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Abstract. In a mixed formulation, a four-node finite element was developed, which is a fragment of the 
middle surface of the elastic shell. Longitudinal forces and bending moments, as well as displacements and 
their first derivatives with respect to curvilinear coordinates, were taken as nodal unknowns. To obtain the 
compliance matrix, the Reissner functional was used, in which the stresses, when using the direct normal 
hypothesis, are represented by dependences on the forces and bending moments of the middle surface, 
the approximation of which was carried out by bilinear functions. In the interpolating expressions for the 
kinematic sought quantities, Hermite polynomials of the third degree were used. As a result of minimizing 
the transformed functional with respect to the force and kinematic nodal unknowns, the compliance matrix 
of the accepted discrete element was formed. Verification of the developed discrete element in a mixed 
formulation was carried out on the examples of calculations of cylindrical shells with circular and elliptical 
cross sections. The values of the force parameters found using the developed algorithm adequately 
satisfied the conditions of static equilibrium (the calculation error was less than 0.5 %). An analysis of the 
obtained finite element solutions showed the effectiveness of the developed algorithm and made it possible 
to note the possibility of its use in calculations of thin-walled structures made of incompressible materials. 

Citation: Klochkov, Yu.V., Pshenichkina, V.A., Nikolaev, A.P., Vakhnina, O.V., Klochkov, M.Yu. Stress-
strain state of elastic shell based on mixed finite element. Magazine of Civil Engineering. 2023. Article no. 
12003. DOI: 10.34910/MCE.120.3 

1. Introduction 
Definition of the object of the study. The current widespread use of thin-walled shell-type structures 

(pipelines, tanks, hangars, domed roofs, wide-span ceilings, and others) puts forward a rather urgent task 
of creating domestic computational algorithms for analyzing the stress-strain state of such technospheric 
systems and objects. 

Literature review. At present, when choosing the optimal shapes and sizes of thin-walled shell-type 
structures, numerical methods for analyzing their SSS [1–6] come to the fore, with FEM taking the priority 
position. It is widely used in calculations of plates and shells both under elastic [7–12] and elastoplastic [13, 
14] deformation. FEM is essential in the analysis of SSS structures made of composite materials [15–17], 
as well as in matters of shell stability [18]. Three-dimensional finite elements are used both in the analysis 
of the stress-strain state of bulk structures and thin-walled structures [19–21]. 

The relevance of the research. Most of the currently created finite element computing systems are 
based on FEM in the formulation of the displacement method, which inevitably leads to the need to calculate 
second-order partial derivatives of the normal component of the displacement vector when using the theory 
of thin shells [22] based on the Kirchhoff-Love hypotheses. At the same time, finite element algorithms for 
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determining the stress-strain state of shell structures in a mixed formulation [23, 24] make it possible to 
obtain the desired internal force quantities (longitudinal forces and bending moments) directly in the process 
of solving the system of equations formed as a result of minimizing the mixed Reissner functional. This can 
also achieved without organizing additional computational procedures that greatly complicate the finite 
element algorithm for calculating thin-walled shell-type structures. 

The purpose and objectives of the study. This paper presents the derivation of the modified Reissner 
functional, in which the total specific work of stresses is expressed in terms of the specific work of 
longitudinal forces and bending moments at a point of the middle surface on deformations and curvatures 
of the middle surface at this point. By minimizing the modified mixed functional with respect to force 
(longitudinal forces and bending moments) and kinematic (displacement vector components and their first-
order partial derivatives) nodal unknowns, the compliance matrix and the column of nodal forces of a 
quadrangular discretization element, which is a fragment of the middle surface of a thin-walled shell-type 
structure, are assembled. 

The verification of the developed algorithm was carried out on the example of determining the SSS 
of cylindrical shells with circular and elliptical cross sections. An analysis of the results of the obtained finite 
element solutions made it possible to conclude that the developed algorithm is effective and that the 
calculation accuracy of the required force and kinematic nodal unknowns is acceptable. 

