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Preface

Dear Reader,

in this book you will �nd the Proceedings of the Summer School � Conference �Advanced Problems
in Mechanics (APM) 2017�. The conference had been started in 1971. The �rst Summer School
was organized by Prof. Ya.G. Panovko and his colleagues. In the early years the main focus of
the School was on nonlinear oscillations of mechanical systems with a �nite number of degrees of
freedom. Since 1994 the Institute for Problems in Mechanical Engineering of the Russian Academy
of Sciences organizes the Summer School. The traditional name of �Summer School � has been kept,
but the topics covered by the School have been much widened, and the School has been transformed
into an international conference. Now it is held under the patronage of the Russian Academy of
Sciences. The topics of the conference cover now almost all �elds of mechanics, being concentrated
around the following main scienti�c directions:

� aerospace mechanics;
� computational mechanics;
� dynamics of rigid bodies and multibody dynamics;
� �uid and gas;
� mechanical and civil engineering applications;
� mechanics of media with microstructure;
� mechanics of granular media;
� nanomechanics;
� nonlinear dynamics, chaos and vibration;
� molecular and particle dynamics;
� phase transitions;
� solids and structures;
� wave motion.

The Summer School � Conference has two main purposes: to gather specialists from di�erent
branches of mechanics to provide a platform for cross-fertilization of ideas, and to give the young
scientists a possibility to learn from their colleagues and to present their work. Thus the Scienti�c
Committee encouraged the participation of young researchers, and did its best to gather at the
conference leading scientists belonging to various scienti�c schools of the world.

We believe that the signi�cance of Mechanics as of fundamental and applied science should much
increase in the eyes of the world scienti�c community, and we hope that APM conference makes
its contribution into this process.

The Conference is organized by Institute for Problems in Mechanical Engineering of Russian
Academy of Sciences (IPME RAS) and Peter the Great St.Petersburg Polytechnic University
(SPbPU) under the patronage of Russian Academy of Sciences (RAS), St.Petersburg Scienti�c
Center, Ministry of Education and Science of Russian Federation and the University of Seville
(Universidad de Sevilla). APM 2017 is partially supported by Russian Foundation for Basic Re-
search. Minisymposium in memoriam of Antonio Castellanos Mata is partially sponsored by the
Vicerrectorado de Investigacion de la Universidad de Sevilla (Vice-Rectorate for Research, Univer-
sity of Seville, Spain).

We hope that you will �nd the materials of the conference interesting, and we cordially invite
you to participate in the coming APM conferences. You may �nd the information on the future
�Advanced Problems in Mechanics� Schools � Conferences at our website:

http://apm-conf.spb.ru

With kind regards,

Co-Chairmen of APM 2017

Dmitri A. Indeitsev, Anton M. Krivtsov
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Dynamics of Gravitating System of Gas and Dust Cloud

Dynamics of Gravitating System of Gas and Dust

Cloud

M. Abobaker, A. M. Krivtsov, A. Murachev

mhmdbb@yahoo.com

Abstract

Due to the gravitational force, cloud of dust and gas can contract and form
planet. Here we present a simple model for the dynamics of one dimensional
of self-gravitating spherical symmetrical gas and dust cloud.
We present analytic, similarity solution for the one dimensional of self-
gravitating spherical symmetrically gas and dust cloud. In this paper we
used a Cole-Hopf transformation to simplify the equations of dynamics and
thereafter we applied method of characteristics to reduce partial di�erential
equation to a system of completely solvable ordinary di�erential equations.
The similarity solution method is applied to reduce the partial di�erential
equations to a system of completely solvable ordinary di�erential equations.
The Runga-Kutta method has been used for numerical calculation of the prob-
lem.
KEYWORDS: Cole-Hopf transformation, Self-Gravitating; Gas-Dust Sys-
tem; Similarity Reductions; Planet Formation

1 Introduction

Mechanical theories of gas-dust systems of cloud can be developed from two quite
di�erent starting points: We can introduce either the model of N gravitating mass
points, or the model of a compressible �uid streaming in the phase space. The
motion of this �uid will be determined by the gravitational �uid produced by itself.
In this work we will study a model of a compressible �uid of dust and gas. Magnetic
�eld, radiation force, rotation probably play important roles but to simplify the
problem in this work we will ignoring these factors. The gravitational collapse of
spheres has received considerable theoretical attention in literature,particularly in
connection with the problem of star formation ([1] , [2]).
We shall consider spherically symmetric, self-gravitating dust-gas cloud. All the
physical quantities will depend on two independent variables; radius and time (r; t).
Let P (r, t), ρ(r, t), v(r, t) and Φ(r, t) be the pressure, mass density, radial velocity
and gravitational potential respectively.
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2 Fundamental Equations

The motion of the spherically symmetrical compressible �uid �ow of self-gravitating
dust-gas is governed by the following equations [3], [11]:

ρt + vρr + ρvr +
2

r
vρ = 0, (1)

vt + vvr +
1

ρ
Pr + Φr = 0, (2)

Φrr +
2

r
Φr = 4πGρ, (3)

where G is Newton's gravitational constant.
These nonlinear partial di�erential equations are quite complicated and the general
solution cannot be obtained. Here we will use two methods for �nding particular
solution, Hopf-Cole transformation method and �nite-di�erent numerical method.

3 Hopf-Cole Solution

Let us �rst consider one dimensional �ow of �uid in self-gravitating �eld without
pressure, the equation of dust state (P = 0). let σ = r2ρ, now we can rewrite the
equation (1)−(3) as:

∂σ

∂t
+
∂(σv)

∂r
= 0, (4)

∂v

∂t
+ v

∂v

∂r
= −∂Φ

∂r
, (5)

∂

∂r

(
r2∂Φ

∂r

)
= 4πGσ. (6)

It is an amazing fact that the equations like (4)−(6) may be solved exactly using a
trick discovered independently by Cole J. D. [5] and E. Hopf [6] about 1950. After
hopf and Cole introduced the transformation, several attempts have been made to
generalised Cole-Hopf transformation, we shall use here modi�ed generalized Cole-
Hopf method [7]. The trick is to change the dust velocity in the following form:

v(r, t) = − θt
θr
, (7)

where θ = θ(r, t) is the auxiliary function, θt = ∂θ
∂t
, θr = ∂θ

∂r
.

Let consider θr to be

θr = σ = r2ρ, (8)

By using generalised Cole-Hopf transformation we can �nd [Appendix]:

v(r, t) = − θt
θr

= ±
√
b+ r−1

√
8πG
√
θ, (9)

12



Dynamics of Gravitating System of Gas and Dust Cloud

or

θt ±
√
b+ r−1

√
8πG
√
θθr = 0, (10)

where b is constant of integration.
By the substitution of new variable

ξ(r) =

∫
(b+ r−1)−1/2dr, (11)

to equation (10), it takes the form

θt ±
√

8πG
√
θθξ = 0. (12)

We use the method of characteristics to solve (12). The method will reduce PDE to
ODE.
The characteristics of the PDE (12) are

dt

1
= ± dξ√

8πG
√
θ

=
dθ

0
, (13)

From here we �nd the general solution

ξ ±
√

8πG
√
θt = F (θ). (14)

4 Initial and Boundary Conditions

One of the main problems with model calculations the formation of planets is fact
that initial conditions of the cloud are not known. It is obvious for the density
become zero at the surface of the cloud, then let we look for the solution of the
problem with initial conditions

ρ(r, 0) =
1

r2

∂θ0(r)

∂r
(15)

Figure 1
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where θ0(r) = θ(r, 0).
Let

θ0(r) =
M

4π
arsinh(r3), (16)

where M is mass of cloud.
Di�erentiating equation (16) and using (8), we �nd ρ(r, 0), (see Figure 1).

ρ0 = ρ(r, 0) =
3M

4π(r6 + 1)1/2
> 0, (17)

v(r, 0) = 0; (18)

and assume that we have boundary condition

Φ(R, t) = −GM
R

, (19)

where R is radius of the cloud.

5 Analytical Solution of Fundamental Equations

Now we want to get the solution of the equation (12) with initial condition (16) and
(17).
By plugging initial condition (16) into equation (12), we get

θ − M

4π
arsinh(

3

2
(ξ ±

√
8πG
√
θt))2 = 0, (20)

When b = 0 in equation (11) we obtain

ξ(r) =
2

3
r

3
2 . (21)

Now we can rewrite (20) as

θ − M

4π
arsinh(r3/2 ± 3

2

√
8πG
√
θt)2 = 0, (22)

this is hyperbolic transcendental equation, we can solve it numerically to �nd θ.
Di�erentiating the equation (22) with respect to r, we �nd

θr =
6M
√
θw(r, t)

√
r

8π
√
θ
√

1 + w4 − 3Mλtw(r, t)
, (23)

where

w(r, t) = (r
3
2 ± 3

2
λ
√
θt), λ =

√
8πG. (24)

Now we can calculate density ρ through function θ(r, t)

ρ =
1

r2
θr =

6M
√
θ(r

3
2 ± 3

2
λt
√
θ)r−

3
2

8π
√
θ
√

1 + (r
3
2 ± 3

2
λ
√
θt)4 − 3Mλt(r

3
2 ± 3

2
λ
√
θt)

. (25)
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(a) (b)

Figure 2

Di�erentiating equation (20) with respect to t, we obtain

θt =
6Mθw(r, t)

8π
√
θ
√

1 + w4 − 3Mλtw(r, t)
. (26)

Now we can calculate velocity v through function θ

v(r, t) = − θt
θr

= −λθ
1
2

r
1
2

. (27)

From equations (5) and (19)

Figure 3

Φ(r, t) = λ2θ. (28)

6 Similarity Solution

In this section we are seeking solution of the equations of spherically symmetrical
compressible �uid �ow of self-gravitating dust-gas (1)−(3).
Let for example we look for the solution of the problem with boundary conditions

v(0, t) = 0, (29)

ρ(0, t) = ρ0, (30)

15
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Φ(0, t) = 0 (31)

By introducing the similarity variable [2] [1]

ξ =
r√

4λπGt
(32)

and seek a solution in the following form

v(r, t) =
√

4λπGw(ξ), (33)

ρ(r, t) =
q(ξ)

4πGt2
, (34)

Φ(r, t) = 4λπGΨ(ξ) (35)

Here λ - some dimensional factor, functions w, q, Ψ are dimensionless functions
Let we denote

Ψ
′
= Ω (36)

Let us �rst we seeking solution for the problem without pressure, which corresponds

Figure 4

to the equation of state (P = 0).
Using the introduced dimensionless variables, after some manipulation we can reduce

(a) (b)

Figure 5
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the system of fundamental equations (1), (2) and (3) to the following system of
ordinary di�erential equations:

Ψ
′
= Ω, (37)

w
′
=

Ω

ξ − w
, (38)

Ω
′
=
ξq − 2Ω

ξ
, (39)

q
′
= q

Ωξ − 2(ξ − w)2

ξ(ξ − w)2
(40)

where the prime denotes di�erentiation with respect to the ξ.
In term of the similarity variables the boundary conditions take the form

w(ξ = 0) = 0 (41)

q(ξ = 0) = 4πGρ0t
2, (42)

Ψ
′
(ξ = 0) = 0 (43)

We obtain the similarity solution by integrating equations (37)−(40) by numerical

Figure 6

methods.
Now we try to �nd solution when the equation of state of �ow which is a mixture
of gas and small solid particle is taken to be

P = Kρ (44)

where K is a constant physically characterizes the central pressure and central den-
sity in our model.
Similar equations to (37)−(40) obtained when taking into account the equation of
state (44)

Ψ
′
= Ω, (45)

w
′
=

(ξΩ− 2)(w − ξ)
ξ(1− (w − ξ)2)

, (46)

17
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(a) Gravitational Potential (b) Velocity

Figure 7

Ω
′
=
ξq − 2Ω

ξ
, (47)

q
′
= q

ξΩ− 2(ξ − w)2

((ξ − w)2 − 1)ξ
(48)

Similarly we can �nd numerical solution of the equations (45)−(48) for boundary
conditions (41)−(43).
Equations (37)−(40) and (45)−(48) have been integrated by Runge-Kutta method
for boundary conditions (41)−(43). The graphs of �ow variable are given in Figure
4 , Figure 5a , Figure 5b , Figure 6 , Figure 7a and Figure 7b . It is clear from the
graphs that the density increases as we move towards the centre, while velocity and
gravitational potential decreases.

7 Summary

We investigated the The motion of the spherically symmetrical compressible �uid
�ow of self-gravitating dust-gas cloud, In certain cases we have tried to �nd solution
for the system of equations presented in (1)−(3). In the case when P = 0, we �nd
particular analytical solution with help of modi�ed Cole-Hopf transformation and
special initial condition.
In this work, similarity solutions are obtained for one dimensional �ow of �uid in
self-gravitating �eld without pressure and with pressure.
Further possible study my be the investigation of the system (1)−(3) with other
possible equation of state, which my be di�erent than the ones considered here.

8 Appendix

Following [7], let us consider the representation for dust velocity in the following
form:

v(r, t) = − θt
θr

(49)

18
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where θ = θ(r, t) is the auxiliary function (generalized Cole-Hopf transformation)
The equivalent representation (49) has the form of the equation

θt + v(r, t)θr = 0 (50)

There are several simple identities that follow from (50) and hold for any di�eren-
tiable function θ(r, t) [7] , the �rst of them has the form[

∂

∂t
+ v(r, t)

∂

∂r

]
F (θ) = F ′(θ)(θt + vθr) (51)

Di�erentiating (50) with respect to r, we obtain

∂

∂t
θr +

∂

∂r
[v(r, t)θr] = 0 (52)

From (50) and (51) there follows anther identity of the form

∂

∂t
[f(r)F (θ)] + v

∂

∂r
[f(r)F (θ)] = f ′(r)F (θ)v (53)

Relation (52) takes the form of continuity equation if the density ρ(r, t) is considered
to be

ρ(r, t) =
1

r2
θr (54)

In this case (52) is equivalent to the continuity equation (4)

∂σ

∂t
+

∂

∂r
(vσ) = 0, (55)

We reduce the Poisson equation (6) to the form

Φr =
1

r2
4πGθ (56)

From equation (5) and (56), we obtain

∂v

∂t
+ v

∂v

∂r
= −4πGθ

r2
(57)

Let

v = S(r)T (θ) (58)

where S(r) and T (θ) are so far unde�ned functions. Using the identities we obtain

∂v

∂t
+ v

∂v

∂r
= S ′(r)T (θ)v = S ′(r)S(r)T 2(θ) (59)

Comparing (57) and (59), we obtain

T (θ) =
√

4πG
√
θ (60)

S(r) = ±
√

2
√
b+ r−1 (61)

where b is constant of integration.
From (49), (58), (60), and (61)

v(r, t) = − θt
θr

= ±
√
b+ r−1

√
8πG
√
θ (62)

or

θt ±
√
b+ r−1

√
8πG
√
θθr = 0 (63)
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Abstract

Mathematical methods of the solution of the equations of statics of �at
nonlinear deformation of the crystal media with a complex lattice allowing
martensitic transformations are developed. The equations of a statics repre-
sent system of four connected nonlinear equations. The vector of macroshifts
is looked in the Papkovish-Neuber form. The system of the connected nonlin-
ear equations is reduced to system of the separate equations. The vector of
microshifts can be found from the sine Gordon equation with variable coe�-
cient (amplitude) before the sine and Poisson equation. The class of doubly
periodic solutions expressing in the Jacobi elliptic functions is found for a case
of constant amplitude. It is shown that the nonlinear theory possesses a set of
solutions which describe fragmentation of the crystal medium, emergence of
defects of structure of di�erent types, phase transformations and other topo-
logical features of the deformation which are implemented under the in�uence
of intensive power loadings and which can't be described by classical mechanics
of the continuous medium. Features of the found solutions are discussed.

1 Introduction

In recent years nanotechnologies are intensively developed. Practically all modern
technologies for metals and alloys with ultra�ne-grained structure are based on use
of superhigh external impacts on material. The structure of material is signi�cantly
changed under the in�uence of intensive plastic deformations. Medium breaks up
on separate nanoscale grains which are variously oriented. Grains divide big-angle
borders in which defects like micropores and local consolidations are formed. The
superlattice is formed and there are phase transformations.
Modern problems of technologies of obtaining and studying of the new materials
set new problems for mechanics of continuous media. New analytical models are
necessary for modern technologies of obtaining the new materials with the designated
operational properties.
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The classical continual model isn't adequate any more to those new problems which
have arisen in connection with deep penetration into area the nano-scales. In
works [1, 2] nonlinear model of deformation of crystal media with a complex lattice
is o�ered. The o�ered model allows to describe speci�c processes of deformation,
which are implemented in modern technologies of obtaining new materials.

2 Nonlinear model of deformation of crystal media

with a complex lattice

In nonlinear model [1]�[3] deformation of crystal medium is described by vector of
acoustic mode U(x, y, z, t) and vector of optical mode u(x, y, z, t). Equations of
motion de�ning U(x, y, z, t) and u(x, y, z, t), are derived from Lagrange�s variation
principle. They have the form

ρÜi = σil,l, (1)

σil = λilmnemn + Cilmnεmn − silΦ(us), (2)

µüi = χil,l − P
∂Φ(us)

∂ui
, (3)

χil = kilmnεmn + Cilmnemn. (4)

In Eqs. (1)�(4) and further the over point denotes time derivative while a comma in
indexes de�nes spatial derivative. Besides, the following designations are entered: ρ,
µ are density and the speci�ed density of mass of couple of atoms, σil, χil are tensors
of macro- and microstresses, λilmn, kilmn, Cilmn are the coe�cients of elasticity,
microelasticity and modules of interaction of acoustic and optical modes, eil, εil are
tensors of deformation and microdeformation

eil =
1

2
(Ui,l + Ul,i) , εil =

1

2
(ui,l + ul,i) , (5)

Φ(us) is the energy of interaction of sublattices. In pioneer work [4] and in majority
of modern works [5, 6] one is accepted, that

Φ(us) = 1− cosus. (6)

The argument is

us = B · u, (7)

where B is the vector of inverse lattice [7]. For crystal of cubic system with length
of elementary cell b one has

B =
1

b
(i + j + k), (8)

us =
1

b
(ux + uy + uz). (9)
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Multiplier P = p−sileil is an e�ective interatomic barrier, where p is half of energy of
activation of rigid shift of lattices, and sil is a tensor of nonlinear mechanostriction.
For the cubic crystal one has sil = sδil, and

P = p− s div U, (10)

The material tensors λilmn, kilmn, Cilmn have only three independent components
for this crystal. Let they will be in Voigt's designations [8]

λ11, λ12, λ44, k11, k12, k44, C11, C12, C44.

Take for a measure of anisotropy of a cubic crystal [9]

a1 =
2λ44

λ11 − λ12

, a2 =
2k44

k11 − k12

, a3 =
2C44

C11 − C12

. (11)

For isotropic medium we have

a1 = a2 = a3 = 1. (12)

Material ratios for the media of cubic system have the form

σil =

{
(λ11 − λ12)eil + (C11 − C12)εil + (λ12e+ C12ε− sΦ(us))δil (i = l),

2λ44eil + 2C44εil (i 6= l),
(13)

χil =

{
(k11 − k12)εil + (C11 − C12)eil + (k12ε+ C12e)δil (i = l),

2k44εil + 2C44eil (i 6= l),
(14)

e = exx + eyy + ezz, ε = εxx + εyy + εzz. (15)

3 Flat deformation. Statics equations

We will call the deformed state as statically �at and parallel to an axis x3 if

Ux = Ux(x, y), Uy = Uy(x, y), Uz = 0, (16)

ux = ux(x, y), uy = uy(x, y), uz = 0. (17)

Taking into account (16), (17) in material ratios (13) and (14), and substituting the
expressions for σil and χil in Eqs. (1) and (3), we �nd the equations of static in
movements for �at deformation of nonlinear model:

λ44∆U + (λ12 + λ44) grad divU +

C44∆u + (C12 + C44) grad div u− s grad Φ(us) = 0, (18)

k44∆u + (k12 + k44) grad div u +

C44∆U + (C12 + C44) grad div U−B(p− s div U) sinus = 0. (19)

In Eqs. (18) and (19) one has

U = Uxi + Uyj, u = uxi + uyj, B =
i + j

b
, ∆ =

∂2

∂x2
+

∂2

∂y2

and, besides, restrictions (12) are accepted.
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3.1 General solution of the equations of statics

The equations of static (18), (19) are a system of four coupled nonlinear equations.
We will seek a vector of macroshifts U in Papkovish-Neuber form

U = aA + gradχ. (20)

Here (a, χ,A) are an arbitrary constant, a scalar function χ(x, y) and a vector
function A(x, y). If one substitutes the expression (20) in Eq. (18), then it will be
solved if vectors A and u are satisfy to equation

aλ44∆A + C44∆u = 0, (21)

and the scalar function χ is a solution of the Poisson equation

∆χ =
1

λ12 + 2λ44

[sΦ(us)− a(λ12 + λ44) divA− (C12 + C44) div u] . (22)

After substitution Eq. (20) in Eq. (19), we can see that this equation will be solved
if

divA = div u, a =
k12 + k44 − C(C12 + C44)

(λ12 + λ44)C − (C12 + C44)
, C =

C12 + 2C44

λ12 + 2λ44

, (23)

k44∆u + aC44∆A + sC grad Φ(us)−B(p− s divU) sinus = 0. (24)

One can exclude ∆A from Eq. (24) with help (21). Then the components of mi-
croshift vector (ux, uy) are the solutions of the equations

K∆ux + sC
b2

2
sinus

∂us
∂x
−B(p− s div U) sinus = 0,

K∆uy + sC
b2

2
sinus

∂us
∂y
−B(p− s div U) sinus = 0, (25)

K =
b2

2

(
k44 −

C 2
44

λ44

)
.

