2 57.21 58.06 58.04 57.13 

Delta 2.01 3.7 3.66 1.84 
Rank 3 1 2 4 

 
The delta measurement is the difference of largest to least average for each factor. 

Ranks are allotted based on values of delta; rank 1 indicates the highest value, rank 2 to the 
next higher value, and so on. The rank reveals the significance of each factor to the individual 
response. The rank shows the material is the main factor influencing the specific wear rate of 
duplex stainless steels. In order to evaluate the influence of the process variables on the 
Specific wear rate, ANOVA was performed. ANOVA of the S/N data for specific wear rate 
value is given in Table 6. ANOVA table reveals that material has influenced 17.66% towards 
specific wear rate compared to other factors such as condition and atmosphere.  
 
Table 6. ANOVA table for specific wear rate 

Source Degrees of  
Freedom Seq SS Adj MS F P Contribution % 

Load 1 16.093 16.0927 1.28 0.31 5.2 
Material 1 54.677 54.6771 4.34 0.092 17.6 
Condition 1 53.588 53.5877 4.25 0.094 17.2 
Atmosphere 1 13.561 13.5608 1.08 0.347 4.4 
Load*Material 1 9.35 9.3497 0.74 0.429 3.0 
Load*Condition 1 0.366 0.3663 0.03 0.871 0.1 
Load*Atmosphere 1 30.865 30.8648 2.45 0.179 9.9 
Material*Condition 1 15.027 15.0271 1.19 0.325 4.8 
Material*Atmosphere 1 12.628 12.6278 1 0.363 4.1 
Condition*Atmosphere 1 41.682 41.6822 3.3 0.129 13.4 
Residual Error 5 63.062 12.6123   20.3 
Total 15 310.898    100.0 
 

Confirmation experiment for specific wear rate. The optimum process parameters for 
specific wear rates and their predicted and experimental values are given in Table 7. The 
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optimum predicted value is 0.0006 mm3/mm, for 30 N whereas the experimental value is 
0.0010 mm3/Nm. The error is 5%, so the optimization technique adopted for validating 
Specific Wear Rate is satisfied. 

 
Table 7. Optimum process parameters for specific wear rate 

Load 
(N) 

Material Condition Atmosphere 
Predicted 

Values 
(mm/Nm) 

Experimental 
Values 

(mm/Nm) 
30 DSS-B Forged Partial Vacuum 0.00095 0.0010 

 
Coefficient of friction for DSS. Two DSS A and B steels have exhibited the coefficient 

of friction of 0.52 to 0.602. The lowest coefficient of friction exhibited for DSS B under the 
forged condition in hydrogen sintering atmosphere is observed. 

Coefficient of friction (COF) for DSS-design of experiments. Figures 4 and 5 show the 
response graph for the Coefficient of Friction of DSS and show the interaction plot for 
Coefficient of Friction. The interaction plot reveals that negligible interaction among the 
parameters material, condition, and atmosphere influencing the Coefficient of Friction of 
DSS.  
 

 
Fig. 4. Response graphs for COF 

 

 
Fig. 5. Interaction plots for COF 
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Table 8 shows the response table for the coefficient of friction for DSS. The response 
table reveals the mean of individual features for the individual level of the factor. The 
response table gives rank depends upon delta statistics, which measure the relative magnitude 
of effects.  
 
Table 8. Response table for COF 

Level Load Material Condition Atmosphere 
1 4.996 4.625 4.592 5.107 
2 4.467 4.838 4.871 4.356 

Delta 0.529 0.213 0.279 0.751 
Rank 2 4 3 1 

 
Table 9. ANOVA table for COF 

Source DF Seq SS Adj MS F P Contribution % 
Load 1 1.11783 1.11783 56.66 0.001 18.7 
Material 1 0.18118 0.18118 9.18 0.029 3.0 
Condition 1 0.31106 0.31106 15.77 0.011 5.2 
Atmosphere 1 2.25747 2.25747 114.42 0 37.7 
Load*Material 1 0.00615 0.00615 0.31 0.601 0.1 
Load*Condition 1 0.00003 0.00003 0 0.972 0.0 
Load*Atmosphere 1 0.00353 0.00353 0.18 0.69 0.1 
Material*Condition 1 1.2538 1.2538 63.55 0.001 20.9 
Material*Atmosphere 1 0.04907 0.04907 2.49 0.176 0.8 
Condition*Atmosphere 1 0.71001 0.71001 35.99 0.002 11.9 
Residual Error 5 0.09864 0.01973   1.6 
Total 15 5.98879    100.0 

 
The delta measurement is the difference of largest to least average for each factor. 

Ranks are allotted based on delta values rank 1 indicates the highest value, rank 2 to the next 
higher value, and so on. The rank reveals the significance of each factor to the individual 
response. The rank shows the atmosphere is the main factor influencing the coefficient of 
friction for duplex stainless steels. The interaction plot reveals that negligible interaction 
among the parameters material, condition, and atmosphere influencing the COF. To evaluate 
the influence of the process parameters towards coefficient of friction for DSS ANOVA was 
carried out. ANOVA of the S/N data for the coefficient of friction value is given in Table 9. 
ANOVA table reveals that atmosphere has influenced 37.7% towards coefficient of friction 
compared to other factors such as condition and material. 

Confirmation experiment for coefficient of friction. The optimum process parameters 
for COF and their predicted and experimental values are given in Table 10. The optimum 
predicted value is 0.522 for 20 N whereas the experimental value is 0.525. The error is 0.57%, 
so the optimization technique adopted for validating the Coefficient of Friction is satisfied. 
 
Table 10. Optimum process parameters for COF 

Load Material Condition Atmosphere Predicted 
Values 

Experimental 
Values 

20 DSS-B Forged Hydrogen 0.522 0.525 
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4. Conclusions 
The DSS A and B wear experiments were conducted with the aid of the design of 
experiments. From the results of DSS A and B, the following primary observations were 
made: 

1. DSS B in forged condition subjected to 30 N loading conditions under hydrogen 
atmosphere exhibited SWR of 0.0010 mm/Nm. This is also proved by DOE, and the 
error is 5% only. 

2. The statistical findings of the experiments were well aligned with the surface plots 
achieved. The model of wear intensity is statistically verified with ANOVA with a 
strong multi-coefficient correlation. 

3. DSS B in forged condition subjected to 20 N loading conditions under hydrogen 
atmosphere exhibited COF of 0.525. This is also proved by DOE, and the error is 
0.57% only. 

4. The model established is more suitable for automotive and offshore industries and for 
inexperienced consumers to reach the lowest wear rate without realistic experiments. 
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Abstract. The article proposes the model for synthesizing a composite coating "intermetallic 
matrix-reinforcing oxide inclusions" on a substrate under controlled heating by an external 
moving heat source. The problem is solved in dimensionless variables. The study reveals the 
main criteria determining the composition of the fabricated composite. It is discovered that, 
depending on the treatment conditions, the matrix composition may include the main total 
product or residual unspent reagents and intermediate products, which testifies the 
nonequilibrium composition of the composite. 
Keywords: electron beam treatment, chemical reaction, numerical modeling  
 
 
1. Introduction 
High-temperature technologies for synthesizing novel materials are based on the application 
of chemical energy sources and accompanied by various physicochemical processes while 
having a lot in common with the processes that are studied in the combustion theory. In 
particular, this is valid for electron-beam treatment of materials and coating synthesis on a 
substrate. The electron-beam coating cladding technologies are also fairly diverse. Some 
include the application of a powder layer on the material surface (using one of the methods 
available) with subsequent thermal treatment of the coated material using the energy of an 
electron or laser beam [1-7]. Others form the coating immediately during the thermal 
treatment due to the interaction of the particles (coming into the melt) with the substrate 
material [8]. Depending on the chemical composition of the treated material and powder 
modifying the properties, as well as on the technological parameters, the phase and chemical 
structure of the forming coatings are different, as are the physicochemical processes limiting 
the formation of the properties and the physicomathematical model interpreting and 
describing the observed regularities. The known models of technological synthesis and 
treatment are limited by the accounting of solely thermal processes (heating, melting, 
crystallization) [9-13] or the analysis of the hydrodynamic flow in the molten pool [14,15]. 
There are many works that involve PhFM for modeling the formation of the phase 
structure [16]. However, the majority of works deal with "modelled" situations that hardly 
take into account the technological conditions. More preferable is the approach based on the 
description of the composition evolution using thermokinetic models [17], which does not 
exclude the consideration of various phenomena and processes at different scale levels. 

The capabilities of the model taking into account the transformation stages, as well as 
the coupling effects of different physical processes, are exemplified in [18-21]. Work [22] 
unveils the critical conditions distinguishing various cladding modes and leading to the 
formation of the virtually homogeneous or composite coating. It is shown that in the case of 
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exothermic dissolution, the electron-beam treatment process has much in common with the 
processes of the thermal theory of ignition and combustion. It would be impossible to detect 
such an effect without a detailed parametric investigation. A chapter of monograph [17] and 
publications [18,19,21,23-26] show the capabilities of the models with "detailed" chemistry.  

 

 
The present work proposes the model for synthesizing a composite coating 

"intermetallic matrix-reinforcing oxide inclusions" on a substrate under controlled heating by 
an external moving heat source (Fig. 1). The study is aimed at establishing the criteria that 
allow assessing possible modes of coating synthesis on a substrate. 
 
2. Mathematical model 
Let us consider the problem in the following statement. Along the plate with a thickness h 
with a powder layer on it, moves a source with its energy distributed as per a given law. The 
source can be coupled with an electron or laser beam having various natures of movement 
along the surface. In the present work, let us confine ourselves by the following source: 

( )
0

2 2
0 0

0 , / 2;

exp ( V ) , / 2,e
t

y y
W

q x t a y y

 >= 
− − ≤

 (1) 

which corresponds to the scanning high-frequency electron beam unwrapped into a 
line [27,28]. Here, 0q  is the maximum flow capacity density, ta is the effective source radius, 

0y  is proportional to the scanning rate of the electron beam, V  is the electron beam 
movement velocity along axis х. 

The temperature field follows from the solution of the thermal conductivity set of 
equations (with effective thermophysical properties) and chemical kinetics. 

In the laboratory system of coordinates, the thermal conductivity equation has the 
following form: 

( )4 4
0 0 0 ( )e

eff eff q ch w eff
WdTc W T T T T

dt h
ρ σ e α= −∇ ⋅ + + − − − −J , (2) 

where T  is the temperature; effc  is the thermal capacity, effρ  is the density; the heat flux qJ  
is assumed to satisfy the Fourier law; the second summand to the right 1 1 2 2chW Q w Q w= +  
corresponds to heat release or absorption due to chemical reactions and is determined by a 
given reaction scheme; kQ  are heat effects for reactions, 1, 2k = , kw  are the reaction rates; 
the fourth summand to the right describes the heat emission from the surface of the plate 
under treatment as per the Stefan-Boltzmann law, where 0σ  is Stephan-Boltzmann constant, 

0e  is blackness level, wT  is the temperature of vacuum chamber; the fifth summand 
corresponds to the heat losses into the substrate, where effα  – effective heat loss coefficient in 

 
Fig. 1. Illustration of the model formulation 
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Newton's law (this term takes into account possible heat losses deep into a massive sample); 
0T  – is environment temperature. The heat flow obeys Fourier's law. The thermophysical 

characteristics, in the general case, depend on the temperature and composition, which is 
accounted during the describing of the process of electron-beam cladding of specific 
systems [29]. However, to study the qualitative effects, let us confine ourselves by certain 
averaged effective properties. 

The melting of the reacting mixture and/or mixture of reagents and reaction products is 
accounted via thermal capacity [30]. Let us assume that the main material, determining the 
matrix composition, is melting. The thermal capacity sharply rises in the vicinity of the 
substrate melting temperature phT , which is reflected by the equation  

( ) ,
( ) ,

( ) ,
s ph

eff eff s ph ph
L ph

c T T
c L T T

c T T

ρ
ρ ρ δ

ρ

<= − +  ≥
 

where δ  is the Dirac delta function, phL  is the latent heat of melting; index "s" corresponds 
to the solid phase and "L" relates to the liquid phase.  

We assume that the composite material on the substrate is synthesized using 
metallothermic transformations. The reinforcing particles (oxide inclusions) and matrix 
composition are formed in a system of exothermic reactions. Such systems include, for 
instance, powder mixtures of Al+Cr2O3+Ti and Al+Fe2O3+Ni. In each of the systems 
Al+Cr2O3+Ti and Al+Fe2O3+Ni, according to the enthalpies of the oxides, only one reaction 
of metal reduction from oxides by aluminium is anticipated. In both the systems, of three 
initial components, aluminium is spent for forming both the particles and the matrix.  

In the first case, we have an initial mixture of the form 
( ) 2 32 Al Cr O Tizα β β+ + + . 

One of the products of the reaction  
2 3 2 32 Al Cr O Al O 2 Crβ β β β+ = + , 

that leads to the formation of oxide reinforcing particles, spends to matrix formation in 
accordance with the summary reaction  

x 2β zAl 2 Cr Ti Al Cr Tizα β+ + = . 
Hence, here we have to summary sequentially-parallel stages. 
The second mixture is similar to the first. Of the three initial mixture components  

( ) 2 32 Al Fe O Nizα β β+ + + , 
aluminum is spent on both particle formation and matrix formation. Consequently, we again 
have a summary of two sequentially-parallel stages: 

2 3 2 32 Al Fe O Al O 2 Feβ β β β+ = +  and 
x 2β zAl 2 Fe Ni Al Fe Nizα β+ + = . 

Depending on the concentration of the initial substances, the composition of the matrix 
can be different, can include intermetallides, triple compounds, and solid solutions.  

So, the two-stage total reaction scheme for these systems can be represented as 
2X+Y → P1+2P2, (I) 
X+2P2+Z → P. (II) 
 By formally applying the law of mass action to the set of reactions (I)–(II), we can write 
for the reaction rates: 

( ) YXTw 2
11 Φ= ; ( ) XZPTw 2

222 Φ= , 
where X=1-P1-P2-P is the total concentration of reagents; ( )T1Φ  and ( )T2Φ  are the reaction 
rates (that in the general case can depend both on the temperature, the concentration of the 
reaction solid-phase products, which is connected with real kinetic obstructions, and 
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mechanical stresses. It should be born in mind that the law of mass action is applicable to 
individual stages, while one can apply it to total reactions only formally. 

From this scheme, component Y can be explicitly excluded with the assumption that the 
concentration of this reagent alters the rate of the first reaction 1Φ  and the concentration of 
the formed reinforcing particles. The concentrations of nickel and titanium can also be 
neglected; it only affects the rate of the second reaction, i.e. 2Φ  and the matrix composition. 
Therefore,  

( ) 2
11 XTw Φ= ; ( ) XPTw 2

222 Φ= . 
Let us assume, that chemical reaction rates depend on the temperature as per the 

Arrhenius equation.  







−=Φ

RT
E

k a1
011 exp ; 






−=Φ

RT
Ek a2

022 exp , 

where 0ik , ,a iE  are pre-exponential factors and activation energies for reactions (I) and (II). 
Hence, the set of kinetic equations can be expressed as 

( )1
1

dP T
dt

= Φ ,  

( ) ( )2
1 22dP T T

dt
= Φ −Φ   , (3) 

( )2
dP T
dt

= Φ .  

The boundary condition 0=y  is as follows: 0=∂∂ yT  is the condition on the 
symmetry axis; conditions ∞= ,0x : 0=∂∂ xT  and ∞→y , 0=∂∂ yT mean the absence of 
the heat sources and sinks at infinite distance from the heated-up region and at the free end of 
the plate. 

Assuming at the initial moment of time 
0=t :   0 1 2, 1, 0T T X P P P= = = = = . 

The initial mixture composition in this model actually reflects the relation of the pre-
exponential factors of the two reactions. 
 
3. Statement of the problem in dimensionless variables 
Let us turn to the problem in dimensionless variables 

*

* * * * 0
, , , ,T Tt x y

t x x T T
t x η θ −
= = = =

−
 

where 1
* 0

s s

QT T
c ρ

= +  is the temperature characteristic for the problem (the temperature of the 

product if only the metallothermic reaction would proceed in the system); 








ρ
=

*

a

a

*ss
* RT

E
exp

QEk
RTc

t 1

1101

2
 is the period of the adiabatic induction for this reaction at the 

temperature *T ; 
effeff

*
* c

tx
ρ

λ
=  is the thickness of the thermal boundary layer that is formed 

over the time t*.  
Then, the equations, initial and boundary conditions will be as follows: 

( ) ( ) ( )
2 2 4 41 1

1 2 12 2( ) 1С b w
df f S Bi
d
θ θ θθ θ σ σ θ θ
t x η

− − ∂ ∂  = + +Φ +Φ + − + − − − +   
 ∂ ∂ 

.  (4) 
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( ) ( )
1

1 1
0 0

exp exp
1 1

dP
d

θσ θγϕ γϕ
t θ σ θσ θ θσ

   
= =      + +   

, 

( ) ( )
2

1 2
0 0

2 exp exp
1 1

k
ch

edP k
d

θσθσγ ϕ ϕ
t θ σ θσ θ σ θσ

    +
= −       + +     

, (5) 

( ) 2
0

exp
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k
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edP k
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t θ σ θσ
 +
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. 

∞→ ,0ξ :      0=
∂
∂
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θ
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∂
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1 20 1 0 0 0X P Pt θ= = − = = = ,                     (7) 
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2
1 Xϕ = , 2

2 2P Xϕ = ; ( )
1,

,
ph

С ph ph
С ph

f S
K

θ θ
δ θ θ

θ θ

<
= − + 

≥
, 

1
0

1 )1(
exp1 ϕ

θσβ
θσ

θ 







+

=Φ , 2
0

2 )1(
exp1 ϕ

θσβ
θσ

θ 







+
+

=Φ k
chch

ezS , 

( )
0

2
1

02

0 ,

exp ,e
t

f V
S

η η

x t
η η

δ

 >
  = −  − ≤    

 (8) 

As a result, the problem contains the following parameters: 
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For instance, 1t >δ  means that the effective beam radius is more than the thickness of 
the thermal boundary layer; in the case of 1t <δ , the situation is opposite. If 

0
1

21 >
−

=
a

aa
k E

EE
e , then the second reaction, in the presence of product P2 in the initial 

mixture, activates faster than the first one. Therefore, when the first reaction initiates, the 

second reaction starts following it. In the case of 0
1

21 <
−

=
a

aa
k E

EE
e , the second reaction 

may initiate with some delay. Obviously, the reaction rates will depend on both the 
temperature and the relation of the pre-exponential factors. 

Let us define the domains of the change of the dimensionless parameters using literature 
sources on different substances (Ti, Al, Cr, Fe, O) and varying the parameters of the heat 
sources and formally kinetic parameters ( 0q , V , 0, ,ai i iE Q k ) [31-34]. 

0.1 1chS = ÷ , 6 610 10chz −= ÷ , 8 310 10eS −= ÷ , 0.4 0.9wθ = ÷ , 0 0.7ke = ÷ , 50 ÷=phθ , 

11.0 ÷=phS , 8 310 10V −= ÷ , 51003.0 ÷=tδ , 9.03.0 ÷=σ , 1.0009.0 ÷=γ , 40 ÷=Bi , 
101.0 ÷=CK . 
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For the numerical solution of the problem (4)–(8), the implicit absolutely stable 
difference scheme and the sweep method were used. In the calculations, we varied the 
dimensionless parameters that characterize the kinetics of the chemical reactions: chS , chz ,  

eS , ke . The rest of the parameters were fixed: 0.5phθ = , 0.5phS = , 0.25V = , 0.5σ = ,  
0.025β = , 0.035γ = , 0Bi = , 1CΚ = , t 2δ = , S 0.0015b = , 0.5wθ = , 0 0.5η = . In real 

calculations, the Dirac delta function is replaced by the delta-like function that satisfies the 

normalization requirement 1)( =Φ∫
+∞

∞−

dxx . This requirement is met, for instance, by the 

function from [35]. 




















σ

−
−

πσ
=Φ

2

00

exp1 phTT
. 

 
4. Analysis of the result of numerical study 
Let us demonstrate some of the results of the numerical investigation of the electron-beam 
cladding within the presented model. Figure 2 shows the spatial distribution of the 
temperature along axis ξ at consecutive moments of time depending on the parameter eS . 
Over some time, starting from the source movement initiation, the mode stabilizes in a quasi-
stationary mode, i.e. the maximum temperature maxθ  seizes to change. At 2.5eS = , the 
temperature exceeds the temperature of the phase transition ( 0.5phθ = ); at 1=eS , the 
temperature is close to phθ . Figure 3 depicts thermal cycles in different points along the axis 
of heat source movement 0, 5, 10, 15, 20x =  for two sets of parameters: I) 0.5chS = , 100chz = , 

1=eS , 0.1ke = ; II) 0.5chS = , 100chz = , 2.5eS = , 0.1ke =  The shape of the thermal cycles 
depends on the beam movement velocity, flux density, and the dimensions of the part under 
treatment. The curves θ(τ) built in different locations of the specimen, there is a plateau that 
corresponds to the melting temperature. The increased parameter eS  up to 2.5eS =  (Fig. 3) 
may lead to a considerable overheating connected as with the heat accumulation during 
heating by the electron beam, as with the chemical heat liberation. 
 

  
Fig. 2. Temperature distribution along the source movement axis at different moments of time 

=t 4 (1); 10 (2); 40 (3); 80 (4); 120 (5); 150 (6); 180 (7). 
100=chz , 1.0=ke , 0.5phθ = , 0.5phS = , 0.25;V =  0.5;σ =  0.025β = , 0.035γ = , 0Bi = , 

5.0=chS , 1.CΚ =  
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The solid curves correspond to 2.5eS = , the dashed curves correspond to 1=eS  

 
Fig. 3. Thermal cycles in different points along the heat source movement axis. 

ξ = 0 (1); 5 (2); 10 (3); 15 (4); 20 (5). 
The solid curves correspond to 2.5eS = , the dashed curves correspond to 1=eS  
 
The impact of the parameters determining the chemical transformations ke  and chz  is 

shown in Figs. 4–5. Figure 4 illustrates the spatial distributions of all concentrations of the 
products and reagents that are formed in the chemical transformations. The fraction of the 
particles in the composite and the fraction of the matrix depend on the practically complete 
set of the model parameters. The composition of the synthesized composite matrix can 
include both reagents unspent under certain conditions and the residual intermediate product. 
Practically important is the composition depending on the input parameter of the model: the 
fraction of particles and the composition of the matrix that influence the proportion of the 
synthesized material or coating.  

Figure 5 demonstrates the non-stationary development of the synthesis. The variation of 
eS  shows that at 1eS =  only the region adjacent to the beam affected area is heated to the 

temperature sufficient for melting and acceleration of the chemical reactions. The shape of the 
molten pool and heat affected zone cannot stabilize, which does not allow using stationary 
models – widely implemented for modeling welding and modern three-dimensional laser- and 
electron-beam-based technologies – for alike processes of thermal treatment and synthesis of 
composite coatings. 

Nonuniform heating correspondingly leads to nonuniform phase composition (Fig. 6). 
Different dynamics of phase accumulation corresponds to different treatment conditions 
(different values of eS ) and different conditions of reaction initiation (alteration of parameters   

chz  and ke ). For instance, at 100chz = , 2.5eS = , 0.2ke = −  and 0.1chz = , 2.5eS = , 0.2ke = − , 
the reactions start to accelerate from 1.5t   (Fig. 6a) and then all the reactions rapidly 
complete, while at 100chz = , 1eS = , 0.1ke = , the reactions accelerate at 10t   (not shown in 
the figures). The resulting phase composition by the end of the treatment (which can be 
assessed by both integral curves and the concentration in the region where the sources have 
been removed from) turns out to be different as well.  
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a b 

 
 

c d 
Fig. 4. Spatial concentration distributions for the products and reagent along the source 

movement axis at different moments of time  
=t 4 (1); 10 (2); 40 (3); 80 (4); 120 (5); 150 (6); 180 (7). 

100=chz , 1.0=ke , 0.5phθ = , 0.5phS = , 0.25;V =  0.5;σ =  

0.025β = , 0.035γ = , 0Bi = , 5.0=chS , 1.CΚ =  
The solid curves correspond to 2.5eS = , the dashed curves correspond to 1=eS  
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=t 10  

  
=t 100 

  
=t 180 

1eS =  2.5eS =  
Fig. 5 Nonuniform temperature field during electron-beam melting for different values of 

eS . 5.0=chS , 100chz = , 0.1ke =  
 

The parameter chz  (the relation of the reaction pre-exponential factors) has an 
appreciable effect on the change to the phase composition. In the case of 0.1chz =  (Fig. 6a), 
the product P does not form, only products P1 and P2 are formed; the increase in chz  up to 100 
(Fig. 6b) alters the phase composition in other proportions. In this case, product P starts to 
accrue, product P1 also grows, while product P2 considerably diminishes. 
 

  
a b 

Fig. 6. Dependence of the concentrations of the products and reagents on time at different 
parameters of the problem. 

a) 0.1chz = ; b) 100chz = . 5.0=chS , 2.5eS = , 0.2ke = −  
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The changes to the parameter ek, together with the alteration of the relation of the pre-
exponential factors is of great interest. At 0.1ke =  and fixed 5.0=chS  and 100chz =  the 
product P1 primarily forms; the rest of the products remain in negligible amounts (not shown 
in the figures). This means that the matrix includes a mixture of initial reagents not involved 
in the metallothermic reactions and small amounts of the products P2 and P. 
 
5. Conclusions 
The work proposes the model for synthesizing a composite coating "intermetallic matrix-
reinforcing oxide inclusions" on a substrate under controlled heating by an external moving 
heat source. The process of synthesis was investigated in dimensionless variables, which 
allowed unveiling the main criteria determining the composition of the synthesized 
composite. It was shown that the process cannot be considered quasi-stationary, despite the 
established maximum temperature in the beam-affected region. It was discovered that, 
depending on the conditions, the matrix composition may include the main total product or 
residual unspent reagents and intermediate products, which testifies the nonequilibrium 
composite composition that can alter during operation of the treated part. 
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Abstract. The purpose of this study was to investigate the effect of sizes of turmeric 
microparticles (as a reinforcing agent) on the mechanical and biodegradation properties of 
cornstarch-based bioplastic material. The following fabrication procedures were performed: 
(1) diluting cornstarch in water; (2) making homogeneous mixture of cornstarch, glycerol and 
acetic acid by heating at less than 100ºC, (3) additional turmeric with a specific size (i.e. 250, 
125, 100, 74 μm); (4) molding process; and (5) drying process to obtain solid bioplastic 
materials. This study shows the importance of reinforcing agent size for improving the 
mechanical properties of bioplastic materials. The smaller turmeric size brings better 
mechanical properties than the larger turmeric size that has more void space. To support the 
analysis, the present study also was completed with a literature review regarding bioplastic 
production and proposal bioplastics material crack phenomena during mechanical testing. 
Keywords: bioplastics, cornstarch, particle size, mechanical properties, turmeric 
 
 
1. Introduction  
The synthesis of bioplastics based on biodegradable materials has been attracted tremendous 
attention. One of the attractive materials is starch-based bioplastics. However, starch-based 
bioplastics have disadvantages such as poor performance, hydrophilicity, and resistance to 
moisture [1].  

To solve problems regarding the limitation of starch-based bioplastics, several strategies 
have been implemented. Bioplastics were usually formed from a combination of several 
materials, one of which acts as the main material and the other as reinforcing agents. In 
addition to the additional reinforcing agents, several parameters must be considered [2,3], 
including size [4-6], composition [7-9], shape [10], and surface structure [11,12].  