2. Materials and Methods 
The median surface of a thin-walled shell-type structure can be given by the radius vector 

( ) ( )0 , , ,R xi y x t j z x t k= + +



 

                            (1) 

where t  is a parameter counted from the vertical axis in a plane perpendicular to the axis ,Ox  which is 
at a distance of x  from the origin. 

Basis vectors of a point 0M  are determined by derivatives 

0 0 0 0 0 0 0
1 , 2 , 1 2 0; ; ,x ta R a R a a a a= = = ×

 

    

                        (2) 

where ( )( ) ( )20 0 0 0 0 0
0 1 1 2 2 1 2 .a a a a a a a= ⋅ ⋅ − ⋅

     

 

The derivatives of the basis vectors of point 0M  are determined by the components in the same 
basis [25] 

0 0 0 0 0 0 0 0
, ,; ,a a b a a b aρ ρ

α β ρ αβ β ραβ β= Γ + = −
    

                        (3) 

where indices ,α  ,β  ρ  take values 1, 2; 0ρ
αβΓ  are Christoffel symbols of the second kind; 0b ρ

β  are 

mixed components of the curvature tensor. 

The position of the point of the shell at a distance of ζ  from the point of the middle surface 0,M  
as well as its position after the application of a given load, are determined by the radius vectors 

0 0 0 0; .R R a R R Vζ ζ ζ= + ζ = +
    



                            (4) 

The displacement vector V


 of point 0M ζ  according to the direct normal hypothesis [22] can be 
represented by the following expression 

( )0 ,V v a a= + ζ −


  

                                    (5) 

where 0 0v v a vaρ
ρ= +

  

 is the displacement vector of point 0 ;M ζ  1 2a a a a= ×
  

 is unit vector of the 

normal at point ;M  0
,a a vρ ρ ρ= +

  

 are covariant vectors of the local basis of point M  of the deformed 
state. 
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Here and below, the comma means the operation of differentiation with respect to global coordinates 
x  and .t  

The basis vectors of points 0M ζ  and M ζ  are determined by the corresponding differentiation (4) 
with respect to x  and t  

( )0 0 0 0 0 0 0 0
, , , ,; .g R a b a g R g v a b aζ γ ζ γ

ρ ρ ρ ρ γ ρ ρ ρ ρ ρ ρ γ= = − ζ = = + + ζ −
 

       

            (6) 

Deformations at point M ζ  of a thin-walled shell-type structure are determined by the difference 
between the components of the metric tensors at the point of the initial and deformed states [26] 

( )0 2.g gζ
ργ ργ ργε = −                                      (7) 

Four-node element. The finite element is represented by a quadrangular part of the middle surface 
with nodes ,i  ,j  ,k  .l  Taking into account that when implementing the mixed formulation of the FEM, 
there is no need to include the desired unknown higher-order derivatives in the structure, the column of 
nodal variable parameters of the used quadrangular sampling element in the local 1 , 1− ≤ ξ η ≤  and 
global ,x  t  coordinate systems was chosen in the form 

{ } { } { } { } { } { }1 2

1 12 1 121 60 1 12 1 12 1 12

;
T T T TT TL L L LU N M v v v

× ×× × × ×

  =  
  

                  (8) 

{ } { } { } { } { } { }1 2

1 12 1 121 60 1 12 1 12 1 12

,
T T T TT TG G G GU N M v v v

× ×× × × ×

  =  
  

                 (9) 

where { } { }11 11 11 11 22 22 12 12

1 12
;T i j k l i l i lN N N N N N N N N

×
=    

{ } { }11 11 11 11 22 22 12 12

1 12

T i j k l i l i lM M M M M M M M M
×

=    are columns of power parameters; 

{ } { }, , , ,
1 12

;
TL i j k l i l i lq q q q q q q q qξ ξ η η

×

=    { } { }, , , ,
1 12

TG i j k l i l i l
x x t tq q q q q q q q q

×

=    are columns of 

kinematic parameters in local 1 , 1− ≤ ξ η ≤  and global ,x  t  coordinate systems, respectively. 