Eqs. (25) can be transformed to more simple form. After summation of (25) and
elementary algebraic transformations we �nd the equation for us

K∆us = P sinus, (26)

P = p− s

λ12 + 2λ44

[div u+ + sΦ(us)] ,

u+ = (aλ44 − C12 − C44) u +
b2

2
(C12 + 2C44) Bus.

To �nd a vector of microshifts u it is necessary to add the equation for ux and uy
to the Eq. (26). They have the form

∆

(
ux −

b

2
us

)
= f, ∆

(
uy −

b

2
us

)
= −f, (27)
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where

f = λ

(
∂us
∂y
− ∂us

∂x

)
sinus, λ =

s

4K
C b2. (28)

Thus, realization of nonlinear model is reduced to the solution of the equation (26).
If function us is found, then the functions ux and uy can be found from the Poisson
equation with the known function f , as we can see from (27) and (28). Problems of
�nding of scalar function χ and vector A from Eq. (21) also lead to Poisson equation

∆χ =
1

λ12 + 2λ44

{sΦ(us)− [(C12 + C44) + a(λ12 + λ44)] div u} . (29)

3.2 Solutions of the equations of optical mode and structures

of microdeformation corresponding to them

In literature there are no analytical methods for solution of sine Gordon (SG) equa-
tion with a variable amplitude. Functionally invariant solutions of the (2+1)- and
(3+1)-dimensional SG equations are constructed for a wide, but speci�c type of
amplitudes in [10]�[12]. The Eq. (26) can be reduced to well studied cases if to
make some restrictions for model or for the �eld of microdeformations. So, if not to
consider dependence of potential of interaction of sublattices on deformation of the
medium, i.e. to accept s = 0, then Eq. (28) becomes the SG equation with constant
coe�cients (K, p)

K∆us = p sinus. (30)

Also it will be if

div u+ +
s

λ12 + 2λ44

Φ(us) = 0. (31)

In literature the method of the solution of the SG equation (30) based on substitution

us = 4 arctg (G(x, y)), G(x, y) = Φ1(x)Φ2(y), (32)

is widely known. The solution (32) assumes that K > 0. If K < 0, then solution of
Eq. (30) is

us = π + 4 arctg (G(x, y)). (33)

The solution (32) is connected with G. L. Lamb Jr. [13], though the �rst time it was
used by Steuerwald [14].
The functions Φ1(x) and Φ2(y) can be found by inversion of the corresponding elliptic
integrals by Legendre's method. The Legendre method is rather di�cult. In [15] the
method of �nding of functions Φ1(x) and Φ2(y) is o�ered based on the di�erential
equations which satisfy elliptic functions of Jacobi (the modi�ed Lamb method).
The o�ered approach allows to receive a wide class of doubly periodic solutions of
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the SG equation. Two solutions from this class are given below

1) A
cn(ξ, ν1)

cn(η, ν2)
,

H2 =
ν2

1(1 + A2) [(1 + A2)ν2
2 − 1]

A4ν2
2

K2(ν1),

B2 =
(1 + A2) [(1 + A2)ν2

2 − 1]

A2
K2(ν2),

A4 =
ν2

1(1− ν2
2)

ν2
2(1− ν2

1)
,

(34)

2)
A

cn(ξ, ν1)

sn(η, ν2)

dn(η, ν2)
,

H2 =
(1− ν2

1)(ν2
2 − A2)(A2 + 1− ν2

2)

A4
K2(ν1),

B2 =
(ν2

2 − A2)(A2 + 1− ν2
2)

A2
K2(ν2),

A4 =
ν2

2(1− ν2
1)(1− ν2

2)

ν2
1

, ν2
1 + ν2

2 > 1,

(35)

In examples (34), (35) values K(ν1), K(ν2) are full elliptic integrals of the �rst sort
and variables are

ξ =
x

lH
K(ν1), η =

y

lB
K(ν2), l =

√
K/p. (36)

On Fig. 1 and Fig. 2 microdeformations corresponding to the solutions (34) and (35)
are shown. As we can see, the solution (34) describes creating in crystal lattice
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Figure 1: Microdeformations of crystal and solution (34) for ν1 = 0.99999, ν2 = 0.9.

of system of regularly located micropores, and (35) describes of system of regularly
located microconsolidations.
The modi�ed method allows to construct solutions which are expressed through
circular or hyperbolic functions from solutions which are expressed through elliptic
functions of Jacobi. It can be done, if to use the known limit ratios

1. ν → 0, sn(u, ν)→ sinu, cn(u, ν)→ cosu, dn(u, ν)→ 1,

2. ν → 1, sn(u, ν)→ thu, cn(u, ν)→ 1

ch u
, dn(u, ν)→ 1

ch u
.

(37)

26



The solutions of nonlinear equations of �at deformation of the crystal media
allowing martensitic transformations

-20

0

20
x

-50

-25

0

25

50

y

-Π

0
Π

us

-20

0

20
x

Figure 2: Microdeformations of crystal and solution (35) for ν1 = ν2 = 0.999.

Using (37), one �nds

G =



tgψ
sh (x cosψ)

sh (y sinψ)

tgψ
ch (x cos  )

ch (y sin  )
,

1

thψ

cos(x shψ)

sh (y coshψ)
,

(38)

where ψ is an arbitrary constant.
On Fig. 3�5 microdeformations corresponding to the solutions (38) are shown. For

Figure 3: Microdeformations and solutions for the �rst case in (38) with ψ = π/4.

the �rst solution the plane of y = 0 is the plane with defects. On half-plane x > 0
defect like the main crack is formed, half-plane x < 0 contains the defects caused
by introduction of the excess crystal planes. It is visible that defects are also the
inclined planes. For the second solution the plane of y = 0 is not the singular plane.
The third solution (38) describes system of micropores which are located in y = 0
plane.
The given examples show that the nonlinear model describes features of deformation
which are implemented in the �eld of big external tension, are observed on experience
and not described by classical mechanics of the continuous medium.
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Figure 4: Microdeformations and solutions for the second case in (38) with ψ = π/4.

Figure 5: Microdeformations and solutions for third case in (38) with ψ = 0.1.

4 Conclusion

The �at deformation plays an extremely important role in classical mechanics of
continuous medium. It is caused by the fact that e�ective analytical and numer-
ical methods are developed for the solution of problems of �at deformation. The
problems of �at deformation can be reduced to boundary problems of theory of the
functions of complex variable. It allowed for their solution to apply both methods of
classical mathematical physics, and the methods of the theory of functions of com-
plex variable (conformal mappings, Riemann problem, theory of singular integrable
equations, etc.) As a result exact analytical solutions of a large number of concrete
cases of deformation of one- and multiply connected domains have been found [16].
The found solutions have formed a scienti�c basis of modern materials science.
However the linear classical model of the continuous medium doesn't answer inquiries
of modern technologies of materials with internal structure. It doesn't describe pro-
cesses of deformation and speci�c nanoscale changes (defects, phase transformations,
fragmentation, etc.) which are implemented in the �eld of intensive plastic defor-
mations. More adequately these processes can be described by the nonlinear theory
of deformation of crystal media with a complex lattice. However, the development
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of mathematical methods for realization of the nonlinear model is necessary that it
became a scienti�c basis for engineering calculations in modern technologies.
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Abstract

On the stress-strain diagram, which is obtained in experiments on a simple
tension of metal specimens, there is a region of instability due to the formation
of the neck. In the theory of plasticity are de�ned conditions for the transition
to an unstable state and appearance of the maximum point on the stress-strain
diagram. In the derivation of this condition assumption of incompressibility of
the material is accepted. However, this assumption cannot be justi�ed, since
in the neck region there are numerous damages (pores, micro-cracks), i.e. the
material is compressible. In this paper, the condition for the transition to
the unstable state for a compressible plastic medium is formulated. Incom-
pressibility condition is also used in the formulation of nonlinear elastic and
viscous-elastic equations generalizing linear models of Hooke and Maxwell.

1 Introduction.

In solid mechanics, the main mechanical characteristics of materials are determined,
in particular, from experiments on simple tension. According to the results of mea-
surements of force, current length and diameter of the specimen are calculated the
values of true stress σ = P/F = σ0F0/F and logarithmic strain ε = ln l/l0 (P is
force, σ0 = P/F0 is engineering stress, l0, F0 are initial and l, F are the current
length and the cross section area of the specimen). Typical stress-strain diagrams
for metallic specimen are shown on Fig. 1.
It is usually assumed that the change in the cross section area of the specimen during
deformation can be neglected, then σ ≈ σ0 and stress-strain curves are plotted in
σ0 − ε coordinates (ε is engineering strain). At the point M on Fig. 1 engineering
stress reaches maximum, neck is occurs on specimen and the deformation becomes
unstable. The drop-down region of the σ0 − ε curve is the result of a sharp cross
section area reduction of the specimen due to the necking. The nature of the neck
is determined by the properties of the material and is various for di�erent materials
(metals, polymers).
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Figure 1: Stress-strain diagrams. Solid line corresponds to tension diagram plotted
in true stresses and the dotted line is diagram plotted in engineering stresses.

2 De�nition of maximum point achievement on the

stress-strain curve for incompressible and com-

pressible plastic medium.

To determine the conditions of the maximum achievement at the point M (Fig. 1)
in the literature [1, 2] the material is considered as incompressible, then l0F0 = lF
and P = σF = σF0 e

−ε. Di�erentiating the last expression for the ε we will have

dP

dε
= F0 e

−ε
(
dσ

dε
− σ

)
. (1)

Under dP
dε

= 0, from (1) follows the ratio

dσ

dε
= σ, (2)

which is the condition for maximum achievement at the point M (Fig. 1).
Let's note that in derivation of the expression (2) is used the assumption of incom-
pressibility of the material, resulting in a �xed maximum point on the stress-strain
diagram. At the same time in real metallic materials during plastic deformation,
particularly in the area of instability, the maximum point shifts, numerous damages
(pores, cracks) are occurred, so the assumption of incompressibility of the material
in the general case cannot be considered as reasonable.
The condition of compressibility is determined by using the current value of the
lateral deformation ν: ν = −εy/εx = −εz/εx (εx is longitudinal, εy, εz are transverse
deformations of a cylindrical specimen). Then, taking into account the geometric
relation F0/F = (l/l0)2ν [3], we will have
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P = σF = σF0 e
−2νε. (3)

Approximately taking that ν = ν(σ0) = const and di�erentiating (3) for the ε, we
receive the following relation

dP

dε
= F0 e

−2νε

(
dσ

dε
− 2νσ

)
, (4)

from which is follows the condition for maximum achievement

dσ

dε
= 2νσ. (5)

For an incompressible material ν = 1/2 and the relation (5) will coincide with the
formula (2). According to the formula (5) the position of the maximum point M on
the stress-strain curve will be vary depending on the material state.
In the case of elastic-plastic media dε = dεe + dεp (εe, εp are the components of the
elastic and plastic deformation, εe = σ/E, E is Young modulus). The ratio between
stress and deformation can be determined by the following equation

dl

l
=
dσ

E
+ ϕ(σ)dσ. (6)

Integrating equation (6), we will receive

ln ε =
σ

E
+

σ∫
0

ϕ(σ)dσ. (7)

In the general case, inserting at (6) a relation σ = σ0 e
2νε, we can obtain the equation

written through the value of the lateral deformation ν. For di�erent values of ν, we
can plot a non-monotonic σ0−ε diagrams and, thus, to describe experimental curves
for metallic materials in engineering stress-strain coordinates. Further, this approach
is applied for the case of rigid-plastic Ludwig medium with nonlinear hardening

σ = σT + bεm, (8)

where σT is the yield stress, b, m are constants.
Let's write equation (8) through σ0

σ0 = (σT + bεm) e−2νε. (9)

The theoretical curves according formula (9) for σT = 200 MPa, b = 5 · 102 MPa,
m = 0, 5 and for di�erent ν values are shown on Fig. 2.

3 Formulation of nonlinear equations for compress-

ible elastic and elastic-viscous medium.

Next, let's formulate nonlinear equations for compressible viscoelastic medium based
on the linear relations of Hooke's law and viscous Newton media. It is well known
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Figure 2: The theoretical curves according formula (9).

that using the linear relations the mechanical behavior of materials, in particular,
polymers can be described only in limited temperature and force actions. In general
case, we should operate the non-linear rheological equations. Under the proposed
approach, will be considered the behavior of a compressible elastic-viscous medium,
which generalized linear models of Hooke and Maxwell.
In the case of Hooke's law, nonlinear version of the equations for the elastic medium
written using the current value of the transverse deformation has the form

σ0 = Eεe−2νε. (10)

Using equation (10) the nonlinear e�ects observed in experiments on simple tension
can be described. When ν = 1/2 relation (10) is described the behavior of an
incompressible nonlinear medium. When ν = 0 the medium is linearly elastic.
Intermediate cases will correspond to the elastic materials with di�erent mechanical
properties. Diagrams σ0− ε for di�erent values of lateral deformation coe�cient are
shown on Fig. 3.
Let's consider a rheological Maxwell model for nonlinear elastic-viscous medium.
With this aim, the classical linear Maxwell's equation

dε

dt
=

1

E

dσ

dt
+
σ

η
(11)

will be written through the stress σ0, considering that the material is compressible
and introducing the current value of the lateral deformation

dε

dt
=

2σ0ν

E
e2νεdε

dt
+
σ0

η
e2νε. (12)
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Figure 3: Diagrams σ0 − ε for di�erent values of lateral deformation coe�cient:
incompressible non-linear medium (ν = 1/2), linear-elastic medium (ν = 0).

From equation (11) when σ = const is follows a linear dependence for creep defor-
mation ε = σ

η t, which is known to be bad �t with the experimental results. Solving
the equation (12) the nonlinear equations for creep strain can be obtained. Con-
sidering that ν = ν(σ0) = const from the solution of equation (12) with the initial
conditions t = 0, ε = 0, we can obtain

t = η

(
1− e−2νε

2νσ0

− 2νε

E

)
. (13)

The theoretical creep curves for a given stress level and di�erent values of ν according
to the formula (13) are shown on Fig. 4.
For ν → 0 from (13) follows the linear Maxwell relation for creep deformation. In
the general case, creep curves are nonlinear and qualitatively described the corre-
sponding experimental curves.

4 Conclusion.

In the article, the condition for the transition to instable state in the region of neck-
ing for compressible metal specimen is formulated. For an incompressible material
Hill was �rst who described this condition. The e�ect of compressibility is deter-
mined by using the current value of the lateral deformation. Taking into account
this coe�cient the rheological equations for compressible media are obtained, which
generalized well-known equations for an incompressible plastic, elastic and elastic-
viscous medium. Analytical solutions were obtained, constructed the corresponding
theoretical stress-strain curves and creep curves dependent on the current value of
lateral deformation coe�cient. In particular, it is shown that for a compressible
material in the region of instability, the maximum point is shifted. In the case of
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Figure 4: Theoretical creep curves for di�erent values of ν according to the formula
(13).

the Hill solution the maximum point of the stress-strain curve is �xed.
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Abstract

The new results on the e�ect of thermal embrittlement (embrittlement of
structural metallic materials under prolonged action of relatively low stresses
and high temperatures) are obtained. The main attention is focused on the
formulation of the relations for the damage parameter and the development
of the long-term strength criterion. For comparison of the obtained relations
with the experimental results observational studies were performed on the de-
termination of damage accumulation under high temperature creep conditions
for various metals and alloys: copper, aluminum, Magnox AL80, Nickel and
0.1% palladium alloy, various heat resistant alloys. The experiments were
carried out at di�erent temperatures and levels of tensile stresses. Theoret-
ical curves of density change were compared with the experimental results
for some of these metals and alloys. At the time interval 30-500 hours the
damage function is expressed as a straight line. The theoretical curves have
the general character irrespective of the material and the temperature-power
e�ects, which indicates the existence of a common law of damage processes
and indirectly con�rms the selection of a physical damage parameter as the
ratio of the current density of the material to the initial density.

For the description of brittle fractures the conception of continuity (Kachanov [1])
and damage (Rabotnov [2, 3]) was developed. To materialize the damage parameter
various de�nitions were o�ered [4-6]. In the paper the parameter of continuity is
determined by the ratio ψ = ρ/ρ0 (ρ0 is initial, ρ is current density) and it is an
integral measure of the accumulation of structural microdefects during long-term
high-temperature loading [7-14]. In the initial conditions t = 0, ρ = ρ0, ψ = 1, at
the fracture time t = tf , ρ = 0, ψ = 0.
In the brittle model of Kachanov it is supposed that creep deformation doesn't
in�uence to fracture processes, and the kinetic equation of the continuity parameter
is taken as a power function of e�ective stress [1]

dψ

dt
= −A

(
σmax

ψ

)n
, (1)

where A > 0, n ≥ 0 are constants, σmax/ψ is e�ective stress.
The tension problem of specimen under the action of constant load P is solved.
It is considered that brittle fracture happens at small deformations therefore it is
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possible to neglect change of specimen cross section, i.e. the conditions F = F0,
σmax = σ = P/F = P/F0 = σ0 = const, (σ is true stress, σ0 is nominal stress, F0, F
are the initial and current cross section area of a specimen) are accepted. At these
assumptions the equation (1) can be expressed in the form

dψ

dt
= −A

(
σ0

ψ

)n
. (2)

In the Rabotnov's brittle fracture model [3] the damage parameter ω (0 ≤ ω ≤ 1)
is de�ned by the following kinetic equation

dω

dt
= Aσn. (3)

The damage parameter is introduced as ω = FT/F0 (FT is the total area of pores).
From condition F = F0 − FT , we have F = F0(1 − ω), σ = P/F = σ0F0/F =
σ0/(1 − ω). Taking into account these relations the kinetic equation (3) can be
written as

dω

dt
= A

(
σ0

1− ω

)n
, (4)

The equations (2) and (4) are identical at ω = 1−ψ, dψ = −dω. From the solution
of these equations under the initial conditions t = 0, ψ = 1, ω = 0 we have

ψ = 1− ω =
[
1− (n+ 1)Aσnt0

] 1
n+1 . (5)

Accepting the fracture conditions t = tbf , ψ = 0, ω = 1 (in the general case, the
fracture occurs when ρ = ρ∗, ψ = ψ∗, ω = ω∗ where the asterisk indicated the limit
values of density and damage parameters), from (5) follows the criterion

tbf =
1

(n+ 1) · Aσn0
. (6)

Such approach can give to the parameter of Kachanov the physical content. However
from condition F = F0, which is used in Kachanov's theory, follows ω = 0, i.e. the
concept of damage loses meaning. Thus, similar interpretation of Kachanov's conti-
nuity parameter isn't represented fully correct. The development of the conception
of damage received in work [3], where the system of equations for the creep deforma-
tion ε and damage parameter ω was proposed. When the criterion of ductile-brittle
fracture is determined using this system of equations, the condition of incompress-
ibility, which is contrary to the damage conception, is accepted.
To overcome these contradictions a system of equations for the creep rate and dam-
age, based on the continuity parameter ψ = ρ/ρ0, is proposed. Let's consider the
following system of equations

ψβ
dε

dt
= Bσm, (7)

ψα
dψ

dt
= −Aσn, (8)
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where B, A, α, β are constants.
Taking into account the mass conservation law ρ0l0F0 = ρlF the true stress can be
expressed as σ = σ0ψe

ε. Taking into account this relation the equations (7)-(8) can
be written in the form

dε

dt
= Bσm0 ψ

m−βemε, (9)

dψ

dt
= −Aσn0ψn−αenε. (10)

The system of equations (9)-(10) can be solved approximately, for example, for the
case of purely brittle fracture and small deformations, when the approximations
emε ≈ 1, enε ≈ 1 can be considered. In this case, using the initial conditions t = 0,
ψ = 1, ω = 0 we can receive the following analytical solutions

ψ =
[
1− (α− n+ 1)Aσnt0

] 1
α−n+1 , (11)

ε =
Bσm−n0

Aγ

{
1−

[
1− (α− n+ 1)Aσnt0

] γ
α−n+1

}
, (12)

where γ = m− β + α− n+ 1.
Consider the approximate and exact solutions for the damage function ψ(ε). Taking
emε ≈ 1, enε ≈ 1 from the system of equations (9)-(10) we get

dψ

dε
= −A

B
σn−m0 ψn−α−m+β. (13)

The solution of equation (13) with initial conditions ψ = 1, ε = 0 has the form

ψ(ε) =

[
1− Aσn−m0 (1− n+ α +m− β)

B
ε

] 1
1−n+α+m−β

. (14)

The exact solution of equations (9)-(10) for function ψ(ε) can be received. Dividing
(10) to (9), we will obtain the following equation

dψ

dε
= −A

B
σn−m0 ψn−α−m+βe(n−m)ε. (15)

Using the initial conditions ψ = 1, ε = 0 and solving (15) we receive

ψ(ε) =

[
1 +

Aσn−m0 (1− n+ α +m− β)

B(n−m)
(1− e(n−m)ε)

] 1
1−n+α+m−β

. (16)