Based on our previous studies [13,14] regarding the use of micrometer-sized starch 
particles and their composition impacts on the bioplastic performance, the present study aims 
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to examine the effect of turmeric microparticles' size on the mechanical and biodegradation 
properties of cornstarch-based bioplastic material. Turmeric was selected since it is enriched 
with natural antimicrobial, accessible material at relatively low cost, and having high 
biodegradability. Different from other studies that mostly focused on composition, the present 
study considered the use of micrometer-sized raw material. While other reports did not 
concern about the particle size, the present study focused on the effect of particle size of raw 
materials, which this study brings excellent insight for the development of bioplastic material. 
To support the analysis, the present study also was completed with a literature review 
regarding bioplastic production and proposal bioplastics material crack phenomena during 
mechanical testing. 

 
2. Materials and Method 
Preparation of Cornstarch-based Bioplastic Material. This study used micron-sized 
cornstarch particles (purchased from PT Egafood, Jakarta, Indonesia), turmeric (Curcuma 
Longa; collected from Bandung, Indonesia), acetic acid (25%; purchased from Sakura 
Medical Stores, Bandung, Indonesia), glycerol (95%; purchased from Sakura Medical Stores, 
Bandung, Indonesia), and distilled water (purchased from Sakura Medical Stores, Bandung, 
Indonesia). The experimental procedure is explained in Fig. 1.  

Turmeric was washed, sliced into small pieces, and dried to remove the existence of 
water using an electrical furnace under atmospheric conditions. Dried turmeric was ground 
and mashed using a saw-milling process with a rotating speed of 18,000 rpm to obtain 
homogenous milling. Detailed information about the saw-milling process is explained in 
previous literature [15]. To obtain a specific size the milled turmeric was put into sieve test 
measurement with (PT Rumah Publication Indonesia, Indonesia with various holes of 2000, 
1000, 530, 250, 125, 99, 74, 58, and 48 μm).  
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Fig. 1. Experimental procedure for the preparation of bioplastic 
In the experimental procedure, to produce bioplastics, the following steps were carried 

out. The starch solution was prepared by dissolving cornstarch in distilled water and heating 
the mixture. Then, we added 95% of glycerol, 25% of acetic acid, and turmeric powder with 
various sizes of 250, 125, 100, and 74 µm, and the mixture was stirred until it gets 
homogeneous. At the same time with the gelatinization and manual mixing process, the 
mixture was heated at 60°C for 30 minutes using an electrical heater to obtain a viscous 
product. The viscous product was molded and dried at room temperature for more than 
24 hours until it formed a solid yellow film. 

Physicochemical properties. The morphology of the prepared samples was analyzed 
using a Digital Microscope (BXAW-AX-BC, China). To support the analysis, we conducted 
characterizations using a Fourier Transform infrared (FTIR-4600, Jasco Corp., Japan).  

Mechanical properties. The observation of the bioplastic turmeric mechanical 
properties was observed using a compression test. The compression test was performed using 
313 Family test machines at a scan rate of 1 mm/s at a temperature of 24°C and humidity of 
10%, respectively. The compression test preparation was done by measuring the dimension of 
the sample using Vernier caliper and coat the compression plate using the lubricant. In this 
case, the lubricant is Vaseline that aims to reduce the friction effect.  

Table 1 shows the mesh variation of the sample and its corresponding dimension. Data 
collected from compression tests such as Load vs Displacement, Stress vs Strain, and Young's 
modulus were evaluated for each sample to analyze its mechanical properties. 

 
Table 1. Sample dimension 

Sample, mesh Particle size, μm Dimension (length × width × 
thickness), cm 

60 250 2.00 × 2.00 × 0.50 
120 125 2.00 × 2.00 × 0.70 
150 100 2.00 × 1.70 × 0.70 
200 74 2.00 × 2.00 × 0.50 

                 
The following formula can be used to process the raw data from the compression test 

for further analysis: 
(1) Ultimate compression strength (MPa) is defined as the maximum force that can be held in 
the sample when being compressed before the material is broken. The ultimate compression 
strength can be calculated by dividing maximum stress (FM; N) with the cross-section area of 
the specimen (A; mm2) as shown in Eq. (1). 
Compression strength = FM

A
 .               (1) 

(2) Young's modulus (MPa) is a mechanical property that measures the stiffness of elastic 
deformation of specimens under a given load. Young's modulus can be obtained from the 
slope of the stress-strain since defines the relationship between stress (σ) and strain (ɛ) of 
material deformation in the linear elasticity regime. Young's modulus can be determined 
using Eq. (2). 
Young's Modulus = 𝜎𝜎2−𝜎𝜎1

ɛ2−ɛ1
 , (2) 

where ε1 and ε2 are the conditions of relative elongation and σ1 and σ2 are the stress that occurs 
at ε1 and ε2, respectively. The method of observing the slope-strain of the sample for defining 
Young's modulus is adopted since the slope of the sample can be directly observed as a 
function of the material deformation (strain)[16]. 
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Biodegradability. The biodegradability tests were conducted by slicing the prepared 
bioplastics with sizes of about 5 × 5 × 5 mm and then immersing them into ultrapure water. 
The weight losses of the sample were measured at the interval time of two days. In line with 
this test, during the immersing process, it was also visually observed the change of color. 
Detailed information about the biodegradability test is explained in our previous report[13]. 

 
3. Results and Discussion  
Current reports on the preparation of bioplastics. To form a better bioplastic performance, 
the bioplastic raw materials were usually a combination of several materials, one of which 
acts as the main material and the other as reinforcing agents. The most recent reports on the 
synthesis of bioplastic materials with reinforcing agents are presented in Table 2. 

Production of cornstarch-based bioplastics with varying turmeric microparticles. 
The production of cornstarch-based bioplastics with the addition of turmeric microparticles 
size variations is shown in Fig. 2. Visually, the bioplastic is yellow with the addition of 
turmeric to the cornstarch-based bioplastic. Figures 2(a-d) is a bioplastic appearance with 
variations in the size of turmeric: (a) 250, (b) 125, (c) 100, and (d) 74 μm. The large particle 
size of turmeric causes the bioplastic to crack more easily than the smaller particle size of 
turmeric.  

The microscope analysis of bioplastic with the addition of turmeric size variations is 
shown in Fig. 2(e-j). Figures 2(e) and (f) are materials for the fabrication of bioplastics, 
namely micron-sized corn and variations size of turmeric powder, respectively. Micrometer-
sized cornstarch particles were white crystals, solid, and dense. Turmeric powder has a yellow 
color, heterogeneous surface, and agglomerated. Figures 2(g-h) are the bioplastic surface 
appearance with variations in the size of turmeric of 250, 125, 100, and 74 μm, respectively. 
The bioplastic surface with the smallest turmeric size has a more homogeneous surface and is 
less brittle compared to the large turmeric size because of the size of the starch, which is 
almost the same as the size of turmeric that has a rigid structure. Figure 2(k) is the appearance 
of the bioplastic after being immersed for 6 days in water. The color of the bioplastic starts to 
change from yellow to brownish-yellow. It can be observed that after 6 days of immersion, 
cracks were found due to the swelling phenomenon. Figure 2(l) is the appearance of the 
bioplastic after being immersed for 4 weeks. The bioplastic surface with immersion for 4 
weeks experienced a bad brittle phenomenon and a black fungus appears on the bioplastic 
surface. 

Figure 3 shows the proposal formation mechanism of bioplastics prepared from the 
combination of cornstarch and turmeric with glycerol. The mechanism has used the 
assumption of two-particle interaction (i.e. Particle A and B) and they attach each other with 
glycerol (red molecule). Particles A and B have chemical structures of CR1 and CR2, 
respectively. CR1 and CR2 can be from starch (shown as green molecule) or turmeric 
(presented as blue molecule). In short, the polymerization was started from the interaction 
between Particle A and glycerol (see route R1). Then, additional heat treatment and catalyst 
(such as acetic acid), the interaction continues to the formation of glycerol-Particle A bonding 
(by releasing OH group). When there are other movements of Particle B (see route R2) to the 
surface of the glycerol-Particle A component (see route R3), another polymerization happens. 
This makes the final component contained a packed balls-like structure[13]. 
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Table 2. Current reports on the synthesis of bioplastic with an additional reinforcing agent 
Type of 

carbohydrate 
Reinforcing 

agent 
Raw material Results Ref. 

Cassava 
starch 

Zinc oxide/clay  Cassava starch, 
glycerol, distilled 

water, zinc 
oxide/organoclay 

Additional zinc oxide/clay 
improve mechanical 

properties. The best ratio 
with the addition of 

0.3:0.7 of zinc oxide/clay 
has a tensile strength of 

20.87 MPa 

[17] 

Oil palm  Cassava starch, oil 
palm, glycerol, and 

distilled water 

Additional oil palm has 
not increased mechanical 
properties. However, it 

accelerated biodegradation 

[18] 

 Chitosan and 
Kraft fiber 

Cassava starch, 
distilled water, Kraft 
fiber, chitosan, acetic 

acid, and glycerol 

The best bioplastic with 
the addition of 30% of 
Kraft fiber and 4% of 

chitosan had properties 
similar to polystyrene 

foam 

[19] 

Pumpkin 
residues and 

oregano essential 
oil  

Cassava starch, 
pumpkin residues 

(skin), oregano 
essential oil, 
glycerol, 2,2-

diphenyl-1-
picrylhydrazyl radical 
(DPPH), thiobarbituric 

acid (TBA), 
trichloroacetic acid 

(TCA), butyl hydroxyl 
toluene (BHT), 

1,1,3,3- 
tetraethoxypropane 

(TEP) 

Compared with pumpkin 
residues (skin), bioplastic 
with oregano essential oil 
increased antimicrobial 

activity 

[20] 

Cornstarch  Cassava starch, 
cornstarch, glycerol, 

distilled water 

Starch-based bioplastics 
(40 g/kg) had mechanical 
properties comparable to 

LDPE-based films 

[21] 

Polycaprolactone 
(PLC)  

Cassava starch, 
Polycaprolactone 

(PLC), glycerol, and 
ethanol (99.8% v/v 

absolute ethyl 
alcohol 

Bioplastic made from a 
mixture of PCL/cassava 
starch does not improve 

the mechanical properties 

[22] 
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Table 2 (continue). Current reports on the synthesis of bioplastic materials 
Type of 

carbohydrate 
Reinforcing 

agent 
Raw material Results Ref. 

Cornstarch  Taro starch 
nanoparticles 

(TSNPs) 

Cornstarch, taro 
starch,  

Bioplastic with the 
addition of taro starch 

increased tensile strength 
from 1.11 to 2.87 MPa. 

However, increased 
concentration of taro 

starch decreases water 
vapor permeability (WVP) 

of bioplastic 

[23] 

Palm fibers Cornstarch, palm 
fibers, NaOH, acetic 
acid, glycerin, and 

distilled water 

 The additions of the 
reinforcement (palm 

fibers) improve the tensile 
strength, biodegradation, 

Young's modulus, and 
water uptake.  

[24] 

Cornhusk fiber  Cornstarch, corn 
husk fiber, fructose, 
and distilled water  

Bioplastics with the 
addition of husk fibers 
improve mechanical 

properties and thermal 
stability. However, it 

decreases biodegradation 

[25] 

Barley straw 
(Hordeum 
vulgare L.) 

Cornstarch (CS), 
glycerol, distilled 
water, and Barley 
straw (Hordeum 

vulgare L.) 

Bioplastic with the 
addition of 15% of barley 

straw increased tensile 
strength, Young's 

modulus, and thermal 
stability  

[26] 

Sisal fibers  Cornstarch, sisal 
fiber, and glycerol 

Sisal fibers increase 
tensile strength and 

Young's modulus. It also 
improved chemical 

modification in matrix  

[27] 

Sugar palm 
starch  

Sugar palms 
Nano fibrillated 

cellulose 
(SPNFCs) 

Sugar palms fiber, 
sugar palm starch, 
Sodium hydroxide, 

sodium chlorite 
(80% purity), acetic 
acid, sorbitol, and 

glycerol  

It increased water barrier 
properties sugar palm-

based bioplastic 

[28] 

Jack fruit 
seed starch  

Banana fruit skin 
powder (BSP) 

Jack fruit starch, 
banana fruit skin 
powder, distilled 

water, and glycerol  

The best bioplastic with 
the addition of 1% of 

banana skin powder had 
maximum tensile strength 
of 10.90 MPa and good 

biodegradability 

[29] 
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Table 2 (continue). Current reports on the synthesis of bioplastic materials 

Type of 
carbohydrate 

Reinforcing 
agent 

Raw material Results Ref. 

Potato starch  Corn fibers and 
poly (vinyl 

alcohol) (PVA) 

Potato starch, corn 
fibers, distilled 

water,  and glycerol 

The addition of corn fiber 
decreases mechanical 

properties and improved 
water resistance.  

[30] 

Wood fiber Potato starch, wood 
fiber, guar gum, and 
magnesium stearate  

40% of wood fiber has the 
highest tensile strength of 

128 MPa and Young's 
modulus of 3200 MPa 

[31] 

Titanium oxide 
nanoparticles 
(TiO2 NPs) 

Potato starch, 
titanium oxide 

nanoparticles (TiO2-
NPs), distilled water, 

and glycerol   

The addition of TiO2-NPs 
at low concentrations 

improved the mechanical 
properties and moisture 
barrier of the bioplastic. 

[32] 

Pea starch  Waxy maize 
starch 

nanocrystals  

Pea starch (about 
40% amylose), 

Waxy maize starch 
(98% amylopectin), 

glycerol, sulfuric 
acid, potassium 

carbonate. 

Bioplastics with the 
addition of waxy maize 
nanocrystals increase 
tensile strength. The 

highest tensile strength 
values contain 5% of 

waxy maize nanocrystals 

[33] 

Wheat gluten  Coconut fiber Wheat gluten, (3-
triethoxysilylpropyl)-

tbutylcarbamate 
(carbamate silane) 
sodium hydroxide, 
and coconut fiber 

Bioplastics with the 
addition of coconut fiber 

increase the tensile 
strength by 80% 

[34] 

Flax fiber  Wheat gluten 
powder, glycerol, 
ethanol, and flax 

fiber 

19% of flax fiber 
improved the quality crack 

resistance and stress 
maximum from 2 to 

29 MPa. The bioplastic 
surface is homogeneous 

[35] 

Lignin 
nanoparticles 

(LNP) 

Wheat gluten, lignin 
nanoparticles, 
distilled water, 
glycerol, and 

hydrochloric acid 

Bioplastic with the 
addition of LNP increased 

mechanical properties, 
thermal stability, and 

water sensitivity. 
However, the transparency 

of bioplastic decreases 

[36] 
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Table 2 (continue). Current reports on the synthesis of bioplastic materials 
Tamarin seed  Banana fiber Tamarin seed, 

banana fiber, 
distilled water, and 

glycerol 

The temperature condition 
of tamarind seeds 130°C 

has the highest tensile 
strength of 3.97 MPa 

[37] 

Banana peel  Cornstarch  Banana peel, 
cornstarch, 

hydrochloric acid, 
glycerol, and sodium 

hydroxide  

4% of cornstarch has the 
highest tensile strength of 

34.72 N/m2
 

[38] 

Zinc oxide 
(ZnO) 

Banana peel, 
glycerol, chitosan 

flakes, NaOH, 
glacial acetic acid, 
distilled water, and 

zinc oxide 

Bioplastic composition 
with 4-30% of chitosan, 
starch, glycerol, 5% of 

ZnO shows the bioplastic 
with the best microbial 

activity 

[39] 

 

 
Fig. 2. Photograph image of cornstarch-based bioplastics with the addition various size 
turmeric (a) 250, (b) 125, (c) 100 and (d) 74 μm. Microscope images of (e) micro-sized 

cornstarch, (f) turmeric powder, (g-j) bioplastic prepared using turmeric with sizes of 250, 
125, 100, 74 μm, respectively, (k) bioplastics after 6 days immersed in water and (l) fungi 

bioplastic after 4 weeks immersed in water 
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Fig. 3. Proposal reactions during the polymerization in the formation of bioplastic. Particles A 
and B have the chemical structure of CR1 and CR2 respectively. CR1 and CR2 can be from 

starch or turmeric 
 

Biodegradability of cornstarch-based bioplastics with varying turmeric 
microparticles. To confirm the phenomenon during the immersion process as shown in 
Figs. 2(k) and (l), Fig. 4 shows the results of the FTIR analysis results of as-prepared 
bioplastics, bioplastics immersed for 2 weeks in water, and the surface of the bioplastic 
samples immersed for 4 weeks. The as-prepared bioplastic content results were identified at 
wavelengths of 1014, 1723, and 3300 cm-1 [40]. The comparison of the FTIR peaks for 
bioplastics before and after 2-week immersion in water confirms that the biodegradability in 
water was only the dilution of the outer component on the bioplastics. The reaction between 
water and bioplastics involves a dilution process and did not interfere with complicated 
reactions.  
  We also found that immersion for 4 weeks caused the appearance of fungi on the 
bioplastic surface. The bioplastic surface analysis shows that the fungus degrades the 
bioplastics, converting the bioplastic chemical structure to the fungal structure (see the green 
dashed area in Fig. 4) [41]. 

To confirm the weight losses during the immersion process, we analyzed the mass of 
bioplastic as a function of the day (see Table 3). Table 3 shows the results of bioplastic weight 
loss carried out for a week. The results showed that bioplastics' weight decreased for 4 days of 
immersion in water. The possible weight loss during 2-week immersion is because the 
bioplastics' outer surfaces were diluted in water, confirmed by the identical FTIR patterns. 
This result is different for 4-week immersion bioplastic, in which the mass loss was followed 
by the appearance of fungus (see Fig. 2 (l)) and fungus chemical structure (see Fig. 3). The 
present bioplastics were made from cornstarch, making microorganisms more easily break the 
polymer chain inside the bioplastics themselves [41]. In addition, compared to the bioplastic 
prepared from cornstarch only [13], the decomposition of the present bioplastic is slower. The 
existence of turmeric deters the growth of microorganisms since turmeric has an antiseptic 
effect. 
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Fig. 4. FTIR analysis results of as-prepared bioplastic, 2-week immersed bioplastic in 

water, and fungus on the 4-week immerged sample 
 

Mechanical properties of cornstarch-based bioplastics with varying turmeric 
microparticles. The mechanical properties of samples were determined by applying load 
gradually to the samples and measuring their deformation [42]. The load and deformation data 
is then used to obtain the stress and strain curve [43]. The stress-strain curve of bioplastic 
samples with variation of micrometer size is presented in Fig. 5. Based on the stress-strain 
curve, the ultimate strength is determined from the first peak of the stress-strain curve (see 
Fig. 6). Table 4 summarizes the ultimate strength of all samples. The curve shows a random 
trend where the highest ultimate strength achieved by the sample of 74 μm and the lowest 
ultimate strength obtained from sample of 125 μm while sample of 250 μm is in between.  

The ultimate strength values of samples prepared using turmeric particles size of 74, 
100, and 125 μm are 2563, 1618, and 1164 kPa respectively (Table 4). It shows the 
decreasing value of ultimate strength with the increasing particle size of the sample. Smaller 
particles have a higher total surface area of the filler particles, allowing more efficient stress 
transfer mechanisms and resulting in the higher ultimate strength of the sample [44]. Smaller 
particles also affect the adhesive factor that increases intermolecular bonding, hence resulting 
in higher material strength. However, the larger particles (sample of 250 μm) did not show the 
same characteristics. This could be caused by the microstructural mechanism, thus further 
observation on sample morphology needs to be performed to observe this phenomenon.   
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Table 3. Weight loss bioplastics with addition of size turmeric during immersion process 
Size 
(um) 

Days Initial 
Dimension, cm2 

Initial 
mass, g 

Mass after 
Immersion, g 

Mass loss, 
wt% 

Decay 
dimension, 

g/cm2 
250 1 1.084 0.133 0.080 40 0.050 

2 1.161 0.113 0.053 53 0.051 
4 1.216 0.143 0.063 56 0.067 
6 1.128 0.100 0.040 60 0.055 
8 0.972 0.137 0.047 66 0.102 
10 1.115 0.143 0.043 70 0.095 
14 1.117 0.140 0.037 74 0.104 

125 1 1.090 0.123 0.077 38 0.043 
2 1.249 0.117 0.057 51 0.047 
4 1.165 0.190 0.083 56 0.092 
6 1.262 0.137 0.043 68 0.074 
8 1.268 0.137 0.040 71 0.077 
10 1.220 0.147 0.037 75 0.092 
14 1.242 0.133 0.030 77 0.084 

100 1 1.013 0.127 0.073 43 0.053 
2 1.127 0.110 0.063 45 0.043 
4 1.044 0.130 0.050 62 0.077 
6 0.894 0.117 0.037 68 0.094 
8 1.188 0.137 0.037 73 0.090 
10 1.290 0.143 0.033 77 0.087 
14 1.274 0.143 0.030 79 0.093 

74 1 0.895 0.150 0.110 28 0.045 
2 1.080 0.133 0.053 60 0.075 
4 0.960 0.137 0.047 66 0.096 
6 1.124 0.147 0.043 70 0.092 
8 1.020 0.133 0.033 75 0.099 
10 0.870 0.140 0.027 81 0.135 
14 1.010 0.133 0.020 85 0.114 
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Fig. 5. Stress vs Strain of bioplastic samples 

 

 
Fig. 6. Stress vs Strain of bioplastic samples limited at strain of 0.70 and stress of 4500 kPa 
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Table 4. The ultimate strength of bioplastic samples 
Sample, μm Ultimate strength, kPa 

250 1379 
125 1164 
100 1618 
74 2563 

 
Variation of particle size affecting the Young's modulus (stiffness) of the sample. As the 

particle size increases, the stiffness of the sample tends to decrease as shown in Fig. 7. The 
highest slope of stress-strain curve shown in Fig. 7 indicates the Young's modulus value of 
each sample, in which the sample with particle sizes of 74, 100, and 125 μm are 14780, 7724, 
and 2626 kPa, respectively (Table 5). The addition of small microparticles to the polymatrix 
result in higher Young's modulus as they have higher intermolecular bonding in the larger 
area, making the material difficult to deform as a load is applied. Different trends for the 
sample with particle sizes of 250 μm that has Young's modulus of 5116 kPa need to be 
observed in terms of its microstructure, as previously reported that microstructure (due to 
particle size distribution) affects the material stiffness. 

 

 
Fig. 7. Young's modulus vs Strain of bioplastic samples 

 
Table 5. The Young's moduli of bioplastic samples 

Sample, μm Young's modulus, kPa 
250 5116 
125 2626 
100 7724 
74 14780 
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Proposal cornstarch-based bioplastics crack. To get deeper insights into the bonds, 
area having a minimum and maximum stress concentration, and the bond-breaking initiation, 
an illustrative model is qualitatively shown in Fig. 8. The figure shows a particle stress 
distribution evolution, a bond breaking, crack nucleation, and growth scenario of the system 
during the applied compression test. The concept was derived from the existence of particle-
particle interaction based on Fig. 3. The polymerization happens on the surface of the particle, 
and there is no change in the chemical composition inside the particle. 

Figure 8(a) shows stress distribution before bond breaking. Prior to the applied stress, 
the particle arrangement was in the perfect lattice site. At the initial stage of loading, the 
particle position of chains started to shift from the perfect position. As shown in Fig. 8(b), as 
the loading increased, more particles deviated from their original perfect position. These 
deviated particles increased the interaction with their neighboring causing the lattice re-
arrangement [43]. This particle arrangement basically has a vital role to create small defects, 
which is indicated by changing particle stress color from light green to other colors (blue and 
red), mostly particles at loading points and center of the cell. Here, the force due to the 
compression is gradually localized into two chains with the formed symmetrical region, 
resulting in the agglomeration of deformation due to particles having the highest stress. In 
Figure 8(c), further loading leads to the highest stress distribution at the loading point 
initially, and reconstruction of the geometry of the chain propagated towards the loading 
direction and accumulate at the center of the cell. Thus, it initiates the bond-breaking 
simultaneously at the loading point and along the chain propagates vertically in the direction 
of loading. This bond-breaking leads to the small destruction of small clustering deformation 
in the center of the particle. With agglomerate deformation, the degree of force and stress 
increased at the center. Then, subsequent breaking bonds leading to the formation of initiated 
crack, which grows along the y-direction. The crack was initiated at the center of the cell, 
indicated by the highest stress (red-colored) where the established bonds are still in an 
unstable bonding, propagated in y-direction toward its loading platens. In the end, with the 
further increases in the applied loading, the region having the highest stress experienced more 
bond breaking, resulting in successive de-bonding along the y-direction. Then, it causes 
damaging the bond connection and ends up with the fracture of the system. After the bond 
breaking, the highest stress changes to the lower stress. This compressive loading induced 
alternating local and the whole binding configurations and its subsequent impact on the 
initiation of failure of the system. As a result, it breaks the polymer chain until complete 
rupture (See Fig. 8(d)). 
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Fig. 8. The model of particle stress distribution in the bioplastic during the loading. Particles 

are colored cording to the corresponding particle stresses. Light green represents a perfect 
structure, blue or green showing for low stress, and red color for high stress. The system to be 

investigated is represented by a visualization cell, in which all particles are enclosed and 
interacted. The top and bottom surface is subjected to a compression force in y-direction 

 
Table 6 shows a 2-dimensional model of the crack propagation path of the sample under 

the compression load. When a load is applied to the material, the cracks will propagate to a 
region with less bonding energy in the particle structure. As the region with lower interfacial 
energy, the interface between particles plays an important role in the crack propagation 
mechanism. When there are two types of particles (i.e. Particles A and B), the packing 
particles depend on the initial sizes of particles A and B. The red arrow is the position of the 
crack due to the applied load during the compression test, and the red line is the crack path in 
the sample.  

As illustrated in Table 6, the surface area to volume ratio increases for material with 
smaller particle size. It introduces a larger proportion of particles to be found in the material. 
Those small particles induce small volume voids inside the material that makes the material to 
be more compact and stronger. The small volume voids prevent the crack propagation 
movement in the material. Under the applied load, the material with larger particles is likely 
to experience a severe disturbance of opening matrix angle that eventually results in bigger 
cracking compared to material with smaller particles. Larger particles also result in a material 
with larger voids inside it, allowing the crack easily propagate in the material since the 
material is less rigid.  
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Table 6. Illustration cracking progression 

 
 

5. Conclusion  
The mechanical and biodegradation properties of bioplastics from turmeric with various sizes 
were evaluated. The results showed that particle size affects the mechanical properties of the 
material. Turmeric particles with a small size tend to have a larger surface area, allowing for a 
stronger bonding area between particulates, and resulting in a higher stiffness and strength of 
the material. In contrast, larger particles have a lower interfacial strength, which makes a 
crack easier to propagate even at lower loads. However, there is a nonlinear trend found in 
this study where up to 250 μm has a higher strength than that of 125 μm. This is probably due 
to the non-uniform distribution of particles, which affects the strength of the material. 
Bioplastic biodegradability is also influenced by particle size. The smaller the size of the 
turmeric, the greater solubility it will be. Apart from the solubility parameters, a larger weight 
loss is also observed in a sample with smaller size, indicating good biodegradation. 
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Abstract. The paper presents the results of studies of internal stresses in ion-plasma coating 
Ti-TiC-DLC. A method based on measuring the deformation of the substrate was used to 
carry out this research. Plates of 08kp steel were used as a substrate, the geometry of which 
was chosen based on their further application for droplet erosion testing and determination of 
stresses arising in the coating under high-speed drop impact. A technique is presented for 
conducting research on substrates with a geometry that is changed in comparison with the 
classical configuration used to determine the internal stresses in the coating by the bending 
method. Bending values were obtained from the surface profiles obtained before and after 
coating, which were used to calculate stresses by using the Stoney formula. Application of the 
selected coating leads to the appearance of compressive stresses ranging from 3 to 9 GPa. 
Keywords: stress measurement, diamond-like carbon coatings, high power impulse 
magnetron sputtering, droplet erosion 
 
 
1. Introduction 
Diamond-like carbon (DLC) coatings had a number of valuable properties that gave rise to 
interest in the application of such coatings in various fields of science and technology 
(automotive and mechanical engineering, medicine, electronics, etc.) [1]. They are quite easy 
to adapt to different substrates, have low resistance, high mechanical hardness, high wear 
resistance, chemical inertia and resistance to aggressive media, biological compatibility, good 
dielectric properties, and high heat conductivity [2-5]. However, in the manufacture of 
diamond-like coatings, it was practically impossible to avoid the appearance of residual 
internal mechanical stresses, which limited their use. 