Here, q  means the values ,vρ  .v  

Bilinear functions of local coordinates ,ξ  η  [27] were used as shape functions for the force 
unknowns 

{ } { } { } { }
1 4 1 44 1 4 1

; ,T TN N M Mαβ αβ αβ αβ

× ×× ×

= ϕ = ϕ                        (10) 

and for the kinematic required unknowns, the products of Hermite polynomials of the third order were 
applied [27] 

{ } { }
1 12 12 1

.T Lq q
× ×

= ψ                                       (11) 

Compliance matrix of a four-node bin. To obtain the compliance matrix of a four-node discretization 
element, one can use the Reissner functional written in the following form 

{ } { } { } [ ]{ } { } { }0.5 0.5 ,
T T T

S
V V F

dV C dV U P dFργ ζ ργ ργ
ργΠ = σ ε − σ σ −∫ ∫ ∫      (12) 
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where { } { }11 22 12 ;
Tργσ = σ σ σ  { } { }11 22 122 ;

Tργ ζ ζ ζε = ε ε ε  { } { }1 2 ;TU v v v=  { } { }1 2TP p p p=  is 

column of the external surface load vector. 

In accordance with [26], the elasticity matrix [ ]C  included in (12) determines the relationship 

between columns { }ζ
ργε  and { }ργσ  

{ } [ ]{ }.Cζ ργ
ργε = σ                                    (13) 

Column { },ργσ  on the basis of the theory of thin shells [22], can be expressed in terms of the 

required force unknowns, which are the longitudinal forces Nαβ  and bending moments M αβ  

{ } [ ]{ }
6 13 63 1

,D NMργ
σ

×××

σ =                                  (14) 

where [ ]
3 6

1 0 0 0 0
0 1 0 0 0 ;
0 0 1 0 0

h I
D h I

h I
σ
×

ζ 
 = ζ 
 ζ 

 { } { }11 22 12 11 22 12 ;TNM N N N M M M=  h  is 

the shell thickness; 3 12I h=  is moment of inertia. 

The column of covariant components of the strain tensor at point ,M ζ  taking into account the direct 
normal hypothesis [22], Cauchy relations (7), and interpolation dependence (11), can be represented by 
the matrix relation 

{ } [ ]{ } [ ] [ ]{ } [ ] [ ] [ ] { }
3 36 3 36 36 363 6 3 6 3 66 1 36 1 36 1

,L GD D B u D B T uζ
ργ ε ργ ε ε

× × ×× × ×× × ×

ε = ε = =             (15) 

where [ ]
3 6

1 0 0 0 0
0 1 0 0 0 ;
0 0 1 0 0

Dε
×

ζ 
 = ζ 
 ζ 

 { } { }11 22 12 11 22 12
1 6

2 2
Tργ

×

ε = ε ε ε ℵ ℵ ℵ  is a column of 

deformations and curvatures at point M  of the middle surface; { } { } { } { }1 2

1 36 1 12 1 12 1 12

;
T T T TL L L Lu v v v

× × × ×

  =  
  

 

{ } { } { } { }1 2

1 36 1 12 1 12 1 12

;
T T T TG G G Gu v v v

× × × ×

  =  
  

 [ ]T  is transformation matrix of the column of kinematic quantities 

from the local coordinate system ,ξ  η  to the global one ,x  .t  

The column of power variable parameters { }NM  is interpolated through its nodal values using 
relations (10) 

{ } [ ]{ }
6 1 6 24 24 1

,NM H Gαβ

× × ×

=                                  (16) 

where { } { } { } { } { } { } { }11 22 12 11 22 12

1 4 1 4 1 4 1 4 1 4 1 4

.
T T T T T T T

G N N N M M Mαβ

× × × × × ×

  =  
  

 

Functional (12), taking into account (14) and (16), can be represented as 
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{ } [ ] [ ] [ ] [ ] [ ] { }

{ } [ ] [ ] [ ][ ][ ] { }

{ } [ ] [ ] { }

24 6 6 36 36 366 3 3 61 24 36 1

24 6 3 3 6 246 3 3 61 24 24 1

3 136 36 36 31 36

0.5

0.5 ,

T T T G
S

T T T

T T TG

V

V

F

G H D D B dV T u

G H D C D H dV G

u T A P dF

αβ
σ ε

× × ×× ×× ×

αβ αβ
σ σ

× × ×× ×× ×

×× ××

Π = −

− −

−

∫

∫

∫

                 (17) 

where [ ]

{ }

{ }

{ }

1 12

1 123 36

1 12

0 0

0 0 .