On Fig. 1 the curves ψ(ε) according formulas (14) and (16) for di�erent values
of parameter α (α = 6 - curves 1, 1', α = 4 - curves 2, 2' è α = 2 - curves 3,
3') are shown. In the calculations the following values of coe�cients were used:
A = 10−9[MPa]−2, B = 5 · 10−14[MPa]−4, σ0 = 100MPa, n = 2, m = 4, β = 1.
As can be seen from Fig. 1 the damage curves for formulas (14) and (16) are
identical.
Taking the fracture conditions t = tf , ψ = 0, from (11) we obtain the creep fracture
criterion

39



Proceedings of XLV International Summer School � Conference APM 2017

Figure 1: The curves ψ(ε) according formulas (14) and (16) for di�erent values of
parameter α: α = 6 - curves 1, 1', α = 4 - curves 2, 2' è α = 2 - curves 3, 3'.

tbf =
1

(α− n+ 1) · Aσn0
. (17)

When α = 2n the criterion (17) coincides with the Kachanov-Rabotnov criterion.
In Fig. 2 are shown the theoretical creep deformation curves according to the relation
(12) for di�erent values of the coe�cient α (α = 6 - curve 1, α = 4 - curve 2 è α = 2
- curve 3). As can be seen from this �gure, the system of equations (9)-(10) is able
to describe the third phase of creep curves, which is determined by the processes of
damage accumulation. In the calculations the following values of coe�cients were
used: A = 10−9[MPa]−2, B = 5 · 10−17[MPa]−4, σ0 = 100MPa, n = 2, m = 4,
β = 1.
For comparison of the obtained relations with the experimental results observational
studies were performed on the determination of damage accumulation under high
temperature creep conditions for various metals and alloys: copper, aluminum, Mag-
nox AL80, Nickel and 0.1% palladium alloy, various heat resistant alloys [8-14]. The
experiments were carried out at di�erent temperatures and levels of tensile stresses.
Dwell times under load to failure were within 30-500 hours. Theoretical curves of
density change were compared with the experimental results for some of these metals
and alloys. On Fig. 3 theoretical curves ψ(ε) (solid line) and experimental points
of density changes of pure copper during creep under 500◦ C [8] (circle points) and
250◦ C [10] (cross points) are shown.
On Fig. 4 theoretical curves ψ(t) (solid line) and experimental points of density
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Figure 2: The theoretical creep deformation curves according to the relation (12)
for di�erent values of the coe�cient α: (α = 6 - curve 1, α = 4 - curve 2 è α = 2 -
curve 3.

changes of pure aluminum during creep under 250◦ C [9] (circle points) and nickel
alloy under 503◦ C [13] (cross points) are shown.
From Fig. 3-4 it follows that the experimental points are described well by straight
lines and have the general character for di�erent metals tested under various temper-
ature and force conditions. These results allow us to consider the damage parameter
ψ = ρ/ρ0 as universal characteristic of porosity accumulation in the creep process.
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Abstract

The problems of the stress state caused by uneven heating are of great
importance for the analysis of the strength and correct functioning of the
structures of the new technology, including micro and nano techniques, op-
erating under conditions of unevenly distributed temperature �elds. Three-
dimensional theory of temperature stresses in the micropolar theory of elastic-
ity was developed by Novacki [1] [2]. In papers [3][4] system of asymptotically
justi�ed hypotheses is developed and on the basis of them applied theories of
micropolar elastic thin plates and shells are constructed. In paper [5] applied
theory of thermoelasticity of micropolar thin shells is constructed. Developing
this direction in current paper theory of thermal stresses of bending deforma-
tion of micropolar elastic thin plates is introduced and on the basis of this
theory problems of thermoelastic bending of rectangular and circular plates
are studied, which are brought to �nal numerical results. E�ective properties
of micropolar material rigidity are revealed compared with classical case.

1 Problem statement

Isotropic elastic plate of constant thickness 2h is considered as three-dimensional
body. Axes x1, x2 are referred to the plate middle plane. We proceed from main
equations of three-dimensional asymmetric linear theory of quasistatic thermoelas-
ticity [2]:
Equilibrium equations:

σji,j = 0, µji,j + εijkσjk = 0 (1.1)

Geometric relations:

γji = ui,j − εkjiωk, χji = ωi,j (1.2)

Physical relations of elasticity:

σji = (µ+ α)γji + (µ− α)γij + (λγkk − αTT )δij,

µji = (γ + ε)χji + (γ − ε)χij + βχkkδij. (1.3)
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Here σij are stresses, µij-momental stresses, ui-displacements, ωi re body points
rotations during the deformation, γij are deformations, χij-bending-torsions,
λ, µ, α, γ, ε, β -elastic constants, αT is the linear coe�cient of temperature expansion
of body material (i, j = 1, 2, 3).
Boundary conditions should be added to the above mentioned equations. σ3i, σ33, µ3i, µ33(i =
1, 2) are given on the facial planes, stresses or displacements and rotations can be
given on the lateral surface, or mixed boundary conditions can be given on di�erent
parts of the surface.
Energy balance equation in three-dimensional micropolar thermoelasticity has the
following form:∫ ∫

S

∫ h

−h
Wdx1dx2dx3 = A, (1.4)

where W is the density of deformation potential energy:

W =
1

2
(σ11γ11 + σ22γ22 + σ33γ33 + σ12γ12 + σ21γ21 + σ13γ13+

+σ23γ23 + σ32γ32 + µ11χ11 + µ22χ22 + µ33χ33 + µ12χ12 + µ13χ13+

+µ31χ31 + µ23χ23 + µ32χ32)− αtT

2
(σ11 + σ22 + σ33), (1.5)

A is the work of external forces and moments on displacements and rotations of
deformation:

A =
1

2

{[∫ h

−h
dx3

∫
l1

(
σ0

21u1 + σ0
22u2 + σ0

23u3 + µ0
21ω1 + µ0

22ω2 + µ0
23ω3

)
dx1+

+

∫ h

−h
dx3

∫
l2

(
σ0

11u1 + σ0
12u2 + σ0

13u3 + µ0
11ω1 + µ0

12ω2 + µ0
13ω3

)
dx2

]
+

+

[∫∫
S+

(
p+

1 u1 + p+
2 u2 + p+

3 u3 +m+
1 ω1 +m+

2 ω2 +m+
3 ω3

)
dx1dx2+

+

∫∫
S−

(
p−1 u1 + p−2 u2 + p−3 u3 +m−1 ω1 +m−2 ω2 +m−3 ω3

)
dx1dx2

]}
. (1.6)

On the basis of Hook's law (1.3) density (1.5) of deformation potential energy can be
expressed by components of tensors of deformation and bending-torsions, or by com-
ponents of force and moment stresses. Let's introduce the density W of deformation
potential energy by by components of tensors of deformation and bending-torsions:

W =
1

2

{
2µ
(
γ2

11 + γ2
22 + γ2

33

)
+ λ (γ11 + γ22 + γ33)2 +

+ (µ+ α)
(
γ2

12 + γ2
21 + γ2

13 + γ2
31 + γ2

23 + γ2
32

)
+

+2 (µ− α) (γ12γ21 + γ13γ31 + γ23γ32) + 2γ
(
χ2

11 + χ2
22 + χ2

33

)
+

+β (χ11 + χ22 + χ33)2 + (γ + ε)
(
χ2

12 + χ2
21 + χ2

13 + χ2
31 + χ2

23 + χ2
32

)
+

+2 (γ − ε) (χ12χ21 + χ13χ31 + χ23χ32)} − (3λ+ 2µ)αTT (γ11 + γ22 + γ33)
(1.7)
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As it is accepted in the classical theory of elasticity, as well as in the micropolar
theory of elasticity, the application of variation methods is e�ective during the deter-
mination of temperature stresses. General variation principle in micropolar theory
of thermoelasticity is studied, the functional of which is the following :

I =

∫∫
S

∫ h

−h

〈
W −

{
σ11

(
γ11 −

∂u1

∂x1

)
+ σ22

(
γ22 −

∂u2

∂x2

)
+ σ33

(
γ33 −

∂u3

∂x3

)
+

+σ12

[
γ12 −

(
∂u2

∂x1

− ω3

)]
+ σ21

[
γ21 −

(
∂u1

∂x2

+ ω3

)]
+

+σ13

[
γ13 −

(
∂u3

∂x1

+ ω2

)]
+ σ31

[
γ31 −

(
∂u1

∂x3

− ω2

)]
+

+σ23

[
γ23 −

(
∂u3

∂x2

− ω1

)]
+ σ32

[
γ32 −

(
∂u2

∂x3

+ ω1

)]
+

+µ11

(
χ11 −

∂ω1

∂x1

)
+ µ22

(
χ22 −

∂ω2

∂x2

)
+ µ33

(
χ33 −

∂ω3

∂x3

)
+

+µ12

(
χ12 −

∂ω2

∂x1

)
+ µ21

(
χ21 −

∂ω1

∂x2

)
+ µ13

(
χ13 −

∂ω3

∂x1

)
+

+µ23

(
χ23 −

∂ω3

∂x2

)
+ µ31

(
χ31 −

∂ω1

∂x3

)
+ µ32

(
χ32 −

∂ω2

∂x3

)}〉
dx1dx2dx3−

−
∫∫

s+

[
p+

1 u1 + p+
2 u2 + p+

3 u3 +m+
1 ω1 +m+

2 ω2 +m+
3 ω3

]
x3=h

dx1dx2+

+

∫∫
s−

[
p−1 u1 + p−2 u2 + p−3 u3 +m−1 ω1 +m−2 ω2 +m−3 ω3

]
x3=−h dx1dx2+

+

∫ +h

−h
dx3

∫
l
′
1

(
σ0

21u1 + σ0
22u2 + σ0

23u3 + µ0
21ω1 + µ0

22ω2 + µ0
23ω3

)
dx1+

+

∫ +h

−h
dx3

∫
l”1

[
σ21

(
u1 − u0

1

)
+ σ22

(
u2 − u0

2

)
+ σ23

(
u3 − u0

3

)
+

+µ21

(
ω1 − ω0

1

)
+ µ22

(
ω2 − ω0

2

)
+ µ23

(
ω3 − ω0

3

)]
dx1+

+

∫ +h

−h
dx3

∫
l
′
2

(
σ0

11u1 + σ0
12u2 + σ0

13u3 + µ0
11ω1 + µ0

12ω2 + µ0
13ω3

)
dx2+

+

∫ +h

−h
dx3

∫
l”2

[
σ11

(
u1 − u0

1

)
+ σ12

(
u2 − u0

2

)
+ σ13

(
u3 − u0

3

)
+

+µ11

(
ω1 − ω0

1

)
+ µ12

(
ω2 − ω0

2

)
+ µ13

(
ω3 − ω0

3

)]
dx2 (1.8)

The functional (1.8) is called full functional of three-dimensional micropolar theory
of thermoelasticity. On the basis of it variation equation δI = 0 can be obtained,
accepting that virtual increments δγmn, δχmn, δun, δωn, δσmn, δµmn are mutually in-
dependent. Then all main equations (1.1) - (1.3) and natural boundary conditions
of three dimensional problem of micropolar thermoelasticity will be obtained.
It is accepted that plate thickness is small compared with its other sizes. We?ll
start from the following main concept: in static case general thermoelastic state of
thin three-dimensional body consists of internal state, covering the plate, and of
boundary layers, localizing near the plate edge Σ. The construction of the general
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applied two-dimensional theory of thermoelasticity of micropolar elastic thin plates
is closely connected with the construction of the internal problem.
Considering that the hypotheses method rather intensively and easily for engineering
practice leads to �nal results, the model of thermoelasticity of micropolar isotropic
thin plates will be constructed on the basis of hypotheses method. The hypotheses
are formulated on the basis of the asymptotic analysis result of the stated three-
dimensional boundary-value problem of micropolar theory of thermoelasticity in thin
three-dimensional domain of the plate [6].

2 Initial hypotheses

On the basis of qualitative results [6] of asymptotic solution of the system of equa-
tions (1.1) - (1.4) with the above mentioned boundary conditions and asymptotic
integration process of this boundary-value problem, following general hypotheses are
stated for the construction of the model of micropolar thermoelasticity of isotropic
thin plates with free �elds of displacements and rotations [3] - [5]:
1)Assumption of linear distribution of components of vectors of displacement and
free rotation by coordinate x3 is accepted as kinematic hypothesis:

ui = x3ψi (x1, x2) , u3 = w (x1, x2) (i = 1, 2) , (2.1)

ωi = Ωi (x1, x2) , ω3 = x3ι (x1, x2) (i = 1, 2) , (2.2)

where ui, w are displacements of middle plane points along the xi and x3; ψi-full
angels of rotation of the normal to the middle plane element around the axis xi,Ωi-
free rotations of the three-dimensional plate points around the axis x3. In papers
[3] - [5] the kinematic hypothesis (2.1), (2.2) is called Timoshenko's generalized
kinematic hypothesis of theory of micropolar plates and shells.
Following hypotheses are accepted as static ones:
2) In formulas for γii of generalized Hook's law (1.2) force stress σ33 can be neglected
in relation to force normal stresses, σii and in formulas for χi3, (i = 1, 2) moment
stresses µ3i can be neglected in relation to moment stresses µi3, (i = 1, 2).
3) For determination of deformations, bending-torsions, force and moment stresses
�rst we accept following relations for force stresses σ3i and moment stress µ33:

σ3i = σ0
3i (x1, x2) , (i = 1, 2) , µ33 = µ0

33 (x1, x2) . (2.3)

After determination of mentioned quantities values of σ3i and µ33 will be determined
as sum of (2.3) and result of integration of the �rst two and sixth equilibrium
equations of (1.1), or which condition will be required that averaged along the plate
thickness quantities are equal to zero.
4) Linear change along the plate thickness is accepted for temperature function T
[7]:

T =
x3

2h
T0 (x1, x2) . (2.4)

The accepted kinematic, static hypotheses and hypothesis on linear distribution of
the temperature function let us reduce the problem of determination of spatial stress
state of micropolar plate to two-dimensional problem.
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3 Determination of components of deformation and

bending-torsions tensors

On the basis of kinematic hypothesis (2.1), (2.2) following formulas will be obtained
for components of deformation and bending-torsion tensors:

γ11 = x3K11 (x1, x2) , γ12 = x3K12 (x1, x2) , γ32 = Γ32 (x1, x2) ,

γ22 = x3K22 (x1, x2) , γ21 = x3K21 (x1, x2) , γ23 = Γ23 (x1, x2) ,

γ13 = Γ13 (x1, x2) , γ31 = Γ31 (x1, x2) , γ33 = 0

χ11 = k11 (x1, x2) , χ12 = k12 (x1, x2) , χ31 = 0

χ22 = k22 (x1, x2) , χ21 = k21 (x1, x2) , χ32 = 0

χ33 = k33 (x1, x2) , χ13 = x3l13 (x1, x2) , χ23 = x3l23 (x1, x2) (3.1)

where following notations are accepted:

K11 =
∂ψ1

∂x1

, K22 =
∂ψ2

∂x2

, K12 =
∂ψ2

∂x1

− ι, K21 =
∂ψ1

∂x2

+ ι,

Γ31 = ψ1 − Ω2, Γ32 = ψ2 + Ω1, Γ13 =
∂w

∂x1

+ Ω2, Γ23 =
∂w

∂x2

− Ω1,

k11 =
∂Ω1

∂x1

, k22 =
∂Ω2

∂x2

, k12 =
∂Ω2

∂x1

, k21 =
∂Ω1

∂x2

,

k33 = ι, l13 =
∂ι

∂x1

, l23 =
∂ι

∂x2

. (3.2)

4 Determination of components of force and mo-

ment stresses tensors

On the basis of physical relations (1.2), formulas for deformations, bending-torsions
(3.1)-(3.2) and hypotheses 2)-4) following formulas will be obtained for force and
moment stresses:

σ11 = x3
E

1− ν2

[
K11 + νK22 − (1 + ν)αt

T0

2h

]
,

σ22 = x3
E

1− ν2

[
νK11 +K22 − (1 + ν)αt

T0

2h

]
,

σ12 = x3 [(µ+ α)K12 + (µ− α)K21] ,

σ21 = x3 [(µ+ α)K21 + (µ− α)K12] , (4.1)

σ13 = (µ+ α)Γ13 + (µ− α)Γ31, σ23 = (µ+ α)Γ23 + (µ− α)Γ32,

σ0
31 = (µ+ α)Γ31 + (µ− α)Γ13, σ

0
32 = (µ+ α)Γ32 + (µ− α)Γ23. (4.2)

σ31 = σ0
31 (x1;x2) +

(
h2

6
− x2

3

2

)(
∂σ1

11

∂x1

+
∂σ1

21

∂x2

)
σ32 = σ0

32 (x1;x2) +

(
h2

6
− x2

3

2

)(
∂σ1

22

∂x2

+
∂σ1

12

∂x1

)
(4.3)

48



Thermoelasticity of micropolar thin plates

σ33 = −x3

(
∂σ13

∂x1

+
∂σ23

∂x2

)
+
p+

3 − p−3
2

= x3
p̃3

2h
+ σ0

33, (4.4)

µ11 = (β + 2γ)k11 + β(k22 + k33), µ22 = (β + 2γ)k22 + β(k11 + k33),

µ0
33 = (β + 2γ)k33 + β(k11 + k22),

µ12 = (γ + ε)k12 + (γ − ε)k21, µ21 = (γ + ε)k21 + (γ − ε)k12, (4.5)

µ13 = x3
4γε

γ + ε
l13, µ23 = x3

4γε

γ + ε
l23. (4.6)

µ31 = −x3

(
∂µ11

∂x1

+
∂µ21

∂x2

+ σ23 − σ32

)
+
m+

1 −m−1
2

µ32 = −x3

(
∂µ12

∂x1

+
∂µ22

∂x2

+ σ31 − σ13

)
+
m+

2 −m−2
2

. (4.7)

µ33 = µ0
33 (x1;x2) +

(
h2

6
− x2

3

2

)(
∂µ1

13

∂x1

+
∂µ1

23

∂x2

+ σ1
12 − σ1

21

)
(4.8)

Here σ1
11, σ

1
22, σ

1
12, σ

1
21, µ

1
13, µ

1
23 are coe�cients of coordinate x3 in relations (4.1) and

(4.6).

5 Averaged forces, moments and hypermoments

In order to bring three-dimensional problem of micropolar thermoelasticity for thin
plates to two-dimensional one, which is already done for deformations, bending-
torsions, force and moment stresses, statically equivalent to them integral charac-
teristics are introduced:

N13 =

∫ h

−h
σ13dx3, N23 =

∫ h

−h
σ23dx3, N31 =

∫ h

−h
σ31dx3, N32 =

∫ h

−h
σ32dx3 (5.1)

M11 =

∫ h

−h
x3σ11dx3, M22 =

∫ h

−h
x3σ22dx3,

M12 =

∫ h

−h
x3σ12dx3, M21 =

∫ h

−h
x3σ21dx3 (5.2)

L11 =

∫ h

−h
µ11dx3, L22 =

∫ h

−h
µ22dx3, L12 =

∫ h

−h
µ12dx3,

L21 =

∫ h

−h
µ21dx3, L33 =

∫ h

−h
µ33dx3, (5.3)

Λ13 =

∫ h

−h
x3µ13dx3, Λ23 =

∫ h

−h
x3µ23dx3. (5.4)
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6 Main equations and boundary conditions of the

applied theory of thermoelasticity of micropolar

isotropic thin plates with free �elds of displace-

ments and rotations

Equilibrium equations for two-dimensional case can be obtained from the equations,
de�ning force stresses σ31, σ32, σ33 and moment stresses µ31, µ32, µ33 , if we satisfy
boundary conditions on plate planes x3 = ±h. It should be noted that the system
of two-dimensional equations splits into two separate systems for the problems of
bending and generalized plane stress state. The problem of bending is studied below.

Physical relations of thermoelasticity will be obtained on the basis of formulas (5.1)
- (5.4) for averaged forces, moments and hypermoments using the corresponding
formulas (4.1) - (4.6) or force and moment stresses.