Internal stresses have a significant effect on the strength, adhesion, and other 
performance of the coatings. They arise in the coating at the forming stage, as well as in the 
operation of the articles due to various influencing factors, one of which is the water droplet 
impact, leading to erosion wear of the protected substrate material. 

There are a number of methods used to investigate stresses in the material [6-9]. A 
widely used method for determining stresses in thin films is the bending method based on 
measuring the substrate deformation resulting from stresses in the coating [10-21]. 
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The study of changes in internal stresses in the coating after water droplet impact is 
possible when using substrates with geometry that meets the requirements for substrates for 
erosion tests at the set of research and development equipment of Unique Research 
Installation (URI) «Hydroshock rig «Erosion-M» NRU «MPEI». 

The purpose of this work was to study the internal stresses exerted during the formation 
of the Ti-TiC-DLC coating using the HiPIMS technology (High Power Impulse Magnetron 
Sputtering) based on the developed method for measuring the deformation of a substrate with 
geometry changed in comparison with the classical configuration. 
 
2. Materials and methods of research 
To study internal stresses using the bending method, 08KP sheet steel substrates in the form 
of plates with a size of 10 × 20 × 1 mm were selected. The plates had holes for their 
attachment in the tooling during coating and in the holders for subsequent erosion tests on the 
URI «Hydroshock rig «Erosion-M» NRU «MPEI» (see Fig. 1).  

The initial surface of the plates (hereinafter referred to as substrates) was subjected to 
pre-abrasive treatment, after which the primary surface profiles were measured. Profiles were 
measured on a Dektak 150 mechanical profilometer in two mutually perpendicular directions 
in accordance with the diagram (see Fig. 2). The scheme for measuring the curvature of the 
substrate is due to its geometry and the intended location of the erosion "trace", which is 
formed on the surface due to the high-speed water drop impact of the mono-dispersed flow. 

 

 
 

Fig. 1. Attachment of substrate in erosion test holder 
 

 
 

Fig. 2. Diagram of substrate surface profile measurement 
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The length of the profiles, when measured along the long side of the substrates (along 

the Y-axis) was 18 mm, when measured along the short side (along the X-axis) – from 8 to 
4 mm (the length of the profiles is reduced due to the presence of a fastening hole). Note here 
that said cross-profiles are auxiliary to assess substrate outlier unevenness (Z-axis) due to its 
fixation in tooling at the subsequent application of cover and at fixation in the holder at 
erosion test with due account being taken of a relatively large area of fasteners relative to the 
width. Longitudinal profiles are intended for subsequent assessment of the effect of water 
drop impact action on substrate bending. Their location was determined based on the fact that 
the expected width of the erosion "trace" arising from the water droplet impact, the 
composition is 2÷3 mm, and in the future, the profiles will pass in the area of the water drops 
impact and near it. 

After obtaining the primary (preliminary) surface profiles, a coating of the type  
Ti-TiC-DLC was formed on the substrates by a magnetron method on the specialized ion-
plasma equipment «Gefest-HiPIMS». The coating mode was based on the study results of the 
main mode parameters influence the coating properties. The selected mode provides a good 
combination of hardness, adhesion, and tribological characteristics. For the synthesis of 
coatings, target-cathodes from titanium VT1.0 were used. The substrates were degreased and 
wiped prior to installation in the vacuum chamber. Then they were installed in a vacuum 
chamber, providing planetary rotation inside the plant. After that, the vacuum chamber was 
closed and pumped out to a high vacuum to a pressure of 104 Pa. Simultaneously with the 
pumping out of the vacuum chamber, it was heated to 200 °C to intensify degassing 
processes. After reaching the pressure in the vacuum chamber 10-4 Pa, the heating was turned 
off, the vacuum gate was throttled for half and plasma-forming gas was supplied to a pressure 
of 0.3 Pa. High purity argon was used as plasma-forming gas. On the substrates moving inside 
the vacuum chamber planetary, supply negative voltage (bias voltage) of the order of 1000 V 
and anomalous discharge was burned, ion cleaning (IC) was carried out. To intensify the  
IC process, 2 magnetrons for low power (up to 1 kW) were included on the surfaces of the 
substrates. After IC, an adhesive layer of pure carbide-forming metal – titanium – was applied 
to the surface of the substrates. At the same time, magnetrons worked in dual-mode at a 
power of up to 5 kW. The negative voltage applied to the substrates was 110-120 V. An 
intermediate layer of titanium carbide was applied after the adhesive layer was formed. For 
this purpose, reaction gas of high purity methane with a flow rate of up to 1.8 l/h was 
additionally supplied to the chamber through the gas inlet system. After the intermediate layer 
was formed, the final coating layer, DLC, was applied. For this, the flow rate of the reaction 
gas – methane smoothly increased in the range from 1.8 l/h to 9 l/h, while the negative bias 
voltage was up to 180 V. 

After the coating formation, the surface profiles were re-measured in the same areas and 
the same length as the preliminary profiles. The determination of stresses in the coating was 
carried out by using the well-known Stoney formula [17-21]: 

𝜎𝜎 = 1
6
� 1
𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

− 1
𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝

� 𝐸𝐸
(1−𝜈𝜈)

𝑡𝑡𝑝𝑝2

𝑡𝑡𝑓𝑓
, (1) 

where 𝜎𝜎 – stress in the film, after deposition, 𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝 – substrate radius of curvature, before 
deposition, 𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡 – substrate radius of curvature, after deposition; E – Young's modulus 
substrate material, ν – Poisson's ratio substrate material, 𝑡𝑡𝑝𝑝– substrate thickness, 𝑡𝑡𝑓𝑓  – film 
thickness. For 08KP steel, Young's modulus was assumed to be 203 GPa, the Poisson 
coefficient was 0.28. 

To define the radius of curvature of the substrate surface before and after coating 
formation (Pre-, Post-deposition) using profilometer software for the obtained primary 
profiles (Raw curves), the roughness component was excluded (see Fig. 3). After eliminating 
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the roughness of the profile (Pre-, Post-deposition Data Curves), the bend of the substrate was 
evaluated, then it determined the radius of curvature of the surface and the amount of internal 
stresses. 

 

 
Fig. 3. Characteristic view of the division of the primary surface profile into a roughness 

profile and a waviness profile with macro-deviation 
 

The surface curvature radius was estimated according to the formula: 
𝑅𝑅 = 𝑙𝑙2 4+𝑑𝑑2⁄

2𝑑𝑑
,  (2) 

where 𝑅𝑅 is the radius of curvature of a substrate, 𝑙𝑙 is profile length (or the analyzed site of a 
profile), 𝑑𝑑 is a vertical (in the Z-axis direction) bend of a substrate on 𝑙𝑙 length. The thickness 
of a coating demanded calculation of internal stresses for formula (1) was defined on the 
metallographic cross-section slips made after measurement of profiles of a surface.  

At the production of cross-sections slips the cutting of substrates on the abrasive 
detachable machine with a linearly mobile system of a cut PowerMet of 3000 (Buehler 
GmbH) was carried out. Then substrates were pressed with the use of an automatic press for a 
hot press-fitting of Simplimet of 1000 (Buehler GmbH) in an electroconductive compound 
with the high content of graphite for providing further researches of a substrate on the 
scanning electron microscope. Grinding and polishing of the pressed substrates were carried 
out on the grinding and polishing BETA/1 (Buehler GmbH) machine with an automatic 
nozzle of VECTOR.  

The made metallographic cross-section slips were investigated on the scanning electron 
microscope of TESCAN MIRA 3 LMU with the cathode Schottky with field emission issue in 
the mode of the return reflected electrons (BSE). 

 
3. Results and discussion 
The characteristic appearance of coated and uncoated substrates is shown in Fig. 1. The initial 
substrates are characterized by the presence of a curvature prior to coating due to fabrication 
and pre-abrasion of the surface. The characteristic view of the longitudinal and transverse 
profiles (after eliminating the roughness profile) before and after coating formation is 
represented by Figs. 4-5. 

The amount of vertical bending in the Z-axis direction of the substrates on cross profiles 
having a length of 4 to 8 mm taken in the X direction (see Fig. 2) is 3.5 to 10 μm. Defined on 
longitudinal, taken in the Y direction (see Fig. 2), profiles having a long length (18 mm), the 
total vertical bend of the images in the Z-axis direction is from 9 to 60 microns. If there are 
sections with a reverse bend (in-bent parts), the sign of the vertical bend and the radius of 
curvature determined by it was considered negative. The radius of curvature of the initial 
substrates varies in the range of 0.29÷0.40 m when determining the central transverse profiles 
No. 5 from the shortest and closest to the fastening hole. from 0.80 to 1.86 m – when 
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determined by edge cross profiles No. 4 and 6, from 0.66 to 1.26 m – along with the profile 
No. 3 closest to the fastening hole, from 0.77 to 0.88 m – according to longitudinal profiles 
No. 1 and No. 2. 
 

 
 

Fig. 4. Characteristic view of transverse profiles (after exclusion of roughness profile) before 
and after coating formation 

 

 
 

Fig. 5. Characteristic view of longitudinal profiles (after elimination of roughness profile) 
before and after coating formation 

 
The ion-plasma diamond-like coating of type Ti-TiC-DLC, formed using the HiPIMS 

technology, according to the results of a micro-microscopic study, has a thickness that varies 
from 1.2 to 1.9 μm for the test batch of substrates. A characteristic view of the coating 
structure is given in Fig. 6. 

 

 
 

Fig. 6. A characteristic view of the Ti-TiC-DLC coating 
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The coating reduces vertical bending and increases the radius of curvature of the 
substrate. Vertical bending on transverse profiles having a length from 4 to 8 mm after 
application of the coating on different substrates is from 1.5 to 8 mcm. The bend defined on 
the longitudinal profiles having a length of 18 mm is 7 to 57 μm. The radius of curvature of 
coated specimens Ti-TiC-DLC ranges from 0.31÷0.44 m when deter-mining the central 
transverse profiles No. 5 from the shortest and closest to the fastening hole, from 1.0 to  
3.0 m – at determination by edge cross profiles No.4 and No. 6, from 0.7 to 2.47 m – along 
with the closest of the longitudinal profile No. 3 to the fastening hole, from 0.79 to  
1.1 m – according to longitudinal profiles No. 1 and No. 2. 

The surfaces of the value of average internal tension calculated by a formula Stoney (1) 
for various substrates on various profiles in a covering of Ti-TiC-DLC fluctuate in the range 
from 1 to 10 GPa. The average (for the entire batch of samples examined) stress values 
obtained from longitudinal and transverse surface profiles in different substrate regions for 
erosion testing are shown in Figs. 7-8. At the same time the dispersion of values of internal 
tension if to compare various substrates in similar areas, is from 1.5÷3 of GPa for longitudinal 
profiles and up to 3÷5 of GPa for the cross. 

When using the considered geometry of the samples to further follow the change in 
stresses during erosion tests, it was proposed to exclude from the assessment the pros closest 
to the fastening hole (longitudinal profile No. 3 and transverse profile No. 5) due to the 
greatest dispersion of the values obtained. In case of exclusion from the calculation of these 
profiles, the average value of stresses in the considered coating Ti-TiC-DLC in the 
longitudinal direction will be 3.0 GPa, in the transverse direction will be 9.0 GPa. 

 

 
Fig. 7. Mean stress values obtained for different substrate regions for erosion testing on 

longitudinal surface profiles 

 
Fig. 8. Mean stress values obtained for different areas of substrates for erosion tests on 

transverse surface profiles 

290 A.V. Ryzhenkov, A.V. Volkov, A.F. Mednikov, A.B. Tkhabisimov*, O.S. Zilova, S.V. Sidorov



4. Conclusion 
In the work, studies of internal stresses in the Ti-TiC-DLC coating obtained by using the 
HiPIMS technology were carried out. Pressure studies were carried out by using a developed 
technique for substrates with geometrics other than the classical configuration used in 
determining internal stresses in the coating by bending. According to the profiles on the top of 
the substrates obtained before and after the coating in the longitudinal and transverse 
directions, bending values were obtained, which were used to calculate curvature and stresses 
according to the Stoney formula. As a result of conducting studies of a batch of samples, it 
was revealed that the application using the HiPIMS technology of the selected ion-plasma 
diamond-like carbon coating of the Ti-TiC-DLC type leads to compressive stresses from 3 (in 
the longitudinal direction) to 9 GPa (in the transverse direction). 

The obtained high values of stresses in the coating can be associated with a non-
excluded contribution to the determined bending of temperature deformations in the material 
of the substrates themselves, which occur during heating due to the process of coating 
formation. To take this into account, it is further planned to evaluate the bending of the 
substrates after the technological process, carried out with a protective shield installed for a 
number of samples, preventing the application of the coating, but preserving the remaining 
influencing factors. Nevertheless, to assess the effect of the water drop impact on the 
deformation of coated samples, only the surface condition preceding it is important, so 
overstatement of the stress value in the coating will not affect it. 
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Abstract. The article reports on the effect the building orientation of the part, produced by 
laser stereolithography technology, has on achieving its best functional characteristics. Based 
on the example of IPLIT-3 and IPLIT-4 resins, the study shows that in contrast to the 
literature data on other commercial photocurable resins (PCRs), there is no definite advantage 
of the vertical orientation of the test samples compared to their horizontal orientation for 
obtaining the best values of the manufactured part functional characteristics. 
Keywords: additive technologies, laser stereolithography, photopolymerization, three-
dimensional modeling, photocurable resin 
 
 
1. Introduction  
The additive technologies, which include laser stereolithography [1-3], are nowadays able to 
produce not only prototypes but also fully functional parts. The functionality of the parts is 
defined by both the properties of the photocurable resin (PCR) used and the parts building 
technology [4-8]. For structural materials, strength characteristics, such as tensile and bending 
strength, tensile modulus, hardness, etc., are usually specified. However, the technological 
features of manufacturing the tested samples are not specified. All materials intended for use 
in additive technologies allow obtaining parts in a simpler way – by filling the molding 
tooling with this material, followed by hardening, sintering, or fusion of the material. 
Although the samples obtained in this way will be made of the same material, their 
mechanical properties may differ from the parts obtained additively. It can be assumed that 
differences in the objects' properties made of the same material can also arise if changes are 
made to the additive building technology of the parts or their post-processing. Parts 
manufacturing parameters at laser stereolithography technology, which can potentially 
influence mechanical characteristics, include hatch type and pitch, layer thickness, product 
building orientation, as well as UV radiation dose received during the part post-processing in 
the additional polymerization chamber [1,3,9-11].  

UV post-curing is a stage of the manufacturing process and its parameters are set by the 
developer of the PCR in order to achieve the best strength characteristics of the given PCR. 
Therefore, the user has only to follow the manufacturer's recommendations for UV curing of 
the parts. Layer hatching parameters (hatching pattern and pitch) are the most important 
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technological characteristics and are determined by the resin developer in order to achieve the 
best part accuracy. In addition, these parameters are also tightly linked to the laser type and 
the optical system parameters of the machine used. Changing these parameters manually will 
result in a low-quality product. The thickness of the working layer will determine the 
distribution of absorbed laser energy along with the depth of the layer of liquid PCR, and, 
consequently, the parameters of the three-dimensional polymer mesh being formed, which 
will inevitably affect the strength characteristics of the final part. The same reason causes the 
effect of improvement of physical and mechanical properties after UV post-curing of the 
fabricated sample, the so-called "green part". 

The effect the part orientation during building has on its mechanical characteristics is 
discussed in the literature both at the level of theoretical description [1,9] and experimental 
observation of this effect [10-11]. The authors of these articles consider the dependence of the 
mechanical properties of the part on the above-mentioned parameters of fabrication and post-
processing. In the studies mentioned, a conclusion is made that the improvement of strength 
characteristics when decreasing the thickness of the working layer and at the vertical 
orientation of the part is a consequence of the fact that under these conditions the part is 
formed of a larger number of layers. Namely, according to the literature data, a zone with the 
best mechanical properties for this material is formed at the interface "lower layer – upper 
layer". Consequently, the more layers a part is formed of, the more such zones it will include 
and the stronger it will be. 

Thus, in order to achieve the best mechanical properties without changing the PCR, the 
user has little choice but to decide in favour of a smaller layer thickness and/or the part 
building orientation on the platform to allow for the number of layers being as large as 
possible. Although modern PCRs allow fabricating parts with layer thickness ranging from 
tens to several hundred microns, there is a narrower range of layer thicknesses for each PCR 
that is optimal in the balance of the "precision – production time". Decreasing the layer 
thickness leads to an increase in the building time and, consequently, in the cost of the part 
fabrication. Changing the part orientation on the platform can also lead to an increase of the 
processing time, but to a lesser degree, because if the number of layers becomes larger in the 
Z coordinate, for example, then the size of each layer in the XY plane decrease. 

It is worth noting that in each case the authors of the studies mentioned provide 
experimental data for one polymer material, reporting that by changing the part orientation 
during its fabrication they achieved a certain increase in the mechanical strength 
characteristics. The present article constitutes an attempt to test what effect the change of the 
platform orientation has when fabricating the part from different resins produced at ILIT 
RAS. The article further studies whether it is possible to achieve improvement of the part 
mechanical characteristics, resorting neither to modification of the PCR itself, nor to the 
significant correction of the manufacturing technology; resorting neither to making changes in 
the part for subsequent reinforcement, nor to other methods that complicate the technological 
chain and raise the cost of the parts. 
 
2. Materials and equipment 
In order to investigate the mechanical properties of cured PCR, 3D computer models of two 
types were manufactured. These represented standard samples for testing polymer materials 
according to the requirements of GOST 11262-80 (for tension) and GOST 4648-71 (for static 
bending). Figure 1 shows the respective sketches. 

PCRs IPLIT-3 [12] and IPLIT-4 [13] were used for the fabrication of test samples. All 
fabrication processes were performed at ILIT RAS on stereolithographic machines SLA-250 
(3D Systems) and LS-400e (ILIT RAS). Fabrication accuracy was 0.1 mm in each of the 
coordinates regardless of the part orientation, which is considered acceptable according to the 
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requirements of the above-mentioned GOSTs for the study of such samples. The HeCd-laser 
with a wavelength of 325 nm was used as a UV beam source in the machines. Strength tests 
of the fabricated samples were carried out on the rupture machine I1185M-100-01-1 (100kN) 
at Prof. N.E. Zhukovsky Institute "TsAGI". Modeling of the samples was performed in 
SOLIDWORKS CAD. 

 

 
Fig. 1. Sketches of standard samples for testing polymer materials 

 
The computer models were then converted to the STL format. During the 

transformation, the surface of the original model is approximated with a given accuracy by 
the faceted surface, formed by a set of flat triangular facets. The approximation accuracy, in 
this case, was 0.005 mm – linear and 1 degree – angular. 

Magics software by Materialise was used to work with the STL files. Models converted 
to the STL format by means of Magics were placed on the building platform of the 
stereolithographic machines. Two-part building orientations were selected for fabrication. For 
each orientation, the necessary technological supports were formed. Figure 2 shows 
screenshots of the software interface with two-part orientations on the building platform. 

 

 
Fig. 2. Interface Magics with two variants of part orientation on a building platform 

 
After the test samples were built and washed, they were placed in the UV post-curing 

chamber. Ultraviolet treatment of the parts helps to achieve the maximum degree of the 
polymer network cross-linking to reduce the content of methacrylic groups to the lowest 
possible values. The post-curing of the parts was performed in the UV post-curing chamber 
and lasted 0.5 hours. This is enough to achieve the minimum of a 95% conversion of 
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unreacted methacrylic groups in the polymer. The Philips TLK 40W/05 lamps, used in the 
chamber, have a spectrum of the 315-460 nm range, with a maximum of 365 nm. Power 
consumption is 40W, UV-A power is 5W. During the post-curing process, the parts were 
rotated in order to achieve their uniform illumination.  

Studies of the post-curing process of IPLIT-3 and IPLIT-4 resins were not carried out in 
this study. Earlier experiments using first versions of PCR developed at ILIT RAS, both 
multi-component and single-component in composition, as well as acrylic resins supplied by 
3D Systems showed that the content of unreacted methacrylic groups in all examined samples 
after curing did not exceed 50 %, falling to the level of 5-10 % of the initial amount in the 
liquid resin after UV post-curing. The content of such groups was monitored using an FTIR 
spectrometer by the intensity of the absorption peak of the C=C bond in the acrylic group in 
the region of 1610-1650 cm-1 [14]. The post-curing process lasted for 30 minutes, as 
mentioned above. Longer irradiation resulted in the subsequent rapid aging of such parts. 
According to these studies, we developed technological recommendations for the post-curing 
process for acrylic oligomers and PCRs based on them, used in the LS series 
stereolithography machines. Our experimental data which have not been previously published 
but made available as technological recommendations to buyers of stereolithography 
machines and PCRs produced by ILIT RAS correlate well with the existing literature 
data [9-11]. 

The rupture machine (Fig. 3) was equipped with two screw drives and an AC digital 
frequency servo drive with encoder speed feedback. The machine was operated via PC. The 
limits of the permissible relative error of load measurement within the confidence range were 
not more than 1%.  

 

а)   b)  
Fig. 3. Central Aerohydrodynamic Institute "TsAGI" experimental installations: a) tensile 

testing of samples; b) three-point bending tests 
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3. Experimental results 
Below you can find the experimental data on mechanical testing of the test samples. 
 
Table 1. Results of tensile testing of a series of the IPLIT-3 samples, vertical orientation 

№ 
exp. 

Max. load 
Pmax, N 

Elongation 
at break  
εм, % 

Breaking 
load Pр, N 

Breaking 
strength σр, 

МPа 

Elastic 
modulus 
E, МPа 

Line color in 
the figure 
(Fig. 4) 

1 300 0.737 300 8 526.7 -- 

2 401 - 401 10.69 493.3 -- 

3 589 0.118 538 14.35 413.3 -- 

average 
value 430 0.427 413 11.01 477.8  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Dependence of force (N) on the displacement of the crosshead of the unit during 
tensile testing of the IPLIT-3 samples manufactured with vertical orientation 

 
Table 2. Results of tensile testing of the IPLIT-3 samples, horizontal orientation 

№ 
exp. 

Max. 
load 

Pmax, N 

Tensile 
strength 

σmax, 
МPа 

Elongation 
at break εм, 

% 

Breaking 
load Pр, N 

Breaking 
strength σр, 

МPа 

Elastic 
modulus 
E, МPа 

Line 
color in 

the 
figure 

(Fig. 5) 
1 308 8.213 0.017 222 5.92 426.7 -- 

2 349 9.307 0.071 321 8.56 400 -- 

3 255 6.8 0.012 224 5.973 360 -- 

average 
value 304 8.107 0.033 256 6.818 395.6  
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Fig. 5. Dependence of force (N) on the displacement of the crosshead of the machine during 

tensile testing of the IPLIT-3 samples manufactured with horizontal orientation 
 
Table 3. Results of tensile testing of a series of the IPLIT-4 samples, vertical orientation 

№ 
exp. 

Max. load 
Pmax, N 

Tensile 
strength 

σmax, МPа 

Breaking 
load, 
Pp, N 

Breaking 
strength σр, 

МPа 

Elastic 
modulus 
E, МPa 

Line color in 
the figure 
(Fig. 6) 

1 672 19.44 649 18.78 528.1 -- 
2 603 16.75 538 14.94 347.2 -- 
3 744 20.67 619 17.19 569.4 -- 

average 
value 673 18.95 602 16.97 481.6  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Dependence of force (N) on the displacement of the crosshead of the machine during 

tensile testing of the IPLIT-4 samples manufactured with vertical orientation 
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Table 4. Results of tensile testing of the IPLIT-4 samples, horizontal orientation 

№ 
exp. 

Max. load 
Pmax, N 

Tensile 
strength 

σmax, 
МPа 

Convent. 
yield 

strength 
σу, МPа 

Breaking 
load Pр, N 

Breaking 
strength σр, 

МPа 

Elastic 
modulus 
E, МPа 

Line 
color in 

the 
figure 

(Fig. 7) 
1 517 13.81 10.33 353 9.428 454.1 -- 

2 400 10.68 6.43 199 5.315 454.1 -- 

3 484 12.93 8.78 291 7.772 480.8 -- 

average 
value 467 12.47 8.512 281 7.505 463  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7. Dependence of force (N) on the displacement of the crosshead of the unit (mm) during 

tensile testing of the IPLIT-4 samples manufactured with horizontal orientation 
 

Table 5. Test results on bending of the IPLIT-3 samples, vertical orientation 

№ 
exp. 

Maximum load for 
cross-bending  

Pmax, N 

Transverse stress   
at max. load 
σmax, МPа 

Elastic modulus 
E, МPа 

Line color in the 
figure (Fig. 8) 

1 55 13.2 720 -- 
2 60 14.4 600 -- 
3 86 19.84 576.7 -- 

average 
value 67 15.81 632.2  
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Fig. 8. Dependence of force (N) on the displacement of the crosshead of the unit (mm) 
during bend testing of the IPLIT-3 samples manufactured with vertical orientation 
 

Table 6. Test results on bending of the IPLIT-3 samples, horizontal orientation 

№ 
exp. 

Maximum load for 
cross-bending  

Pmax, N 

Transverse stress   
at max. load σmax, 

МPа 

Elastic modulus 
E, МPа 

Line color in the 
figure (Fig. 9) 

1 40 9.166 458.3 -- 
2 53 12.72 480 -- 
3 46 10.97 476.8 -- 

average value 46.3 10.95 571.7  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9. Dependence of force (N) on the displacement of the crosshead of the unit (mm) during 

bend testing of the IPLIT-3 samples manufactured with horizontal orientation 
 

  

300 V.V. Vnuk, E.V. Ippolitov, S.V. Kamaev, M.A. Markov, A.A. Nikulenko, M.M. Novikov, S.A. Cherebylo



Table 7. Test results on bending of the IPLIT-4 samples, vertical orientation 

№ 
exp. 

Maximum 
load for cross-

bending  
Pmax, N 

Transverse stress   
at max. load  
σmax, МPа 

Elastic modulus 
E, МPа 

Line color in the 
figure (Fig. 10) 

2 147  35.28  720  -- 

3 148  36  486.5  -- 

4 147  35.52  845.6  -- 
average 
value 147.3 35.6  684   

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
Fig. 10. Dependence of force (N) on the displacement of the crosshead of the unit (mm) in 

bend testing of the IPLIT-4 samples manufactured with vertical orientation 
 
Table 8. Results of bend testing of the IPLIT-4 samples, horizontal orientation 

№ 
exp. 