0 0

T

T

T

A
×

××

×

 
ψ 

 
 = ψ 
 
 ψ  

 

Applying to (17) the procedure of minimization with respect to the required unknowns { } ,
T

Gαβ  we 

can obtain the following matrix expression 

{ } [ ] { } [ ] { }
24 36 24 2436 1 24 1

0,
T G

S G S u Z Gαβ αβ

× ×× ×

∂Π ∂ = − =                    (18) 

where [ ] [ ] [ ] [ ] [ ] [ ]
24 36 24 6 6 36 36 366 3 3 6

;
T T

V

S H D D B dV Vσ ε
× × × ×× ×

= ∫  [ ] [ ] [ ] [ ][ ][ ]
24 24 24 6 3 3 6 246 3 3 6

.
T T

V
Z H D C D H dVσ σ
× × × ×× ×

= ∫  

The first integral in functional (12) can be represented in the following form 

{ }{ } { } { }

{ } [ ] [ ] [ ] [ ] [ ] { }
1 3 3 1 1 3 3 1

36 36 36 6 6 246 3 3 61 36 24 1

.

T

T T TT TG

V V

V

dV dV

u T B D D H dV G

ργ ζ ζ ργ
ργ ργ

× × × ×

αβ
ε σ

× × ×× ×× ×

σ ε = ε σ =

=

∫ ∫

∫
              (19) 

By minimizing the functional (17) taking into account (19) with respect to the kinematic unknown 

unknowns { } ,
TGu  we can write the following matrix relation 

{ } [ ] { } { }
36 136 24 24 1

0,
T TG

S u S G Rαβ

×× ×

∂Π ∂ = − =                   (20) 

where { } [ ] [ ] { } .
TT

F
R T A P dF= ∫  

The system of equations obtained as a result of minimizing the functional SΠ  with respect to 

{ }T
Gαβ  and { }TGu  can be represented in the matrix form 

[ ] [ ]

[ ] [ ]

{ }

{ }
{ }

{ }
24 24 24 36 24 1 24 1

36 136 24 36 36 36 1

0

0T G

GZ S

RS u

αβ

× × × ×

×× × ×

  −        =     
     

       

                      (21) 



Magazine of Civil Engineering, 120(4), 2023 

or in a more compact form 

[ ] { } { }
60 160 60 60 1

,GK U f
×× ×

=                                 (22) 

where [ ]
[ ] [ ]

[ ] [ ]
24 24 24 36

60 60
36 24 36 36

0T

Z Z

K
S
× ×

×
× ×

 −
 

=  
 
  

 is the flexibility matrix of a four-node sampling element; 

{ } { } { }
1 60 1 24 1 36

0T T Tf R
× × ×

  =  
  

 is column of nodal forces. 

An analysis of the structures of matrices [ ]Z  and [ ]S  in the compliance matrix [ ]K  shows that 

matrix [ ]K  is also a determinable value in the case of an incompressible material at a transverse strain 

coefficient of 0.5.ν =  

Analyzing the resulting compliance matrix [ ],K  it can be noted that it contains a significant zero 

block [ ]
36 36

0 ,
×

 which can significantly reduce the conditionality of the global compliance matrix of the entire 

shell-type structure. To eliminate this problem, this paper proposes to carry out the following 
transformations. 