Main system of equations of the problem of thermoelastic bending of micropolar
thin plates with fee �elds of displacements and rotations will be as follows:

Equilibrium equations:

∂N13

∂x1

+
∂N23

∂x2

= −p̃3, N3i −
(
∂Mii

∂xi
+
∂Mji

∂xj

)
= hp̃i,

∂Lii
∂xi

+
∂Lji
∂xj

+ (−1)j(Nj3 −N3j) = −m̃i

L33 −
[
∂Λ13

∂x1

+
∂Λ23

∂x2

+ (M12 −M21)

]
= hm̃3. (6.1)

Physical relations of thermolasticity:

N13 = 2h(µ+ α)Γ13 + 2h(µ− α)Γ31, N23 = 2h(µ+ α)Γ23 + 2h(µ− α)Γ32,

N31 = 2h(µ+ α)Γ31 + 2h(µ− α)Γ13, N32 = 2h(µ+ α)Γ32 + 2h(µ− α)Γ23,

M11 =
2Eh3

3(1− ν2)

[
K11 + νK22 − (1 + ν)αt

T0

2h

]
,

M12 =
2h3

3
[(µ+ α)K12 + (µ− α)K21] ,

M22 =
2Eh3

3(1− ν2)

[
K22 + νK11 − (1 + ν)αt

T0

2h

]
,

M21 =
2h3

3
[(µ+ α)K21 + (µ− α)K12] ,

L11 = 2h [(β + 2γ)k11 + β(k22 + k33)] , L22 = 2h [(β + 2γ)k22 + β(k11 + k33)] ,

L12 = 2h [(γ + ε)k12 + (γ − ε)k21] , L21 = 2h [(γ + ε)k21 + (γ − ε)k12] ,

L33 = 2h [(β + 2γ)k33 + β(k11 + k22)] ,

Λ13 =
2h3

3

4γε

γ + ε
l13, Λ23 =

2h3

3

4γε

γ + ε
l23. (6.2)
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Geometric relations ((3.2)):

K11 =
∂ψ1

∂x1

, K22 =
∂ψ2

∂x2

, K12 =
∂ψ2

∂x1

− ι, K21 =
∂ψ1

∂x2

+ ι

Γ31 = ψ1 − Ω2, Γ32 = ψ2 + Ω1, Γ13 =
∂w

∂x1

+ Ω2, Γ23 =
∂w

∂x2

− Ω1

k11 =
∂Ω1

∂x1

, k22 =
∂Ω2

∂x2

, k12 =
∂Ω2

∂x1

, k21 =
∂Ω1

∂x2

,

k33 = ι, l13 =
∂ι

∂x1

, l23 =
∂ι

∂x2

. (6.3)

Following boundary conditions should be added to the system of equations (6.1) -
(6.3) (on x1 = const) [3]:

M11 = M∗
11 or K11 = K∗11, M12 = M∗

12 or K12 = K∗12, N13 = N∗13 or w = w∗,

L11 = L∗11 or k11 = k∗11, L12 = L∗12 or k12 = k∗12, Λ13 = Λ∗13 or l13 = l∗13, (6.4)

Taking into consideration the formulas for stresses (4.1) - (4.8), formulas for forces,
moments and hypermoments (5.1) - (5.4), formulas for deformations and bending-
torsions (3.1) - (3.2), energy conservation law (1.4) for the applied theory of ther-
moelasticity of micropolar thin plates will be as follows:∫∫

S

W0dx1dx2 = A0,

where density W0 of the deformation potential energy is expressed by the following
formula:

W0 =
1

2
(M11K11 +M22K22 +M12K12 +M21K21 +N13Γ13 +N31Γ31 +N23Γ23+

+N32Γ32 + L11k11 + L22k22 + L33k33 + L12k12 + L21k21 + Λ13l13 + Λ23l23)−

−αT
2h

(M1 +M2)T0, (6.5)

A0 is the work of external forces, moments and hypermoments:

A0 =
1

2

{∫
l1

(M0
21ψ1 +M0

22ψ2 +N0
23w + L0

21Ω1 + L0
22Ω2 + Λ0

23ι)dx1+

+ (M0
11ψ1 +M0

12ψ2 +N0
13w + L0

11Ω1 + L0
12Ω2 + Λ0

13ι)dx2+

+

∫∫
S

[
(p+

1 − p−1 )hψ1 + (p+
2 − p−2 )hψ2 + (p+

3 + p−3 )w + (m+
1 +m−1 )Ω1+

+(m+
2 +m−2 )Ω2 + (m+

3 +m−3 )hι
]
dx1dx2

}
. (6.6)

If physical relations of elasticity (6.2) are taken into account in relation (6.5), then
following formulas will be obtained for density W0 of the deformation potential
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energy:

W0 =
1

2

〈
2Eh3

3(1− ν2)
(K2

11 +K2
22 + 2νK11K22) +

2h3

3

[
(µ+ α)(K2

12 +K2
21)+

+2(µ− α)K12K31] + 2h
[
(µ+ α)(Γ2

13 + Γ2
31 + Γ2

23 + Γ2
32)+

+2(µ− α)(Γ13Γ31 + Γ23Γ32)] + 2h
[
(β + 2γ)(k2

11 + k2
22 + k2

33)2+

+2β(k11k22 + k11k33 + k22k33)] + 2h
[
(γ + ε)(k2

12 + k2
21) + 2(γ − ε)k12k21

]
+

+
2h3

3

4γε

γ + ε
(l213 + l223)

〉
− Eh2

3(1− ν)
(K11 +K22)αTT0. (6.7)

Analoggicaly general variation functional of the applied theory of thermoelasticity
of micropolar thin plates will be obtained from the variation functional (1.8) of the
three-dimensional theory:

I0 =

∫∫
S

〈
W0 −

{
M11

(
K11 −

∂ψ1

∂x1

)
+M22

(
K22 −

∂ψ2

∂x2

)
+

+N32 [Γ32 − (ψ2 + Ω1)] +N31 [Γ31 − (ψ1 + Ω2)] +M21

[
K21 −

(
∂ψ1

∂x2

+ ι

)]
+

+N13

[
Γ13 −

(
∂w

∂x1

+ Ω2

)]
+N23

[
Γ23 −

(
∂w

∂x2

− Ω1

)]
+ L11

(
k11 −

∂Ω1

∂x1

)
+

+L22

(
k22 −

∂Ω2

∂x2

)
+ L33(k33 − ι) + L12

(
k12 −

∂Ω2

∂x1

)
+ L21

(
k21 −

∂Ω1

∂x2

)
+

+Λ13

(
l13 −

∂ι

∂x1

)
+ Λ23

(
l23 −

∂ι

∂x1

)
+M12

[
K12 −

(
∂ψ2

∂x1

− ι
)]}〉

ds−

−
∫∫

S

[
(p+

1 hψ1 + p+
2 hψ2 + p+

3 w) + (m+
1 Ω1 +m+

2 Ω2 +m3hι)
]
ds+

+

∫∫
S

[
−p−1 hψ1 − p−2 hψ2 + p−3 w +m−1 Ω1 +m−2 Ω2 +m−3 hι)

]
ds+

+

∫
l
′
1

(M0
21ψ1 +M0

22ψ2 +N0
23w + L0

21Ω1 + L0
22Ω2 + Λ0

23ι)dx1+

+

∫
l
′′
1

[
M21(ψ1 − ψ0

1) +M22(ψ2 − ψ0
2) +N23(w − w0) + L21(Ω1 − Ω0

1)+

+L22(Ω2 − Ω0
2) + Λ23(ι− ι0)

]
dx1 +

∫
l
′
2

(M0
11ψ1 +M0

12ψ2 +N0
13w+

+L0
11Ω1 + L0

12Ω2 + Λ0
13ι)dx2 +

∫
l
′′
2

[
M11(ψ1 − ψ0

1) +M12(ψ2 − ψ0
2)+

+N13(w − w0) + L11(Ω1 − Ω0
1) + L12(Ω2 − Ω0

2) + Λ13(ι− ι0)
]
dx2 : (6.8)

If we study variation equation δI0 = 0, all main equations (6.1) - (6.3) of the
applied theory of thermoelasticity of micropolar thin plates and boundary conditions
will be obtained, when forces, moments and hypermoments are given or boundary
conditions in displacements, rotations and hyperrotations or boundary conditions in
mixed form.
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7 Thermoelastic bending of micropolar rectangular

plate

Problem is studied when the rectangular micropolar plate is hinged supported and
is under the temperature �eld

T = x3
T0

2h
, where T0 = const (7.1)

Following boundary conditions take place in case of hinged support:

w = 0, ψ2 = 0,M11 = 0, L12 = 0,Ω1 = 0,Λ13 = 0, when x1 = 0, x1 = a

w = 0, ψ1 = 0,M22 = 0, L21 = 0,Ω2 = 0,Λ23 = 0, when x1 = 0, x1 = b (7.2)

System of equations for w,ψ1, ψ2,Ω1,Ω2, ι will be obtained if formulas (6.3) are
substituted into (6.2), then into equilibrium equations (6.1).
If we take into consideration formulas for M11 and M12 from (6.2), it is easy to
show, that temperature summands in these formulas give inhomogeneity in boundary
conditions M11 = 0 when x1 = 0, x1 = a and M22 = 0 when x2 = 0, x2 = b. In order
to obtain homogeneous boundary conditions functions ψ1 and ψ2 must be replaced
by the following formulas:

ψ1 = ψ̃1 +
(1 + ν)αTT0

2δ
x̄1, ψ2 = ψ̃2 +

(1 + ν)αTT0

2δ
x̄2,

x̄1 =
x1

a
, x̄2 =

x2

a
, w̄ =

w

a
, ῑ =

ι

a
. (7.3)

As a result boundary conditions (7.2) will be homogeneous, and in this case method
of separation of variables can be used for the solution of the problem (6.1) - (6.3)
of rectangular plate. The solution of the mentioned system of equations will be
introduced in double trigonometric Fourier series:

w̄ =
∞∑
m=1

∞∑
n=1

Amn sinmπx̄1 sinnπx̄1, ῑ =
∞∑
m=1

∞∑
n=1

Fmn cosmπx̄1 cosnπx̄1,

Ω1 =
∞∑
m=1

∞∑
n=1

Bmn sinmπx̄1 cosnπx̄1, Ω2 =
∞∑
m=1

∞∑
n=1

Cmn cosmπx̄1 sinnπx̄1,

ψ̃1 =
∞∑
m=1

∞∑
n=1

Dmn cosmπx̄1 sinnπx̄1, ψ̃2 =
∞∑
m=1

∞∑
n=1

Kmn sinmπx̄1 cosnπx̄1,

(7.4)

which satisfy homogeneous boundary conditions (7.2). Functions T0 = const, T0x̄1

and T0x̄2 should be also introduced in double trigonometric Fourier series:

T0 =
∞∑
m=1

∞∑
n=1

Tmn sinmπx̄1 sinnπx̄1, T0x1 =
∞∑
m=1

∞∑
n=1

Gmn cosmπx̄1 sinnπx̄1,

T0x̄2 =
∞∑
m=1

∞∑
n=1

Mmn sinmπx̄1 cosnπx̄1 (7.5)
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where

Tmn = 4

∫ 1

0

∫ 1

0

T0 sinmπx̄1 sinnπx̄1dx̄1dx̄2,

Gmn = 4

∫ 1

0

∫ 1

0

T0 cosmπx̄1 sinnπx̄1dx̄1dx̄2,

Mmn = 4

∫ 1

0

∫ 1

0

T0 sinmπx̄1 cosnπx̄1dx̄1dx̄2,

Further substituting (7.4) and (7.5) into the system of equations for coe�cients
Amn, Bmn, Cmn, Dmn, Kmn, Fmn system of inhomogeneous algebraic linear equations
will be obtained. Solving this system and substituting the solution into (7.4) ,
the solution of the stated problem will be obtained. The result of the numerical
calculations is introduced:

δ =
h

a
=

1

40
, ν = 0.33, γ̄ = ε̄ = 22∗10−4, β̄ = 11∗10−2, T0 = 600C, αT = 125∗10−7 1/g

Table 1: Rectangular micropolar and classical plate bending under the temperature
in�uence, depending on

α

µ
.

α

µ
micropolar model
w̄max ∗ 10−3

classical model
w̄max ∗ 10−3

wmik.max

wcl.max

10−5 3.266 3.277 0.99
10−4 3.173 3.277 0.97
10−3 2.494 3.277 0.76
10−2 1.005 3.277 0.30
4.2 ∗ 10−2 0.569 3.277 0.17
10−1 0.471 3.277 0.14

Numerical results, introduced in Table 1, state that the plate rigidity increases
compared with the classical case, when the dimensionless quantity

α

µ
increases.

8 Temperature bending of micropolar circular plate

Problem of temperature bending of micropolar circular plate is studied when the
asymmetric stress state takes place and the temperature �eld is expressed by the
formula (7.1).
It should be noted that the applied theory of thermoelasticity, introduced in the
previous paragraphs, is related to the Cartesian coordinate system. Main equations
of this theory can also be obtained in curvilinear orthogonal system of coordinates.
Particularly, main equations of the applied theory of thermoelasticity of micropolar
thin plates can be obtained in the polar system of coordinates. In axisymmetric
case, when the bending deformation takes place, on the basis of the main system
of equations of the applied theory of thermoelasticity of micropolar circular plates
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and with the help of exception method the studied problem can be reduced to the
solution of the following equation:

∇̃2∇̃2ψ̃1 − k2∇̃2ψ̃1 = −
6

(
α

µ

)2

(1− ν)αTT0

δ3(γ̄ + ε̄)

(
1 +

α

µ

) r̄, (8.1)

where

ψ̃1 = ψ1 −
αTT0

2δ
r̄, ∇̃2ψ̃1 =

d2ψ̃1

dr̄2
+

1

r

dψ̃1

dr̄
− 1

r̄2
ψ̃1,

k2 =

(
γ̄ + ε̄+

2δ2

3(1− ν)

) 6
α

µ
(1− ν)

δ2(γ̄ + ε̄)

(
1 +

α

µ

) , r̄ =
r

a
,

a is the plate middle plane radii.
General solution of the inhomogeneous equation (8.1) can be obtained as follows:

ψ̃1 = −C1

k2
r̄ + C2I1(kr̄) +

3

(
α

µ

)2

(1− ν)αTT0

4k2δ3(γ̄ + ε̄)

(
1 +

α

µ

) r̄3 (8.2)

where C1 and C2 are constants, I1(kr̄) is Bessel function.
Determining ψ̃1, bending w̄ and free rotation Ω2 are determined by formulas:

w̄ =
C1

2k2
r̄2 + C2I0(kr̄)

[
δ2k

3(1− ν)
− 1

k

]
−

3

(
α

µ

)2

(1− ν)αTT0

16k2δ3(γ̄ + ε̄)

(
1 +

α

µ

) r̄4+

+

(
α

µ

)2

αTT0

k2δ(γ̄ + ε̄)

(
1 +

α

µ

) r̄2 − αTT0

4δ
r̄2 + C∗,

Ω2 = C2I1(kr̄)

1−
δ2k2

(
1 +

α

µ

)
6
α

µ
(1− ν)

+

3

(
α

µ

)2

(1− ν)αTT0

4k2δ3(γ̄ + ε̄)

(
1 +

α

µ

) r̄3+

+

−C1

k2
−

α

µ
αTT0

k2δ(γ̄ + ε̄)
+
αTT0

2δ

 r̄. (8.3)

The case is studied, when the plate middle plane contour is hinged supported, i.e.
following boundary conditions take place:

w̄ = 0,
dψ̃1

dr̄
+
ν

r̄
ψ̃1 = 0, L̄12 = 0 when r̄ = 1. (8.4)

55



REFERENCES

Determining integral constants and substituting them into the corresponding
formulas, the solution of the stated problem will be obtained, i.e. functions
w̄(r̄), ψ(r̄),Ω2(r̄).
Results of numerical calculations are introduced below.

δ =
h

a
=

1

40
, ν = 0.33, γ̄ = ε̄ = 22 ∗ 10−4, T0 = 600C, αT = 125 ∗ 10−7 1/g

Table 2: Circular micropolar and classical plate bending under the temperature
in�uence, depending on

α

µ
.

α

µ
micropolar model
w̄max ∗ 10−3

classical model
w̄max ∗ 10−3

wmik.max

wcl.max

1.2 ∗ 10−3 7.184 7.5 0.96
1.4 ∗ 10−3 6.451 7.5 0.86
1.8 ∗ 10−3 5.299 7.5 0.71
2 ∗ 10−3 4.825 7.5 0.64
3 ∗ 10−3 2.962 7.5 0.40
4 ∗ 10−3 1.521 7.5 0.20

As in case of rectangular plate, in case of circular plate it is stated that the plate
rigidity increases compared with the classical case, when the dimensionless quantity
α

µ
increases.

Conclusion

In the present paper applied theory and variation principle of thermoelasticity of
bending deformation of micropolar thin plates are constructed. On the basis of the
constructed applied theory of thermoelasticity of thin plates problems of thermoe-
lastic bending of rectangular and circular plates are studied. Numerical results show
that the plate rigidity increases in case of micropolar material.
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Abstract

The connection between the behavior of covered materials with defects
such as cracks perpendicular to the boundaries of elastic bodies and litho-
spheric plates with faults in case of various external in�uences in layered bod-
ies is explained. Such behavior of these mechanical structures is seen during
di�erent types of external in�uences. The block element method is applied,
which allows to investigate arising boundary problems di�cult to study with
other approaches. The stress-strain state of block structures generated by the
studied mechanical problems was investigated, and the conditions of stress
concentration build-up in hazardous areas were found. It was established that
there are parameters, the role of which is paramount in assessing the pos-
sibility of destruction of the structures under consideration. The conditions
allowing to exclude the occurrence of damage because of defects and faults, or
to reduce the level of destruction were formulated for a number of problems.

Keywords: packed block element, factorization, topology, integral and dif-
ferential factorization methods, exterior forms, block structures, boundary
problems, stress-strain state, deformable blocks, Kirchho� plates, di�erential
and integral equations

1 Introduction

The theory of blocked structures, designed in the South Research Center of RAS,
has several various advantages discussed right below. It allows solvation of boundary
value problems for the system of di�erential equations in particular derivatives in
some systems in analytical form. The basis of this theory is di�erential method
of factorization. This method has been overlooked by scientists involved in the
development of factorizing approaches for a long time. The reason is that the method
required involvement of modern mathematical methods. Being highly precise though
still rather complex in application, the method was applied in various other areas.
In the report there is an example of application of the method in the task of solidity
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of bodies with plating. The possibility of an initial earthquake and the seismic
rating in a restricted fault zone are being explored in this work with application of
the method of block elements. Approximate integral equations are constructed for
the cases of �nite and semi-in�nite faults, and the symbol structure of the kernel
of integral equation is derived. The latter may be used not only for analyzing the
singular features in boundary values, but also for studying wave processed in faults
in dynamic tasks.

2 Stating The Aim

The starting data on initial earthquakes, research methods and the results are pub-
lished in [1, 2, 3]. Let us consider the covering on the malformed base to represent
Kircho�'s plate with three types of defects: in�nite defect, which divides the plate
into two semi-in�nite plates; semi-in�nite, when the defect is a semi-in�nite fracture;
and �nite, when the defect is a �nite fracture. Let us consider that, from a certain
point, the edges of all three types of defects with parallel borders are remote from
each other for 2θ and are on a linearly deformable base. Let us consider that the
space between the edges of the defect is empty, and the butt ends of the plates are
a�ected by outer forces directed according to the rule of external vectors. In the
x1x2x3 system of coordinates with the onset in the x1x2 plane, which is congruent
with the median plane of the plate. the axis ox3 directed up the normal to the plate,
the axis ox1 directed tangentially towards the border of the defect, the axis ox2 �
normally to the border. The area of the plate positioned to the left from the defect
is marked λ and is described by the correlations |x1| ≤ ∞, x2 ≤ −θ, and the one to
the right � by the index r and coordinates |x1| ≤ ∞, θ ≤ x2. Let us limit ourselves
to the vertical in�uences on the plates only, considering that bending moments and
shear forces di�erent from zero can be assigned to the butt ends. Kircho�'s equation
for the b fragments of the b = λ, r covering which are situated in Ωb areas with ∂Ωb

borders takes the following form with the determined vertical static in�uences with
tension, t3b up and g3b down:

Rb(∂x1, ∂x2)u3b + ε53b(t3b − g3b) ≡

≡
(
∂4

∂x4
1

+ 2
∂2

∂x2
1

∂2

∂x2
2

+
∂4

∂x4
2

)
u3b + ε53b(t3b − g3b) = 0 (1)

Rb(−iα1,−iα2)U3b ≡ Rb(−iα1,−iα2)U3b ≡ (α2
1 + α2

2)2U3b

U3b = F2u3b, G3b = F2g3b, T3b = F2t3b b = λ, r

Mb = −Db1

(
∂2u3b

∂x2
2

+ νb
∂2u3b

∂x2
1

)
, Db1 =

Db

2
, Db2 =

Db

3

Qb = −Db2

(
∂3u3b

∂x3
2

+ (2− νb)
∂3u3b

∂x2
1∂x2

)
= f4b(∂Ωb)

u3b = f1b(∂Ωb),
∂u3b

∂x2

= f2b(∂Ωb)
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Db =
Ebh

3
b

12(1− ν2
b )
, ε53b =

(1− ν2
b )124

Ebh3
b

, ε−1
6 =

(1− ν)H

µ

The connection between edge tensions and shifting on the surface of the elastic
medium on which the plates are situated, takes the following form:

u3m(x1, x2) = ε−1
6

2∑
n=1

∫∫
Ωn

k(x1 − ξ1, x2 − ξ2)g3n(ξ1, ξ2)dξ1dξ2,

x1, x2 ∈ Ωm, m = λ, r, θ,

Ωλ(|x1| ≤ ∞; x2 ≤ −θ), Ωr(|x1| ≤ ∞; θ ≤ x2),

Ωθ(|x1| ≤ ∞; −θ ≤ x2 ≤ θ), n = λ, r

k(x1, x2) =
1

4π2

∞∫
−∞

∫
K(α1, α2)e−i〈α,x〉dα1dα2

u3m(x1, x2) =
1

ε64π2

∞∫
−∞

∫
K(α1, α2G(α1, α2)e−i〈α,x〉dα1dα2

K (α1, α2) is the analytical function of two complex variables αk, particularly mero-
morphic, its various examples are presented in [4, 5], Mb and Qb � bending moment
and shear force in the x1ox2 system of coordinates; hb � thickness of the plates,
H � dimensional parameter of substructure, for instance, the thickness of the layer.
Eb � Young's moduli of the plates, νb � their Poisson ratios. The nomenclature
is taken from [1], F2 ≡ F2(α1, α2) and F1 ≡ F1(α1), two- and one-dimensional
Fourier-transform operators respectively.