Maximum load 
for cross-
bending  
Pmax, N 

Transverse stress   
at max. load σmax, 

МPа 

Elastic 
modulus 
E, МPа 

Line color in the 
figure (Fig. 11) 

1 124 31.66 893.6 -- 

2 85 21.7 765.9 -- 

3 120 30.24 504 -- 

average value 109 27.9 721  
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Fig. 11. Dependence of force (N) on the displacement of the crosshead of the unit (mm) 
during bend testing of the IPLIT-4 samples manufactured with horizontal orientation 

 
The results of tensile and flexural testing of the samples made of IPLIT-3 and IPLIT-4 

materials with different orientations on the platform (vertical and horizontal) are presented in 
table 9. As would be expected, the PCR IPLIT-4, as a more modern development, has better 
tensile strength characteristics and is more flexible to bending than the PCR IPLIT-3. 
 
Table 9. Consolidated results of tensile and bending tests (mean values) 

Parameter IPLIT-3, 
vertically 

IPLIT-3, 
horizontally 

IPLIT-4, 
vertically 

IPLIT-4, 
horizontally 

Tensile Strength 
σmax, MPa 

 
11 

 
8.107 

 
18.95 

 
12.47 

Max.load (tensile) 
Pmax,N 

 
430 

 
304 

 
673 

 
467 

Tensile modulus 
E, МPа 

477.8 
 

395.6 481.6 463 

Voltage at max. 
load (bending) σр, 

МPа 

 
15.81 

 
10.95 

 
35.6 

 
27.9 

Max. bending 
load, 

Pmax,N 

 
67 

 
46.3 

 
147.3 

 
109 

Elastic modulus 
(bending) 
E, МPа 

 
632.2 

 
471.7 

 
684 

 
721 

 
The measurement results indicate that having used both studied resins we obtained the 

parts whose mechanical properties depend on the part orientation in the process of layer-by-
layer manufacturing. As mentioned earlier all the parts were subjected to UV post-curing, 
after which no presence of microzones with a weak degree of three-dimensional cross-linking 
was detected. Both the PCRs and the respective technologies have much in common: curing 
by radiation of 325 nm, the same photoinitiator, both consisting of methacrylic oligomers. 
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The main similarity though remains the fact that both PCRs present a mixture of oligomers, 
with none of its components being basic in percentage. 
 
4. Discussion of results 
Polymeric materials are characterized by the results of strength test experiments [15] and, if 
possible, it is recommended to use statistical processing of such data. Samples may contain 
inhomogeneities and microdefects, which will affect the experimental results. We excluded 
the least reliable series that significantly differ from the rest of the results. 

The 2018 study [16], examining some technological features of the use of 
multicomponent PCR, describes situations when during the formation of supports or layers 
containing small area sections, the cured polymer contained the original oligomers in a ratio 
different from that of the original PCR. This was due to the different reactivity of the 
oligomers and monomers that made up the PCR. Each of the oligomers or monomers is 
characterized by its own rate constant of chain growth, the rate constant of oxygen addition, 
which inhibits polymerization, and the rate constant of radical recombination [5]. The 
"slowest" components are pushed out of the polymerization zone by the "faster" components. 
So the initially formed polymer network contains the PCR components in a ratio that is 
different from the original resin. As mentioned above, the 2018 study [16] proposed a 
mechanism for the separation of this PCR during the curing of thin layers by displacing the 
"slow" components in the horizontal direction. Due to this, in the usual mode of curing the 
IPLIT-4 PCR layer, thin-walled elements and auxiliary supporting structures are formed 
mainly from the urethane component of this PCR. If the area of the hardened layer is large, 
the displacement of the "slow" components of the composition occurs vertically, with 
movement into the depth of the layer. The result of this phenomenon is the "quasi-layering" of 
the obtained part when horizontal layers differing in the composition are independently 
formed inside the apparatus-formed layer due to the separation of fast and slow 
polymerization zones. 

PCR IPLIT-3 [12] contains three oligomers, two of which, according to their weight 
fraction (40% each) in the composition, can be considered as a principle. These components 
are very different in molecular weight, and the formation of a three-dimensional network from 
the "fastest" component saves enough space for the "slower" component with a smaller 
molecule size. Thus, IPLIT-3 polymerizes more uniformly, without vertical or horizontal 
delamination. As a result, when the orientation of the samples changes during building, we 
see the effect arising from an increase in the number of layers only, similar to the literature 
data [9-11]. In PCR IPLIT-4 [13], there are four such oligomers and monomers, and there is 
no significant difference in the mass or size of the molecules. The multicomponent nature of 
this PCR is attributed to a combination of technological and economic requirements for 
modern stereolithographic materials.  

The performance of samples made from IPLIT-4 is somewhat unconventional for all the 
cases described in the literature. The tensile and breaking strength has improved, as for other 
resins described in the literature. But bending tests show that parts grown from this material 
will have more elasticity when oriented vertically. This can also be considered to be a 
confirmation of the assumption of "quasi-layering" of vertically oriented parts due to the 
formation of horizontal zones with different stoichiometric ratios of the original PCR 
components. 

 
5. Conclusion 
The experimental data obtained by us allow us to conclude that there is no unambiguous 
improvement in the mechanical characteristics of parts manufactured using laser 
stereolithography technology with the vertical orientation for the two investigated materials. 
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While the tensile and breaking strength does increase for vertically oriented parts, elastic 
characteristics of the parts can demonstrate both increasing and decreasing elasticity. Unlike 
other studies on this topic, according to our results, the final choice of the part orientation 
depends on the specific PCR used and on the parameters that the user deems most important 
when using the part. Technological recommendations provided by the developers and/or 
manufacturers of the used PCR, based on the results of similar studies, should constitute the 
basis for such a choice. 
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Abstract. In this work, Cu-Zn spinel ferrites having chemical formula Cu(1-x)ZnxFe2O4 for x 
ranging from 0.2 to 0.8 were synthesized by sol-gel auto-combustion method and 
hydrothermal method with a step size of 0.2. The effect of Zn doping on structural properties, 
crystallite size, and magnetic properties synthesized by both methods are reported. Rietveld 
refinement of the XRD patterns was analyzed using Maud for the determination of crystallite 
size. The X-ray diffraction pattern shows that single phase Cu-Zn spinel ferrite was formed, 
and it has a cubic structure. Additionally, the lattice parameter size increases with Zn doping 
and then decreases after x=0.6. A vibrating sample magnetometer (VSM) was done to 
determine magnetic properties like saturation magnetization (Ms), remanence (Mr), and 
coercivity (Hc). The scanning electron microscopy (SEM) shows the morphology and 
confirms the average particle size. 
Keywords: copper, hydrothermal, sol-gel, spinel ferrite, zinc 
 
 
1. Introduction 
Ferrites are ceramic materials possessing properties like very high electrical resistivity, low 
power loss at high frequencies, suitable for temporary and permanent magnetic applications 
due to their spontaneous magnetization and conductivity behavior like those of 
semiconductors [1,2]. Ferrites with narrow hysteresis loop form softs magnets, which are used 
for audio transformers, television transformers, gyrators, inductance cores. Ferrite 
nanoparticles have high electrical resistivity because they have a better response at high 
frequencies [3,4]. Ferrites are the outstanding core material choice for frequencies from 
10 kHz to a few MHz, when we require low cost, high stability, and lowest volume [5,6]. 
Ferrites are widely studied due to their applications in protecting living bodies from 
microwaves, anechoic chamber, satellite communication, microwave darkroom, and 
microwave industries as radar absorbing material. Ferrites having chemical formula MFe2O4 
with the spinel structure have face-centered cubic (FCC) lattice of the oxygen ions. Every 
spinel unit cell comprises eight formula units. In every unit cell, there exists 64 tetrahedral 
sites and 32 octahedral sites. Therefore, their composition depends on the structural, chemical, 
and electromagnetic properties of ferrites, dependent on the preparation methodologies [7,8]. 
Zn doped Cu ferrites have a significant temperature-dependent magnetic moment near body 
temperature, therefore successfully used in temperature sensor in MRI properties [9-11]. 
Various cations can be placed at these tetrahedral sites and octahedral sites to get interesting 
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chemical and physical [12,13]. It is reported that Ni–Cu–Zn ferrites with less content of Zn 
could obtain high Curie temperature, but the initial permeability of Ni–Cu–Zn ferrites reached 
only up to 2000 [14-16]. This paper will distinguish two well-known methods of preparation 
ferrite nano powders to synthesize Cu-Zn spinel ferrites. The study's objective was to 
investigate the effect of Zn substitution on magnetic (saturation magnetization, remanence, 
and coercivity) and structural properties (lattice parameter, grain size, and crystallite size). 
The prepared ferrite nano powders are characterized by using X-ray diffraction (XRD), 
vibrating-sample magnetometer (VSM), and scanning electron microscopy (SEM). 
 
2. Experimentation 
Methodology. Cu-Zn spinel was synthesized by using the sol-gel auto combustion method 
and hydrothermal method. A balanced equation for synthesis by each method is mentioned 
below: 
(1 − 𝑥𝑥)𝐶𝐶𝐶𝐶(𝑁𝑁𝑂𝑂3)2. 3𝐻𝐻2𝑂𝑂 + 𝑥𝑥(𝐶𝐶𝐻𝐻3𝐶𝐶𝑂𝑂𝑂𝑂)2𝑍𝑍𝑍𝑍. 2𝐻𝐻2𝑂𝑂 + 2𝐹𝐹𝐹𝐹(𝑁𝑁𝑂𝑂3)2. 9𝐻𝐻2𝑂𝑂 +
3𝐶𝐶6𝐻𝐻8𝑂𝑂7.𝐻𝐻2𝑂𝑂 = 𝐶𝐶𝐶𝐶(1−𝑥𝑥)𝑍𝑍𝑍𝑍𝑥𝑥𝐹𝐹𝐹𝐹2𝑂𝑂4. (1) 

Synthesis by Sol-gel Route. Stoichiometric calculations were done for the synthesis of 
Cu(1-x)ZnxFe2O4. Copper nitrate (Cu(NO3)2.3H2O), Zinc acetate ((CH3COO)2Zn.2H2O), Iron 
nitrate (Fe(NO3)3.9H2O), and citric acid were used as precursors. All nitrates and citric acid 
were dissolved insufficient amount of distilled water to form a clear solution to obtain metal 
ions solution in separate beakers. All the nitrates were mixed in a beaker and were kept for 
continuous stirring for 15 minutes, as shown in Fig. 1. Citric acid was added to the solution as 
a chelating agent, and then ammonia solution was slowly added to maintain the pH of the 
solution at 7 with continuous stirring. Citric acid to metal ion ratio was taken as 1:1 [4]. The 
temperature of the hotplate was gradually increased to 60ºC. Then the solution was heated and 
stirred for about 4 hours. The gel was formed after 4 hours, and it was heated at the same 
temperature for about 25 minutes. Auto combustion took place, and a homogenous powder 
was formed. Various gases were evolved during this process. After complete combustion of 
the sample, the hotplate temperature was decreased slowly. The product of auto combustion 
was grounded into a fine powder with the help of agate mortar. The powder formed was 
calcinated at 750 ºC for 8 hours to form crystalline spinel ferrite. The phase identification of 
the calcined powder was performed by X-ray diffraction (XRD) using Cu-Kα radiation. 
Magnetic properties of the spinel ferrite like saturation magnetic flux, remnant magnetic flux, 
and coercive force were determined using VSM. 
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Fig. 1. Typical flow chart of Sol-Gel method for synthesizing Cu-Zn spinel ferrite 

 
Synthesis by Hydrothermal Route. Stoichiometric calculations were done for the 

synthesis of Cu(1-x)ZnxFe2O4. Copper nitrate (Cu(NO3)2.3H2O), Zinc acetate 
((CH3COO)2Zn.2H2O), and Iron nitrate (Fe(NO3)3.9H2O) were used as precursors. All nitrates 
dissolved an insufficient amount of distilled water to form a clear solution to obtain metal 
ions solution in separate beakers, as shown in Fig. 2. The 2M NaOH solution was prepared by 
adding 16 gm NaOH in 200 mL of distilled water to maintain the pH of 12.5. A beaker with 
iron nitrate solution was placed on the hotplate, and a magnetic capsule (stirrer) was put in the 
solution. Copper nitrate and zinc acetate solution were added to it under continuous stirring. 
2M NaOH solution was slowly added to the solution to maintain the pH of the solution at 12.5 
with continuous stirring. The temperature of the hotplate was kept at room temperature. Then 
the solution was stirred for about 2 hours for complete mixing of the metal ions. The solution 
was poured into a Teflon tube and kept at 220 ºC for 8 hours in the oven. The precipitate was 
formed after 8 hours of heating; this precipitate was filtered using filter paper and distilled 
water. After filtering the precipitate, it was again kept in the oven for 24 hours at 60ºC for 
drying along with filter paper. With the help of a spatula, powder formed after drying was 
collected from filter paper and grounded to a fine powder using agate mortar. 
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Fig. 2. Flow chart for preparation of Cu-Zn spinel ferrite through hydrothermal route 

 
Characterization. Phase identification and structural characterization were performed 

using X-ray diffraction technique (Target: Cu-Kα, 10°-90°, step size – 0.02°, holding time: 
0.2 seconds) which confirms the existence of a well-defined single-phase spinel ferrite 
structure. The SEM image for ferrite powder synthesized by each method was obtained using 
SEM machine. VSM was done to determine magnetic properties like saturation 
magnetization, remanence, and coercivity. 
 
3. Results and Discussion 
Structural Properties. The general formula for spinel ferrite synthesized is Cu(1-x)ZnxFe2O4. 
Spectra from XRD for x = 0.2-0.8 are shown in Fig. 3 and Fig. 4 were matched with the 
standard XRD pattern of Cu-Zn spinel ferrite, and it confirmed that single phase Cu-Zn spinel 
ferrite is formed for both methods. The most intense peaks in all specimens are (220), (311), 
(222), (400), (422), (333), and (440) are found to be well-matched with single-phase cubic 
spinel. The average crystallite size for all the samples was calculated using Debye Scherrer's 
formula with respect to the high-intensity peak plane (311). Debye Scherrer's formula can be 
expressed to calculate the crystallite size [17-18]. 
𝑡𝑡 = 0.9𝜆𝜆

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝜃𝜃𝐵𝐵
, (2) 

where 𝑡𝑡 – crystallite size (Å), 𝜆𝜆 – wavelength of incident X-rays (Å), 𝜃𝜃𝐵𝐵 – Bragg's angle 
(degree), 𝐵𝐵 – width of major peak at FWHM (radian). 
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Fig. 3. XRD pattern for Cu-Zn spinel ferrite synthesized by (a) sol-gel auto-combustion 

method and (b) hydrothermal method 
 

 
Fig. 4. Maud analysis of Cu(1−x)ZnxFe2O4 ferrite (a) Sol-gel (b) Hydrothermal 

 
From Table 1 and Table 2, it can be noticed that the lattice parameter of Cu-Zn spinel 

ferrite increases with an increase in Zn substitution for both methods for x = 0.2–0.6. This can 
be explained as the size of the Zn ion is larger than the size of the Cu ion, so as we increase 
the concentration of Zn in the Cu-Zn spinel ferrite lattice parameter. But the value of the 
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lattice parameter decreases for x = 0.6–0.8, which can be explained as the further addition of 
Zn in the Cu-Zn spinel ferrite has led to a distortion of the lattice [19]. 
 
Table 1. Lattice parameter (a) and crystallite size (t) Cu(1-x)ZnxFe2O4 (x=0.2–0.8) ferrite 
nanopowders for sol-gel method 

Sol-gel auto-combustion method 

x t (Å) a (Å) 
0.2 764.098 8.3905 

0.4 844.64 8.3974 
0.6 657.11 8.4248 
0.8 296.877 8.418 

 
Table 2. Lattice parameter (a) and crystallite size (t) Cu(1-x)ZnxFe2O4 (x=0.2–0.8) ferrite 
nanopowders for hydrothermal method 

Hydrothermal method 

x t (Å) a (Å) 

0.2 296.877 8.418 
0.4 302.687 8.423 

0.6 205.465 8.472 

0.8 175.317 8.4665 

 
SEM. The SEM of Zinc doped copper ferrite is shown in Fig. 5. The image gives the 

impression that the product of the auto combustion reaction was very spongy and feathery, 
and it also confirms that the sub-micrometer-sized primary particles were agglomerated into 
the larger secondary particles. SEM has done for x=0.6 in Cu(1-x)ZnxFe2O4. 
 

 
Fig. 5. SEM images of Cu(1-X)ZnXFe2O4 for x=0.6 

 
Magnetic property. The saturation magnetization (Ms) and coercivity (Hc) of 

nanopowders synthesized by the sol-gel method as a function of Zn substitution (x) are shown 
in Fig. 6. It is observed that Ms gradually increases with an increase in Zn concentration for 
x=0.2–0.4 as the packing of magnetic material in a specified volume increases and then 
decreases with an increase in Zn concentration for x=0.6–0.8. 
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Fig. 6. Hysteresis loop for Cu-Zn spinel ferrite synthesized by sol-gel auto combustion 

method for varying composition of Zn (x) 
 

Table 3. Values of Saturation magnetization (MS), Coercivity (HC), and Remanence 
Magnetization (Mr) 

Zn content Ms (emu/g) Mr (emu/g) Hc (Oe) 
x=0.2 24.21 6.14 184.47 
x=0.4 70.82 5.33 174.46 
x=0.6 47.21 3.22 116.26 
x=0.8 31.17 2.33 102.26 

 
The hysteresis plot of all synthesized samples shown in Fig. 6 and Table 3 enlists the 

effect of Zn doping on saturation magnetization (Ms), coercivity (Hc), and remenance (Mr). 
In the case of Zn Ferrite, the magnetic [20-22] properties can be explained by Neel's two 
sublattice models. According to this model, a spinel having a AB2O4 structure has two types 
of sublattices, octahedral (B) and tetrahedral (A) sites. Owing to exchange energy, the ions 
occupying A and B sites have their magnetic moments arranged in an anti-parallel fashion. 
Here, the Fe3+ ions are equally distributed amongst the A and B sites, while the Cu2+ ions 
have a strong preference for B sites. The net magnetic moment is determined by Cu2+ (µB=1) 
ions as the same due to Fe3+ (µB=5) ions present at A and B sites cancel out. Thus, the overall 
magnetization of the material is the difference in magnetization present at these two sites. 
Site B dominates as it contains a more significant number of ions. However, on substituting 
Cu2+ with nonmagnetic ions Zn2+. Zn2+ having a strong preference for A sites, they are 
disposed of there. This results in the dislocation of some of the Fe3+ ions from A to B sites. 
Unlike in the case of Cu ferrite, the compensation in the magnetic moment of Fe3+ will not 
occur, and they contribute with large magnetic moments to B sites. This results in an increase 
in magnetization. Mr and Hc present a decreasing nature with Zn doping. As seen, the 
minimum value of coercivity is obtained for x=0.8, with a general decreasing trend for 
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increasing x value. It is possibly due to the alternation of particle and grain size of Cu ferrite 
before and after Zn doping. Zn doped Cu ferrite, having a larger particle size, may have more 
magnetic domain and domain walls, resulting in demagnetization with ease. Also, the 
anisotropic constant value of Cu ferrite is more than that of Zn ferrite. 
 
4. Conclusions 
Cu-Zn spinel ferrite having chemical formula Cu(1-x)ZnxFe2O4was synthesized for x ranging 
from 0.2 to 0.8 by sol-gel auto-combustion method and hydrothermal method, and its single 
phase was verified by XRD results. An increasing trend in lattice parameter was observed for 
x=0.2-0.6 for both methods as the size of Zn ion is more than the size of Cu ion, and then it 
decreases for x=0.8 due to lattice distortion. From VSM results, it was observed that 
saturation magnetization increases as Zn doping increases from 0.2 to 0.4, i.e., 24.21 to 70.82 
emu/g then Ms decreases with an increase in Zn doping from 47.21 to 31.17 for x= 0.6–0.8 as 
initially, Zn occupies A sites initially but with further increases in Zn doping causes saturation 
of Zn ions at A site and hence Zn ions to occupy B site. This causes a decrease in Ms with an 
increase in Zn doping. Mr and Hc decrease with an increase in Zn doping. 
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Abstract. We have studied possible ways of generating and growing the fullerenes having 
four-fold symmetry. Beginning with cyclobutane C4H8 and clusters C8, we obtained 
elementary fullerenes C8 and mini-fullerenes C16, which produce the following fullerenes 
from C24 to C64, perfect (basic) and imperfect, as well as nanotubes. The imperfection is 
connected either with extra 'interstitial' or 'vacancy' carbon dimers, both types of dimers 
playing the role of defects. Only the basic fullerenes C24, C32, C40, C48, C56, and C64 have the 
ordinary four-fold symmetry in the corresponding column of the periodic system of 
fullerenes, the intermediate fullerenes having no such symmetry. Considering the latter as 
imperfect due to defects, one can define them as the fullerenes conserving topological four-
fold symmetry. We have calculated their energies and discussed possible reasons for their 
dependence on a fullerene size and shape.  
Keywords: carbon, embedding, energy, fullerene, fusion reaction, graph representation, 
growth, nanotube, periodic system, single and double bonds, topological symmetry 
 
 
1. Introduction 
Any calculations of fullerene properties need input data, first of all, the thorough knowledge 
of fullerene structure. However, up to now, there is no clear and unique theory of fullerene 
growth, and therefore there is no standard way of obtaining fullerene structures. "The problem 
here is not the lack of imagination, because quite numerous models have been proposed. What 
is rather lacking is a model using quantities that might be evaluated and measured. Moreover, 
a theoretical model, in order to deserve its name, should lead to numerical predictions. In 
order to represent something more than a set of circular arguments, a model should predict 
more numerical values, parameters or functional relations than the number of input 
parameters" [1]. That was written more than a quarter of the century ago. Although there has 
been considerable activity from both the experimental and theoretical sides [2,3] to gain a 
detailed understanding of fullerene formation, since then almost nothing has changed [4]. The 
first effort to make a prediction was done in Ref [5]. Succeeding modeling the fullerene 
growth allowed classifying the fullerenes, known and predicted, on the base of the periodic 
system of fullerenes formulated [6].  
 Classification is the most important and most difficult question for any science. The 
periodic system suggested is based on symmetry principles; it can be said that any fullerene is 
inspected for elements of symmetry. The system consists of horizontal series and vertical 
columns (groups). The horizontal series form the Δn periodicities, where the fullerene 
structure changes from threefold symmetry to sevenfold through four, five, and sixfold ones. 

Materials Physics and Mechanics 47 (2021) 315-343 Received: March 22, 2021

http://dx.doi.org/10.18149/MPM.4722021_13 
© 2021, Peter the Great St. Petersburg Polytechnic University 
© 2021, Institute of Problems of Mechanical Engineering RAS 



The vertical columns include the fullerenes of one and the same symmetry, the mass 
difference Δm for each column being equal to a double degree of symmetry. It was assumed 
that both Δm and Δn periodicities can be taken as a basis for rigorous fullerene classification.  
 The Δn periodicities studied make up the following series: Δn= 6, 8, 10, 12, 14, and 16; 
they include basic perfect fullerenes from C14 to C96. The structure, energy, and formation 
mechanism for these series are discussed elsewhere [6-10]. The system leaves room for 
incorporating into its other fullerene columns. 
 Up to this point, it has been desirable to work entirely with the Δn series in order to 
discover general features of the transition from one symmetry to another. Now that we have 
found the corresponding regularity, we need to focus upon particulars of one and the same 
column (group). Since in the periodic system of fullerenes, the vertical columns (groups) 
incorporate the fullerenes of one and the same symmetry, we suppose that the fullerenes of 
one and the same group have similar properties. In addition to the classification of fullerenes, 
the crucial point, which should be given more attention to, is the nucleation and growth of 
fullerenes relating to one and the same column.  
 In this contribution, we have studied the nucleation of fullerenes and nanotubes 
referring to the column of four-fold symmetry. 
 
2. Generation of clusters having four-fold symmetry 
We assume that the embryo of fullerenes of four-fold symmetry is a cluster having just the 
same symmetry. The question arises: Are there in nature similar molecules, from which it is 
possible to obtain such cluster? To our mind cyclobutane C4H8 with D4h symmetry [11] could 
be such a molecule.  
 Suppose that we have removed eight hydrogen atoms and added four carbon atoms 
instead. In doing so we obtain carbon cluster C4C4 with several types of carbon atoms. They 
are shown, together with cyclobutane C4H8, in Fig. 1. We have calculated their optimized 
structures and energy of these compounds as well as of the succeeding ones through the use of 
Avogadro package [12].  
 

 
Fig. 1. Cyclobutane and two eight-atom carbon clusters of four-fold symmetry 

 
The carbon atoms of cyclobutane remain in the initial electronic state; they are 

considered, as is customary, being sp2 hybridized atoms. The newly added ones are reactive 
carbon atoms, which are connected with the initial carbon atoms by single or double bonds, 
being ionized to a different degree. One way of looking at the gradual evolution of the 
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clusters shown is folding the clusters and fusion the structures obtained with the following 
growth.  

3. Generation of fullerenes and nanotubes 
Cluster folding. The elementary fullerene of four-fold symmetry is a cube. It can be obtained 
as a result of folding the carbon clusters shown above. Two extreme electronic structures are 
presented in Fig. 2. In addition to the structures, the graphs of cubes are shown. Here and 
below we use area-colored graphs because they gain a better understanding of the structures 
obtained. In our case all the areas, in spite of their shapes, are tetragons and they are grey 
painted.  

 

 
Fig. 2. Two electronic isomers of a carbon cube, energy in kJ/mol 

 
 Fusion of cubes. The elementary fullerenes can grow, conserving its symmetry, by the 
mechanism known as "fusion of fullerenes having compatible symmetry" [13]. The final 
configuration produced by the fusion of two cubes is shown in Fig. 3. The shape of the mini-
fullerene resembles a square barrel. In its turn this fullerene can continue growing, which 
conserves the symmetry, through the use of the above-mentioned mechanism, i.e. joining 
another cube (Fig. 4). The reaction is possible since the reacting structures have four-fold 
symmetry and therefore they are compatible with each other.  
 

 

 
Fig. 4. Fusion of two fullerenes C8 and C16: structure and graphs; energy in kJ/mol 

 
It must be emphasized that the faces of fullerenes now contain not only tetragons but 

pentagons and hexagons too. To gain a better understanding of the fullerene structure, the 
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graph areas are painted in different colors: tetragons in grey as before, pentagons in goldish, 
and hexagons in yellow. 
 One can consider the structure obtained both as fullerene and as an embryo of the 
nanotube. Really, if to continue the fusion of cubes, there appears a narrow nanotube of four-
fold symmetry (Fig. 5). It is worth noting that at first extremely narrow nanotubes were 
considered only as a new type of nanotubes being of academic interest [14]. Recently it has 
been discovered that small diameter single-walled carbon nanotubes were mimics of ion 
channels found in natural systems [15]. These properties make them a promising material for 
developing membrane separation technologies [16].  
 

 
Fig. 5. Joining two mini-fullerenes C16 through the use of the rotation-reflection symmetry: 

structure and graphs; energy in kJ/mol 

 Growth of fullerene C24. The polyhedron shown in Fig. 4 can be thought over as a 
primary fullerene having the possibility to use for growing the mechanism known as 
"embedding carbon dimers" which was suggested by M. Endo and the Nobel Prize winner 
H.W. Kroto in 1992 [17]. According to it, a carbon dimer embeds into a hexagon of an initial 
fullerene. This leads to stretching and breaking the covalent bonds which are normal to the 
dimer and to creating new bonds with the dimer (Fig. 6). As a result, there arises a new 
atomic configuration and there is a mass increase of two carbon atoms. The fullerenes 
designed through the use of the Endo-Kroto mechanism are illustrated in Figs. 6-10. 