Let us express from equation (18) the column of force nodal unknowns 

{ } [ ] [ ] { }1

24 24 24 3624 1 36 1

GG Z S u−αβ

× ×× ×

=                           (23) 

and substitute relation (23) into equation (20) 

[ ] [ ] [ ] { } { }1

36 136 24 24 24 24 36 36 1

0.T GS Z S u R−

×× × × ×

− =                      (24) 

Transforming (24), we can obtain the following matrix expression 

[ ] { } { }
36 136 36 36 1

,T GL u R
×× ×

= =                              (25) 

where [ ] [ ] [ ] [ ]1

36 36 36 24 24 24 24 36

TL S Z S−

× × × ×
=  is the modified compliance matrix of the four-node bin. 

Analyzing (25), it can be noted that [ ]
36 36

L
×

 does not contain a zero block and differs from [ ]
60 60

K
×

 in 

a significantly smaller dimension, which reduces the requirements for the amount of RAM used by computer 
equipment when studying the stress-strain state of a thin-walled shell-type structure. 

Based on the obtained modified compliance matrix [ ]
36 36

,L
×

 with the help of the index matrix [28], the 

global compliance matrix of the entire calculated thin-walled shell-type structure is assembled and the 
solution of the global system of algebraic equations is performed, the unknowns of which are only the 

kinematic nodal unknowns { }.Gu  

After calculating the kinematic nodal unknowns { }Gu  using (23), without any difficulty, one can 

obtain the values of the desired force unknowns at any point of interest to the designer in the considered 
thin-walled shell-type structure. 
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Verification of the developed computational algorithm based on the use of the modified compliance 
matrix of the four-node discretization element [ ]

36 36
L
×

 was performed on specific calculation examples. 

3. Results and Discussion 
Calculation example 1. As a test example, a circular cylinder was calculated, rigidly clamped on the 

right end and having a free edge on the left end. The radius vector (1) in this case will look like 

0 sin cos .R xi R t j R t k= + +



 

                            (26) 

The cylinder was loaded with an internal pressure of intensity wq  and a uniformly distributed axial 

load uq  applied along the free left end. The design scheme of the shell is shown in Fig. 1. 

 
Figure 1. Calculation scheme of a circular cylinder with a uniformly distributed axial  

load uq  and internal pressure wq . 

The following initial values are accepted: R  = 0.9 m; h  = 0.02 m; L  = 0.8 m; E  = 2·105 MPa; 
ν  = 0.3; wq  = 5 MPa; uq  = 500 kN/m. 

The values of stresses in the edge sections of the shell are presented in Table 1 for various variants 
of discretization of the shell fragment, considered according to the symmetry conditions. 

Table 1. Stress values in sections of a cylindrical shell. 
Characteristic 

section Stress, MPa Grid of Discretization Nodes Analytical Solution 21×21 41×41 51×51 61×61 

Rigid 
termination 

11
inσ  

410.5 417.5 418.3 418.8 – 

11
outσ  

–360.5 –367.5 –368.3 –368.8 – 

11
midlσ  

25.00 25.00 25.00 25.00 25.00 

22
inσ  

117.5 122.3 123.0 123.3 – 

22
outσ  

–113.7 –113.1 –113.0 –112.9 – 

22
midlσ  4.48 7.24 7.62 7.84 – 

Free end 

11
inσ  

24.98 24.99 25.00 25.00 – 

11
outσ  

25.02 25.01 25.00 25.00 – 

11
midlσ  

25.00 25.00 25.00 25.00 25.00 

22
inσ  

226.8 226.8 226.8 226.8 – 

22
outσ  

222.0 222.0 222.0 222.0 – 

22
midlσ  

224.5 224.5 224.5 224.5 225.0 
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An analysis of the data presented in Table 1 allows us to state the fact of a fairly fast convergence 
of the computational process as the grid of discretization nodes thickens. In addition, it should be noted 
that the numerical values of normal stresses correspond to the physical meaning of the problem being 
solved. Meridional stresses 11σ  on the middle surface in the outer and inner fibers of the edge sections 
of the cylindrical shell correspond to a given axial external load 

11 500 kN m 0.02 m 25.0 MPa.midl
uq hσ = = =  

Ring stresses of the middle surface at the free end of the cylinder 22
midlσ  = 224.5 MPa correspond 

to the specified internal pressure wq  with an acceptable level of error δ  = 0.22 %. 