3 The factorization method for block element

Above-mentioned academicians examine packed block elements in the blocked struc-
ture derived from a boundary-value problem for systems of linear di�erential equa-
tions in partial derivatives as topological objects. It is proved that they can be
regarded as a manifold with brink edge in certain spaces representing the Cartesian
product of topological spaces. This makes it possible to carry out the interference
of packed block elements for block structure construction of varying degrees of com-
plexity. The latter can be achieved by choosing the block elements with di�erent
properties and then can be obtained obtained the desired properties of the block
structure. In the work [6] the notion of packed block elements was added. Packed
block element � is locally represented accurate solution of a boundary-value prob-
lem in the chosen carrier. It derives from a regularized element of algebraic rings
on ideal [7]. A regularization is being carried out by solving the pseudo-di�erential
equations which being stated by external forms generated by boundary-value prob-
lem. With the aim of distancing from the �exterior algebra� which let to set up
the external forms and which doesn`t contribute to the transformations used in the
regularization process in the block element theory which is called �external analy-
sis� [8]. A block element can be called packed in case if the caused by regularization
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pseudodi�erential equations can be solved for it. Homeomorphisms in theory block
elements are very e�ective and necessary as they allow by performing a construc-
tional design in well-studied spaces from Rn to transfer them to a more complex
structure.

Without an attempt to embrace a huge variety of boundary problems and geometric
forms of packaged block elements carriers, let analyze the case of block elements
obtained at the intersection of three-dimensional layer and an in�nite prism which
have a polygon in its intersection and which axis is perpendicular to the boundary
layer. Let us approve that their conjunction can be built by two diverse neighboring
packed blocks which have a common bound and in such a manner you can obtain
a new packed block element which is ready to conjugate with adjacent element.
After that this algorithm can be relatively easy applied to more di�cult boundary
problems and block elements. Let us denote one of the block elementsb, its carrier �
Ωb and the second � d with carrier Ωd. Flat contact borders of two block elements
are signed as ∂Ωbd for the side belonging to the block element b, ∂Ωdb � belonging to
the element d and we consider that borders coincide on contact. Let us look �rstly
at a boundary problem of one linear partial di�erential equation in order 2r with
boundary conditions of associated solutions, which include equality not only on the
borders of solutions but also combinations of their derivate, on standards as well as
on a tangent border, with the order of leading derivate r. Obviously, the borders are
perpendicular to the stratum boundaries. Let us bring here Cartesian coordinate
system ox1x2x3, pointing the axis ox3 perpendicular to the stratum boundary, axis
ox1 � perpendicular to the boundaries ∂Ωbd, ∂Ωdb, and apply the right triple rule to
the last axis. Let us denote as local solutions for the already discussed boundary
problem for every block element in accordance. Added Cartesian coordinate system
inducts in Euclidean space topology [9, 10, 11, 12]. Let us call open multitudes
of block elements carriers opened spheres, which consist of inner points, and also
sphere segments divided from the opened sphere with the border, which belongs
to the block element. Every union of such opened spheres stays opened. Let us
denote Pb (x1

b , x
2
b , x

3
b) and Pd (x1

d, x
2
d, x

3
d) as topological �elds points of Ωb (x1

b , x
2
b , x

3
b)

and Ωd (x1
d, x

2
d, x

3
d) carriers.

Thus, it is proved, packed block elements under coupling produce a packed block
element with carrier, which uni�ed initial ones. If initial block elements were single
card manifolds, then a new block element is a manifold with double card atlas. This
result increases opportunities of using of block elements for constructing of complex
block constructions for di�erent use.

In the another area of border of ∂Ωbdp newly formed packed block elements Ωbd =
Ωb ∪ Ωd there can be contact with another packed block element Ωp. As above,
borders have to be considered ∂Ωdbp and ∂Ωpdb, further statements are analogous
to given above ones. For the record, border conditions on the new border can
di�erentiate from reviewed ones early it means, a boundary problem is set with
mixed border conditions. This circumstance does not change stated constructions, as
the problem of construction of packed block elements with mixed border conditions
refers to the solution of pseudodi�erential equations, which are supposed completed.

In the case of vectorial border problems, set in areas Ωb and Ωd, which are described
by the system of di�erential equations in partial derivatives, solutions of which have
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several components. First of all, each component of concerned border problems in
the form of pack block element is formed by di�erential and integrated factorization
methods with the using of function matrix factorization (external analysis [8]). Bor-
der conditions will be complicated by including a combination of di�erent elements
and variables. At that time, it is easy to understand, the topological characteristics
of all components and variables remain and homeomorphisms of topological space
carriers are under way. In the case, if packed block elements have carries with com-
plicated shapes, multi-card atlas, then for the formation of homeomorphisms in the
including topologies with the substitutions of variables areas can be demanded.
Thus, packed block elements allow forming block constructions, which in turn be-
come packed block elements, which presenting the solution of border problem in the
area of its carriers.
Considering the plates and base to be a block structure consisting of three de-
formable blocks, the block element method can be used to study it. This method,
as described in [8], includes, as a �rst step, the immersion in the topological struc-
ture by means of exterior algebra of boundary value. The authors call the multistage
algorithm of further research of the functional equation that have nothing to do with
the means of exterior algebra peer evaluation in the block element theory [8]. It in-
cludes �uxional factorization of matrix functions with elements of several composite
variables, the realization of automorphism consisting either of calculation of residue
forms of Leray, or incomplete functional equations of Wiener-Hopf, building up of
pseudodi�erential equations, extraction from them integral equations, dictating by
concrete boundary conditions of boundary value problem, solving integral equations
and integral expression of the boundary value problem in every block in the form
of the �packed� block element. Finally, �gluing together� solutions of every block,
consisting of building of factor � the topology of some topological spaces, which are
Cartesian products of topological spaces of carriers and solutions. Using the de-
scriptive approach, the functional equation of the boundary value problem (1) has
the following form

Rb(−iα1,−iα2)U3b ≡ (α2
1 + α2

2)2U3b = −
∫
∂Ωb

ωb−ε53bS3b(α1, α2) (2)

S3b(α1, α2) = F2(α1, α2)(t3b − g3b), b = λ, r

Here � participating in introduction exterior forms [1, 2, 3], which have, taking into
account a choice of the coordinate system, the following view

ωb = ei〈α,x〉
{
−
[
∂3u3b

∂x3
2

−iα2
∂2u3b

∂x2
2

−α2
2

∂u3b

∂x2

+iα3
2u3b+2

∂3u3b

∂x2
1∂x2

−2iα2
∂2u3b

∂x2
1

]
dx1+

+

[
∂3u3b

∂x3
1

− iα1
∂2u3b

∂x2
1

− α2
1

∂u3b

∂x1

+ iα3
1u3b

]
dx2

}
, b = λ, r

and in a special case of straight-line boundary there can be introduced by the fol-
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lowing formulae

ωλ = ei〈α,x〉
{
−
[
iα2MλD

−1
λ −QλD

−1
λ − (α2

2 + νλα
2
1)
∂u3λ

∂x2

+

+ iα2

[
α2

2 + (2− νλ)α2
1

]
u3λ

]}
dx1

ωr = −ei〈α,x〉
{
−
[
iα2MrD

−1
r −QrD

−1
r − (α2

2 + νrα
2
1)
∂u3r

∂x2

+

+ iα2

[
α2

2 + (2− νr)α2
1

]
u3r

]}
dx1 (3)

In the formulas (2), (3) at the time of integration the boundary ∂Ωb is represented
by two butt-ends of right and left Kirchho� plates, if defect is in�nite and divides
plates in half. As the area occupied with covering is treated as topological mani-
fold with boundary, so local coordinates are set on the boundary, the orientation
of which is coordinated with the orientation of the interior of manifold. If defect
is semi-in�nite or �nite, the crack edges will be boundaries with the corresponding
orientation. For implementation of the automorphism, calculated the residue forms
of Leray [1, 2, 3], according to the parameter α2, also in twofold poles, pseudod-
i�erential equations of boundary value problem, taking into consideration agreed
notations, we can represent in the following form

F−1
1 (ξλ1 )

〈
−
∫
∂Ωλ

{
iα2−D

−1
λ1Mλ −D−1

λ2Qλ − (α2
2− + νλα

2
1)
∂u3λ

∂x2

+

+ iα2−
[
α2

2− + (2− νλ)α2
1

]
u3λ

}
eiα1x1dx1 + ε53λS3λ(α1, α2−)

〉
= 0

α2− = −i
√
α2

1, ξλ1 ∈ ∂Ωλ

F−1
1 (ξλ1 )

〈
−
∫
∂Ωλ

{
iD−1

λ1Mλ − 2α2−
∂u3λ

∂x2

+ i [ 3α2
2− + (2− νλ)α2

1 ]u3λ

}
eiα1x1dx1+

+ ε53λS
′
3λ(α1, α2−)

〉
= 0

ξλ1 ∈ ∂Ωλ, ∂Ωλ = {−∞ ≤ x1 ≤ ∞, x2 = −θ}
The derivative is calculated according to the parameter α2.
Using further on this method, we come to the system of functional equations of this
sort [

ε53r(α
2
1 + α2

2)−2 + ε−1
6 K1(α1, α2)

]
G+(α1, α2) =

= −
[
ε53λ(α

2
1 + α2

2)−2 + ε−1
6 K1(α1, α2)

]
G−(α1, α2) + U3θ(α1, α2)+

+ (α2
1 + α2

2)−2[Aλk1λ0 +Bλk2λ0 + Ark1r0 +Brk2r0+

+ ε53λT
+(α1, α2) + ε53rT

−(α1, α2)], θ > 0
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U3θ(α1, α2) =

∞∫
−∞

θ∫
−θ

u3(x1, x2)ei〈α,x〉dx1dx2

[
ε53r(α

2
1 + α2

2)−2 + ε−1
6 K1(α1, α2)

]
G+(α1, α2) =

= −
[
ε53λ(α

2
1 + α2

2)−2 + ε−1
6 K1(α1, α2)

]
G−(α1, α2)+

+ (α2
1 + α2

2)−2[Aλk1λ0 +Bλk2λ0 + Ark1r0 +Brk2r0+

+ ε53λT
+(α1, α2) + ε53rT

−(α1, α2)], θ = 0

Here Aλ, Bλ, Ar, Br � are the expressions of the composite species, for the sake
of brevity, are omitted. It should be noticed, that the represented functional equa-
tions have as unknown variables not only functions G+(α1, α2), G−(α1, α2), but also
the functionals G+(α1, α2+), G−(α1, α2−), G+(α1, α2+), G−′(α1, α2−), which enter
linear k1λ0, k2λ0, k1r0, k2r0 and which are in need of determination. We have ob-
tained two di�erent Wiener-Hopf's functional equations. The �rst one is the gen-
eralized Wiener-Hopf's functional equation, because of the presence of the function
U3θ(α1, α2). It can be solved as stated in [5], by the conversion of a system of two
integral equations of the second kind with quite continuous functions in a certain
space with weight, which has the form

X+ −
{
−M

+
1

M−
2

Y −e−i2α2θ

}+

=

{
1

M−
2

Φe−iα2θ

}+

Y − +

{
M−

2

M+
1

X+ei2α2θ

}−
=

{
1

M+
1

Φeiα2θ

}−
M1 = M+

1 M
−
1 , M2 = M+

2 M
−
2 ,

M+
2 G

+ = X+, M−
1 G

− = Y −

M1 =
[
ε53λ(α

2
1 + α2

2)−2 + ε−1
6 K(α1, α2)

]
M2 =

[
ε53r(α

2
1 + α2

2)−2 + ε−1
6 K(α1, α2)

]
Here the designations of the work [5] are accepted.
Having solved boundary problems and de�ned functions G+(α1, α2), G−(α1, α2) it is
also required to �nd the values of the functionals G+(α1, α2+) and G−(α1, α2−), and
also the functionals which are di�erentiated according to the second parameter of
the form G

′
+(α1, α2+), G

′
−(α1, α2−). To �nd them, we use the fact that, the solutions

that are constructed in this way have the following structure.

G+(α1, α2) = C1+(α1, α2)G+(α1, α2+) + C2+(α1, α2)G−(α1, α2−)+

+ C3+(α1, α2)G
′

+(α1, α2+) + C4+(α1, α2)G
′

−(α1, α2−) + C5+(α1, α2)

G−(α1, α2) = C1−(α1, α2)G+(α1, α2+) + C2−(α1, α2)G−(α1, α2−)+

+ C1−(α1, α2)G
′

+(α1, α2+) + C2−(α1, α2)G
′

−(α1, α2−) + C3−(α1, α2)
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We di�erentiate the �rst and the second equations by means of.
Here functions Cn+(α1, α2), Cn−(α1, α2), n = 1, 2, 3 are known, they can be easy
found from the given above expressions, and G+(α1, α2−), G−(α1, α2+), G

′
+(α1, α2+),

G
′
−(α1, α2−), is required to be determined. For their determination, we put α2 = α2+

in the �rst equation and in the di�erentiated one, but α2 = α2− in the second one
and the di�erentiated equation. So we obtain an algebraic system for the deter-
mination of all the above unknowns, we �nd the required functions by solving it.
The introduction of the found solutions into the relations with external forms, de-
pending on the stated boundary problem, makes it possible to determine completely
the stress-strain state of the covering with or without any defects which are under
review.
The second functional equation is the Wiener-Hopf's equation. The methods of
constructing its exact or approximate solutions can be found in [4, 5]. It is easy
enough to prove that the solution of the �rst functional equation for leads to the
following properties of contact stresses between the plates and a substrate at the
edges

g3λ(x1, x2) = σ1λ(x1, x2)(−x2 − θ)−1/2, x2 < −θ

g3r(x1, x2) = σ1r(x1, x2)(x2 − θ)−1/2, x2 > θ

Here σ1b(x1, x2), b = λ, r are the continuous on the both coordinates functions for
su�ciently smooth t3b, b = λ, r [4, 5]. The conversion of the second equation x2 → 0
leads to the following properties of the solutions

g3λ(x1, x2)→ σ2λ(x1, x2)x−1
2

g3r(x1, x2)→ σ2r(x1, x2)x−1
2

Functions σnb(x1, x2), b = λ, r; n = 2, 3 are continuous according to the both pa-
rameters.

4 Semi-limited and limited faults or defects

While further studying the main research result of the study has established: in�-
nite and semi-in�nite defects always have singular stress concentrations at the edges
of the plates while approaching the defects banks which bearing the danger of de-
stroying the coated structure. The degree of structure destruction decreases as the
size reduces of the defect of the �nite length. The destruction degree is determined
by the combinations of some parameters. The latter is established by investigating
the coe�cients in the case of the characteristic features. The following approximate
formulas for the solving the boundary value problem are taken place, which are rep-
resented structurally without specifying all the parameters in connection with the
complexity, which allows one to estimate the possibility of solving integral equations

K0(α1) = −D

(
1 +

BλL−(α2λ−) +BrL+(α2r+)[
(BrL+(α2r+) +BλL−(α2λ−))− ε−1

6 k∞(α1)
])
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D = −AλQλ(α1,−θ) + ArQr(α1, θ), θ ≥ 0

G−(α1, α2) = L−(α2)
1

ε−1
6 k∞(α1)

K0(α1, α2)

G+(α1, α2) = L+(α2)
1

ε−1
6 k∞(α1)

K0(α1, α2)

Aλ(α1, α2) = −e
−iα2θ

α2λ−
, Bλ(α1, α2) =

e−i(α2−α2λ−)θ

α2λ−

Ar(α1, α2) = −e
iα2θ

α2r+

, Br(α1, α2) =
ei(α2−α2r+)θ

α2r+

In the case of the faults limited by the length, the integral equation for the deter-
mination of the behavior of the shearing forces approximately has the form in the
case of the plates with di�erent properties

∞∫
−∞

k(y − ξ)s(ξ)dξ = σ2(y), −∞ ≤ y ≤ ∞

1

ε−1
6 k∞(α1)

K0(α1) = K(α1), k(x1) = F−1
1 (x1)K(α1)

D(α1) = −AλQλ(α1, 0) + ArQr(α1, 0), s(x1) = F−1
1 (x1)D(α1)

In the case of the equality of the properties of the left and the right half-plates, that
is

k∞(α1) = lim |α2|−1K(α1, α2), |α2| → ∞

Then

D =
1

α2λ−(α1)
[Qλ(α1, 0) +Qr(α1, )]

s0(x1) = F−1
1 (x1) [Qλ(α1, 0) +Qr(α1, )] c1 ≤ x1 ≤ c2

c2∫
c1

k1(y − ξ)s0(ξ)dξ = σ2(y), c1 ≤ y ≤ c2, k1(x1) = F−1
1 (x1)

K(α1)

α2λ−(α1)

In that case, if c2 =∞ then an integral equation for a semi-in�nite fault is obtained.

∞∫
c1

k1(y − ξ)s0(ξ)dξ = σ2(y), c1 ≤ y ≤ ∞

By means of these integral equations it is possible to determine the degree of the
impact on the bank of the fault in order to reduce or increase the coe�cient of the
singular term in the contact stresses.
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5 CONCLUSION

In such a manner, it's shown that block structures of elastic materials are under-
explored elastic objects which have incalculable properties. Among them there are
singular particularities in contact voltage for approached lithosphere plates. The
integral equation is built which describes behavior of the function being the index of
singular particularity. This equation allows getting in boundary problem parameter
points which reduce or increase the rate of the index under particularity.
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Abstract

The study treats rod structures consisting of tubes whose external surfaces
are reinforced by means of suitable reinforcing material (reinforced composites,
special nanomaterials etc.). The technology of reinforcement deposition is
assumed to be di�usive (i.e. painting, pulverization, some electrochemical
methods of deposition). Thus a transition area of gradual penetration of the
reinforcement into the basic material (substrate) emerges. The authors use
in the transition area an approach, proposing a quadratic approximation of
material elastic modulus, which varies within a range bounded by the elastic
modulus of the reinforcement and that of the substrate. Loading is static
(axial tension/compression) applied under normal temperature and humidity.
The linear axial strains are constant within the core, but following a quadratic
parabolic law within the transition area. Strain transition between both areas
is also smooth. A rod under tension is separately considered and its strength is
calculated. Moreover, a compressed rod is also analysed assuming a possibility
of rod stability loss. The authors outline a possibility to homogenize the
structural element using the sti�ness values and employing FEM codes for
complex rod tube structures.

1 Introduction

Consider rod structures composed of tubes �xed by two joints and reinforced by a
high-strength material along their external surfaces. The reinforcing material can
be a polymer composite reinforced by metal �bers or a special nanomaterial [1],
[2]. Consider also some technologies of deposition of the reinforcing layer, which
di�usively penetrates the substrate, for instance, painting, pulverization, concrete
spraying, electrochemical deposition [3]. Some metal, concrete, steel �ber reinforced
concrete etc. can be used as a basic material (substrate). Then, a transition area
emerges within the tube, bounded by the tube surface and the basic material, where
the concentration of the reinforcement varies from 100% to 0%. Thus, a combined
structural element is formed, while the outline of the transition area and the assess-
ment of the mechanical properties of the penetrated material can be performed by
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solving the di�usion problem. Yet, this turns to be a complex task, since it is not pos-
sible to �nd exactly the speci�c coe�cient of di�usion. To overcome that di�culty,
we designed in previous studies an approximate calculation model (ACM), where
the distribution of the elasticity modulus and that of the axial linear deformation of
the compound material were approximated by means of quadratic relations [4], [5].
The approximation thus attained turned to be of the order of the approximation of
FEM codes. Moreover, ACM yields simpli�ed solutions to the problem of determin-
ing the stressed and strained state of surface-reinforced, i.e. combined, structural
elements. Thus facilitating the calculation of structures composed of those elements.
ACM enables also one to perform element homogenization by introducing combined
sti�ness. Finding the latter, one can use it in various FE commercial codes.

We use ACM in the present study. Rod loading is uniaxial and static, applied under
normal temperature and humidity. Displacements and strains are small, and the
linear geometrical theory of solid mechanics is assumed to hold [6]. Note also: (i)
First-rate stresses and strains are uniformly distributed within the basic material,
and they are identical along the rod; (ii) Shear stresses within the basic area are
considered to be second-rate quantities, and they are found using known approx-
imate relations of the AMC [6], [7]; (iii) When applying compression, one should
check rod strength or �nd the condition of rod stability loss to be taken as criteria
of rod strength calculation [8].

Rod reinforcement makes a structure lighter, since tube reinforcement increases ma-
terial strength and tubes may be fabricated thinner thus reducing their weight and
that of the overall structure. Thus, energy of structural production can be indirectly
saved. The same energy-saving e�ect is attained when using recycled structural ma-
terials, which have lost to a certain extent their strength and deformability and are
bound to rehabilitation, [5].

Regarding ACM, the distribution of the elasticity moduli follows a quadratic elliptic
law in the transition area, while that of the axial strains follows a quadratic parabolic
law.