 

 
Fig. 6. Imperfect fullerene C26 as a result of embedding a carbon dimer (yellow atoms) into 

fullerene C24: structure and graphs; energy in kJ/mol 
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Fig. 7. Asymmetric imperfect fullerene C28 as a result of embedding a carbon dimer into 

fullerene C26: structure and graphs; energy in kJ/mol 
 

 
Fig. 8. Symmetric semi-perfect fullerene C28 as a result of embedding a carbon dimer into 

fullerene C26: structure and graphs; energy in kJ/mol 
 

 
Fig. 9. Asymmetric imperfect fullerene C30 as a result of embedding a carbon dimer into 

fullerene C28: structure and graphs; energy in kJ/mol 
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Fig. 10. Perfect fullerene C32 as a result of embedding a carbon dimer into fullerene C30: 

structure and graphs; energy in kJ/mol 
 

From the figures, of special note, are the graphs, we notice that only the initial C24 and 
final C32 fullerenes and have ordinary four-fold symmetry. They are perfect fullerenes. The 
intermediate fullerenes C26, C28 and C30, as was analyzed in Ref [6], have topological four-
fold symmetry. As follows from its graph, fullerene C32 can't grow any further by means of 
the Endo-Kroto mechanism. It is a dead-end fullerene. 

 
4. Cupolas and their fusion 
There is a second way for the generation of fullerenes to have the four-fold symmetry. It 
consists of the growth of the initial clusters which then transform into half-fullerenes 
(cupolas) conserving the four-fold symmetry (Fig. 11). From the figures we notice that all the 
cupolas have one and the same base of eighteen atoms; therefore they can combine with each 
other creating new fullerenes as well as nanotubes. Let us investigate this process in detail.  
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Fig. 11. Growth of cupolas of four-fold symmetry: structure and graphs; energy in kJ/mol 

 Fusion of cluster C8 with cupola C16. The fullerene obtained contains six squares and 
eight hexagons (Fig. 12). Its shape is a truncated octahedron (cuboctahedron) having four-fold 
symmetry. The fullerene is an isomer of the bifurcation fullerene C24 shown in Fig. 4. It 
should be emphasized that the cuboctahedron can't grow through the use of the Endo-Kroto's 
mechanism conserving the four-fold symmetry. It is a dead-end fullerene. 
 

 
Fig. 12. Joining plane cluster C8 with cupola C16; structure and graphs; energy in kJ/mol 

 
 Fusion of two cupolas C16. There are two ways of joining: mirror symmetry and 
rotation-reflection one. In the first case (Fig. 13) the lower cupola is a mirror copy of the 
upper one. The fullerene obtained consists of six squares and twelve hexagons; it is a  
tetra6-hexa12 polyhedron.  
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Fig. 13. Joining two half fullerenes C16 of four-fold symmetry; the mirror symmetry fusion; 

structure and graphs; energy in kJ/mol 
 

In the second case (Fig. 14) the lower cupola is a rotatory reflection of the upper one. 
The fullerene contains two squares, eight pentagons, and eight hexagons; it is a  
tetra2-(penta-hexa)8 polyhedron. The pentagons form a ring at the equator. It should be 
emphasized that this fullerene is a dead-end one. 
 

 
Fig. 14. Joining two half fullerenes C16 of four-fold symmetry; the rotation-reflection 

symmetry; structure and graphs; energy in kJ/mol 
 
 Fusion of two cupolas: C16 and C24 (Fig. 15). 
 

 
 
Fig. 15. Mirror symmetry fusion of two cupolas (half-fullerenes) C16 and C24 having four-fold 

symmetry; structure and graphs; energy in kJ/mol 
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 Fusion of two cupolas C24 (Fig.16). 

 
Fig. 16. Rotation-reflection symmetry fusion of two cupolas (half-fullerenes) C24 having four-

fold symmetry; structure and graphs; energy in kJ/mol 
 

 Fusion of two cupolas: C24 and C32 (Fig. 17). 

 
Fig. 17. Mirror symmetry fusion of two cupolas (half-fullerenes) C24 and C32 having four-fold 

symmetry; structure and graphs; energy in kJ/mol 

 Fusion of two cupolas C32 (Fig. 18). 

 
Fig. 18. Rotation-reflection symmetry fusion of two cupolas (half-fullerenes) C32 having four-

fold symmetry; structure and graphs; energy in kJ/mol 
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 Fusion of two cupolas: C32 and C40 (Fig. 19). 

 
Fig. 19. Mirror symmetry fusion of two cupolas (half-fullerenes) C32 and C40 having four-fold 

symmetry; structure and graphs; energy in kJ/mol 
 

 Fusion of two cupolas C40 (Fig. 20). 

 
Fig. 20. Rotation-reflection symmetry fusion of two cupolas (half-fullerenes) C40 having four-

fold symmetry; structure and graphs; energy in kJ/mol 

 A fullerene or a nanotube? Let's analyze Figures 15-20. The question arises: What 
have we obtained, fullerenes or nanotubes? As indicated earlier, one can consider the structure 
C24 shown in Fig. 4 as fullerene and as an embryo of the nanotube. This is a bifurcation 
structure. During its growth, it can transform either into a fullerene or into a nanotube. The 
situation is not uncommon in nature. The situation is not uncommon in nature. For example, 
in radiation solid-state physics it is well known that one and the same small vacancy cluster 
(embryo) during its growth can transform either into a void (volume configuration) or into a 
dislocation loop (plane configuration) [18,19]. In our case, this brings up the question: Where 
the boundary between fullerenes and nanotubes is?  
 In Ref [4] we have considered forming fullerenes and nanotubes in the context of one 
and the same graph approach. In this study, we have obtained the fullerenes which 
geometrically resemble more the nanotubes (Figs. 18-20). The question arises where the 
boundary between fullerenes and nanotubes is. An intuitive idea says: a fullerene is a 
spheroid; a nanotube with open ends is a cylinder; a nanotube with closed ends is a cylinder 
with two hemispheres. However, we need an exact quantitative criterion. Under these 
circumstances, we should look at the electron theory for clues.  
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 Electronic aspects of fullerene structure are briefly considered in Ref [3]. In C60–Ih there 
are two different types of bonds according to the atomic field microscopy (AFM) image. The 
measured bond lengths are rhh = 1.38 Ǻ and rhp = 1.4654 Ǻ. This fullerene is considered as an 
ideal one, having only equal isolated pentagons and forming a perfect sphere. The larger 
bonds are singular, the lesser bonds are double ones. Therefore in an ideal fullerene, each 
hexagon has three single and three double bonds. In contrast to this, in an ideal nanotube with 
open ends, there are only hexagons with four single and two double bonds. Each spheroid can 
be divided into three parts; two hemispheres with hexagons having three single and three 
double bonds and one cylinder with four single and two double bonds. If the height of the 
cylinder is less than the height of two hemispheres, we assume that it is a fullerene. On the 
contrary, we have a nanotube.  
 In its turn, the cylinder height is defined by the number of adjacent hexagons with four 
single and two double bonds. To form a cylinder one needs to have along with its height at 
least two such hexagons. Referring to the graphs shown, we admit that the nanotubes begin 
with the structure C72.  
 
5. Alive and dead fullerenes 
From the results obtained, of special note are the graphs, it follows that there are two ways of 
joining the cupolas: mirror symmetry fusion and rotation-reflection one. However, it is 
necessary to take into account also the nearest circumference of a hexagon. In the first case, 
we notice in the fullerene structure the mutually penetrating configurations consisting of a 
hexagon with two or four symmetry adjacent pentagons, C24, C40, and C56. (For fullerene C32 
there are two symmetry adjacent tetragons). In the second case, the mutually penetrating 
configurations contain a hexagon with three symmetry adjacent pentagons, C48, or only one 
adjacent pentagon, C64 and C64. The fullerenes of the first subgroup can grow further by the 
use of the Endo-Kroto's mechanism producing new fullerenes; they are alive. The fullerenes 
of the second subgroup are the dead-end ones (Fig. 21). It should be emphasized that all these 
fullerenes are basic perfect ones. It is worth noting that they have one and the same number of 
pentagons, namely eight, being equal to a double degree of symmetry. 
 

 
Fig. 21. Endo-Kroto's mechanism of fullerene growth (a, b); hexagon nearest circumference 

in different fullerenes 
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6. Growth of fullerene C32  
Contrary to the dead-end fullerene C32 shown in Fig. 14 which can't increase in size any 
further through the use of the Endo-Kroto's classical mechanism of growing, the tetra6-hexa12 
fullerene C32 (Fig. 13) is able to be a base for further growth. The fullerenes designed by this 
mechanism are illustrated in Fig. 22. From the figures, it follows that only the initial and final 
fullerenes C32 and C40 have ordinary four-fold symmetry. They are perfect fullerenes. The 
intermediate fullerenes C34, C36, and C38 have topological four-fold symmetry. To gain a 
better understanding of the mechanism of dimer embedding, its main features are given in the 
form of schematic representation in Fig. 23. 
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Fig. 22. Fullerenes C34, C36, C38, and C40 as a result of embedding one after another carbon 
dimer into fullerene C30: structure and graphs; energy in kJ/mol 
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Fig. 23. Scheme of the main structural changes during the growth from C32 to C40 

 
From the configurations shown it follows that the first embedding, which transforms 

fullerene C32 into fullerene C34, influences deeply only on one of the hexagons and two of its 
square neighbours. This hexagon transforms into two adjacent pentagons and its square 
neighbors become pentagons; the fullerene C34 losing four-fold symmetry. It becomes an 
imperfect fullerene with the ordinary D1h symmetry, however conserving topological four-
fold symmetry. At that in the fullerene, there appears a cell that contains four pentagons. The 
second embedding transforms fullerene C34 into fullerene C36. There are two possible ways of 
embedding, asymmetric and symmetric. In the first case, the nearest to the cell hexagon 
transforms into two adjacent pentagons, its square neighbor into a pentagon and its pentagon 
neighbor into a hexagon. In the second case, two cells of four pentagons are separated from 
each other and one obtains the semi-perfect fullerene C36 having two-fold symmetry. It 
belongs to the ordinary D2h symmetry and its energy is less than that of the asymmetric 
isomer.  

The third embedding leads to the transition from fullerene C36 to fullerene C38. It 
transforms one more hexagon and two of its neighbors into two adjacent pentagons with abut 
hexagons of another local orientation. Again the fullerene becomes less symmetric, it belongs 
to D1h symmetry. At last, the fourth embedding restores D4h symmetry. The perfect fullerene 
C40 obtained could be named a tetra2-penta8-hexa12 polyhedron where every two adjacent 
pentagons have the form of a bow tie.  
 
7. Growth of fullerene C40  
Classical fullerenes. The growth can continue producing imperfect fullerenes C42, C44, C46, 
and perfect fullerene C48 (Fig. 24). The fullerenes are obtained as a result of embedding one 
after another carbon dimer into fullerene C40 at an angle to the four-fold axis. From the 
figures, of special note, are the graphs, we notice again that only the initial and final 
fullerenes C40 and C48 have ordinary four-fold symmetry. They are perfect fullerenes. The 
intermediate fullerenes C42, C44 and C46, as was analyzed in Ref [1], have topological four-
fold symmetry. To gain a better understanding of the mechanism of dimer embedding into 
fullerene C40, its main features are given in the form of schematic representation (Fig. 25).  
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Fig. 24. Fullerenes C42, C44, C46, and C48 as a result of embedding carbon dimers into 
fullerene C40 at an angle to the four-fold axis: structure and graphs; energy in kJ/mol 

 

 
 

Fig. 25. Scheme of the main structural changes during the growth of fullerene C40 
 

 Non-classical fullerenes. The growth of fullerene C40 can continue by another way 
producing also imperfect fullerenes C42, C44, C46, and perfect fullerene C48 (Fig. 26). The 
fullerenes are obtained as a result of embedding one-after-another carbon dimer into fullerene 
C40 parallel to the four-fold axis. From the figures, of special note, are the graphs, we notice 
again that only the initial and final fullerenes C40 and C48 have ordinary four-fold symmetry. 
They are perfect fullerenes. The intermediate fullerenes C42, C44 and C46, as was analyzed in 
Ref [1], have topological four-fold symmetry. 
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Fig. 26. Fullerenes C42, C44, C46, and C48 as a result of embedding carbon dimers into 
fullerene C40 parallel to the four-fold axis: structure and graphs; energy in kJ/mol 

 
These results deserve further comment. For a detailed discussion of this subject see 

Ref [3]. According to the authors, "In general, classical fullerenes are cage-like, hollow 
molecules of pseudospherical symmetry consisting of pentagons and hexagons only, resulting 
in a trivalent (and in the most ideal case) convex polyhedron with exactly three edges (bonds) 
joining every vertex occupied by carbon, idealized as sp2 hybridized atoms. What happens if 
we relax the rules a little bit, and allow for other types of three-valent (sp2) carbon 
framework? There are many generalizations that lead to structures of beautiful shapes that 
have both elegant mathematical theory and physical realizations: allowing for polygons with 
faces different form pentagons and hexagons. What kinds of fulleroids, which are fullerene-
like structure, are allowed? Can we tile a sphere or a torus with heptagons only, or with only 
pentagons and heptagons?" 
 Figure 26 gives an example of such structures and answers the questions. From the 
configurations shown it follows that the first embedding, which transforms fullerene C40 into 
fullerene C42, influences deeply only on one of the hexagons and two of its hexagon 
neighbors. This hexagon transforms into two adjacent pentagons and its hexagon neighbors 
become heptagons; the fullerene C42 losing ordinary four-fold symmetry. It becomes an 
imperfect fullerene with the ordinary D1h symmetry, however conserving topological four-
fold symmetry. At that in the fullerene, there appears a cell that contains four pentagons. The 
second embedding transforms fullerene C42 into fullerene C44. There are two possible ways of 
embedding, asymmetric and symmetric. Notice that in the first case we obtain the fullerene 
which consists of two halves; one contains only pentagons and heptagons and the other only 
pentagons and hexagons. It should be emphasized that the energy of such a structure with 
single and double bonds is significantly less. The third embedding leads to the transition from 
fullerene C44 to fullerene C46. It transforms one more hexagon and two of its neighbors into 
two adjacent pentagons with abut heptagons. Again the fullerene becomes less symmetric. At 
last, the fourth embedding restores D4h symmetry. The perfect fullerene C48 obtained contains 
two tetragons, eight pairs of adjacent pentagons, eight heptagons, and no hexagons. It is a 
tetra2-(penta2)8-hepta4 polyhedron; its shape resembles more a disk than a spheroid.  
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8. Growth of fullerene C48  
Input fullerenes. In principle, any hexagon of fullerene C48, having two neighboring 
mutually antithetic pentagons, is able to incorporate a dimer C2 and to form fullerene C50. 
There are eight such hexagons in the equatorial part of the fullerene. One of the realizations is 
shown in Fig. 27. All the other realizations are identical from the symmetry standpoint.  
 

 
 

 
 

Fig. 27. Input fullerenes C48 and C50; the latter is obtained after embedding a carbon dimer: 
structure and graphs; energy in kJ/mol 

 
 Isomers of fullerene C52. There are several possibilities for incorporating a carbon 
dimer into fullerene C50. Such a situation leads to production of isomers. To gain a better 
understanding of these variants of dimer embedding, consider all the possible graphs 
corresponding to the process (Fig. 27). The graph analysis simplifies not only the 
understanding of the ways of fullerene forming but guarantees that all the variants are taken 
into consideration.  
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Fig. 27. Graphs of initial fullerene C50: and the isomers of fullerene C52  
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Fig. 28. Isomers of fullerene C52: structure and graphs; energy in kJ/mol 
 

These results deserve further comment. From the figure, it follows that there are only 
five natural isomers of fullerene C50. It is necessary to stress that we are dealing with the 
isomers which can be obtained during the natural growth in the framework of the Endo-Kroto 
C2 insertion mechanism [17]. Why have we used the term natural isomers? The reason is that 
we would be separated from the investigators producing a countless number of 
mathematically possible isomers [20]. 
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 According to their views [20], "a perennial problem in the chemistry and physics of 
fullerenes is the question how these organized cage structures emerge from chaotic low-
nuclearity carbon vapor. Various mechanisms for carbon ingestion/extrusion and 
summarization/annealing have been proposed and assessed by comparison with experimental 
data and quantum mechanical calculations. A parallel line of investigation involves the use of 
graph theoretical techniques to catalogue the mathematically possible fullerene structures and 
their interconversions based on assumed sets of rules for construction and transformations. 
The present study extends this approach, exploring the ways that fullerenes can be formally 
generated from 'seed' polyhedra, using either a predefined set of graph transformations or a set 
that is restricted by a cost function intended to mimic the energetics of bond rearrangement 
and carbon insertion." 
 In Ref [20] the two mechanisms for interconversion of fullerene polyhedra are 
considered: the Stone-Wales summarization patch and the Endo-Kroto C2 insertion patch. By 
the latter is meant in fact two different configurations: a hexagon with its two neighboring 
mutually antithetic pentagons (before growth) and a pair of adjacent pentagons with its two 
neighboring mutually antithetic hexagons (after growth). The following is noteworthy: 
applying any mathematical model to a physical problem, it is important to keep in mind that 
except for the mathematical rules there are physical restrictions [4].  
 Why have we cited the authors [20] at great length? The reason is that the physical 
restrictions were not even discussed by them. As a consequence, one deals here with two 
forms of scientific despotism which can depress the creative work of a scientist [21 p. 83]. 
One of them is mathematical despotism. Mathematics has penetrated into the multitude of 
sciences. If a scientist has no good mathematical qualification, such mathematical papers 
suggest his inferiority complex. It takes much time before he begins to understand that the 
majority of such papers are not worthy of reading. The second form is programming 
despotism. This type was generated after the appearance of neo-programmers, the scientists 
who are not programmers, but being able to write programs. Such scientist substitutes thought 
process by doing programs, not putting the question whether the methods are so good what 
they need to be programmed. 
 As a result, the authors [20] came to the conclusion that the number of isomers 
increases with an increasing number of atoms, and "a family of transformations based on the 
Endo-Kroto C2 insertion mechanism gives access to all isomers of all fullerenes up to C200 
from a C24 seed". In reality, it is not the case. For example, the appearance of the first EK 
patch in fullerene C50 excludes from eight possible sites not only this patch but also two 
neighboring sites (Look carefully at Fig. 26). Therefore for the second insertion, there left 
only five possibilities but not seven. So instead of increasing isomers during the growth we 
have decreasing. The next sections make it clearer. 
 Isomers of fullerene C54. Five isomers of fullerene C52 can be classified into two 
subgroups of intermediate fullerenes. The isomer of the first subgroup C52:3-3-1-1 AC is a dead-
end fullerene since its hexagons have no diametrically opposite pentagons. The other isomers 
can grow further by using the Endo-Kroto's mechanism and producing new fullerenes; they 
are alive. It is interesting to note that fullerenes C52:3-1-3-1 AC1 and C52:3-2-3 AD produce one and 
the same direct descendant C54: 3-1-2-2 AC1D. At first glance, it seems that there are three natural 
isomers of fullerene C54. They are shown in Fig. 29. However, on close examination of these 
graphs, it becomes evident that graphs C54: 2-2-3-1 ABC1 and C54: 3-1-2-2 AC1D reflect also one and 
the same structure. It follows algebraically from the fact that their symbolic designations:  
2-2-3-1 and 3-1-2-2 form a circular permutation, as well as geometrically: one needs to rotate 
any of them through 180 deg and to obtain its antipode. So fullerenes C52: 2-2-1-2-1 AB and  
C52:3-2-3 AD produce one and the same descendant and we have only two natural isomers of 
fullerene C54.  
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Fig. 29. Graphs of the isomers of fullerene C54  

 

 
 

 
Fig. 30. Isomers of fullerene C54: structure and graphs; energy in kJ/mol 

 
 Isomers of fullerene C56. Each of the two isomers of fullerene C54 produces only one 
descendant. They are shown in Fig. 31. The scheme of all isomer generations is presented in 
Fig. 32.  
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Fig. 31. Isomers of fullerene C56: structure and graphs; energy in kJ/mol 

 

Fig. 32. Generation of isomers of fullerene C50 and their descendants 
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We have to turn back to the physical restrictions to clear up the fullerene-isomer 
problem. The transition from individual atoms to the patches contains implicitly two-scale 
averaging. The first averaging is the transition from electrons and nuclei to atoms. After such 
averaging one forgets the constituents of the atom (electrons and nucleus) and operates with 
the atoms investigating their interactions. The second averaging is the transition from the 
atoms to polygons and even to the patches. After that one forgets the atoms and operates with 
these atomic agglomerates in studies of fullerenes. The averaging puts physical restrictions 
both on the interaction and the agglomeration. Moreover any averaging includes assumptions, 
but the more assumptions, the more mistakes. 
 Experimentally [3], "In C60–Ih there are two different types of bonds according to 
atomic field microscopy (AFM) image. The measured bond lengths are rhh = 1.38 Ǻ and  
rhp = 1.4654 Ǻ. The larger bonds are singular, the lesser bonds are double ones". Therefore in 
the ground state, each carbon atom takes part in the formation of one double bond and two 
single ones. It also means that although all carbon atoms are equal, the bonds are 
nonequivalent [22,23], and that fact puts restrictions on their agglomeration. 
 Mathematicians design their theories on the basis of definitions. In doing so they replace 
the assumptions with definitions; the latter taking a role of axioms. Consider two typical 
examples. Ref [20]: "The classical definition of a fullerene as a carbon cage whose skeleton is 
a trivalent polyhedron with hexagonal and pentagonal faces will be used". Ref [3]: "Classical 
fullerenes are cage-like, hollow molecules of pseudospherical symmetry consisting of 
pentagons and hexagons only, resulting in a trivalent (and in the most ideal case) convex 
polyhedron with exactly three edges (bonds) joining every vertex occupied by carbon, 
idealized as sp2 hybridized atoms".  
 We agree with the authors [3] that "a number of chemical properties of a fullerene can 
be derived from its graph structure". But we don't understand the word-combination 
"mathematical properties of fullerenes". Nobody says about the mathematical properties of 
metals or semiconductors. To our mind, there is a logic bifurcation after which there appear 
two different branches of fullerene study: the natural fullerenes as carbon molecules and the 
mathematical fullerenes as polyhedrons. If one writes "many mathematical properties of 
fullerenes have found simple and beautiful solutions", one must emphasize that this 
affirmation refers only to the mathematical fullerenes. On contrary, one misjudges the 
problem propagating mathematical despotism.  
 The papers cited are written by the groups of three [3] and four [20] authors; among 
them are physicists, chemists, and mathematicians. These papers were chosen as a typical 
example of the new style of investigations when physicists and chemists get sidetracked 
leaving the key role to mathematicians. However, one must bear in mind [21]: "At a distance 
well removed from an empirical source, mathematics is threatened with degeneracy. Super-
mathematization of an empirical field where there are no constant hypotheses is a disaster" 
(John von Neumann). We would like to add also the words which were said many years ago 
by R.B. Hamming. Having a wealth of experience in the field of computational mathematics 
(he was the President of American Association on Computers and the Head of the 
Mathematical Service of Bell Telephone Laboratories), Hamming wrote in his book 
"Numerical Methods for Scientists and Engineers" [24] the following. "Two theses are at the 
basis of this book. Before solving a problem think what you are going to do with its solution. 
The aim of calculations is understanding, but not the numbers."  
 Conclusion: the number of natural fullerene isomers is less than the millions of isomers 
produced by unskilled using algebraic geometry. 
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9. Growth of fullerene C56  
The fullerene belongs to the column of basic perfect fullerenes having four-fold symmetry. It 
can produce the natural isomers shown in Fig. 33 
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Fig. 33. Fullerenes C58, C60, C62, and C64 as a result of embedding one after another carbon 

dimer into fullerene C56: structure and graphs; energy in kJ/mol 
 
10. Conclusion 
We have studied possible ways of generating and growing the fullerenes and nanotubes 
having four-fold symmetry. We assumed that cyclobutane C4H8 can be transformed into 
different electronic isomers of clusters C4-C4.  In its turn, the clusters can initiate the 
generation of elementary fullerenes C8, mini-fullerenes C16, and cupolas from C16 to C40.  
These aggregates produce the fullerenes from C24 to C64, perfect and imperfect, as well as 
nanotubes. There are three the most natural mechanisms of obtaining new fullerenes: 1) 
Fusion of carbon cupolas having one and the same symmetry; in our case, fourth-fold 
symmetry; 2) Fusion of fullerenes having compatible symmetry; 3) Embedding carbon dimers 
into initial fullerenes (the Endo-Kroto's mechanism).  
 The first mechanism is the most promising. It leads to generating basic perfect 
fullerenes. The second mechanism produces, as a rule, nanotubes. The third mechanism 
creates imperfect fullerenes. The imperfection is connected either with extra 'interstitial' or 
'vacancy' carbon dimers, both types of dimers playing the role of defects. Only the basic 
fullerenes C24, C32, C40, C48, C56, and C64 have the ordinary four-fold symmetry in the 
corresponding column of the periodic system of fullerenes, the intermediate fullerenes having 
no such symmetry. Considering the latter as imperfect due to defects, one can define them as 
the fullerenes conserving topological four-fold symmetry. 
 We have given a quantitative criterion that allows distinguishing fullerenes and 
nanotubes, and have calculated their energies. We have found that among the perfect 
fullerenes there are alive and dead. The fullerenes of the first subgroup can grow further by 
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C64 ABCD 
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C62 ABC 
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the use of the Endo-Kroto's mechanism producing new fullerenes. The fullerenes of the 
second subgroup have no such possibility. The reason is connected with a hexagon-nearest 
circumference in different fullerenes.  
 We carefully examined the problem of fullerene isomerism and showed that it is 
necessary to differentiate natural and mathematical isomers. The first ones can be obtained 
during the natural growth in the framework of the Endo-Kroto C2 insertion mechanism. The 
second ones are the mathematically possible fullerene structures and their interconversion is 
based on assumed sets of rules for construction and transformations without physical 
restrictions.  
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Abstract. The physical and chemical properties (density, microhardness, thermal effects, 
elastic modulus, dc conductivity, and the transfer number of silver ions) of glasses of the  
As – Se – Ag system along the AsSe – Ag and AsSe1.5 – Ag sections were investigated. The 
transfer numbers of Ag+ ions were determined by a direct method; from their changes, it was 
found that the glasses of the investigated sections have mixed ion-electronic conductivity. The 
threshold concentration of silver at which the ionic component of the conductivity becomes 
dominant over the electron was determined. The volume fraction of the fluctuation free 
volume was calculated using elastic modulus, microhardness, and glass-transition 
temperatures values. It was shown that Ag+ ions do not experience serious steric hindrances 
during the process of migration. 
Keywords: chalcogenide glass, dc conductivity, ionic conductivity, femtosecond laser, glass 
microhardness, transfer number 
 
 
1. Introduction 
The advent of femtosecond lasers has led to an increasing number of studies on laser 
recording of gradient 3D structures in optically transparent materials. The use of femtosecond 
pulses markedly expands the possibilities of modifying glassy materials by implementing 
multi-photon absorption in the microvolume of material around the focal point. With the 
precision focus of the laser beam, it is possible to carry out a local change in the structure of 
the optical media, and consequently, modify their physical and chemical properties with high 
resolution. The femtosecond laser is able to obtain a significant local change in the refractive 
index in glass and to form a waveguide (including in the volume of glass) [1,2], to create 
crystallized tracks and metal threads in the volume of glass [3-5], micro- and nano-cavities 
[6], which is undoubtedly of interest for the development of photonics and integrated optics 
technologies. It should be noted that existing studies are carried out mainly with oxide 
glasses, transparent in the visible region. the number of such researches for glasses based on 
oxygen analogs – sulfur, selenium, and tellurium, is just a few. 