22
5 MPa 0.9 m 225.0 MPa.

0.02 m
midl wq R

h
⋅ ⋅

σ = = =  

The developed algorithm for determining the stress-strain state of thin shells, which implements a 
mixed version of the FEM, makes it possible to immediately obtain internal force factors (longitudinal forces 
and bending moments) at any point of the shell structure of interest to the researcher without excessive 
labor-intensive calculations. "Physical" values of forces and moments in the edge sections of the cylindrical 
shell, referred to the middle surface, are presented in Table 2, the structure of which is similar to Table 1. 

Table 2. Values of forces and moments in a circular cylinder. 

Characteristic 
section 

Efforts, N; 
moments,  

N ⋅m 

Grid of discretization nodes 
Analytical Solution 

21×21 41×41 51×51 61×61 

Rigid 
termination 

11N  500.0 500.0 500.0 500.0 500.0 

22N  89.7 144.7 152.5 156.8 – 

11M  –2570.0 –2616.6 –2622.3 –2625.4 – 

22M  –771.2 –785.8 –787.6 –788.6 – 

Free end 

11N  500.0 500.0 500.0 500.0 500.0 

22N  4490.5 4490.3 4490.3 4490.3 4500.0 

11M  0.131 0.035 0.023 0.016 0.000 

22M  –49.3 –49.3 –49.3 –49.3 – 

 

The data in Table 2 testify to the stable convergence of the computational process in terms of forces 
and moments. The values of the axial longitudinal forces 11N  in the edge sections of the cylindrical shell 

correspond to a given axial load of uq  = 500 kN/m. The value of the longitudinal ring force also 

corresponds to a given internal pressure wq  with a minimum error δ  = 0.2 %. 

The bending moment 11M  tends monotonically to zero in the end section. 

On the basis of the foregoing, it can be concluded that the developed algorithm is correct and that 
the accuracy of calculating the controlled strength parameters of the SSS of shell structures is sufficient for 
engineering practice. 

Calculation example 2. The stress-strain state of a cylindrical shell with an elliptical cross section, 
rigidly fixed at the ends, loaded with an internal pressure of q  = 5 MPa is determined. Due to the presence 
of symmetry, 1/8 of the shell was considered. The design scheme is shown in Fig. 2. 
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Figure 2. Calculation scheme of a cylindrical shell with elliptical cross section. 

The radius vector expression (1) for an elliptical cylinder will look like this: 

0 sin cos .R xi b t j c t k= + +



 

                             (27) 

In the problem under consideration, the following initial data are accepted: b  = 1.0 m; c  = 0.8 m; 
L  = 1.0 m; h  = 0.02 m; E  = 2·105 MPa; ν  = 0.3. 

The values of normal stresses and bending moments in the shell sections for various variants of 
discretization of the calculated fragment of the shell are presented in Table 3. 

Table 3. Values of normal stresses and bending moments in an elliptical cylinder. 

Characteristic 
section 

Stress,  
MPa; moments,  

N•m 

Grid of discretization nodes Solution in the 
formulation  

of the 
displacement 

method, 61×61 
41×41 51×51 61×61 81×81 101×101 

Rigid 
termination,  

x = 0.0; 

t = 0.0 rad. 
 (point А) 

11
inσ  642.1 642.4 642.5 642.7 642.8 642.4 

11
outσ  –544.6 –544.9 –545.0 –545.2 –545.2 –544.8 

22
inσ  183.5 185.1 186.1 187.4 188.1 192.7 

22
outσ  –172.5 –171.1 –170.1 –169.0 –168.3 –163.4 

11M  –395.6 –395.8 –395.8 –396.0 –396.0 – 

22M  –118.7 –118.8 –118.9 –118.9 –118.9 – 

Rigid 
termination, 

x = 0.0; 

t = π / 2 rad. 
 (point В) 