The geometry parameters are as follows: R1 � internal radius; R2 � external radius;
h = R1 − R2 � tube thickness; hR � thickness of the transition area, hR = R2 − zL,
hL = h − hR, RL = R1 + hL, F = 2πRM � cross section area; RM = 1/2(R2 + R2)
� tube mean radius; rM = 1/2(R1 + rL) � core mean radius; rR = 1/2(R2 + rL) �
mean radius of the transition area. The following additional geometry parameters
are also accounted for:

KF =
FL
F
, FL = 2πrMhL, KR =

hR
h
,KM =

rM
RM

, KR =
rR
RM

, KL =
hL
h

(1)

Introduce a cylindrical coordinate system Oxrθ. The cross section symmetry is
entirely axial. Following the model, the mechanical characteristics do not depend
on θ and x, but only on r.
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2 Distribution of the elastic modulus in the transi-

tion area

Pursuant to ACM, the elastic modulus E depends on r, only, i.e. E = E(r), r ∈
[0, 1], while the distribution function has a quadratic elliptical form. Introduce a
local coordinate ρ = r − rL/hR, ρ ∈ [0, 1]. Then, the distribution function takes the
form

E(ρ) = EB + ∆ERψ(ρ),∆ER = ER − EB, ψ(ρ) = 1−
√

1− ρ2 (2)

The elastic modulus of the core material is constant, i.e. E = EB = const for
r ∈ [R1, rL].

3 Sti�ness of an axially tensed combined rod

Consider an axially tensed combined rod N = N+ and �nd its generalized tension
sti�ness. If a rod with dimensions (R1, R2) is not reinforced, its tension sti�ness will
be K0

I = EBJ , while the inertial moment is approximately expressed as J ≈ πR3
Mh,

[8]. For a reinforced tube with a transition area, we express the generalized sti�ness
as follows:

K+
I = 2π

∫ R2

R1

E(r)rdr = K∗I1 +K∗I2 (3)

where

K∗I1 = 2π

∫ rL

R1

EBrdr = EBFL

K∗I2 = 2π

∫ R1

rL

E(r)rdr = 2π

∫ 1

0

E(ρ)(ρhR + rL)hRdρ = FIEI + FIIE0 (4)

where

FI = 2πh2
R, FII = 2πhRrL

We assume the following notation in rel. (4):

Ei =

∫ 1

0

E(ρ)ρidρ, (i = 0, 1 · · ·) (5)

while

E0 = EB + 0, 215∆ER, E1 = 0, 5EB + 0.167∆ER, E2 = 0, 5EB + 0, 137∆ER, etc.

The degree of tube reinforcement is assessed pursuant to the ratio χ∗I = K∗I /K
0
I ,

which reads:

χ∗I = QI0 +QI1∆eR,∆eR =
∆ER
EB

(6)

71



Proceedings of XLV International Summer School � Conference APM 2017

for

QI0 = KF +KR(0, 5KM +KL), QI1 = KR(0, 167KM + 0, 215KL) (7)

Parameters KF , KR, KL, KM are found from rel. (1). If we introduce ∆eR = (KE −
1), then KE = ER/EB which sets forth the reinforcement. It is seen from expr.
(6) that the generalized sti�ness K∗I , expressed by ratio χ

∗
I , depends linearly on KE.

Considering the generalized sti�ness K∗I of each rod, we could calculate any combined
rod tube structure (truss, frame etc.) via FEM. This procedure is additionally
approximate. It can be treated as a homogenization of each combined structure,
and it signi�cantly facilitates the calculations.

4 Distribution of the axial linear strains within the

cross section of a reinforced rod

We �nd the axial linear strains ε(r) within the rod cross section using ACM. They
are constant within the core and vary within the transition area following a parabolic
quadratic function. Thus, we �nd:

for r ∈ [R1, rL], εx = εx0 = const

for r ∈ [rL, R2], or ρ ∈ [0, 1], εx = εx(ρ) = εx0 + ∆εxRρ
2,∆εxR = εxR − εx0 (8)

where εx0 is the constant linear strain within the core and εxR is the edge linear
strain for r = R2. Both strains, together with hR, are to be found.

5 Distribution of the normal tension stress within

the cross section of a reinforced rod tube

Knowing εx0, εxR and hR, we can �nd the normal tension stresses σx(r) within the
rod cross section. Following ACM, we consider an operating tube, which deforms
linearly elastic. Hence, Hookeâ��s law links the axial linear strainsεx(r) and the
normal stresses σx(r), i.e. σx(r) = E(r)εx(r) or, accounting for the di�erent areas

for r ∈ [R1, rL], σx = σx0 = EBεx0 = const

for r ∈ [rL, R2], ρ ∈ [0, 1], σx = σx(ρ) = E(ρ)εx(ρ) = E(ρ)εx0 +E(ρ)ρ2∆εxR (9)

where E(ρ) is given by expr. (2).

6 Determination of the linear axial strain in the ba-

sic core

To �nd the axial linear strain εx0 in the basic core, we use a �ctitious mean stress
σxM = N+/F set forth in the problem statement. It is expressed as

σxM =
1

h

∫ R2

R1

σ(r)dr = σxM(1) + σxM(2) (10)

72



Numerical modelling of surface � reinforced rod tube structures

where

σxM(1) =
1

h

∫ rL

R1

σx0dr = (1−KR)EBεx0, σxM(2) =
1

h

∫ 1

0

E(ρ)εx(ρ)hRdρ (11)

Put E(ρ) from expr. (2) and ε(ρ) from expr. (8) in expr. (11) for σxM(2). Then,
after certain transformations, we �nd that

εx0 = eI − eIIεxR (12)

where

eI =
σxM
E1

, E1 = EB(1−KR) +KR∆E02,∆E02 = E0 − E2, eII = KR
E2

E1

(13)

7 Determination of the model parameters

Assume two methods of �nding parameters hR and εxR.
First method : Perform nanoindentation and a subsequent FEM numerical simulation
[9] over a speci�c specimen to �nd hR , assuming one and the same ratio KR for the
specimen and the tube. Then, we �nd εxR from the equilibrium condition

N∗ = 2π

∫ R2

R1

σx(r)rdr = N+
I +N+

II (14)

where

N+
I = 2π

∫ rL

R1

σx0(r)rdr = EBFLσx0

N+
II = 2π

∫ R2

rL

σx(r)rdr = 2π

∫ 1

0

E(ρ)εx(ρ)(hRρ+ rL)hRdρ (15)

and

N+
II = ∆PI,IIεx0 + PIIεxR

∆PI,II = PI − PII , PI = FI∆E13 + FII∆E02, PII = FIE3 + FIIE2 (16)

where

∆E13 = E1 − E3,∆E02 = E0 − E2, E3 = 0, 250EB + 0, 117∆ER (17)

Unify expressions (14), (15), (16) and perform a subsequent revision. Then, we get

εxR =
N+ − PIIeII
PII − PIIIeII

, PIII = EBFL + ∆PI,II (18)

Secondt method : Perform tension of a reinforced rod tube specimen, applying load
N+, and measure εxR along its surface. Then, hR can be found from eq. (18).
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8 Strength check of a combined rod

Having found all characteristics of the stressed and strained state under a given
load N+, we can perform a strength check of the carrying capacity of a tensed rod,
N+ ≤ Nper. Nper is found using an adopted strength criterion. If the reinforced
combined rod undergoes compression N = N− we use formulas valid for tension
considering the subsequent load signs and �nd the characteristics of the stressed
and strained state. We perform a check of the rod carrying capacity, employing
two criteria: Strength check of a compressed combined rod : We perform it similar
to the strength check of a tensed rod presented above.Check of the stability of a
compressed combined rod �xed by joints : We compare the compression load to the
admissible value of the axial load avoiding stability loss N−per. It is found on the
basis of the critical compression load Ncr for the reinforced rod, pursuant to Euler
[8]. The basis of rod strength calculation is reliable. Pursuant to Euler, the critical
force of a two-joint centrally compressed and reinforced rod reads [9].

Ncr =
π2K

∗
II

L2
(19)

where K∗II is the generalized bending sti�ness of the combined rod and L is rod
length. We �nd approximately the generalized bending sti�ness of the reinforced rod,
treating the tube as a two-layer body, consisting of a basic core with an elastic mod-
ulus EB and a transition area with mean elastic modulus E∗ = 1/hR

∫ 1

0
E(ρ)hRdρ

for r ∈ [rL, R2] or ρ ∈ [0, 1]. We assume that hR is one and the same under tension
and compression, since we consider a process of di�usion identical in both cases.

9 Test example. Parametric analysis

Consider a small frame structure shown in Fig. 1. It is subjected to a static verti-
cal load P . The structural scheme is symmetrical. Its two-joint rods are aluminum
tubes, being reinforced along their surfaces [10]. The static analysis yields the follow-
ing loads acting on the rods: on Π01, N

−
01 = −0, 94P ; on Π02, N

+
02 = 0, 78P ; on Π12,

N12 = 0. For P = 1, 55x104[N ] loads are N−01 = −1, 46x104[N ], N−02 = 1, 21x104[N ]
. The elastic modulus of the basic material is EB = 7x106[N/cm2]. The reinforc-
ing material is a composite containing nanoparticles and its elastic modulus varies
within limits 40 − 80[N/cm2], [1]. Tube dimensions are ΦR1x1 according to man-
ufacturer data [10], with thickness h = 1cm. Consider data from nanoindentation
[9] and assume h = 0, 1cm. If the elasticity modulus of the reinforcing material is
ER = 40x106[N/cm], we compare the calculation of the rods of the non-reinforced
structure with that of the rods of the reinforced structure. The dimension of all
rods of the non-reinforced structure is Φ10x1. The reinforced structure yields Π01

dimension Φ18x1 , while the rest of the rods have a manufacturer dimension Φ10x1.
This yield reduction of structure weight for reinforcement is 17%. A parametric
analysis of the link between εxR and KE = ER/EB is performed for rod Π02. The
results are plotted in Fig. 2. The test example and the parametric analysis prove the
e�ciency of the reinforcement, thus contributing to the reduction of the structure
weight and to the increase of its carrying capacity.
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Figure 1: A test frame composed of reinforced aluminum rod tubes
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Figure 2: Link between εxR and KE
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Abstract

The questions of the shape optimization of an axisymmetric rigid impactor
and structure optimization of layered perforated plates are studied on the base
of the Nash game approach [1], [2] for layered plates made on the given set
of materials. As a criterion of the multipurpose optimization problem it is
chosen the ballistic limit velocity under additional constraint on the layered
shield mass. The process of penetration of the rigid body into an elastic-plastic
medium is modelled by the application of the two parts representation for the
resistance force [3]. It is proposed and realized the solution algorithm of the
con�ict game problem, namely, the optimal shape impactor against the opti-
mal structure layered shield. It is considered the case when the impactor mass
is given and does not depend on its volume. With the application of an evolu-
tion numerical method (genetic algorithm) the optimal shapes of penetrating
bodies and corresponding optimal shield structures are found and analyzed for
all cases.

1 Introduction

The study of processes of high-speed penetration of rigid strikers into deformed
media and perforation of shield structures is actual and of theoretical and practical
interest. Scienti�c investigations in this domain are very wide and include many
experimental, analytical and numerical components. Also the optimal structural
design plays the important role in this aspect. Many studies were devoted to the
problem of optimal shape determination of rigid bodies penetrating with high speed
into deformed (elastic-plastic, concrete, brittle) media. Also problems of shield
structure optimization were investigated by many authors.
Now we propose the game approach to solve the problem of high-speed perforation of
the layered slab by the axisymmetric striker (optimal shape striker against optimal
shield structure).
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2 Ballistic limit velocity (BLV) determinimg

The questions of shape optimization of rigid strikers perforating the layered slab are
studied in game statement. As a criterion of multipurpose optimization problem
it was taken the ballistic limit velocity, which is a very important characteristic of
striker-medium interaction.
Dynamics of high-speed penetration of rigid axisymmetric striker (with velocities up
to 103m/s) along the axis Ox is studied with application of relation connecting the
resistance force D(x) with strength characteristics A0(x), inertial property A2(x),
striker shape y(η) (0 ≤ η ≤ L), its length L, and velocity v(x) as

D(x) = Dnose(x) +Dlat(x) = B0(x) +B2(x)v2(x),
B0(x) = πr2A0(x)− 2π

∫ x∗∗
x∗

A0(η)yyηdη,

B2(x) = πr2A2(x)− 2π
∫ x∗∗
x∗

[
A2(η)y3

η

] (
1 + y2

η

)−1
dη.

(1)

Here Dnose(x) is the resistance force applied to the truncated head part of striker,
Dlat(x) is the resistance force applied to the lateral area, r is the radius of truncation,
yη = dy/dη, x is the coordinate of striker nose, x∗, x∗∗ are the values characterizing
di�erent stages of striker penetration into the medium (boundaries of contact re-
gion). If the entry (impact) velocity v0 = vimp of striker penetration into the slab of
thickness H is such that v(x) > 0 for 0 ≤ x < H+L and v = 0 for x = H+L, then,
the impact velocity is called the ballistic limit velocity (BLV), i.e. v0 = vimp = vBLV .
Perforation of layered slab by the axisymmetric striker having ballistic limit velocity
is shown in Fig.1.

Figure 1: Perforating layered slab

We introduce for convenience the new independent variable

ξ = H + L− x, dξ = −dx

and formulate the problem of determining the velocity of striker in the medium as
following Cauchy problem:

dv2

dξ
= β

(
α + v2

)
,
(
v2
)
ξ=0

= 0, (2)
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where α = B0/B2, β = 2B2/m (m is the mass of striker).
For convenience, we assume that the perforated obstacle includes the slab and rear
air region of length L, i.e. has total thickness H +L and consists of n thin layers of
equal thickness h = (H + L)/n. Each layer contains material with �xed properties.
For such piece-wise constant structure, the problem (2) can be represented as

dv2

dξ
= βj+1 (αj+1 + v2) ,

v2
0 = (v2)ξ=0 = 0,

vj = v(ξj), ξj+1 = ξj + h, j = 0, 1, 2, ..., n− 1,

αj+1 =
(
B0

B2

)
j+1

, βj+1 = 2
m

(B2)j+1 ,

v2
n = (v2)ξ=H+L = v2

BLV .

(3)

Layer-wise integration of the problem (3) results in algebraic relations

ln
(
αj+1+v2

j+1

αj+1+v2
j

)
= µj+1, ξj ≤ ξ ≤ ξj+1,

µj+1 = βj+1h, j = 0, 1, 2, ..., n− 1,
(4)

which determine the solution, i.e. the velocity distribution for each layer and, in
particular, the value of ballistic limit velocity. We have

v2
j+1

αj+1
= exp (µj+1)− 1 +

v2
j

αj+1
exp (µj+1) ,

v0 = 0, vn = vBLV .
(5)

3 Multipurpose optimization problem

Let us consider the ballistic limit velocity (BLV) as a quality criterion for multipur-
pose optimization problem according to game approach (with two gamers).
We formulate the problem A (for gamer 1) that consists in minimization of BLV by
�nding the optimal striker shape for given shield structure (given layered slab), i.e.

J1 = vBLV (y(η), t(x))→ miny∈Λy ,
Λy = {y : ycon(η) ≤ y(η) ≤ R, 0 < η ≤ L, y(0) = ycon(0) = R} . (6)

Here ycon(η) de�nes the conical shape of the striker, R is given base radius (midel)
of the striker and we assume that the mass m is independent on the striker volume.
The function t(x), x ∈ [0, H + L] is piece-wise constant and characterizes the layer-
wise distribution of material characteristics. The number rm of materials is assumed
to be given, s = 1, 2, ..., rm, where s is the material number.
The problem B (for gamer 2) consists in maximization of BLV by de�ning the
optimal layered slab (plate) under the constraint on its mass M (on 1m2) as{

vBLV (y(η), t(x))→ maxt∈Λt ,
M(t(x)) ≤M0,

Λt =


t : t = t(x), x ∈ [0, H + L], t ∈ {ti = s} ,
i = 0, 1, 2, ..., n− 1, s = 1, 2, ..., rm,
A0(t(x)) = Ai+1

0 , A2(t(x)) = Ai+1
2 , x ∈ [xi, xi+1) ,(

Ai+1
0 , Ai+1

2

)
∈ {(A0)s , (A2)s} .

 .
(7)
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Here the properties of material with number s �lling the layer (xi ≤ x ≤ xi+1) with
number i+1 are characterized by constants

(
Ai+1

0

)
and

(
Ai+1

2

)
,M0 is given constant.

The problem B (7) can be rewritten by introducing the augmented Lagrange func-
tional Ja as

J2 = Ja(y(η), t(x))→ max
t∈Λt

, (8)

Ja = vBLV (y(η), t(x))− λ [M(t(x))−M0]→ maxt∈Λt ,

λ =

{
0, if M −M0 ≤ 0,
λ∗ > 0, if M −M0 > 0.

The multipurpose optimization problem consists in de�ning the optimal (in the sense
of the problem A) striker shape for optimal (in the sense of the problem B) layered
structure. As a quality criterion, it is chosen the ballistic limit velocity (BLV).
Solving this multipurpose optimization problem is realized on the base of game
iteration approach (Nash approach [1]) by performing the following steps.
Step 1. The initial distribution t = t∗1(x) of materials is realized for the layered
structure.
Step 2. The problem A is solved (by the gamer 1) for given distribution t∗1(x) and
the shape distribution y∗1(η) is de�ned as

y∗1(η) = arg min
y∈Λy

J1 (y(η), t∗1(x)) . (9)

Step 3. The problem B is solved (by the gamer 2) for given distribution y∗1(η) and
the improved distribution t∗2(x) of materials is found, i.e.

t∗2(x) = arg max
t∈Λt

J2 (y∗1(η), t(x)) . (10)

Step 4. The iteration is completed and we will go to the Step 2 or terminate the
optimization process.
For solving the optimization problems A and B, the numerical evolutionary method
based on the genetic algorithm was realized. The considered set of admissible shapes
(population) consists of thirty solutions (individuals) for each generation. Each in-
dividual of population consists of ten (the problem A) or �fty (the problem B)
elements. The search of optimal shape was begun (initialization) using initial pop-
ulation consisted of arbitrary distributions y(η) with given �xed R and performed
up to 500 generations. The parameters of computational process included the prob-
ability of crossover pCO = 0.5 and the mutation probability pm = 0.05.
The computations were performed for the following values of the problem parame-
ters, namely, L = 0.02m, R = 0.005m, H = 0.1m. Admissible values of material
properties for slab layers were taken as [3]

s = 1 (air) (A0)1 = 0, (A2)1 = 0;
s = 2 (soft steel) (A0)2 = 1850 · 106M/m2, (A2)2 = 7830kg/m3;
s = 3 (copper) (A0)3 = 910 · 106M/m2, (A2)3 = 8920kg/m3;
s = 4 (duraluminum) (A0)4 = 1330 · 106M/m2, (A2)4 = 2765kg/m3.

All optimal strikers have the shape with blunted (a little) nose part. The analysis of
numerical results for all considered cases permits to make a conclusion (within the
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framework of using model of high-speed interaction) that the optimal shape of striker
is determined by its geometrical and inertial characteristics and do not depend on the
mass of the slab, its thickness and layers ordering. Two optimal shape distribution
are shown in Fig.2 by the curves with numbers 1 (thin solid line) and 2 (thick
solid line). The curve 1 corresponds to optimal duraluminum slab of the thickness
0.056m and the values m = 0.009kg, M0 = 156.6kg/m2. The curve 2 corresponsd
to optimal slab that consists of the frontal steel part (of thickness 0.006m) and
the rear duraluminum part (of thickness 0.094m), and the values m = 0.05kg,
M0 = 313.2kg/m2. Note that the optimal shapes shown in Fig.2 are practically the
same, although they corresponds to di�erent optimal layered structures and di�erent
striker mass values. This fact was noted for all considered cases including also the
case where the mass of the striker was not �xed but satis�ed the constraint imposed
on its value.

Figure 2: Optimal shapes of striker

Thus, it is su�cient to determine the optimal shape of the striker (minimizing the
ballistic limit velocity) for some given layered structure and then use this solution
for the shield optimization according to maximum of the ballistic limit velocity.
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Abstract

Fractures of a tibial diaphysis constitute the largest percentage among
all cases of fractures of long bones, namely 32-37%. Internal osteosynthesis
is one of the modern operational treatment methods of these fracture types.
Problems of determining thermal stresses and their further consideration when
choosing a treatment method of a patient are resolved with regard to such
the medicine section as the traumatology. However, temperature drop at a
bone surface in an installation place of a plate and screws during surgery
and temperature change of �xators after sealing of a wound are not taken in
conducting similar studies for biotechnological systems (BTS) "bone�plate�
screws". The aim of this study is determination of maximum values of thermal
stresses in components of a BTS "tibia bone�plate TRKh�screws".

3D computer models of a tibia bone and a segmental fracture of this bone
are created in the CAD SolidWorks. Fragment is localized to a middle third of
a diaphysis, its size � 50 mm. Height of a diastase is 0.5 mm. Modelling of an
internal osteosynthesis of the segmental tibia fracture are performed by a plate
TRKh (named after the plate authors � Dr. S.Tkachenko, Dr. V.Rutsky and
Dr. V.Khomutov) and 9 screws. An area, which is a contour projection of the
plate TRKh, is built on the tibia bone surface.

3D computer �nite element model of the BTS "tibia bone�plate TRKh�
screws" is created in SolidWorks Simulation module. Diaphysis consists of
cortical bone tissue, epiphyses and metaphyses � cancellous tissue, �xators �
titanium alloy VT6. Temperature of the tibia bone is 37 ◦C, temperature of
the area � 34.5 ◦C. Air temperature in an operating room is 21 ◦C.