The unique optical properties of chalcogenide glasses are well known for a long time. 
Nevertheless, interest in chalcogenide glasses does not fade away and there are works devoted 
to the study of them as optical elements in photonics, as well as a new generation of 
information storage devices, which is also implemented using laser radiation, including 
femtosecond. There is no doubt that when obtaining gradient structures, it is necessary to take 
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into account various diffusion processes. In this regard, the study of the migration 
characteristics of glasses is of fundamental importance. 

This work is devoted to the study of the physical and chemical properties of the  
As – Se – Ag glass system enriched with silver. The research aimed to determine the 
influence of the features of the glass structure on the migration characteristics of the Ag+ ion. 
Ag+ ions determine both the nature and the conductivity of glasses under the influence of 
various factors – applied voltage, temperature, concentration, thermal history, and 
temperature gradient. 

The research is aimed at obtaining information on the migration processes of 
monovalent ions in chalcogenide glasses under the influence of femtosecond laser radiation. 
According to [7], laser radiation in the glass leads to the appearance of an induced potential 
difference between the high-temperature region at the focal point of the laser beam and the 
cold boundaries of the affected region. This is the reason for the noticeable migration of 
monovalent ions from the focal point to the edges of the laser action area, which causes a 
local change in some physical and chemical properties of the glass. Processes of this kind are 
not only of theoretical but also practical interest since laser processing can form a gradient 
optical structure in a single technological stage.  

However, this migration of monovalent ions under the influence of the induced potential 
is hindered by a counter process – the migration of the same ions from the "cold" region to the 
"hot" one (closer to the focal point of the laser beam). This is a manifestation of the Soret 
effect, well known for gases and liquids. 

A relatively small number of works [8] are devoted to the study of thermal diffusion 
processes in solid oxide glasses, which is mainly determined by methodological difficulties 
when working with such a fragile material as glass (exclusively oxide) when creating a high-
temperature gradient over the sample. To understand the physical essence of the processes 
occurring under the action of laser radiation, the study of the migration characteristics of the 
Ag + ion in model and relatively simple in composition and structure chalcogenide glasses of 
the Ag – As – Se system is of great importance. 
 
2. Experimental technique (Methods) 
Chalcogenide glasses were synthesized in an electric furnace from elementary substances of 
semiconductor purity in evacuated quartz ampoules with stirring at a maximum temperature 
of 950°C for 4-6 hours. The sample weight was 5-8 grams. Elemental selenium was 
preliminarily distilled in a vacuum to remove impurities of hydrocarbons (carbon) and water. 
The glasses were tempered in the air or ice water, depending on the composition; the 
subsequent annealing to remove residual stresses was carried out at a temperature ~ 15°C 
below Tg for 4-5 hours. As a result, homogeneous monolithic samples were obtained without 
signs of crystallization. 

Electrical conductivity was measured at direct current using a Wheatstone bridge 
(P4060) in heating and cooling mode. Silver amalgam (anode) and mercury (cathode) were 
used as electrodes. In all cases, the temperature dependence of the specific electrical 
conductivity (σ) was a straight line, no hysteresis was observed (–logσ = f(1/T)). The 
measurement error did not exceed ± 5%.  

The activation energy of electrical conductivity (Eσ) was calculated using the Arrhenius 
equation: 

0  (  /  )2exp E kTσ σ σ= − , (1) 

where 0σ  is the preexponential factor, k  is the Boltzmann's constant, and T  is the 
temperature. 
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Keysight N5769A stabilized power supplies, X603 electrolytic integrator, and an Instek 
GDM-8145 multimeter were used to conduct electrolysis and determine the transfer numbers 
of silver ions.  

The density of the samples was determined by the method of hydrostatic weighing in 
CCl4 with an accuracy of ±5 × 10-4 g using a Vibra HT-224RCE analytical balance, the 
microhardness by the method of indentation of a diamond pyramid (according to Vickers) 
was determined by PMT-3M (LOMO) device with an accuracy ± 5%.  

The speed of propagation of longitudinal and transverse ultrasonic waves was measured 
using a UD 2-12 flaw detector. Thermal effects were determined on derivatographs Q-1500 
(Hungary, "MOM") and "Termoscan-2M" (Analitpribor) in heating mode; fused quartz and 
Al2O3 powders were used as standards; the weighed portion of the studied glass was 0.5 g, the 
heating rate was 5-15 deg/min. Measurements accuracy was ± 5°C. 
 
3. Results and discussion 
Physical and chemical properties. The area of glass formation of arsenic-selenium-silver 
glasses has been studied systematically for a relatively long time (for more details see [9,10]). 
Different authors obtained two noticeably different regions of glass formation, separated by 
regions of compositions in the crystalline and glass-crystalline states. The region in which 
glassy samples can be obtained under not very severe conditions consists of two parts (Fig. 1). 
Thus, according to the sections AsSe0.8, AsSe, AsSe1.5 – Ag, it is possible to obtain 
homogeneous glasses, and from the sections, AsSe2.5, AsSe4 – Ag with a high selenium 
content, inhomogeneous glasses [9,10] are obtained.  

 
Fig. 1. The region of glass formation in the Ag – As – Se system according to [9 and 10]. 
1 – homogeneous glasses, 2 – heterogeneous glasses, 3 – liquidating glasses, 4 – crystals,  

5 – glass crystals 
 

The regions of homogeneous and inhomogeneous glasses are separated by crystalline 
and glass-crystalline compositions along the As2Se3 – Ag2Se section. This section contains 
several ternary compounds (AgAsSe2, Ag7AsSe6, Ag3AsSe3), which have not been obtained 
in glassy form; along with the binary compound Ag2Se, they are not glass-forming agents in 
the Ag – As – Se system. However, the ability of all three components to interact and form 
complex structural chemical units (s.c.u.) contributes to glass formation in this system. 

Region IA mainly corresponds to the field of crystalline selenium and As2Se3 
crystallization. Silver in these glasses plays the role of an impurity, as the content of which 
increases in the glass structure, the accumulation of s.c.u. AgAsSe2 occurs, which leads to a 
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significant increase in its crystallization ability. Compositions with a predominant content of 
AgAsSe2 do not form glasses at all. Region IB corresponds to the area of liquation. 

The region of homogeneous glasses (Fig. 1, II) is in the field of arsenic evolution. For 
glass formation in this region, the ability of arsenic to easily pass into an amorphous state is of 
great importance. Glass formation in this area is also facilitated by the complex structural and 
chemical composition of alloys, in which the formation and interaction of at least four types 
of spatially different structural chemical units (s.c.u.) complicate the separation of crystalline 
phases from the glass melt [9,10]. This region of compositions, which easily forms 
homogeneous glasses, was chosen in this study.  

Glasses of the following sections were selected as objects of study: AsSe – Ag and 
AsSe1.5 – Ag. Some properties of the synthesized glasses are presented in Table 1. It should be 
noted that the data of this work are in satisfactory agreement with the literature data (Table 1). 
 
Table 1. Some physical and chemical properties of glasses from sections AsSe – Ag and 
AsSe1.5 – Ag 

Section Ag, at. % d, 
g/cm3 

Н, 
kgf/mm2 d,* g/cm3 Tg, °C Н*, kgf/mm2 Tg*, °C 

AsSe - 4.55 136 4.48 171 130 164 

AsSe – Ag 

5.0 4.68 110 4.71 155 95 148 
6.0 - - 4.76 - 90 140 
10.0 4.93 107 - 158 - - 
15.0 5.16 118 - 167 - - 
16.7 - - 5.30 - 99 150 
20.0 5.43 138 5.50 171 112 160 
25.0 5.69 155 5.86 178 147 172 
28.0 - - 6.04 - 161 176 

AsSe1.5 - 4.550 150 4.59 172 150 169 

AsSe1.5 – 
Ag 

1.0 4.550 150 - 170 - - 
3.4 4.800 153 - - - - 
5.0 4.862 142 4.85 155 150 152 
10 5.105 155 5.09 147 138 146 
15 5.309 127 5.62 150 146 150 

20.0 5.581 134 - 150 - 147 
25.0 5.776 115 5.76 155 150 149 
30.0 6.015 110 6.04 170 155 158 

(d – density, H – Vickers microhardness, Tg – glass-transition temperature. * – data from 
[9,10]) 

 
The character of the H and Tg changes with an increase in the silver content depends 

both on the arsenic/selenium ratio and on the position in the region of glass formation. For 
example, for glasses from the AsSe1.5 – Ag section, the first silver additions exhibit a 
sequential decrease in microhardness, while the Tg values, after a slight decrease, practically 
do not change at a silver content from 5 to 25 at.%. 

Determination of the nature of conductivity. Until the mid-seventies of the last 
century, it was believed that all chalcogenide glasses are p-type semiconductors, and only by 
the eighties the first works appeared, indicating the presence of ionic conductivity in certain 
silver-containing compositions of some chalcogenide systems [9-10]. It should be noted that 
the presence of ionic conductivity and the determination of the transport numbers of current 
carrier ions for a number of silver-containing chalcogenide glasses was carried out using a 
highly simplified electromotive force (emf) method [10,11], and the values of the transport 
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numbers of Ag+ ions obtained using this method, in our opinion, cannot be considered 
indisputable. 

The essence of the emf method is to create a concentration element of the following 
type: 
С, Ag │CGAg│Ag2S│S, С, 
where CGAg is the investigated silver-containing chalcogenide glass, С is graphite contact. 
Upon contact of the studied glass with metallic silver on the one hand and elemental sulfur on 
the other, according to [10,11], a redox reaction begins in the element, the emf of which is 
fixed and compared with the emf of the reaction:   
2Agm + Sm = (Ag2S)m , (2) 
which occurs in this system.  

The cell emf values obtained experimentally (Еexp), as a rule, are lower than the 
theoretical value (Еtheor): the mean transfer numbers of silver ions (tAg+) are determined from 
the ratio of the experimentally obtained emf of the indicated reaction and its theoretical value:  

/ .Ag exp theort Е Е+ =  (3) 

Thus, for the AsSe1.5 – Agx glass system with a silver content from 10.7 to 30.6 at.% (in 
the temperature range from 30 to 800°C), the values of the transfer numbers of Ag+ ions lie in 
the range 0.70-0.75 [10,11].  

It should be noted that the emf method itself does not have any theoretical justification, 
and, most importantly, the reaction that may occur in the element used is postulated and has 
no real experimental confirmation. Some time ago, we studied the nature of conductivity and 
determined the transport numbers of current carrier ions in a number of glassy systems, 
including chalcogenide ones, using the direct method - the weight modification of the Hittorff 
method - the modernized Tubandt method, which has shown its validity for the noted 
problem [12].  

The classical Hittorff technique, developed for solutions, involves the determination of 
the transfer numbers of current carrier ions through the analytical determination of the 
concentration change in the near-electrode regions of the electrolyte after passing a known 
amount of electricity. Nevertheless, the real values of the transport numbers of current carrier 
ions cannot be determined by this method (or it is extremely difficult), since the change in the 
concentration of carriers in the near-electrode spaces involves ions surrounded by a hydration 
shell. In other words, during migration, ions carry with them attracted solvent molecules, 
which affects the change in the concentration of the electrolyte and affects the result obtained. 

The Tubandt method was developed for solids and is devoid of this drawback, since 
migration in a solid of any associate is unlikely, and the result obtained by this technique 
allows one to obtain the true transfer numbers of charge carrier ions. So, in the case of the 
transfer of electricity by ions of the same sign (a cation or anion, or an ion and an electron, 
i.e., when migration processes are accompanied by a transfer of mass in one direction), the 
transfer numbers of these ions can be determined by the change in the mass of the electrodes 
between which the investigated sample after electrolysis. In the classical version, the same 
solid electrolyte was used as these electrodes (cathode and anode), which was the subject of 
research [13].  

If a known amount of electricity is passed through the electrolyte, then the transport 
numbers of carrier ions can be determined from the ratio of the decrease in the weight of the 
anode (and the increase in the weight of the cathode) and the amount of carrier released as a 
result of electrolysis (according to Faraday's law). In this case, the condition for the correct 
conduct of the experiment is the constancy of the weight of the test sample before and after 
electrolysis should not change. In this work, a PTFE thermocell was used to determine the 
transfer numbers of silver ions (shown in Fig. 2). A silver wire dipped into a silver amalgam 
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was used as an active anode, and pure mercury was used as a cathode. The cell is detachable, 
allows quantitative weighing of electrodes before and after electrolysis. 

 
Fig. 2. Thermocell with active electrodes for determination of the transfer numbers of glassy 

solid electrolytes. 
1 – glass sample, 2 – amalgam anode with a silver wire (+), 3 – mercury cathode (-),  

4 – upper part of the cell, 5 – lower part of the cell, 6 – electrodes in metal tubes, 7, 8 – plugs, 
9 – thermocouple, 10 – connecting screws 

 
Electricity is supplied through silver wires passing through thin nickel tubes. The 

mercury electrodes and sample are weighed before and after the experiment. The transport 
numbers of Ag + ions are determined from the ratio of the amount of silver obtained as a 
result of a known amount of electricity passed through the sample and theoretically calculated 
according to Faraday's law. The experimental conditions and some of the results obtained 
within the framework of this study are presented in Table 2. It should be noted that the 
presented results are consistent with the literature data [9,10,12]. 

 
Table 2. Experimental conditions and the values of the transfer numbers of silver ions, 
obtained by the Hittorff method 
Composition х Ag, at.% t, °C Q, C ∆maverage

.105, g  tAg+
 

AsSe1.5 – Agx 

0.064 2.5 100 1.01 40 0.35 * 
0.13 5.0 80 1.1 70 0.58 * 
0.28 10.0 80 0.8 70 0.79 * 
0.44 15.0 60 1.4 130 0.83 * 
0.63 20 60 3.1 304 0.88 * 
0.83 25 80 2.8 277 0.88 * 
0.28 10 110 2.5 215 0.77 
0.44 15 110 1.95 175 0.81 
0.63 20 100 2.13 205 0.85 
0.83 25 100 1.66 165 0.89 

(Here: t is the temperature of the experiment, Q is the amount of passed electricity, ∆maverage is 
the average change in the mass of electrodes after electrolysis, tAg+ is the transfer numbers of 
silver ions, (*) – data obtained earlier, see [12]). 
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The electrical conductivity of glasses in the arsenic-selenium-silver system varies 
widely depending on the ratio of all three components, but silver has a decisive influence. 
When the first 10 at. % silver is introduced into glassy AsSe1.5, the conductivity increases by 
more than five orders of magnitude. Glasses of sections AsSe – Ag and As2Se3 – Ag2Se 
behave similarly.  

For the glasses with a constant Ag (for example, ~ 6 at.%), a conductivity decrease was 
observed with an increase in the As/Se ratio. The complex structural and chemical 
composition complicates the process of electrical transfer in glasses of this system (almost all 
glasses of the As – Se – Ag system have underestimated logσo values), with the exception of 
glasses of the As2Se3 – Ag2Se and As2Se3 – Ag sections, which have the simplest structure, 
the conductivity of which approaches the through [9,10] (for more details see Table 3). 

In addition, for glasses of the As-Se-Ag system, with an increase in the silver content, 
not only the magnitude but also the conduction mechanism changes: the values of the silver 
transfer numbers become more than 0.5. With an increase in the silver content to 5-10 at. %, 
The type of current carriers changes: the purely electronic conductivity, characteristic of the 
initial arsenic selenides, is replaced mainly by the ionic one [9,10,12]. 

 
Table 3. Electrical properties of glasses in sections AsSe – Ag and AsSe1.5 – Ag 
Section Ag, at. % -lgσ, ohm-1·cm-1 Eσ, eV -lgσ0 *-lgσ, ohm-1·cm-1 * Eσ,eV *-lgσ0 

A
sS

e  –
 A

g 

5.0 5.8 1.15 1.7 12.2 1.45 -0.3 
6.0 - - - 8.8 1.07 -1.0 
10.0 4.0 0.93 2.2 - - - 
15.0 
(17*) 4.1 0.67 2.4 4.8 0.72 1.6 

20.0 3.9 0.63 2.4 4.6 0.68 1.5 
25.0 3.9 0.63 3.0 4.4 0.65 1.4 
30.0 
(28.6*) - - - 3.9 0.56 1.4 

A
sS

e 1
.5
 –

 A
g 

1.0 12.9 1.81 2.4 12.8 1.80 2.2 
3.4 11.2 1.77 2.3 - - - 
5.0 9.7 1.30 2.7 9.8 1.36 2.0 
10 (11*) 6.9 0.83 3.3 7.6-7.8 1.10 1.0 
15 (17*) 6.4 0.85 3.3 6.3 0.90 2.2 
20.0 
(22*) 5.3 0.80 2.3 5.6 0.81 1.2 

25.0 
(24*) 4.9 0.65 1.7 5.5 0.78 1.3 

30.0 4.2 0.63 1.8 4.6 0.70 2.0 
(-lgσ is electrical conductivity at room temperature, Eσ is the activation energy of electrical 
conductivity, logσ0 – preexponential factor. (*) – generalized literature data according to 
[9,10] and the closest compositions to those investigated in this work) 

 
To determine the ratio between the ionic and electronic components of conductivity in 

glasses enriched with a silver (with content from 10 to 30 at.%) in [9,10] in the temperature 
range from 30 to 80°C, the transfer numbers of Ag+ ions were determined using the emf 
method. The obtained values of the average transfer numbers of Ag+ ions lie in the range from 
0.75 to 0.70. Moreover, with an increase in the silver content, the values of the transfer 
numbers slightly decrease. Nevertheless, despite the relatively low reliability of the indicated 
emf method, it is noted that in glasses of the As – Se – Ag system with a silver content of 
more than 15 at%, the main type of charge carrier changes: predominantly electronic 
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conductivity is replaced mainly by ionic conductivity [9,10]. This conclusion is partially 
confirmed by a joint study of the diffusion of silver ions and the electrical conductivity of 
glasses of this system, described in [11]. It should be noted that in chalcogenide glasses in 
general, and the As – Se – Ag system in particular, diffusion processes have practically not 
been studied and we have not found other works on this topic. In [11], a rather narrow 
concentration interval was studied along the AsSe – Ag and (AsSe1-x)0.8 – Ag0.2 sections (with 
a constant silver content). The calculated diffusion coefficients of Ag+ ions (at 100°С) for the 
studied glasses are in the range (2.5-7.9)·10-9 and (5.0-0.8)·10-9 cm2/s, respectively. In this 
case, the activation energy of diffusion for glasses from the AsSe – Ag section is constant. 
While in glasses (AsSe1-x)0.8 – Ag0.2 the activation energy of diffusion decreases from 0.74 to 
0.57 eV and correlates with a decrease in the selenium content.  

For all studied glasses, the activation energy of electrical conductivity (Eσ) and the 
activation energy of diffusion practically coincide in magnitude, which allowed the authors to 
conclude the identity of the nature of electrical and mass transfer [11].  

In the study of diffusion, the question of the migration mechanism is of particular 
interest. To elucidate the mechanism of migration of Ag+ ions in the studied chalcogenide 
glasses, we analyzed the value of the correlation factor (f) in the Nernst-Einstein equation: for 
all glasses, with an increase in the silver content, there is a slight decrease in f values (from 
0.8 to 0.5), and for glasses with a constant silver content – with a decrease in selenium 
content. The obtained values do not allow an unambiguous answer to the question of the 
mechanism of silver migration in these glasses, since according to [14], these values can be 
attributed to both relay and vacancy mechanisms and direct interstitial mechanisms. 

Structural features of ionic conductivity. The electrical properties of glasses of the 
As-Se-Ag system are satisfactorily described from the point of view of the model of the 
micro-inhomogeneous structure of glass, which, from a unified standpoint, describes the 
physical and chemical properties of both oxide and chalcogenide glasses. According to this 
model, at high temperatures in the melt, a selective interaction of the components of the initial 
charge occurs, during which structural and chemical groups are formed.  

These groups in multicomponent glasses determine the physical and chemical properties 
of future solid glasses. In this case, all structural fragments (s.c.u.) can be divided into two 
groups: polar and non-polar. Non-polar s.c.u. (which do not dissociate and block both 
possible processes of dissociation of current carrier ions and their subsequent migration in 
their environment) include fragments linked by a non-polar or weakly polar covalent bond. 
These s.c.u. are mainly involved in the formation of a three-dimensional glass network: these 
include BO3/2, SiO4/2, РО4/2, AsS3/2, AsAs3/3, selenium chains, etc. In a medium formed 
mainly by these fragments (with low dielectric constant), dissociation of ionogenic chemical 
units and subsequent migration of current carrier ions is hindered. 

Polar (ionogenic) fragments have in their composition a bond with a significant ionic 
component: these are fragments of the type Na+[BO4/2]-

, Li+O-SiO3/2, Ag+Se–AsSe2/2, etc. 
Consequently, the environment formed by them has a relatively high dielectric constant and to 
some extent, they behave like electrolyte solutions. That is, in glass, these fragments, on the 
one hand, dissociate with the formation of current carrier ions, on the other hand, the medium 
formed by similar chemical units contributes not only to dissociation processes (in contrast to 
nonpolar chemical units) but also facilitates the subsequent migration of these ions with lower 
energy costs. It is clear that the concentration of polar agricultural units is proportional to the 
number of components with increased bond ionicity introduced into the glass composition, 
i.e. those that contain potential current carrier ions (both cations and anions). 

At low concentrations of components with increased bond ionicity, the regions formed 
by polar s.c.u. are isolated from each other by the medium of nonpolar chemical units. 
Glasses with such a structure have no ionic conductivity. The reduced electrical conductivity 
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of these glasses is limited both by the small number of free current carriers and by the need 
for their migration in the main nonpolar medium, which requires overcoming high activation 
barriers. The ionic conductivity in glasses appears when isolated regions of polar s.c.u 
coalesce with each other and form continuous areas that permeate the entire volume of the 
glass. At the same time, not only the number of current carriers increases (due to the 
dissociation of polar chemical units) but also the activation energy of electrical conductivity 
decreases due to their migration in a polar medium. 

To determine the critical concentration of polar chemical units, at which they merge 
into continuous channels, penetrating the glass throughout the entire volume, thereby 
violating the blockade of through migration of ions and the appearance of ionic conductivity, 
the parameter "degree of blocking" (γ) was adopted. γ is determined by the ratio of the 
concentration of non-polar and polar s.c.u. by the following equation: 

_ . . .
. . ._

polar
non polar

s c u
s c u

γ =
−

. 
(4) 

For a number of oxides and halogen-containing glasses, the blockade of ion migration 
by a medium from nonpolar chemical elements is observed at values of γ~6: in this case, a 
nonpolar fragment ceases to fit between two polar fragments. In other words, when γ> 6, 
polar s.c.u. are isolated by non-polar s.c.u. and ionic conductivity is practically absent. At 
values γ≤6, polar s.c.u. are combined into a continuous sublattice, their degree of dissociation 
increases, and the dissociated ions acquire the ability to migrate throughout the glass volume 
with lower energy consumption in the medium formed by them. With an increase in the 
concentration of the ionogenic component and the degree of its dissociation, ionic 
conductivity appears. Therefore, knowing the probable structural-chemical composition of 
multicomponent glasses, one can calculate the degree of blocking and judge both the presence 
of ionic conductivity in them and the boundary compositions in which this conductivity 
appears. (A more detailed model of the microheterogeneous structure of glass and its 
application for a wide range of glasses is described in [15]). However, in contrast to the 
description of the unit cell of a crystal, for which there are direct experimental methods, there 
are no such direct methods for the structural-chemical unit of multicomponent glass. Complex 
s.c.u. in glasses are the model that reflects some approximation to real structural units in the 
glass. 

As mentioned above, in the As – Se – Ag system, the compositions along the sections 
AsSe – Ag and AsSe1.5 – Ag with a silver content of up to 30 at. % lie in the crystallization 
field of the ternary compound AgAsSe2, with a congruent melting point of 410°C, and As2Se3 
[9,10]. We chose these sections because, despite a certain deficiency of selenium, it is 
possible to introduce up to ~ 30 at. % of silver into these glass compositions. In addition, at 
Ag concentration less than 30 at. % the only polar fragments are s.c.u. type Ag+Se–AsSe2/2, 
corresponding to the compound AgAsSe2, in which the Se – Ag bond has an approximately 
(6-8)% higher degree of ionicity than, for example, the As – Se bond. Assuming that all silver 
introduced into the glass composition of the investigated sections binds to polar s.c.u. type 
Ag+Se–AsSe2/2, and all other fragments – As2Se3, AsSe, and AsAs3/3 – are non-polar and 
blocking, we calculated the degree of blocking γ. For glasses of the AsSe1.5 – Ag section, the 
results of such calculations are presented in Table 4 and Fig. 3. 

Figure 3 shows that with an increase in the silver content, all electrical parameters 
change rather smoothly, while near the compositions with 4.5-5.0 at. % of silver, a sharp 
change in the slope of the concentration dependence of γ is observed. The last one can be 
explained by the actual violation of the blockade of ion migration Ag+. This is confirmed by 
the values of the transfer numbers of these ions: in glasses containing more than 4-5 at. % of 
Ag (γ ≈ 4.5-5), the values of the transfer numbers of silver ions exceed 0.5; the nature of the 
conductivity changes from predominantly electronic to predominantly ionic. 
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Table 4. Probable structural-chemical composition and magnitude of the degree of blocking 
(γ) for glasses from the AsSe1.5 – Ag section 
Glass composition Ag, at. 

% 
Probable structural and chemical composition γ 

AsSe1.5 Ag 0.026 1.04 0.05 AgAsSe2 . 0.9As2Se3 .0.05AsSe 19.0 
AsSe1.5 Ag0.21 7.9 0.3 AgAsSe2 . 0.4As2Se3 .0.3AsSe 2.33 
AsSe1.5 Ag0.33 11.8 0.4 AgAsSe2 . 0.2As2Se3 .0.4AsSe 1.5 
AsSe1.5 Ag0.5 16.7 0.5 AgAsSe2 . 0.5AsSe 1.0 
AsSe1.5Ag0.61 19.6 0.55 AgAsSe2 . 0.25AsSe . 0.05AsAs3/3 0.55 
AsSe1.5 Ag0.75 23.1 0.86 AgAsSe2 . 0.14AsAs3/3 0.16 
   

 
Fig. 3. Concentration dependences on the electrical conductivity parameters (lgσ), the 

transfer numbers of Ag+ ions (tAg
+), and the degree of blocking (γ) for glasses AsSe1.5 – Ag 

(2) and AsSe – Ag (3). (1) – literature data [9,10] 
 
 In this concentration range, isolated nonpolar s.c.u. areas of polar s.c.u. type  
Ag+Se–AsSe2/2 for the first time merge into fragments penetrating the entire glass fragments. 
This is probably due to the dipole-dipole interaction with the formation of quadrupoles of the 
following type: 










−
−

−+

+−

2/2

2/2

Ag                      
            

AsSеSе
AgSеAsSе  

Their formation causes a change in the main type of current carrier. At a higher silver 
concentration, there are more and more such quadrupoles, the conductivity of glasses 
increases, and the transfer numbers reach their maximum values of 0.86-0.88 for 
compositions at the boundary of the glass formation region, which, as expected, is limited by 
the release of crystalline arsenic. For glasses of the section AsSe – Ag, depleted in silver, the 
study of the electrical properties and determination of the transfer numbers of silver ions were 
not carried out. The electrical properties and transfer numbers for silver-enriched glasses from 
this section are also shown in Fig. 3. 