11
inσ  264.8 265.2 265.4 265.6 265.7 265.5 

11
outσ  –118.3 –118.7 –118.9 –119.1 –119.2 –119.0 

22
inσ  85.21 84.00 83.16 82.06 81.38 79.65 

22
outσ  –29.70 –31.12 –32.10 –33.32 –34.06 –35.70 

11M  –127.7 –128.0 –128.1 –128.2 –128.3 – 

22M  –38.90 –38.95 –39.00 –39.00 –39.00 – 

Mid-span, 

x = L / 2; 

t = 0.0 rad. 
 (point C) 

11
inσ  71.35 71.34 71.33 71.33 71.32 71.27 

11
outσ  95.77 95.79 95.80 95.80 95.81 95.67 

22
inσ  312.4 312.3 312.3 312.3 312.3 312.0 

22
outσ  338.5 338.5 338.5 338.5 338.5 338.1 
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Characteristic 
section 

Stress,  
MPa; moments,  

N•m 

Grid of discretization nodes Solution in the 
formulation  

of the 
displacement 

method, 61×61 

41×41 51×51 61×61 81×81 101×101 

Mid-span, 

x = L / 2; 

t = π / 2 rad. 
 (point D) 

11
inσ  37.72 37.72 37.73 37.73 37.73 37.84 

11
outσ  9.81 9.81 9.81 9.81 9.81 9.83 

22
inσ  173.9 173.9 174.0 174.0 174.0 174.7 

22
outσ  144.2 144.2 144.2 144.3 144.3 144.8 

 

As follows from the analysis of tabular data, the convergence of the computational process in terms 
of both stresses and moments is very stable. In order to verify the developed algorithm, the rightmost 
column contains the stress values found based on the use of a quadrangular finite element, the stiffness 
matrix of which was composed on the basis of a finite element procedure in the formulation of the 
displacement method [27]. As shown by a comparative analysis of the finite element solutions obtained on 
the basis of the developed algorithm, and the FEM in the formulation of the displacement method, the 
numerical values of the normal stresses practically coincide at all characteristic points with an acceptable 
minimum discrepancy in the values of 22σ  at points A and B. When performing this comparative analysis 
one should take into account the fact that when implementing the developed algorithm in a mixed 
formulation, it is possible to directly obtain the numerical values of force factors (forces and moments) and 
stresses at any of the nodal points of the calculated shell. When using FEM in the formulation of the 
displacement method, to obtain numerical values of stresses, it is required to perform several stages of 
computational procedures, namely: after obtaining the displacement values and their first derivatives, it is 
necessary to calculate the values of the second derivatives of the normal displacement using an 
interpolation procedure. Then, using the Cauchy relation [22], it is necessary to calculate the deformations 
of the midsurface point. Next, it is necessary to proceed, on the basis of the Kirchhoff-Love hypotheses, to 
deformations at a point of an arbitrary layer of the shell, and only after that, using the relations of Hooke's 
law, it is possible to obtain the stress values. All the above computational procedures complicate the 
calculation algorithm and increase the calculation error. The use of a mixed formulation of the FEM 
implemented in the developed algorithm makes it possible to avoid additional cumbersome computational 
procedures and makes it possible to directly obtain the desired strength parameters of the calculated shell 
structure, which ultimately makes the developed algorithm the most preferable in the analysis of SSS of 
shell structures of various configurations. 

Calculation example 3. The quadrangular discretization element developed in this work in a mixed 
formulation can be effectively used to study the SSS of shells made of an incompressible material. The 
problem was solved to determine the strength parameters of an elliptical cylinder, the design scheme, the 
geometric and physical characteristics of which coincide with the data of calculation example 2. The 
difference was that Poisson's ratio was taken equal to ν  = 0.5, i.e. it was assumed that the shell is made 
of an incompressible material. The results of the numerical experiment are presented in tabular and 
graphical forms. Table No. 4, the structure of which is similar to the structure of Table No. 3, presents the 
numerical values of normal stresses and bending moments in the support and span sections of an elliptical 
cylinder, depending on the degree of refinement of the grid of discretization nodes of the calculated shell 
fragment. Analyzing the tabular data, one can state the stable convergence of the computational process 
as the grid of discretization nodes becomes denser. 
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Table 4. Values of normal stresses and bending moments in an elliptical cylinder made of 
incompressible material. 