Maximum values of thermal stresses occurring in components of the BTS
"tibia�plate TRKh�screws", do not exceed values of dangerous stresses for
materials of these components according to the results of this study. Stability
�xation of the segmental fracture is not violated. Heating the area on the tibia
surface and �xators to 37 ◦C occurs for 25 minutes.

1 Introduction

Fractures of a tibial diaphysis constitute the largest percentage among all cases of
fractures of long bones, namely 32-37% [1]. The situation is compounded by the
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fact that this type of fracture is most common in individuals of working age with
the age category up to 40 years [2]. Internal osteosynthesis, which is based on a
principle of connection of bone fragments by surgical way using various �xators
inside a patient's body, is one of the modern operational treatment methods of the
diaphyseal fracture.
Thermal stresses occur in living tissue due to uneven temperature distribution.
Problems of determining thermal stresses and their further consideration when
choosing a treatment method of a patient are resolved with regard to such the
medicine section as the traumatology. Studies (in most cases) are performed for
the purpose of rationale for an optimal choice of the �xator in a transverse fracture
of femur, humerus, tibia bones [3, 4, 5, 6, 7, 8]. The authors suppose that bone
temperature before installation of the metal construction is constant and equal to
37 ◦C. At that the change of temperature distribution that occurs in cortical and
trabecular bone tissues in the process of operation, is not taken into account. In
cases when a plate and screws are used to stabilization of the fragments, a surgeon
makes an incision of soft tissues and exposes a part of the bone surface � an area.
Temperature values of the area and air �owing around it are di�erent, so convective
heat transfer occurs and a cooling front starts to spread into the deep of the bone.
Gradual heating of the bone tissue and metal construction occurs after installation
of the �xators and wound closure. Therefore, change of temperature distribution in
the BTS "bone�plate�screws" in the process of operation should be considered in
determining of maximum values of the thermal stress.
Aim of this work is determining of maximum values of the thermal stress when occur
in components of the BPS "tibia bone�TRKh plate�screws" after wound closure.
Main tasks of this study are listed below.
1. Create 3D computer model of the BTS "tibia bone�TRKh plate�screws" with
the area, which is a projection of a contour line of the TRKh plate to a surface of
the tibia bone.
2. Create 3D computer �nite element model of this BTS.
3. Perform a biomechanical study of BTS "tibia bone�TRKh plate�screws" subject
to the uneven temperature distribution in the bone tissues and �xators.
Temperature studies of the segmental tibia fracture model with the area and the
BTS "tibia bone�TRKh plate�screws" are conducted by the author earlier.

2 Materials and methods

2.1 Modeling of the BPS "tibia bone�TRKh plate�screws"

3D computer model of the tibia bone is built in the SolidWorks CAD system. 50
cross-sectional (tomographic) images are used to create it: 9 for proximal, 11 for
distal and 30 for diaphyseal aspects. The patient, whose cross-sectional images
of the bone are used in this study, is considered average. This patient hasnâ��t
accompanying pathologies. His body mass is 70 kg, age � 40 years.
Building of the 3D computer model of segmental bone fracture is made using the
created tibia bone model. Fragment is localized in the middle third of the diaphysis
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and its size is 50 mm. Gap � diastasis � is formed at the moment of the fracture
between fragments. Its height is taken equal to 0.5 mm [9].
Modeling internal osteosynthesis of segmental tibia fracture is made by TRKh plate,
its length is 224 mm, and 9 screws. Four screws, their length are 40 mm and a
diameter is 4.5 mm, are installed in order, starting with the top plate holes. Other
�ve screws, their length are 35 mm and a diameter is 4.5 mm, are used to fastening
of the lower plate part. Area, which is a projection of a contour line of the TRKh
plate to a surface of the tibia bone, is created after the installation of the TRKh
plate and screws in a predetermined position.
3D computer �nite element model BTS "tibia bone�TRKh plate�screws" is built in
the SolidWorks Simulation module. High quality mesh of parabolic tetrahedral solid
elements is used in its creation. Average global element size is 6.10 mm, tolerance
� 0.30 mm. Number of nodes is 49497, number of elements � 28736. Built 3D
computer model of the BTS "tibia bone�TRKh plate�screws" and its �nite element
model are presented in �gure 1, a,b, respectively.

a b

Figure 1. BTS "tibia bone�TRKh plate�screws": a � 3D computer model, b � 3D
computer �nite element model

2.2 Physico�mechanical characteristics of the tibia bone ma-

terials

Epiphyses and metaphysi in the �nite element model of the BTS "tibia bone�TRKh
plate�screws" are modeled entirely from �nite elements that have physical charac-
teristics of trabecular bone tissue. Diaphysis is formed from cortical bone tissue
excluding a bone marrow that �lls an internal space [10]. Fixators � TRKh plate
and screws � are made from VT6 titanium alloy. Elastic modulus of cortical bone
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tissue, trabecular bone tissue, VT6 titanium alloy is 35,3 [11, 12], 0,40 [12], 115,00
GPa [13, 14], respectively. Poisson's ratio of these materials is 0.30 [15], 0.20 [15],
0.32 [14] respectively. Density � 1850 [16, 17], 300 [16, 17], 4430 [13] kg/m3, dan-
gerous stress � 129 [11, 12], 6 [18], 900 [13, 14] MPa. Linear temperature expansion
coe�cients of cortical bone tissue, trabecular bone tissue, VT6 titanium alloy is 32
[19], 10 [20], 8.4 [13] ◦C−1, respectively.

2.3 External loads

Results of the temperature study of the considered BPS after installation of the
�xators and wound closure obtained by the author earlier is used as the external
load. Temperature distribution in the model in this study had determined at 10
di�erent time stages � from 150 to 1500 seconds with a step of 150 seconds, � which
allowed to trace a process of heating of the BPS components to a temperature of
37 ◦C. In addition, convective heat transfer, which occurs due to the di�erence of
temperatures of the exposed area and air �owing around it, was taken into account.

3 Results

Biomechanical study of the BTS "tibia bone�TRKh plate�screws" subject to change
of temperature distribution in a heating process of the BPS components after wound
closure to a temperature of 37 ◦C is carried out in the SolidWorks Simulation module.

a b c d

Figure 2. Stress�strain state: a � BTS on the �rst stage, b � BTS on the tenth
stage, c � tibia bone diaphysis on the �rst stage, d � tibia bone diaphysis on the

tenth stage

Maximum values of equivalent stress (von Mises stress) in the diaphysis, epiphyses
and �xators are de�ned for each of 10 considered stages. Criterion according to
which maximum values of equivalent stress in the system components must not
exceed corresponding values for dangerous stress in materials of these components
which is numerically equal to yield stress, is used for evaluation of �xation stability

86



Stability assessment of a tibia fracture �xation in the case of thermal stresses

of the BTS. Stress�strain state of the BPS on the �rst (150 seconds) and tenth (1500
seconds) stages is shown in a �gure 2, a, b respectively as an example. Note that
contains of minimum value of equivalent stress in the model is shown on the �gure.
Stress�strain state of the tibia bone diaphysis on the �rst and tenth stages is shown
in a �gure 2, c, d.
Dependency graph of maximum values of equivalent stress in the considered BTS
from time is presented in a �gure 3.

Figure 3. Dependency graph of maximum values of equivalent stress from time

4 Discussion

Conducted study is shown that occurrence of thermal stress in the BTS "tibia bone�
TRKh plate�screws" after wound closure does not lead to violation of �xation sta-
bility of the considered BTS. Maximum value of equivalent stress on the �rst and
tenth stages, which are shown in �gures 2 a,b, di�er by 5.19 MPa, which is insignif-
icant. Maximum values of equivalent stress in the BPS grow with increasing time,
as can be seen from the graph which presented in a �gure 3. However, these values
change slightly after the �fth stage.
Maximum value of equivalent stress in the �xators occurs in the fourth screw at the
bottom and it doesnâ��t exceed of dangerous stress for titanium alloy VT6, which
is equal to 900 MPa. Maximum value of this stress in epiphyses on the same stage
is 0.57 MPa, that is 10 times less of the value of dangerous stress for trabecular
bone tissue. TRKh plate and screws are installed on the tibia diaphysis , therefore
di�erence between maximum value of equivalent stress in this aspect and value of
dangerous stress for cortical bone tissue isnâ��t as great as in the previous cases.
Values di�er by 2.5 times.

5 Conclusion

Maximum values of equivalent stresses in the 3D computer �nite element model
of the BPS "tibia bone�TRKh plate�screws", subject to change of temperature
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distribution after wound closure in 10 di�erent stages are found in this study. Source
data and described methodology of work realization is appropriate to use in carrying
of biomechanical studies 3D computer �nite element models of bone fracture, in
which other types of plates are �xators.
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Abstract

The results of experimental study of adaptive correction dynamics for col-
limated coherence beam at the exit of 1350 meter atmospheric path are pre-
sented. The method of phase portraits and chaotic maps for processing the ex-
perimental series is used that allowing to visualize the transition phenomenon
and the bistable system conditions. The system response to variations of a
proportional algorithm parameters for adaptive correction, the frequency of
sampling and a scale feedback factor are in details analyzed. Relations of
the size of a beam spot on a recording device matrix and the stability of a
correction algorithm are experimentally considered.

Introduction

The peculiarity of corrective procedures for laser beams propagating over near-the-
ground tilt path is associated with the dynamic and statistical spatial inhomogeneity
and non-stationarity of the refractive e�ects on the beam [1]. Usually available
for actuators range of correction frequencies over such paths overlaps only the low-
frequency part of the refraction modulation band of the beam displacement vector in
the registration plane. Under this mode, e�ectiveness of the impact should increase
when connecting a feedback loop output possessing a su�cient depth of memory.
The dynamical system evolution can be observed in the state space of the system,
the modes available can be obtained from the phase portrait as a set of trajecto-
ries realized in phase space. Among the trajectories one can mark out a number
of basic ones determining the qualitative properties of the system. These include
the equilibrium points corresponding to stationary modes of the system and closed
trajectories (limit cycles) corresponding to quasi-periodic modes. The stability of a
particular mode manifests itself in the consistent behavior of neighboring trajecto-
ries, - stable equilibrium or limit cycle attracts all nearby trajectories, unstable ones
repels at least some trajectories. The phase portrait, disassembled into groups of
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trajectories, allows to describe all types of permissible movements arising under dif-
ferent initial conditions. Actually,the phase portraits apparatus for the description
of the dynamics of complex non-stationary systems allows to visualize the solutions
of di�erential or di�erence equations of a physical system motion [2].

1 The method of phase trajectories

For a system having N degrees of freedom one can map the feasible set of phase
trajectories in the 2N â�� dimensional phase space. The unit vectors of phase
space, in general, correspond to the function and its derivatives with respect to time.
Due to uniqueness of di�erential equations solutions with the necessary set of initial
conditions the phase trajectories in the space of correct dimension do not intersect
[2]. Crossing of the paths on the reconstructions of phase portraits shows forced
reduction of dimension, for example, when using the method of main components.
Thus, based on the one-dimensional time sampling and its analysis, one can get a
complete picture of a system behavior, combining the dynamic regularities and the
statistical characteristics.
The reconstruction procedure of phase trajectories and attractors is based on Tak-
ensâ�� theorem. It is formulated for the embeddings of compact and closed sets
[3, 4, 5]. Let A be a compact subset of the G-dimensional space X. De�ne the
embedding subset A in m-dimensional space Y as a transformation of X to Y .The
coincidence of two images of the elements, belonging to A, is possible only in case
of equality of these elements. According to Takensâ�� theorem, any smooth trans-
formation X into Y will set the embedding A to Y space on the condition:

m 1 2DA + 1, (1)

here DA â�� is a fractal dimension of a set A. For su�ciently large experimental
samples the phase trajectories reconstructed from the time series will have the same
dimension and mathematical properties as the original physical system.
The experimental 1350 m slant path with small tilt was arranged in the industrial
area. [6, 7].A collimated single-mode Gaussian beam of continuous radiation was
used. Its power does not exceed 4 Watt. Registration of the intensity distribution
at the path output is carried out under the conditions of primary control of spacial
beam modulation, at a frame rate of not less than 1 kHz, the sampling frame size
is 128x128 pixels, 8-bit width and 1 pt/mm scale. The vector of the �rst space
moments and the corresponding vector of the tilt angles for each video frame will
be de�ned by the discrete intensity distribution:

rx[k] =

∑
c=1,128

∑
r=1,128 cI(c, r)[k]∑

c=1,128

∑
r=1,128 I(c, r)[k]

, ry[k] =

∑
c=1,128

∑
r=1,128 rI(c, r)[k]∑

c=1,128

∑
r=1,128 I(c, r)[k]

, (2)

here r, c - is the number of rows and columns of video selection elements,I(c, r)[k] -
is the intensity distribution matrix for the k-th frame of the video sample.
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β2 = 0.3 β2 = 1.0 β2 = 2.6

Figure 1: Phase trajectories for X (top) and Y (bottom) component of the �rst
space moment.

The family of phase trajectories one can construct on the base of one dimensional
equidistant in time sample by creating the two-dimensional and three-dimensional
vectors with a variable time delay between the vector components:

(R[i], R[i− d]) , ~R(3)[i] = (R[i], R[i− d], R[i− 2d]) . (3)

The phase trajectory pro�le depends on the ratio of the analyzed system eigenfre-
quencies and the sampling step. If the ratio â�� τsωi = π/2 (where τ â�� is a
sampling step, ωi â�� is one of the eigenfrequencies) is satis�ed, the phase trajec-
tory pro�le may be close to an ellipse. The optimum value of the delay interval one
can select from additional conditions. For example, using the �rst minimum of the
autocorrelation function of the analyzed time series or position of a local minimum
of mutual information. According to a given length of the experimental sample N
one can get N − d(m− 1) vectors, having the coordinates the set of which forms a
phase trajectory [8, 9].
Examples of 3D phase portraits for three di�erent turbulence modes characterized
by three di�erent values of Rytov parameter are shown in Fig.1. For all six recon-
structions the time delay is equal to 10 ms, the coordinates of the vector components
are given in millimeters. Note a signi�cant topology di�erence for horizontal and
vertical projections, well conspicuous eigenfrequency components for weakly devel-
oped turbulence, the beam characteristics transformation to dynamic chaos mode
for moderate turbulence and the emergence of a coherent turbulence at the highest
possible values of Rytov number (from those observed in the experiment). In a num-
ber of tasks the time scans of 2D phase trajectories can be informative, they allow
to estimate the time spent by the system in a speci�ed phase volume, to construct
the movement approximations near the singular points of the phase trajectories.
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2 Adaptive correction under random noise

Adaptive systems for the correcting of laser beams tilts are well developed for dif-
ferent applied problems, including the electromagnetic propagation through the at-
mospheric path of various lengths [10, 11]. The main criterion for the e�ectiveness
of system performance leans on the statistics and the misalignment dynamics of the
beam orientation and the working system axis. The elaboration of the adaptive
correction algorithm, even in the simplest proportional version, demands the con-
trol of the beam pro�le, sample rate of the displacement sensors and the feedback
coe�cient in the process equation. At the �rst step of the experimental analysis let
us replace the readings of a �nite number of sensors of beam shift by a complete
set of the meanings of intensity distribution matrix. Let's establish two variable
parameter of the adaptive algorithm and one parameter for the beam size. The
beam diameter will be varied in the range from 24 mm to 80 mm, by rearranging of
the optical parameters of the collimating system.
The experimental results described were obtained under the conditions of a slightly
perturbed atmosphere, Rytov parameter does not exceed 1.0 [7]. Sample rate of the
displacements sensor varied in the range from 10 Hz to 100 Hz with steps 10 Hz,
the feedback coe�cient in the adaptive channel varied within [0.1, 2]. Here the unit
coe�cient corresponds to the total compensation of the recorded shift of the beam
center for one positioning cycle. Let us represent the discrete equation for the vector
projections ~R = (Rx, Ry) of the beam energetic center as follows:

Ri[n+ 1]−Ri[n]

∆
=

4

S
(R0i −Ri[n]) +Ni[n], (4)

here ∆ - is the sampling step, R0i - are the coordinates of the target point on the
registration plane, S â�� is the pre-calibrated scale factor of an adaptive response,
Ni â�� is the anisotropic refractive component of the noise . The initial beam
position for all video samples was located in the upper right corner of the working
�eld, at the point with coordinates (128, 1), the target coordinate corresponded to
the value (64, 64).

2.1 Variation of the scale correction coe�cient

Let's analyze the change in structure of 2D phase trajectories for the �xed sampling
rate of the displacements sensors equal to 30 Hz and the optimal beam grouping
into a spot of 28 mm diameter. Fig.2 and Fig.3 demonstrate the results of exper-
imental samples processing (scale factor is ranging from 2 -excessive response, to
28 - weak response). A signi�cant di�erence in the phase portraits for horizontal
and vertical correction directions was observed even for the simplest adaptive cor-
rection algorithm. For the chosen sampling rate and the compact beam grouping
in the recording plane, the phase portraits for X-component demonstrate typical
for the proportional algorithm self-oscillating mode under a small correction step
and the static displacement in the case of large correction step [10, 11]. For the
Y-component, the self-oscillatory mode for chosen sampling rate and the beam pro-
�le practically is not observed. The presented phase trajectories for the horizontal
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component, show that the chosen range of the response step variations allows to
investigate all three operating modes of the adaptive algorithm: self-oscillatory one
in the range of the response step S ⊂ [2, 8], quasiregular mode S ⊂ [10, 20] and
static displacement mode S ⊂ [22, 28].

Figure 2: Phase trajectories for the horizontal direction of correction (a response
step changes from 2 to 24)

Figure 3: Phase trajectories for the vertical direction of correction (a response step
changes from 2 to 24)

2.2 Variation of the sampling time

A random non stationary process in optical density variation of the atmosphere
obtains a set of eigenfrequencies de�ned by both � the turbulent �ows and acous-
tic industrial noise. Their interference spectrum can be determined using methods
of nonlinear time-frequency analysis of one-dimensional time series for the compo-
nents of the vector of the wave beam center, or deriving the spectrum of Poincare
recurrence times for the beam phase trajectory (without adaptive correction).
Fig.4 and Fig.5 show the phase trajectories for the horizontal and vertical displace-
ment components in the rate range from 10 Hz to 100 Hz with steps of 10 Hz. The
beam grouping is chosen to be the same as for the analysis of the response to the
variation of the scale correction coe�cient - 28 mm in diameter, the correction scale
is equal to 6. The frequency increases from left to right and from top to bottom.
A characteristic feature of the observed phase portraits can be considered as the
alternation of the regular auto-oscillatory and the unstable chaotic modes for the
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Figure 4: Phase trajectories for X with a frequency rate from 10 Hz to 100 Hz

Figure 5: Phase trajectories for Y with a frequency rate from 10 Hz to 100 Hz

horizontal component and that of chaotic and regular stable quasi-stationary modes
for the vertical component.

2.3 Variation of the linear beam dimension

On a number of occasions, the linear dimension of the beam can be a controlled
parameter, just like the beam arriving angle. Used in the experiment targeting
and focusing Gaussian wave beam allows to perform the similar transformation.
It rearranges the positions of the lens group accurate within the wavelength of the
radiation used [12]. Near the strangulation points of a wave beam in the observation
plane it is possible to form the spots of di�erent sizes. They can be both smaller
then the size of the receiver or completely overlap its surface.
Spot sizes manipulation is reasonable under the conditions of relatively weak tur-
bulence. The refractive di�usion in this case is relatively small. For the broadened
beams propagating though an extended path even in a quiet atmosphere in their
cross section there arises a local speckle structure generated by the stochastic dis-
tortions of the wave front [1]. Such a process can be observed in the two images
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Figure 6: Video frames for the beams of di�erent sizes (upper), phase portraits for
the horizontal and vertical components of the beam center displacements (middle
and bottom)

of the instantaneous intensity distributions shown in Fig.6 (left upper). Under the
conditions of industrial interference the regular distortions of a characteristic spec-
trum in the range of low acoustic frequencies are often added. In this situation, it is
reasonable to supplement the primary adaptive corrector with a frequency-selective
stage, that cutting out the regular noise.

3 Geometry of the beam position detectors

The experimental results presented in the second part were obtained as an approx-
imation of an "ideal" multichannel sensor that �xes the matrix of values of the
instantaneous intensity distribution and transfers to the adaptive process the value
of the beam center shift with a negligible time lag (not more than 1 millisecond).
In reality one is not allowed to take the values from the entire operating �eld of
the radiation detector. The most common options are those of the quadrant and
peripheral or petal-shaped detectors. The number of parallel operating channels is
limited by the decision time and the throughput of the feedback channel. In the
experiment two geometric types of sensor position were tested, - a centered quadrant
detector of various apertures and an eight-petaled peripheral detector with di�erent
spacing of a given petals size.
Let us de�ne the quantitative evaluation of the time series correlations for coordinate
and detector sweeps as the normalized values of the scalar multiplication of the
corresponding sequences:

CorrX,Y ( ~D~R) =

∑k=K
k=1 DkRk√(∑k=K

k=1 D2
k

)(∑k=K
k=1 R2

k

) (5)

here ~D, ~R are the sequences of X or Y readings of the detector or the location of the
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Figure 7: Correlation of the quadrant detector readings (left), the peripheral 8-lobe
detector readings (right) and the position of the beam energy center for time sweeps

beam energy center. The length of the sequence corresponds to the video sample
duration. The correlation value depends on the degree of the beam pro�le distortion,
the beam splitting into fragments, absorption and scattering at the path. The typical
dependencies of the detectors readings correlation on the size of the quadrant (for
the quadrant detector) and the separation of the 10ptx10pt petal-sensors for the
petal one are shown in Fig.7. The basic properties of the correlation characteristics
for detectors of di�erent geometries are retained in various realizations of the beam.
Notably:

� a di�erence of the correlation value for the vertical and horizontal components
of the beam displacements from the center of the operating platform,

� the existence of an optimal radius of the petals separation from the center for
a particular turbulent state of the atmospheric path.