Estimation of the conductivity value from the concentration of current carriers. 
Since the electrical conductivity of metal-containing chalcogenide glasses noticeably exceeds 
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the electrical conductivity of other classes of glasses – silicate, borate, and phosphate, it is of 
interest to evaluate the conduction mechanism depending on the concentration of current 
carriers and their structural and chemical features and compare the results with similar data 
for other types of glasses [22]. For this, it is advisable to determine the activation volume of 
migration of the silver cation in chalcogenide glasses with conductivity with their 
participation. The activation volume of migration is a certain effective parameter that includes 
not only the thermodynamic characteristics of the migration process, the geometric 
dimensions of the ion migrating in a solid but also the geometric dimensions of structural 
defects along which this migration is carried out. This approach was theoretically developed 
for crystals [16] but has been successfully applied to a number of oxide glasses. However, 
such studies are extremely few, since they require unique installations that allow one to 
measure the electrical conductivity of samples when high pressure is applied (tens of 
thousands of atmospheres). Under the action of high pressure, the electrical conductivity of 
ion-conducting materials decreases, while in the case of conductors with electronic 
conductivity, its growth is observed [17,18]. It should be noted that, as applied to glasses, it is 
possible to use other parameters instead of the activation volumes of migration - the volumes 
of fluctuation microcavities, which are much easier to determine, but for several classes of 
oxide glasses these parameters practically coincide (for more details, see, for example, 
[12,19]). In accordance with Eyring's theory [20], the electrical conductivity of solutions is 
given by: 

( )#   / ,оexp G RTσ σ= −∆  (5) 

where σ is the specific electrical conductivity, ΔG# =ΔH# + PΔV# – (ΔG# is the original 
notation, according to [20]) is the activation free energy of the process – a value identical to 
the activation energy of electrical conductivity (Еσ).  
 The multiplier in the exponent determines the probability of the activated complex 
existence. The activated complex in this case is some effective value characterizing the 
migration process, i.e. the number of particles with the energy required for the process of 
dissociation of an ionogenic structural fragment and subsequent migration of the dissociated 
ion.  
 Parameters ΔH# and ΔV# are the minimum values of molar enthalpy and molar 
activation volume required for the formation of this activated complex [20], which can be 
determined from the following thermodynamic equalities: 

#
# ( / ) ln ,

(1 / ) (1 / ) PP

G TH R
T T

σ   ∂ ∆ ∂
∆ = = −   ∂ ∂  

 (6) 

#
# ( ) ln ,

TT

GV RT
P P

σ ∂ ∆ ∂ ∆ = = −   ∂ ∂  
 (7) 

where R and T are gas constant and temperature. The numerical values of ΔH# can be 
determined from the temperature dependences of electrical conductivity at constant pressure, 
and the values of ΔV#, respectively, from the data on the effect of high pressure (uniform 
compression) on electrical conductivity under isothermal conditions. 
 The free activation energy of electrical conductivity ΔG# (in this work, Еσ) can be 
divided into two components and presented in the following form: 

# 1 , 
2 d аG G G∆ = ∆ + ∆  (8) 

where dG∆  is the free energy of dissociation, and аG∆  is the free activation energy of ion 
displacement.  
 Then the expression for the temperature dependence of the electrical conductivity can 
be written in the following form: 
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Taking into account the ratio 
#

#

,
T

G
P

V∆
 ∂∆


=  ∂ 

 (10) 

total activation volume will be equal to 
# 1 , 

2 d аV V V∆ = ∆ + ∆  (11) 
 

where dV∆  is the partial activation volume of the formation of a dissociated ion (vacancy), 
and aV∆  is the partial activation volume of the movement of this ion. 

There is a correlation between ΔH# and ΔV# of the form ΔV# = const·ΔH# [16] and this 
constant has the dimension of compressibility, therefore, the expression for ΔV # can be 
written in the following form:  

# . . # ,V Hξ ϑ∆ = ∆  (12) 
where ϑ  is the compressibility (in the first approximation, χs is the adiabatic compressibility), 
ξ is a dimensionless constant, the value of which can be determined from the following 
relation: 

1
 2 1 .

3 2
µ
µ

ξ  +
 − 

=  (13) 

Then the theoretical value of the volume of the activated complex ( #
thV∆ ) can be 

calculated through the elastic modulus from a ratio: 
# #2(1 ) ,thV H

E
µ+

∆ = ⋅∆  (14) 

where E is Young's modulus, μ is Poisson's ratio. 
Earlier, we investigated the electrical conductivity of several chalcogenide glassy 

compositions under the influence of high (up to 6000 atm) pressure [12,19]: it was shown that 
glass of the AgAsS2 composition, with purely cationic conductivity for silver (tAg+ = 0.999), 
the electrical conductivity under high pressure decreases, while the conductivity of the 
compositions Ag0.8Tl0.2AsS2 (tAg + = 0.86) and Ag0.63AsSе1.5 (tAg + = 0.88) increases. It is 
impossible to calculate the activation volume for mixed ion-electronic conductors, but for the 
AgAsS2 composition, the calculated activation volume is ΔV# = 4.0 ± 1.0 cm3/mole. 

It was of interest to compare the values of activation volumes obtained from data on the 
effect of high hydrostatic pressure on electrical conductivity with values calculated through 
elastic modulus. It is known from the literature that these values are close for different classes 
of glasses, for example, silicate or phosphate glasses [17]. Previously, we measured the 
propagation velocity of longitudinal and transverse ultrasonic waves and calculated elastic 
modulus, including for AgAsS2 glass [12]. It is known that the process of compaction of the 
structure of a solid (including glass) under the influence of all-round (hydrostatic) 
compression is by its nature identical to compaction in a small volume under the influence of 
an indenter when determining the Vickers microhardness by the indentation method [21]. 
This process of structure compaction can be considered as the process of liquidation of 
fluctuating microcavities in glass, which can ultimately be described within the framework of 
the free volume theory. Within the framework of this theory, it is possible to satisfactorily 
describe and explain the various properties of glasses and their melts. 

It is known that the volume of solid glass is always greater than the volume of a crystal 
of the same composition. The reason for the increase in the volume fraction of the fluctuation 
free volume ( gf ) in the glass is the freezing of the structure of the glass-forming melt during 
the glass transition, and the presence of bridging atoms with distorted bond angles in the glass 
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is precisely the main reason for this phenomenon. The fluctuation volume of amorphous 
(glassy) substances is caused by freezing in the process of glass transition, the displacement 
of structural fragments from equilibrium positions [22]. Therefore, gf  is a floating parameter 
and directly depends on the thermal history of a particular sample. 

In general, the free volume can be used to judge the degree of loosening of the glass 
structure, which partially determines steric hindrances in the process of ion migration in solid 
glass and to some extent explains the fact that the conductivity of glass is usually higher than 
the conductivity of a crystal of the same composition. 

The volume of fluctuation microcavity in glass (Vh) can be calculated in terms of elastic 
modulus, Vickers microhardness, and softening temperature by the following expressions: 

3(1 2 ) ,g
h

g

kT
V

f E
µ−

= ⋅  (15) 

1 ,h
g

g

V l
kT

f
n

H
 

⋅ 


= 


 (16) 

where H  is the microhardness and gf  is the volume fraction of the fluctuation free volume 
"frozen" below the glass-transition temperature. 

The value of gf  can be determined through the elastic modulus (E, μ) from the 
following relationship: 

21 (1 2 ) .
2(1 )g

gf
f

ln µ
µ

  −
⋅ =   + 

 (17) 
 

Based on the presented expressions, we determined the values of these parameters. The 
gf  values obtained for chalcogenide glasses are approximately 2-3 times lower than for oxide 

glasses ( gf  values, for example, for silicate glasses, are in the range 0.027-0.030) [23,24]. It 
is known that with an increase in the degree of connectivity of the glass network, an increase 
in Young's modulus and Poisson's ratio is observed, i.e. low values of μ correspond to 
increased elasticity of the material. In this case, it can be concluded that the degree of 
cohesion of chalcogenide glasses decreases in comparison, for example, with silicate glasses. 
From the values of elastic constants (Table 5), the volume fraction of the fluctuation free 
volume and microcavity volumes were calculated. 

 
Table 5. Elastic constants, Young's modulus (E), Poisson's ratio (µ), the volume fraction of 
the fluctuation free volume (fg), microcavity volume (Vh), the molar volume of glasses (Vmol), 
and equilibrium distance between the particles (rn ) of glasses from the AsSe1.5 – Ag section 

(Note: the molar volume of glass is Vmol = M/d (M is the molecular weight of glass, d is the 
density), rn ≈ (Vh)⅓). 
 

Ag, 
at. % 

υl
.10-3, 
m/s 

υt
.10-3, 
m/s 

µ 
 

E.10-8, 
H/m2 fg 

Vh, 
Å3 

Vh, 
cm3/mole 

Vmol, 
cm3/mole rn, Å 

5 2.80 1.40 0.330 280 0.008 6.7 4.0 42.6 1.17 
10 2.65 1.30 0.334 240 0.006 8.0 4.8 44.2 1.24 
15 2.45 1.20 0.338 200 0.007 9.0 5.4 45.5 1.29 
20 2.25 1.10 0.347 190 0.008 8.3 5.0 46.7 1.25 
25 2.15 1.05 0.350 180 0.008 8.5 5.1 49.0 1.25 
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According to [25], the formation of an activated complex for inorganic network 
structures occurs without breaking valence bonds but is realized by switching them. It is with 
the switching of bridging bonds that the jump of an ion into microcavities in the case of 
silicate glasses is associated. Probably, in the case of ion-conducting chalcogenide glasses, 
including the aforementioned AgAsS2 and the compositions of the sections AsSe – Ag and 
AsSe1.5 – Ag with a high ionic component, a similar phenomenon is observed. Comparison of 
the activation volumes ΔV#, calculated from the dependence of electrical conductivity on 
pressure, for AgAsS2 glass (ΔV# = 4.0 ± 1.0 cm3/mole) with the volumes of fluctuation 
microcavities (Vh = 5.0 ± 1.0 cm3/mole) indicates their proximity, not only for the series oxide 
glasses but also for chalcogenide glasses [17,19]. 

Taking into account the volume of the migrating silver cation (VAg+ = 3.7 cm3/mole), it 
can be concluded that the migration of these ions in the structure of chalcogenide glasses does 
not experience serious steric hindrances and rather resembles the mechanism of ion migration 
in liquids [17,19], than in crystals for which ΔV# ≈ VМе +. 

The values of the activation volumes for silver-containing chalcogenide glass and, for 
example, silicate glass with a volume of migrating silver cation, allows one to clearly explain 
the higher electrical conductivity of chalcogenide glasses with ionic conductivity compared to 
other classes. 
 
4. Conclusions 
Based on a comprehensive study of the electrical and structural properties of chalcogenide 
glasses with different silver content, it was found that glasses of the As – Se – Ag system 
along the AsSe – Ag and AsSe1.5 – Ag sections have mixed ion-electronic conductivity, the 
magnitude, and the main carrier of which change in depending on the silver content. The 
study showed that at a silver concentration of more than 5 at.%, The main current carrier 
changes: predominantly electronic conductivity is replaced by predominantly ionic. In 
chalcogenide glasses, the activation volumes of the migration of silver ions are close in 
magnitude to the volumes of fluctuation microcavities and noticeably exceed the volume of 
the migrating Ag+ ion, which allows us to conclude that there are no serious steric hindrances 
during their migration and the high electrical conductivity of glasses in the AsSe – Ag and 
AsSe1.5 – Ag sections. 
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Abstract. The construction of a physically nonlinear model of deformation of a rectangular 
orthotropic plate of average thickness loaded with a transverse uniform distributed load is 
considered. This model is limited by the scope of small deflections. In the formulation and 
solution, not only the orthotropy of the plate material was taken into account, but also the 
nonlinear differential resistance, which was described using the equations of state, constructed 
using the normalized stress space. The plate fastening is presented in two versions: hinged 
support and rigid fastening along the contour. An algorithm for solving this class of problems 
was developed and implemented. A practical solution was made using the MATLAB software 
package. 
Keywords: rectangular plate, rigid clamping, hinged support, orthotropic material, nonlinear 
resistance to resistance 
 
 
1. Introduction 
The development of science and technology has given impetus to the design of more complex, 
improved, and unique buildings, structures, machine parts, and apparatus. An example of this 
is modern research centers, sports stadiums, military equipment, and the aviation industry. In 
all these industries, materials are used whose properties don't obey the linear laws of 
mechanics. All these objects require careful calculation since the slightest error at the initial 
design stage can lead to serious accidents and death of people later.  

For the error-free design of such structures, various calculation theories are developed 
and simplified models of objects are proposed. Also, more and more technologically 
advanced materials are used, for the calculation of which conventional (classical) models 
aren't enough, for example, a structural material, a composite of carbon fiber AVCO Mod 3a 
[35]. The desire to reduce the weight of the structure while improving its quality makes it 
necessary to use modern calculation methods in the design process. That is why the 
development of new and modernization of old models is an urgent task of modern structural 
mechanics and mechanics of a deformable solid. 

The issue of calculating material with different resistance, and specifically plates made 
of them, was dealt with by many researchers: S.A. Ambartsumyan [1-5], R.M. Jones [6-9], 
C.W. Bert [10-13], A.A. Zolochevsky [14-21], Lomakin E.V. [22-23], A.V. Berezin [24], 
N.M. Matchenko [26] and A.A. Treschev [25,27-32]. 

So S.A. Ambartsumyan in his works [1-3] proposed simple constitutive relations in the 
form of equations of state with tangential-linear dependencies between the principal stresses 
and deformations, and the question of the relations between shear stresses and shears wasn't 
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discussed. In his model, the field, the principal stresses are divided into regions of the first 
and second kind [4-5]. This model is similar in shape to the classical generalized Hooke's law 
of orthotropic material, but the elastic moduli and transverse strain coefficients in the 
directions of the principal axes are determined separately from the experiments on axial 
tension (Еk

+, νkm
+) and compression (Еk

–, νkm
–). Direct application of the proposed relations is 

possible only in those cases when the distribution of the principal stresses by their signs at 
different points of the body is known in advance, as well as subject to model constraints on 
the constants arising from the symmetry condition of the compliance tensor. 

In the model of R.M. Jones [6-9] featured symmetric weighted compliance matrices. 
Their symmetry was achieved by different signs of the principal stresses due to the 
introduction of weight coefficients into the off-diagonal components. They were pairwise 
ratios of the modules of principal stresses ( 1 1 1 2/ ( )k σ σ σ= + , 2 2 1 2/ ( )k σ σ σ= + ). 

One of the simplest models of equations of state for materials with different resistance 
was proposed by K.V. Bert (C.W. Bert) [10-13]. This model is applicable to fibrous materials, 
where the components of the compliance matrix depend on the sign of the normal stresses 
arising in the direction of the fibers. When equal to 0 along the fibers of normal stresses, this 
theory ceases to be valid. 

The most complex and controversial model was proposed by A.A. Zolochevsky  
[14-21]. He introduced equivalent stress, the second degree of which determines the 
deformation potential. The potential constants are "hidden" in the expressions that make up 
the equivalent stress. Equivalent stress is determined by the sum of linear and quadratic joint 
stress invariants. Due to the presence of irrationality in the equations for the relationship 
between stresses and strains, it isn't possible to single out the compliance matrix in a general 
form. The complexity of this model lies in the experimental determination of a many numbers 
of constants (which can't always be isolated from experiments in sufficient quantities). In 
particular, for an orthotropic material in the quasi-linear approximation, it is necessary to 
determine thirty-two constants, and from the simplest reference experiments (uniaxial tension 
and compression in the direction of the main orthotropic axes and at an angle of 45 ° to them) 
only eighteen can be established. 

 
2. Methods 
It is obvious that even a detailed analysis of the most well-known models of constitutive 
relations for anisotropic materials with different resistances indicates that these models aren't 
free from serious shortcomings and are based on individual hypotheses, often unfounded by 
experimental facts. In particular, E.V. Lomakin in [22-23] formulates the strain potential for 
anisotropic materials in the form of an energy function of the ratio of average stress to stress 
intensity / iξ σ σ=  (where / 3 ij ijσ σ δ= ⋅  – average stresses, 1,5i ij ijS Sσ =  – average 

stresses; ij ij ijS σ δ σ= −  – components of the stress deviator; ijδ  – Kronecker symbol), 
multiplied by the convolution of the fourth rank compliance tensor with second rank stress 
tensors in the principal axes of material anisotropy. A serious drawback of the introduced 
relations is the emergence of uncertainties for the functional parameter of the ξ  level ±∞, 
which was repeatedly pointed out in [24-26]. 

In the works of N.M. Matchenko and A.A. Trescheva [25-27] deformation potentials 
are constructed for anisotropic multi-resistive materials admitting quasi-linear approximation 
in nine-dimensional normalized stress space. In these works, equations of state of two levels 
of accuracy were obtained. Despite the rationality of this approach, the relations obtained are 
also not free from significant drawbacks, which for equations of the first level of accuracy are 
complex functional dependencies between uncorrelated constants of materials, and for 
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equations of the second level, there is an excessively large number of constants subject to 
experimental determination, which requires the involvement of experiments on complex stress 
conditions. 

In subsequent works [28,31-32], a correcting formulation of the equations of state was 
carried out for a different class of anisotropic materials, both in quasilinear and nonlinear 
formulations. In the nonlinear model [29-30], equations of state are used, represented by the 
type of generalized Hooke's law for anisotropic materials by the type: 

( ), ;km kmpq i st pqe H σ α σ= ⋅      ;kmpq pqkmH H=     , , , , , , 1, 2,3.k m q p s t =  (1) 
In particular, for an orthotropic material, these dependencies are presented as follows: 
( ) ( )11 1111 1111 11 11 1122 1122 11 22 22e A B A Bα σ α α σ= + ⋅ ⋅ + + ⋅ + ⋅ +    (2) 

( )1133 1133 11 33 33;A B α α σ + + ⋅ + ⋅   

( ) ( )22 1122 1122 11 22 11 2222 2222 22 22e A B A Bα α σ α σ= + ⋅ + ⋅ + + ⋅ ⋅ +    (3) 

( )2233 2233 22 33 33;A B α α σ + + ⋅ + ⋅   

( ) ( )33 1133 1133 11 33 11 2233 2233 22 33 22e A B A Bα α σ α α σ   = + ⋅ + ⋅ + + ⋅ + ⋅ +     (4) 

( )3333 3333 33 33;A B α σ+ + ⋅ ⋅  
2 ( )12 1212 12ie C σ τ= ⋅ ;  (5) 
2 ( )23 2323 23ie C σ τ= ⋅ ; (6) 

2 ( )13 1313 13;ie C σ τ= ⋅  (7) 
where / ;ij ija Sσ=  – normalized stresses in the principal axes of material anisotropy; 

( ) ( )0.5 2 2 2 2 2 2
11 22 33 12 23 312ij ijS σ σ σ σ σ τ τ τ= ⋅ = + + + + +  – total stress modulus (stress space norm); 

, , ,  ijkm ijkm ijkmA B C  – nonlinear functions that determine the mechanical properties of the 
material. 

For orthotropic bodies, the number of independent material functions reaches fifteen 
[31-32]. The representation of these functions that determine the properties of the material is 
carried out by approximating the experimental deformation diagrams under uniaxial tension 
and compression along the principal anisotropy axes and diagrams obtained for shear in three 
principal orthotropic planes by processing them in the Microcal Origin Pro 8.0 program 
(Microcal Software Inc.). In this case, for a structural orthotropic nonlinearly resistive 
composite material AVCO Mod 3a [35] are represented as follows: 

( ) ( ) ( )0.5 1/ 1/ ;kkkk i k i k iA E Eσ σ σ+ − = ⋅ +   (8) 

( ) ( ) ( )0.5 1/ 1/ ;kkkk i k i k iB E Eσ σ σ+ − = ⋅ −   (9) 

( ) ( )
( )

( )
( )

0.5 ;km i km i
kkmm i

m i m i
A

E E

ν σ ν σ
σ

σ σ

+ −

+ −

 
 = − ⋅ +
  

 (10) 

( ) ( )
( )

( )
( )

0.5 ;km i km i
kkmm i

m i m i
B

E E

ν σ ν σ
σ

σ σ

+ −

+ −

 
 = − ⋅ −
  

 (11) 

( ) ( )1/ ;kmkm i km iC Gσ σ=  (12) 

( ) 2;k i k k i k iE a m nσ σ σ± ± ± ±= + ⋅ + ⋅  (13) 
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( ) 2;km i km km i km iν σ λ β σ m σ± ± ± ±= + ⋅ + ⋅  (14) 

( ) 2;km i km km i km iG g p qσ σ σ= + ⋅ + ⋅  (15) 

where ,   ,   ,    ,   ,   ,    ,   ,   k k k km km km km km kma m n g p qλ β m± ± ± ± ± ±  – constants of nonlinear material 
functions, determined by processing experimental deformation diagrams by the least-squares 
method and presented in Table 1. 

This model of a nonlinear orthotropic resistive material [28,31] is currently the least 
controversial, gives the results as close as possible to the experimental data, and therefore is 
used here as the basis for constructing a method for calculating plates. 

The nonlinear properties of such materials manifest themselves already at the elastic 
stage of deformation, and this significantly affects the stress distribution with a further 
increase in the load. It isn't possible to describe the process of deformation of a plate made of 
similar materials by ordinary linear functions with the required degree of accuracy, and 
especially in a complex stress state, which is realized within the framework of transverse 
bending. 

We consider the elastic equilibrium of a rectangular single-layer plate, referred to the 
Cartesian coordinate system (the X1 axis is along the long side of the plate, the X2 axis is 
along the short side of the plate, and the X3 axis is along the plate thickness). At an arbitrary 
point on the plate, one of the symmetry planes is parallel to the median surface, and the other 
two are perpendicular to the coordinate lines: 1 2,  . x const x const= =   

Two options for supporting the plate along the contour are considered: 
- plate with rigidly clamped contours in accordance with Figure 1a; 
- the plate is hingedly supported along the contours in accordance with Fig. 1b. 
 
                             a)    b) 

  
Fig. 1. Design diagram of a rectangular plate with two types of support: 
a) with rigidly clamped contours; b) with hingedly supported contours 

 
Table 1. Constants of composite material AVCO Mod 3a [35] 

Sample test type Technical 
parameter 

1st element of 
nonlinear func-

tion 

2nd element of 
nonlinear func-

tion 

3rd element of 
nonlinear func-

tion 

U
ni

ax
ia

l t
en

si
on

 a
lo

ng
  

th
e 

pr
in

ci
pa

l a
xe

s o
f o

r-
th

ot
ro

py
 

( )ikE σ+ , Pa 

+
1α  +

1m  +
1n  

1.058⋅10-10 62.829 1.535⋅10–6 
+
2α  +

2m  +
2n  

2.864⋅10-10 –105.476 5.893⋅10–7 
+
3α  +

3m  +
3n  

2.301⋅10-10 88.349 3.711⋅10–6 
( )ikm σν +  +

12λ  +
12β  +

12m  
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Sample test type Technical 
parameter 

1st element of 
nonlinear func-

tion 

2nd element of 
nonlinear func-

tion 

3rd element of 
nonlinear func-

tion 
0.158 –3.106⋅10–9 2.192⋅10–17 

+
21λ  +

21β  +
21m  

0.103 –1.79⋅10–9 9.106⋅10–18 
+
13λ  +

13β  +
13m  

0.203 2.15⋅10–9 6.148⋅10–17 
+
23λ  +

23β  +
23m  

0.104 0.87⋅10–10 6.741⋅10–17 
+
31λ  +

31β  +
31m  

0.146 –0.146⋅10–10 6.971⋅10–17 

U
ni

ax
ia

l c
om

pr
es

si
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al

on
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th
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m
ai

n 
ax

es
 o

f o
rth

ot
ro

py
 ( )ikE σ− , Pa 

−
1α  −

1m  −
1n  

9.988⋅109 –12.943 6.71⋅10–7 
−
2α  −

2m  −
2n  

2.326⋅1010 –436.81 –6.077⋅10–7 
−
3α  −

3m  −
3n  

5.14⋅109 –129.15 –78.31⋅10–6 

( )ikm σν −  

−
12λ  −

12β  −
12m  

0.118 –1.457⋅10–9 2.136⋅10–17 
−
21λ  −

21β  −
21m  

0.06 1.77⋅10–9 2.947⋅10–17 
−
13λ  −

13β  −
13m  

0.264 –1.118⋅10–9 3.01⋅10–17 
−
23λ  −

23β  −
23m  

0.189 2.156⋅10–9 2.104⋅10–17 
−
31λ  −

31β  −
31m  

0.134 –0.457⋅10–10 5.819⋅10–17 

O
ff

se
t i

n 
pr

in
ci

pa
l 

or
th

ot
ro

py
 p

la
ne

s 

( )ikmG σ , Pa 
 

12g  12p  12q  
4.07⋅109 –1,6 –8.38⋅10-6 

23g  23p  23q  
1.723⋅109 16.899 –1.1⋅10–5 

31g  31p  31q  
2.43⋅109 –54.455 –1.97⋅10–5 

 
For the posed problem, model assumptions, traditional for this class of problems, were 

introduced over the entire plate thickness [12,19,31] in the following formulation:  
1) the normal to the median plane after deformation is rotated by an angle 1ψ  relative to 

the axis 1x and by - 2ψ  relative to the axis 2x ; 
2) when determining the parameters of the stress state, the influence of normal stresses 

3σ  due to their smallness, is neglected. 
Based on the above assumptions, for the displacements of the plate points we have: 

( ) ( ) ( )1 1 2 3 1 1 2 3 2 1 2, , , , ;u x x x u x x x x xψ= + ⋅  (16) 
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( ) ( ) ( )2 1 2 3 1 1 2 3 2 1 2, , , , ;u x x x u x x x x xψ= + ⋅  (17) 

( ) ( )3 1 2 3 1 2, , , ;u x x x w x x=  (18) 
where 1 2 3, ,u u u  – mid-surface displacement; 21,ψψ  – angles of rotation of the plate sections 
relative to the axes; w – deflection. 