Characteristic 
section 

Stress,  
MPa; moments,  

N•m 

Grid of discretization nodes 

41×41 51×51 61×61 81×81 101×101 

Rigid termination,  

x = 0.0; 

t = 0.0 rad. 
 (point А) 

11
inσ  689.8 690.0 690.1 690.2 690.3 

11
outσ  –493.3 –493.5 –493.6 –493.7 –493.8 

22
inσ  334.4 336.0 337.1 338.4 339.1 

22
outσ  –257.0 –255.6 –254.7 –253.6 –252.9 

11M  –394.3 –394.5 –394.6 –394.6 –394.7 

22M  –197.6 –197.7 –197.8 –197.8 –197.8 

Rigid termination, 

x = 0.0; 

t = π / 2 rad. 
 (point В) 

11
inσ  247.8 248.1 248.3 248.5 248.6 

11
outσ  –41.27 –41.60 –41.77 –41.95 –42.03 

22
inσ  129.5 128.3 127.4 126.3 125.7 

22
outσ  –14.97 –16.52 –17.55 –18.83 –19.60 

11M  –96.36 –96.57 –96.69 –96.81 –96.86 

22M  –49.39 –49.47 –49.51 –49.55 –49.56 

Mid-span, 

x = L / 2; 

t = 0.0 rad. 
 (point C) 

11
inσ  108.7 108.7 108.7 108.7 108.7 

11
outσ  156.3 156.3 156.3 156.3 156.3 

22
inσ  305.4 305.4 305.4 305.4 305.4 

22
outσ  347.3 347.2 347.2 347.2 347.2 

Mid-span, 

x = L / 2; 

t = π / 2 rad. 
 (point D) 

11
inσ  73.92 73.92 73.92 73.91 73.91 

11
outσ  34.0 34.0 34.0 34.0 34.0 

22
inσ  179.4 179.4 179.4 179.5 179.5 

22
outσ  139.2 139.2 139.3 139.3 139.3 

 

Fig. 3 shows the graphs of changes in normal stresses on the inner inσ  and outer outσ  surfaces 
of the shell, as well as bending moments 11,M  22M  on the middle surface along the generatrix of the 
elliptical cylinder. 

The analysis of the graphical material shows that the maximum values of the edge effect appear 
directly in the rigid embedment, gradually fading towards the zone located at a distance of 0.1 L  from the 
reference section, which corresponds to the physical meaning of the problem being solved. 



Magazine of Civil Engineering, 120(4), 2023 

 
Figure 3. Diagrams of normal stresses and bending moments along the generatrix at t = 0.0 rad. 

Fig. 4 shows the changes in the normal stresses inσ  and outσ , as well as the bending moment 

11,M  22M  along the arc of the shell cross section in a rigid enclosure ( x  = 0.0 m). 

Analyzing the graphs presented in Figure 4, it can be noted that the controlled strength characteristics 
(normal stresses and bending moments) reach a maximum at the value of parameter t  equal to zero. 
Then the values of normal stresses and bending moments gradually decrease (by about two times) to their 
minimum values in the reference section at the value of parameter t  equal to 2.π  

 
Figure 4. Diagrams of normal stresses and bending moments in rigid termination at x = 0.0 m. 

4. Conclusions 
Taking into account the results of the numerical studies, we can draw the following conclusions. 

1. The convergence of the computational process using the developed finite element in a mixed 
formulation is stable in terms of both force and kinematic factors. 
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2. The obtained numerical values of the stresses at the controlled points are in adequate agreement 
with the stress values found from the conditions of static equilibrium (the calculation error does not exceed 
0.5 %). 

3. The use of the developed mixed finite element leads to the possibility of determining the power 
parameters directly as a result of solving the system of resolving equations. 

4. The developed finite element in a mixed formulation is suitable for determining the SSS of thin-
walled structures made of incompressible materials (ν  = 0.5 ). 
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