In this case, the constitutive relations for a nonlinearly resistive orthotropic material (2-
7), according to the adopted model, are represented as: 

( ) ( )( ) ( ) ( ) ( )11 1111 1111 11 11 1122 1122 11 22 22;i i i ie A B A Bσ σ α σ σ σ α α σ = + ⋅ ⋅ + + ⋅ + ⋅   (19) 

( ) ( ) ( ) ( ) ( )( )22 1122 1122 11 22 11 2222 2222 22 22;i i i ie A B A Bσ σ α α σ σ σ α σ = + ⋅ + ⋅ + + ⋅ ⋅   (20) 

( ) ( ) ( ) ( )33 1133 1133 11 11 2233 2233 22 22;i i i ie A B A Bσ σ α σ σ σ α σ   = + ⋅ ⋅ + + ⋅ ⋅     (21) 

( )12 1212 122 ;ie C σ τ= ⋅  (22) 

( )13 1313 132 ;ie C σ τ= ⋅  (23) 

( )23 2323 232 ;ie C σ τ= ⋅  (24) 
where:  

2 2 2 2 2
11 22 12 23 312( )S σ σ τ τ τ= + + + + ; (25) 

2 2 2 2 2
11 11 22 22 12 23 313( );iσ σ σ σ σ τ τ τ= − + + + +  (26) 

( ) ( )1111 1111 1111 11;i iC A Bσ σ α= + ⋅  (27) 

( ) ( ) ( )1122 1122 1122 11 22 ;i iC A Bσ σ α α= + ⋅ +  (28) 

( ) ( )1133 1133 1133 11;i iC A Bσ σ α= + ⋅  (29) 

( ) ( )2222 2222 2222 22;i iC A Bσ σ α= + ⋅  (30) 

( ) ( )2233 2233 2233 22;i iC A Bσ σ α= + ⋅  (31) 

( ) ( ) ( )1212 1212 2323 2323 3131 3131;      ;      .i i iD C D C D Cσ σ σ= = =  (32) 
Expressing stresses through deformations, taking into account the simplifying equations 

(8-15, 19-24, 27-32), after simple mathematical manipulations, we come to the following 
dependencies: 

( ) ( )11 1111 1,1 3 2,1 1122 2,2 3 1,2 ;D u x D u xσ ψ ψ= − ⋅ + − ⋅  (33) 

( ) ( )22 1122 1,1 3 2,1 2222 2,2 3 1,2 ;D u x D u xσ ψ ψ= − ⋅ + − ⋅  (34) 

( )1,2 2,1 3 1,1 2,2
12

1212
;

u u x
D

ψ ψ
τ

+ − ⋅ +
=  (35) 

( )2 ,1
23

2323
;

w
D

ψ
τ

+
=  (36) 

( )1 ,2
31

3131
;

w
D

ψ
τ

+
=  (37) 

where: 
2222

1111
1111 2222 1122 1122

;=
⋅ − ⋅

CD
C C C C

 (38) 

1122
1122

1111 2222 1122 1122
;=

⋅ − ⋅
CD

C C C C
 (39) 
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1111
2222

1122 1122 2222 1111
.=

⋅ − ⋅
CD

C C C C
 (40) 

Deformations aren't explicitly included here, but they are easily calculated from the 
third equation of the system (19-24). 

Taking into account that taking the new physical equations as a basis, we thus don't 
make changes in the dependences of the static-geometric nature, we represent the static 
conditions for a rectangular plate in a Cartesian coordinate system in the traditional form 
[12,19,31]: 

, , ,0;       ;       0.= = − − =ij j k k ij j iN Q q M Q  (41) 
Forces and moments are determined by integrating stresses (31-35) over the plate 

thickness: 

( )
h/2

3
-h/2

,      i,j 1,2 ;ij ijN dxσ= =∫  (42) 

( )
h/2

3 3
-h/2

,     k 1,2 ;       k kQ dxτ= =∫  (43) 

( )
h/2

3 3
-h/2

,     i,j 1,2 .ij ijM x dxσ= ⋅ =∫  (44) 

Considering dependences (31-44) together, after some transformations, we obtain the 
resolving equations for bending of rectangular orthotropic plates of average thickness from a 
nonlinear material with different resistance: 

2,11 1111 2,1 1111,1 1,21 1122 1,2 1122,1 2,21 1122 2,2 1122,1B B B B u B u Bψ ψ ψ ψ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ +  

1,1 1111,1 1,11 1111 1,12 12120,5u B u B Bψ+ ⋅ + ⋅ + ⋅ ⋅ +  

1,1 1212,2 2,22 1212 2,2 1212,20,5 0,5 0,5B B Bψ ψ ψ+ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ +  (45) 

1,12 1212 1,2 1212,2 2,12 1212 2,1 1212,20,5 0,5 0,5 0,5 0;u D u D u D u D+ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ =  
 

1,2 2222,2 1,22 2222 2,1 1122,2 2,12 1122 2,2 2222,2 2,22 2222B B B B u B u Bψ ψ ψ ψ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ +  

1,12 1122 1,1 1122,2 1,1 1212,10,5u B u B Bψ+ ⋅ + ⋅ + ⋅ ⋅ +  

1,11 1212 2,2 1212,1 2,21 12120,5 0,5 0,5B B Bψ ψ ψ+ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ +  (46) 

1,2 1212,1 1,21 1212 2,1 1212,1 2,11 12120,5 0,5 0,5 0,5 0;u D u D u D u D+ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ =  
 

2 1313,1 2,1 1313 3 1313,1 ,11 13130,5 0,5 0,5 0,5D D w D w Dψ ψ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ +  

1 2323,2 1,2 2323 ,22 2323 ,2 2323,20,5 0,5 0,5 0,5 ;w D w D w D w D q+ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ = −  (47) 
 

2,11 1111 2,1 1111,1 1,21 1122 1,2 1122,1 2,21 1122K K K K u Bψ ψ ψ ψ⋅ + ⋅ + ⋅ + ⋅ + ⋅ +  

2,2 1122,1 1,11 1111 1,1 1111,1u B u B u B+ ⋅ + ⋅ + ⋅ +  

1,1 1212,2 1,12 1212 2,22 12120,5 0,5 0,5K K Kψ ψ ψ+ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ +  (48) 

2,2 1212,2 1,22 1212 1,2 1212,20,5 0,5 0,5K u B u Bψ+ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ +  

2,1 1212 2,12 1212,2 2 1313 ,1 13130,5 0,5 0,5 0,5 0;u B u B D w Dψ+ ⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅ =  
 

1,22 2222 1,2 2222,2 2,12 1122 2,1 1122,2 2,22 2222K K K K u Bψ ψ ψ ψ⋅ + ⋅ + ⋅ + ⋅ + ⋅ +  
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2,2 2222,2 1,12 1122 1,1 1122,2u B u B u B+ ⋅ + ⋅ + ⋅ +  

1,11 1212 1,1 1212,1 2,21 12120,5 0,5 0,5K K Kψ ψ ψ+ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ +  (49) 

2,2 1212,1 1,21 1212 1,2 1212,10,5 0,5 0,5K u B u Bψ+ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ +  

2,11 1212 2,1 1212,1 1 2323 ,2 23230,5 0,5 0,5 0,5 0.u B u B D w Dψ+ ⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅ =  
To solve the obtained equations (45-49), we use the finite-difference method with the 

approximation of the second order of accuracy [33-34]. This procedure is implemented in the 
MATLAB environment. 

 
3. Results and discussion 
The main calculation results are given for a plate with dimensions of 1.0×0.75×0.075 (a×b×h) 
m, under the action of a uniformly distributed load q=1.45 MPa. As a result of solving the 
problem posed for the transverse bending of a rigidly fixed (Figs. 2-19) and hingedly 
supported (Figs. 20-34) rectangular plate made of orthotropic nonlinear multi-resistive 
composite material AVCO Mod 3a [35], distributions of the main characteristics of the stress-
strain state were obtained. Additionally, the effect of the load value on deflections and 
maximum moments in the plate was analyzed to demonstrate nonlinearity for various fixing 
options.  

Rigidly clamped plate made of graphite AVCO Mod3а [35] 
 

 
Fig. 2. Deflections W along the diagonal of the plate 
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Fig. 3. Distribution of xσ  stresses over the plate thickness at point 0.5a 0.5b 

 

 
Fig. 4. Distribution of yσ  stresses over the plate thickness at point 0.5a 0.5b 
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Fig. 5. Distribution of shear stresses xyσ  along the platinum diagonal in the lower section 

 

 
Fig. 6. Distribution of shear stresses xyσ  along the diagonal of platinum in the upper section 
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Fig. 7. Distribution of shear stresses yzσ  along the X2 axis in the lower section 

 

 
Fig. 8. Distribution of shear stresses yzσ  along the X2 axis in the upper section 
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Fig. 9. Efforts 11N  along the Х1 axis 

 

 
Fig. 10. Efforts 22N  along the Х1 axis  
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Fig. 11. Bending moment 11M  along the Х1 axis  

 

 
Fig. 12. Bending moment 22M  along the Х1 axis  
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Fig. 13. Efforts 11N  along the Х2 axis  

 

 
Fig. 14. Efforts 22N  along the Х2 axis  
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Fig. 15. Bending moment 11M  along the Х2 axis 

 

 
Fig. 16. Bending moment 22M  along the Х2 axis 
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Fig. 17. Effect of load value on deflections 

 

 
Fig. 18. Influence of the magnitude of the load on the maximum bending moment М11 
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Fig. 19. Influence of the magnitude of the load on the maximum bending moment М22 

 
Freely supported plate made of graphite AVCO Mod3а 
 

 
Fig. 20. Deflections W along the Х1 axis 
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Fig. 21. Deflections W along the Х2 axis 

 

 
Fig. 22. Distribution of xσ  stresses over the plate thickness at point 0,5a 0,5b 
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Fig. 23. Distribution of yσ  stresses over the plate thickness at point 0,5a 0,5b 

 

 
Fig. 24. Distribution of shear stresses xyσ  along the diagonal of platinum in the lower section 
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Fig. 25. Distribution of shear stresses xyσ  along the diagonal of platinum in the upper section 

 

 
Fig. 26. Distribution of shear stresses yzσ  along the diagonal of the slab in the upper section 
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Fig. 27. Distribution of shear stresses yzσ  along the diagonal of the slab in the upper section 

 

 
Fig. 28. Efforts 11N  along the Х1 axis 
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Fig. 29. Bending moment 22M  along the Х1 axis 

 

 
Fig. 30. Efforts 22N  along the Х2 axis 
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Fig. 31. Bending moment 11M  along the Х2 axis 

 

 
Fig. 32. Effect of load value on deflections 
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Fig. 33. Influence of the magnitude of the load on the maximum bending moment М11 

 

 
Fig. 34. Influence of the magnitude of the load on the maximum bending moment М22 
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4. Summary 
Analyzing the above graphical dependencies, it should be noted that the disregard for 
nonlinearity leads to a very significant error in the results. It should be said that when using 
materials in which the nonlinearity is more pronounced than that of the carbon fiber – carbon 
AVCO Mod 3a composite, and considering structures in large displacements and in a more 
complex stress-strain state, the stress-strain state will change even more significantly. 

Based on the above, it can be concluded that this work is relevant and will serve as the 
first step towards a more accurate calculation of building structures within the framework of 
the proposed theory [32]. 

In a similar vein, the problem of axisymmetric transverse bending of an annular plate 
made of an orthotropic nonlinear material with different resistance was considered in [36]. 
During the deformation of the plate under consideration, there are no tangential stresses in the 
middle plane xyσ  and in the cross-section along the second coordinate yzσ , and only 

tangential stresses in the cross-section along the radial coordinate rzσ  are taken into account. 
The presence of tangential stresses xyσ  and yzσ  (Figs. 5-8 and Figs. 24-27) significantly 
complicate the picture of the stress-strain state of rectangular plates due to the redistribution 
of stresses. Taking these stresses into account gives a more complete picture of the process of 
plate deformation during transverse bending, expanding the understanding of the picture of 
the stress-strain state of bent plates (especially the moment of the onset of the limiting state). 

 
5. Conclusions 
The main results and conclusions of the work are as follows: 

1. A number of theories of deformation of nonlinear anisotropic materials with different 
resistances are considered, it is concluded that the constitutive relations used by the authors 
describe the process of deformation of plates made of these materials most fully. 

2. The governing equations for the bending of rectangular plates of average thickness 
made of an orthotropic physically nonlinear material sensitive to the type of stress state are 
obtained in a geometrically linear formulation. 

3. For a comparative analysis of the calculations of the proposed variant of 
deformation, the calculation of a rectangular plate of average thickness was carried out. The 
analysis of the results is demonstrated by the example of a rectangular plate with 
characteristic dimensions of 1.0×0.5×0.075 (a×b×h) m. 

4. An algorithm for solving the resulting resolving equations based on the method of 
variable parameters of elasticity and finite-difference approximation of the second order of 
accuracy has been developed. Developed special software which implements the algorithm 
using MATLAB computing system to calculate the stress-strain state of the plates. 

5. The results of the calculation of the plates showed that taking into account the 
phenomenon of nonlinear differential resistance allows obtaining more precise results, in 
comparison with the "linear theory of elasticity" and theories: S.А. Ambartsumyan, 
A.A. Zolochevsky, R.M. Jones – D.A.R. Nelson, C.W. Bert – J.N. Reddy up to 26.8% for 
maximum displacements, up to 38% for maximum stresses, and in some cases the difference 
for force factors can reach 60%; 

6. The analysis of the results obtained allows us to conclude that it is necessary to take 
into account the phenomenon of nonlinear resistance of the material when carrying out 
strength calculations, due to the fact that this phenomenon has a significant effect on the 
qualitative and quantitative characteristics of the stress-strain state of structures (in particular, 
for a rectangular plate of average thickness). 
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Аннотация. Изучено изменение значений круговой диаграммы зависимости 
коэрцитивной силы от угла намагничивания при переходе схемы нагружения 
двутавровой балки из стали 10 (P1.1.Z.AN) от симметричного изгиба к изгибу со 
стеснённым кручением при упругих деформациях в зоне сжатия. Обоснована 
необходимость построения круговой диаграммы коэрцитивной силы от угла 
намагничивания в зоне контроля для получения информации о направлении главных 
напряжений при определении напряженно-деформированного состояния 
металлоконструкции. 
Ключевые слова: направление главных напряжений, упругое деформирование, угол 
намагничивания, коэрцитивная сила 

 
 

1. Введение 
В настоящее время магнитный метод неразрушающего контроля является одним из 
перспективных методов для определения напряженно-деформированного состояния 
(НДС) металлоконструкций. По данной тематике опубликовано немало работ [1-29]. 
Результаты исследований по изучению влияния разной степени упругих и 
пластических деформаций на магнитные характеристики металлов описаны в работах 
[2,8,10,15,19,24,25,29], в частности, подобное влияние для образцов с наведенной 
магнитной анизотропией описано в работе [17]. Закономерностям изменения от 
внешних силовых воздействий такого наиболее перспективного и часто применяемого 
параметра магнитного контроля, как коэрцитивная сила адресованы работы 
[3,9,11,12,18]. Целый ряд работ посвящен учету особенностей и погрешностей, 
связанных с применением прикладных преобразователей [1,4,5,6,7], именно они чаще 
всего применяются при магнитном контроле массивных объектов. В работе [16] 
получены зависимости магнитных характеристик стали при упругом одноосном 
растяжении на образцах из высокопрочной трубной стали с предварительной 
пластической деформацией. Если в большинстве работ по этой тематике уделено 
внимание поведению магнитных характеристик металла при нормальных напряжениях, 
то в работе [14] показана такая зависимость и от касательных напряжений в том числе. 
Успешно используются полученные зависимости в практически реализованных 
методах для определения НДС и остаточного ресурса металлоконструкций, такие 
примеры описаны в работах [21,22]. Все научные результаты в этой области 
основываются на теории, объясняющей механизмы влияния внешних напряжений на 
магнитные характеристики ферромагнетиков (в частности, коэрцитивную силу), и 
описаны в работах [9,20,23]. 
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Во всех способах реализации данного метода фигурируют значения 
коэрцитивных сил, измеренных вдоль и поперек линии «действия» напряжений, но 
мало внимания уделено тому, как определить направление главных напряжений. 
Особенно актуальна данная проблема на практике, где сложнонапряженное состояние 
является нормой эксплуатации металлоконструкций. Так, металлоконструкции 
пусковых столов стартовых комплексов ракет космического назначения испытывают 
нагрузки с большим процентом случайности параметров вектора воздействия и по 
направлению, и по значению, что исключает симметричное и сбалансированное 
силовое воздействие на них. Сложнонапряженное состояние, возникающее при 
одновременном действии гидростатического напора, растяжения и кручения, также 
характерно при эксплуатации трубных систем. 

Настоящая работа посвящена изучению изменяющихся значений коэрцитивной 
силы, измеренной в одной точке, но в разных направлениях, от условий нагрузки с 
целью обоснования необходимости учета угла намагничивания при определении 
направления и значения главных напряжений.  

 
2. Методика проведения исследований 
При решении указанной задачи были проведены экспериментальные исследования. 
Объектом исследования служила двутавровая балка из стали 10 десятого профиля 
длиной 1100 мм. Для формирования желаемых схем нагружения применялась 
установка для механических испытаний Р-30, позволяющая обеспечить изгиб балки с 
требуемым усилием в упругой зоне деформации, и набор опор для реализации схем 
действия, как только нормальных напряжений в зоне контроля (Рис. 1а), так и в 
сочетании с касательными (Рис. 1б). 
 

                                 а)                                                                    б) 

Рис. 1. Схемы нагружения двутавровой балки: а – симметричная; б – асимметричная с 
кручением 

 
Для реализации указанных схем нагрузка прилагалась в верхней части по центру 

балки. При этом, обеспечивая наличие только нормальных напряжений в сечении, 
изгибающему усилию подвергалась балка, установленная краями на широкие 
роликовые опоры (Рис. 1а). При реализации второй схемы нагружения одна из 
роликовых опор была заменена на точечную, установленную с краю балки. Под 
действием нагрузки по центру балки в районе точечной опоры создавался крутящий 
момент, который и обеспечивал наличие касательных напряжений в сечении в 
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дополнение к нормальным от изгибающего усилия в вертикальной плоскости. Так же в 
условиях стесненного кручения, добавились нормальные напряжения от растяжения в 
горизонтальной плоскости по верхнему краю балки в районе ролика нагружения со 
стороны противоположной точечной опоре. Таким образом, при реализации второй 
схемы нагружения создавалось сложнонапряженное состояние двутавровой балки 
(Рис. 1б). 

Для магнитных измерений использовали два прибора – КИМ-2М и КРМ-Ц. 
Выбор указанных приборов обуславливался тем, что приставные электромагнитные 
устройства (ПЭМУ) удобно использовать при локальном намагничивании участков 
контролируемых конструкций, дополнительно они дают возможность изменять 
направление намагничивания относительно направления действующих нагрузок. 
Площадь поперечного сечения полюсов приставных электромагнитов составляла 
Sпол = 5 × 15 мм для КИМ-2М и Sпол = 15 × 30 мм для КРМ-Ц. Расстояние между 
полюсами Lпол = 15 мм и Lпол = 35 мм соответственно. Размеры ПЭМУ указанных 
приборов позволяли разворачивать их вокруг своей оси на поверхности балки в зоне 
контроля (Рис. 2). 

 

Рис. 2. Схема контроля двутавровой балки: 1 – сечение; 2, 5 – оси балки и ПЭМУ 
соответственно; 3, 4 – места приложения полюсов ПЭМУ; 

6 – угол намагничивания 
 

Исследования проводились в три этапа. На первом этапе снимались показания 
указанными приборами на балке без нагрузки в четырех направлениях, при этом угол 
намагничивания α составлял 0, 45, 90 и 135°. На втором этапе измерения в тех же 
направлениях проводили на балке под нагрузкой в соответствии со схемой, показанной 
на Рис. 1а. Прилагаемое усилие обеспечило максимальное нормальное напряжение 
сжатия в зоне контроля в 166 МПа – это 80% от предела текучести используемой стали. 
На третьем этапе показания приборов снимались в указанных направлениях в той же точке 
и с таким же усилием в 2,5 тонны только при реализации второй схемы нагружения 
(Рис. 1б). На всех трех этапах исследования зона контроля не менялась.  

 
3. Результаты исследований и их обсуждение 
На Рисунках 3 и 4 в виде круговых диаграмм НС = f(α) приведены результаты 
измерений коэрцитивной силы на двутавровой балке из стали 10, полученные с 
помощью серийных приборов КИМ-2М (Рис. 3) и КРМ-Ц (Рис. 4). 
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Рис. 3. Круговая диаграмма значений коэрцитивной силы [А/м], измеренной прибором 
КИМ-2М, от угла намагничивания НС1= f(α): 

● – состояние без нагрузки; ■ – с симметричной нагрузкой; ▲ – в сложнонапряженном 
состоянии 

 

Рис. 4. Круговая диаграмма значений коэрцитивной силы [А/м], измеренной прибором 
КРМ-Ц, от угла намагничивания НС2= f(α): 

● – состояние без нагрузки; ■ – с симметричной нагрузкой; ▲ – в сложнонапряженном 
состоянии 
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Предыстория механических нагружений балки неизвестна, однако уровень 
коэрцитивной силы свидетельствует о том, что незначительная пластическая 
деформация имеет место. Этот вывод можно сделать по степени отдаленности формы 
круговой диаграммы НС = f(α), построенной по результатам измерения ненагруженной 
балки, от окружности. Из диаграммы, построенной по результатам измерения 
прибором КИМ-2М (Рис. 3), видно, что НС1(0°) = 1,083НС1(90°). 

Так как численный коэффициент превышает значения относительной 
погрешности прибора, которая составляет около 8% в измеряемом диапазоне, то по 
нему можно судить о наличии пластической деформации сжатия в направлении α=0°, 
однако ее уровень не помешает дальнейшим исследованиям. При рассмотрении 
круговой диаграммы, построенной по данным с КРМ-Ц (Рис. 4), на балке без нагрузки 
видно, что НС2(0°) = 0,9НС2(90°) (отношение этих значений тоже больше относительной 
погрешности прибора, которая составляет около 4% для рассматриваемого диапазона), 
то есть форма диаграммы вытянута больше в поперечном направлении. Происходит это 
по причине того, что расстояние между внешними границами полюсов ПЭМУ КРМ-Ц 
совпадает с шириной балки, а значит, на показания прибора оказывает влияние так 
называемый краевой эффект, когда физический размер ферромагнетика ограничивает 
пространство для магнитного потока от приставного электромагнита.  

При рассмотрении круговых диаграмм, полученных при симметричном 
нагружении балки, видно, что НС(0°) значительно увеличивает, а НС(90°) заметно 
уменьшает свое значение. Диаграммы принимают вид своеобразной «восьмерки», 
которая направлением своих максимальных значений указывает на линию главных 
напряжений сжатия. В зоне растяжения изменение этих параметров обратное [26].  

Для расчета главных (эквивалентных) напряжений, напряженно-
деформированного состояния двутавровой балки использовался программный 
комплекс ANSYS Mechanical 15.0 (Рис. 5). 

 

  
Рис. 5. Определение главных напряжений при симметричной нагрузке 

двутавровой балки 
 

Необходимо отметить, что показания разных приборов имеют некоторые 
различия при одинаковых условиях получения значений коэрцитивной силы. Это 
связано с различными характеристиками ПЭМУ, в частности, площади поперечного 
сечения магнитопровода. У прибора КРМ-Ц она в 6 раз больше, чем у КИМ-2М, и 
именно эта характеристика определяет глубину промагничивания металла по выводам 
работы [1]. Характерно, что в нашем случае НС1= (0,7 – 0,78)НС2  абсолютно по всем 
измеряемым направлениям. Это дает возможность применять поправочный 
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коэффициент при использовании всего одной зависимости НС= f(σ), полученной 
любым из этих приборов.  

В случае применения такого диагностического признака, как анизотропия 
коэрцитивной силы (ΔНС), а по сути, разницы между НС(90°) и НС(0°), отметим, что 
значения ΔНС для двух разных приборов одинаковы при одинаковой нагрузке и 
составят (105±5)А/м. Этот факт дает преимущество в выборе диагностического 
признака нормальных напряжений именно ΔНС, как величине, не зависящей от типа 
прибора и его датчика. Зависимость ΔНС= f(σ) для этой балки показана в работе [27]. 

В сложнонапряженном состоянии балки (в нашем случае изгиб со стеснённым 
кручением) круговая диаграмма меняет значение своего максимума, его новое 
направление α=45° регистрируют оба прибора. Приращение значений в этом 
направлении существенное НС1(45°) = =1,12НС1(0°) для КИМ-2М и НС2(45°) = 
1,06НС2(0°) для КРМ-Ц. Существенной может оказаться и ошибка, если при наличии 
касательных напряжений измерения производить вдоль оси симметрии балки. 
Анизотропия коэрцитивной силы, судя по показаниям КИМ-2М, вдоль направления 
α=45° также на 10% больше, чем анизотропия в направлении, соосном балке (α=0°), что 
соответствует расчетной схеме при сложнонапряженном состоянии (Рис. 6). При 
рассмотрении расчетной схемы проясняется причина снижения значений показателей 
НС1(0°) и НС2(0°), один из полюсов  ПЭМУ (ближний к линии нагружения) попадает в 
зону меньших напряжений, обозначенной цифрой 1 на Рис. 6. Однако КРМ-Ц не 
показал прироста ΔНС2(45°) по сравнению ΔНС2(0°), это связано с тем, что при 
измерении НС2(135°) полюс ближний к линии нагружения попадает в зону повышенных 
напряжений, обозначенной цифрой 2 на Рис. 6. В этой зоне складываются напряжения 
сжатия от изгибов в двух плоскостях. Дополнительным фактором искажений показаний 
КРМ-Ц является масштабный фактор. Влияние толщины металла объекта контроля на 
показания коэрцитиметра описаны в работе [28]. 

 

 
 

Рис. 6. Определение главных напряжений при реализации изгиба со стеснённым 
кручением двутавровой балки 
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Схема нагружения двутавровой балки, показанная на Рис. 6, характерна тем, что 
при стеснённом кручении в зоне контроля нормальные напряжения сжатия от изгиба в 
вертикальной плоскости частично компенсируются нормальными напряжениями 
растяжения на одной из кромок балки при изгибе в горизонтальной плоскости (зона 1 
на Рис. 6). Таким образом, линии главных напряжений описывают дуги с большим 
отклонением от оси симметрии балки со стороны линии соприкосновения с роликом 
нагружения, что и фиксируют используемые в эксперименте коэрцитиметры. 
Подобные, сложные конструкции полей напряжения не поддаются точному анализу 
при эксплуатации, даже с исчерпывающими исходными данными. Однако при 
оценивании НДС элементов металлоконструкции необходимо учитывать направление 
действия главных напряжений, таким образом определять их максимальное значение в 
зоне контроля. 

 
4. Выводы 
Проведенный эксперимент показал, что с помощью коэрцитиметрического метода 
магнитного контроля возможно определение направления главных напряжений в точке 
контроля элемента металлоконструкции. Сделать это можно по экстремальным 
значениям коэрцитивной силы на круговой диаграмме в зоне контроля. Кроме того, 
показано, что при одинаковом усилии в частном случае сложнонапряженного 
состояния на балке регистрируется уменьшение значений коэрцитивной силы в 
соосном с ней направлении по сравнению со схемой симметричной нагрузки. Поэтому 
учет показаний прибора только в направлениях α=0° и α=90° может привести к 
существенной ошибке в определении напряженно-деформированного состояния 
объекта контроля. Однако при построении круговой диаграммы необходимо учитывать 
и масштабный фактор, и параметры используемого прибора.  

Использование приборов с разными характеристиками ПЭМУ показали, что 
большую корреляцию с расчетными данными дает прибор с меньшим расстоянием 
между полюсами магнитопровода своего датчика. 

Показано, что при выборе диагностического параметра НДС металлоконструкции 
магнитным методом контроля рядом преимуществ обладает анизотропия коэрцитивной 
силы. 
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Abstract. The change of values of circular diagram of the coercive force on the magnetization 
angle at the transition of loading scheme of I-beam made of steel 10 (P1.1.Z.AN) from sym-
metric bending to bending with constrained torsion  at elastic deformations in the compres-
sion zone was studied. The necessity of constructing a circular diagram of the coercive force 
from the magnetization angle in the control zone to obtain information about the direction of 
the principal stresses when determining the stress-strain state of steel structure is substantiat-
ed. 
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