The adaptive correction process of the beam center position was compared for the
quadrant and peripheral geometry of the sensor layout and the results are presented
in Fig.8. The �rst and the third rows show the beam state sequences at the registra-
tion plane (a sampling rate is equal to 30 Hz, that corresponds to the sampling rate
of the adaptive algorithm). The �rst and the second columns of the phase portraits
correspond to the horizontal and vertical components of the center of the beam dis-
placement, the third and the fourth columns depict the similar displacements for
the proportional adapter (the readings of a square detector), the �fth and the sixth
columns represent the results got for the eight-petaled peripheral detector.
As it is shown by comparative analysis of the adaptive corrector work under di�erent
sensor geometry in a wide range of the scale correction factor S, the sample intervals
∆ and at various spot sizes, the peripheral detection has a low failure threshold in
the cases of self-oscillatory and chaotic modes. The dispersion of the distribution
function for the coordinates of the beam center in the case of quadrant positioning
is much less, then that for the peripheral positioning. However, the peripheral
detection practically exclude the static displacement of the beam center in a wide
range of the adaptive corrector settings.
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Figure 8: Examples of video frames sequences (the �rst and the third rows) and
corresponding to them phase portraits (the second and the fourth rows)

Conclusion

The experimental study of the adaptive correction process for the �rst spatial mo-
ments of the beam intensity distribution at the output of a long atmospheric path
was carried out. The results allow to formulate a number of statements about the
stochastic and dynamic properties of the process:

� The dynamics and statistics of refraction distortions for the horizontal and
vertical directions are signi�cantly di�erent. Accordingly the settings of the
adaptive correction algorithms for orthogonal directions must be di�erent.

� The scanning of the sampling rate for beam position detectors and the correc-
tive procedures accomplishment reveals multiple changes of the beam move-
ment modes for the beam center (localized near the center of the recorder,
self-oscillatory, or stochastic one). They are related to the structure of the
low-frequency component of the beam spot spectrum displacements in the
range up to 100 Hz,

� Regular and spontaneous changes of the size of the registered beam spot under
the in�uence of atmospheric refractive noise lead to changes in the modes of
the beam center motion.
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Abstract

The study is devoted to modeling of multiphase �ows of immiscible vis-
coplastic (or yield-stress) �uids in a hydraulic fracture. In the framework of the
lubrication approximation, three-dimensional Navier-Stokes equations are re-
duced to hyperbolic transport equations for the �uid tracers and a quasi-linear
elliptic equation in terms of the �uid pressure. The governing equations are
solved numerically using the �nite-di�erence approach. A parametric study
of the displacement of Bingham �uids in a Hele-Shaw cell is carried out. It
is found that �ngers developed through the pillar of a yield-stress suspension
trigger the development of unyielded zones. An increase in the Bingham num-
ber leads to an increase in the so-called �nger shielding e�ect, which manifests
itself via an increase in the overall �nger penetration zone and a decrease in
the total number of �ngers. The e�ect of �ow parameters on the displacement
of hydraulic fracturing proppant-laden suspension by a clean �uid in the vicin-
ity of the perforation zone is carried out. This particular case is considered in
application to over�ush at the end of a stimulation treatment, when a small
portion of a thin clean �uid is injected to wash out the particles from the
wellbore into the fracture. It is found that an increase in the yield stress and
the viscosity contrast between the fracturing and the over�ush �uids typically
reduces the area of the cavity thus mitigating the risk of loosing the conductive
path between the wellbore and the fracture after the fracture closure.

1 Introduction

Proppant transport models incorporated into existing hydraulic fracturing simula-
tors describe the �ow of particle-laden suspension inside a hydraulic fracture in the
framework of the l;ubrication approximation using the power-law rheological model
(see [7]). Hydraulic fracturing suspensions with large concentration of solids or
�bers show a yield-stress behavior in rheological experiments ([8, 5], which is not
taken into account in the proppant transport models implemented into commercial
simulators of hydraulic fracturing.
A state of the art in the modeling of injection of particle-laden suspensions into hy-
draulic fractures is the family of 2D width-averaged models based on the lubrication
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approximation to Navier-Stokes equations [8, 7, 7, 8]. In the regime of non-inertial
settling, the momentum conservation equation for particles is reduced to an alge-
braic relation for the particle velocity slip in the vertical direction given by the
Stokes formula with a correction for hindered-settling e�ects due to a �nite particle
volume fraction. In the case of Newtonian suspension rheology, the total momentum
conservation equation for the suspension is reduced to the linear expression of the
�uid (or mixture) velocity through the pressure gradient (similar to the Darcy law,
hence a well-known analogy between �ltration and a �ow in a Hele-Shaw cell). The
dependence of the width-averaged �uid velocity on the pressure gradient is nonlin-
ear, if the rheology of the carrier �uid or the suspension as a whole is non-Newtonian
(see, e.g., [11, 9, 10]).
A large number of papers deal with the Sa�man-Taylor (S-T) instability accompa-
nying displacement of �uids in a narrow plane channel or annulus, starting from
the pioneering study by Muskat [13]. The instability at the interface between the
�uids is triggered when a high-viscosity �uid is displaced by a low-viscosity one.
Note that in the absence of a certain �cut-o�� mechanism (molecular di�usion or
surface tension), the growth rate of disturbances at the interface between the �uids
increases unboundedly with a decrease in the wavelength. Review of studies on the
S-T instability in Newtonian �uids is presented in [12].
In the present study, we continue to analyze the displacement of viscoplastic �uids
in a Hele-Shaw cell approximating a hydraulic fracture. This work was started
in [1]. A parametric study of di�erent injection scenarios of yield-stress �uids is
carried out. In particular, we analyzed the e�ect of �ow parameters on the shape
and dimensions of the particle-free zone developed during over�ush at the end of
a hydraulic fracturing treatment. It is the �nal stage of a hydraulic fracturing
operation, when the proppant-laden slurry is displaced by a low-viscosity particle-
free �uid in order to clean the well and perforations.

2 Problem Formulation

We consider the �ow of immiscible incompressible �uids with the Bingham rheology
in a narrow Hele-Shaw cell approximating a hydraulic fracture. A detailed derivation
of 2D width-averaged governing equations is presented in [1], while here we present
only the �nal system of equations in the non-dimensional form:

∂wCi
∂t

+∇ · (wCiv) = −2Civl, i = 0, 1, 2 (1)

∇ ·
(

w3

12µm
G(φ) [∇p+ Buρmey]

)
=
∂w

∂t
+ 2vl, (2)

v = − w2

12µm
G(φ)∇p, G(φ) = 1− 3φ+ 4φ3, φ =

Bnτm
w|∇p|

, (3)

ρm = C0 + ζ1C1 + ζ2C2, µm = C0 + ξ1C1 + ξ2C2,

ζi =
ρi
ρ0

, ξi =
µi
µ0

, Bu =
ρ0gd

2

µ0U
, Bn =

τ0d

Uµ0
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Here, Cartesian coordinate system Oxy is introduced in the cell plane, so that y-axis
(with the basis vector ey) is vertical and origin O is located in the bottom left corner
of the computational domain; Ci are the �uid tracer concentrations (with i being
the number of �uid, so that i = 0 corresponds to the yield-stress �uid �lling the slot
initially); w(x, y, t) is the width of the Hele-Shaw cell (currently it is a prescribed
function of coordinates and time, while in the model describing the hydraulic fracture
propagation, w is obtained via coupling the hydrodynamic equations describing the
�ow inside a hydraulic fracture with geomechanics equations describing the fracture
growth [7]); v is the width-averaged �uid velocity; vl is the velocity of �uid leak-o�
through the porous walls; G is the correction to �uid mobility due to the yield-
stress rheology (G = 1 for Newtonian �uid); di�erential operator `∇' acts in the
(x, y) plane as we applied the averaging procedure along the cell width. The �ow
scales are as follows: L is the cell length, U is the scale of the injection velocity, d
is the cell width scale, ρ0 is the fracturing �uid density, µ0 and τ0 are the fracturing
�uid plastic viscosity and yield stress, respectively; g is the gravity acceleration.
Non-dimensional parameters are as follows: Bu is the Buoyancy number, Bn is the
Bingham number; ζi is the �uid density ratio; ξi is the �uid viscosity ratio. The
�ow domain according to the scaling introduced above is (x, y) ∈ [0, 1]× [0, H/L],
where H is the height of the Hele-Shaw cell.
For hyperbolic equations (1), we impose initial distribution of �uid tracers and
boundary conditions for �uid tracers and velocity at the inlet:

x = 0 : Cin
i = Ci(y, t), i = 0, 1, 2; (4)

t = 0 : C = Ci0(x, y), i = 0, 1, 2 (5)

The quasi-elliptic equation for pressure (2) requires either Neumann or Dirichlet
boundary conditions to be speci�ed at the boundaries of the �ow domain. At the
top and bottom boundaries, we impose the no-�ow condition. There is a speci�ed
velocity at the inlet segment of the left vertical boundary. We assume that the �ux
at the right vertical boundary is horizontal (which is the variant of a �soft� non-
re�ecting outlet boundary condition). The corresponding boundary conditions for
pressure are formulated as follows:

x = 0 :
∂p

∂x
= − 12µm

G(φ)w2
, (6)

x = 1 :
∂p

∂y
= −Buρm(1, y)⇔ p(1, y) = −Bu

y∫
0

ρm(1, s)ds (7)

y = 0 and y = h :
∂p

∂y
= 0. (8)

Here, h = H/L is the channel height-to-length ratio, and we assumed that the
velocity at the inlet is constant, so that in a dimensionless form it is unity. Note
that for a shorter notation, the boundary conditions (4�8) are formulated for the
�ow con�guration when the inlet zone occupies the entire height of the fracture.
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3 Numerical Implementation and Validation

The governing equations (1�3) coupled with the boundary and initial conditions
(4�8) are solved numerically using the �nite-di�erence method on a rectangular
staggered grid. The advection equations are solved using the second-order TVD
�ux-limiting scheme, while the quasi-linear elliptic pressure equation is solved using
the iterative process with the multigrid solver applied to the solution of a linearized
equation. The details of numerical algorithm and thorough validation of the model
(1�3) are presented in [1]. In particular, the model was validated against the follow-
ing experiments made in Hele-Shaw cells: (i) gravitational slumping of a heavy oil
in a con�ned cell; (ii) Sa�man-Taylor instability during the displacement of a water-
glycerin solution by water; (iii) set of experiments with the channeling of Newtonian
and power-law �uids through the cell �lled initially with a yield-stress �uid. The
simulations presented below are carried out using the 513× 513 mesh.

4 Results and Discussion

A parametric study of the interaction between viscoplastic and viscous �uids in a
Hele-Shaw cell is conducted using the research code based on the model and its im-
plementation described above. It is found that when a yield-stress �uid is displaced
by a high-viscosity Newtonian �uid (so that there is no Sa�man-Taylor instabil-
ity at the interface), the viscoplastic �uid behaves very similar to the viscous �uid
(Fig. 1a,b). The �ngers of a low-viscosity �uid penetrating through the viscoplastic
�uid trigger the development of unyielded zones (Fig. 1c,d).
The e�ect of Bingham number on the Sa�man-Taylor instability between the yield-
stress �uid and the viscous �uid is studied (see Fig. 2). It is found that an increase
in the Bingham number intensi�es the �nger shadowing e�ect: the growth rate of
small �ngers is damped, while the longer �ngers grows faster and the total number
of �ngers is decreased. As a result, the �nger penetration length is increased with
an increase in the Bingham number.
A multistage hydraulic fracturing job in shales (typically in the U.S. Land) is usually
followed by an injection of a small portion of particle-free low-viscosity �uid to clean
up the well from the proppant. This stage is called an over�ush. During this process,
a portion of the clean �uid enters the hydraulic fracture and displaces the particle-
laden suspension away from the perforations. Therefore, there is a risk of fracture
closure in this proppant-free unsupported cavity, which would result in a dramatic
decrease in the fracture conductivity. We carried out a sensitivity study of the
shape and the area of the particle-free cavity developed during the displacement of
a particle-laden suspension by a clean �uid in the vicinity of fracture inlet zone.
We found that there are three qualitatively di�erent displacement regimes, namely:
(i) the slumping-dominated scenario Fig. 3a ; (ii) an intermediate scenario Fig. 3b;
and (iii) the �ngering-dominated scenario Fig. 3c. The slumping-dominated regime
provokes the development of a large particle-free zone at the lop of the hydraulic
fracture, which would result in a signi�cant decrease in the productive fracture area
after closure. Among the other two regimes, the smallest area of the particle-free
cavity is found in the case of a �nger-dominated regime, which is achieved by an
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Figure 1: Distribution of �uids (a, c) and parameter G (3) describing the unyield-
ing of the viscoplastic Fluid 0 (b, d) in a plane channel during a certain injection
sequence. Viscoplastic Fluid 0 is red, high-viscosity Fluid 1 is blue and low-viscosity
Fluid 2 is white. The inlet velocity is 4.76 · 10−2m/s, ξ1 = 1.43, ξ2 = 8.72 · 10−4,
ζ1 = ζ2 = 0.5, Bu = 12.9, Bn = 1.43, t = 0.122 (a, b) and t = 0.235(c, d).

Figure 2: E�ect of Bingham number on the �ngering of a viscous �uid (white)
through the viscoplastic �uid (red) for Bn = 0.36 (a), Bn = 1.43 (b) and Bn = 5.72
(c). The inlet velocity is 4.76 · 10−2m/s, ξ = 8.72 · 10−4, ζ = 1 and t = 0.203.
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Figure 3: Typical regimes of displacement of a high-viscosity suspension by a low-
viscosity �uid in the vicinity of perforations during hydraulic fracture over�ush.

increase in the �uid viscosity ratio, injection rate or suspension yield stress.

5 Conclusions

In the framework of a lubrication approximation, the displacement of a viscoplastic
�uid by viscous �uids in a Hele-Shaw cell is studied. It is found that the yield-stress
rheology of the �uid results in a modi�cation to the �uid mobility, which is the
coe�cient of proportionality between the pressure gradient and the width-averaged
�uid velocity. In contrast to the �ow of Newtonian �uids in narrow channels, the
pressure equation describing the �ow of viscoplastic �uid is strongly non-linear.

Based on the numerical simulations, we carried out the parametric study of in-
teractions between viscous and viscoplastic �uids in a Hele-Shaw cell. It is found
that when the yield-stress �uid is displaced by a viscous one and the interface is
�at, the viscoplastic �uid behaves very similar to a viscous �uid. The instability
triggered at the interface between the �uids leads to the development of unyielded
zones in the viscoplastic �uid. During the displacement of a yield-stress �uid by a
low-viscosity �uid, an increase in the Bingham number leads to an increase in the
�nger penetration length and a decrease in the total number of �ngers.

The over�ush stage at the end of a hydraulic fracturing treatment is studied with
the aim to minimize the area of a particle-free zone in the vicinity of perforations
inside a hydraulic fracture, which mitigates the risk of loosing well-to-fracture hy-
draulic connection. Numerical simulations of the displacement of a viscous or a
viscoplastic fracturing �uid by a low-viscosity over�ush �uid in the hydraulic frac-
ture demonstrated that there are three qualitatively di�erent over�ush scenarios:
(i) slumping-dominated; (ii) intermediate; (iii) �ngering-dominated. The smallest
area of particle-free zone in the vicinity of perforations is achieved in the �ngering
scenario, which occurs when either there is a large viscosity contrast between the
fracturing and the over�ush �uids, or the fracturing �uid shows a strong yield-stress
behavior.
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Abstract

A great number of hydraulic fracturing (HF) models exists which are dif-
ferentiated with complexity and physical accuracy. Most straightforward 2D
models (PKN, KGD, radial models) are reasonable while express analysis or
�rst estimations ful�lling only as they are restricted with geometrical shapes
signi�cantly and consequently are not of interest in HF design treatment. At
the same time, fully 3D models or planar 3D models are most accurate ones
from physical point of view but cause great times costs in numerical simulation.

Pseudo 3D (P3D) models play a role of compromise between two previously
examined cases. Key results of P3D model fracture growth in multi-layered
lithology with focus on proppant transport mechanism and tip-screen out are
examined in [1] . To reduce the consequences of assumptions various e�orts
to enhance P3D models are made ([2], [3], [4], [5], [6]). In particular, pressure
pro�le is assumed to be one-dimensional (along the fracture growth direction)
within the P3D model. Consequently, the �uid �ow in lateral direction is
not examined, viscous dissipation is ignored in this direction and it turns
into fracture height overestimating (toughness regime is observed only). To
enhance the model authors in [5] account for viscous dissipation via so-called
apparent fracture toughness that depends on propagation velocity on both
lower and upper fracture tips. However, the case of symmetric three-layers
lithology is investigated only.

The purpose in the present project is to generalize the concept of appar-
ent fracture toughness for multi-layered lithology with arbitrary properties.
Numerical results present signi�cant di�erence in fracture width pro�le be-
tween classic P3D model and enhanced one (about 10 % of di�erence can
be achieved). The enhancement is demonstrated in the frame of the prob-
lem of unwanted breakthrough layers that may lead to water or gas coning
breakthrough.

1 Introduction

Enhanced pseudo-3D (EP3D) hydraulic fracture model is based on cell-based P3D
model with non-equilibrium height growth. EP3D model aims to account for vis-
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cous dissipation in vertical growth which is essential as break-through into high
permeability layers takes place. Cell-based P3D model accounts for height growth
mechanism in multi-layered lithology. Its enhanced modi�cation represents the frac-
ture as a series of connected cells with a plane strain and with account for excessive
pressure inside each cell. The fracture opening pro�le and height are calculated
analytically for the given piece-wise lithology (stress intensity, Youngâ��s modu-
lus, Poissonâ��s ratio and fracture toughness). Initial growth state of each cell is
examined via PKN model while its further growth takes place in accordance with
P3D model.

2 Non-equilibrium height assessment

In the presence of signi�cant vertical �uid �ow within the fracture (accompanied
with instant breakthrough into neighboring layers) the equilibrium height model
is not reasonable. To bypass this problem the non-equilibrium growth model is
applied: the excessive pressure is considered to depend on fracture tip velocity. The
relation for this dependence is obtained at [7] and is given as follows

Pnet = E ′
2
√

2(2 + n)

π(2− n)

[
K

nE ′hn

(
cos[(1− β)π]

sin(βπ)

)n+1(
2n+ 1

n(2 + n)

)n]1/(2+n)

v
n/(2+n)
± ,

(1)

where utip - is a �uid velocity at the fracture tip, n and K are coe�cients of power-
law rheology, β = 2/(2 + n) is an auxiliary coe�cient, h is a fracture height, E ′ =
E/(1− ν2), E is Young modulus, is Poisson coe�cient.
The relationship governing net pressure Pnet and stress intensity factor KIc is the
following [8]

Pnet =
KIc√
πh/2

. (2)

The stress intensity coe�cients at upper and lower fracture of tips KIu/l are the
following

KIu/l =

√
πh

2
(p−σn+ρfg(h−h

2
±h
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))+
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2

πh

n−1∑
i=1

(σi+1−σi)(
h

2
arccos(

h− 2hi
h

)±
√
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(3)

where p is a pressure averaged along the fracture, h is a distance between lower
fracture tip and its center, hi is a distance between lower fracture tip and upper
boundary if the i-th layer, σn and σi are stress at upper fracture tip and stress at
i-th layer, respectively.
The work�ow for non-equilibrium height assessment includes the following steps:
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1. to estimate zero-order magnitude of both lower and upper fracture tip veloci-
ties for a given cell;

2. to �nd new positions of both lower and upper fracture tips for a given time
step using received velocities;

3. using relations (3) to estimate stress intensity factors (SIF) at fracture tips
with account for fracture toughness at those layers which are intersected with
fracture tips;

4. using relations (1) and (2) to de�ne such tip velocities that give us the values
of SIF obtained at the previous step;

5. to accept received velocities and to repeat the whole work�ow till the stability
is respected.

As a result both lower and upper fracture tip velocities are estimated. Further new
positions of grid nodes are estimated that de�ne a new non-equilibrium height.
To get the fracture growth dynamics in addition t geo-mechanical relations one
is to examine non-newtoninan liquid �ow inside the fracture channel. The local
conservation of �uid �ow along the fracture channel with continuous cross section
A(x, t) is de�ned as follows

∂A

∂t
+
∂Av

∂x
+ ql = 0,

where ql is Carter's losses which is de�ned as follows [9]

ql =
2C̃lh√
t− τ(x)

where τ is the time at which leak-o� velocity was exposed, C̃l is an e�ective leak-o�
coe�cient, de�ned as weighted for all lithology layers

C̃l =
1

hf

∫
Cldz.

The system is closed with following initial (initial zero opening pro�le) and boundary
conditions (�ow rate at the inlet and no �ow condition at the fracture tip)

w(x, t = 0) = 0, q(x = 0, t) = q0(t), q(x = L, t) = 0.
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3 Numerical results

The system of equations is solved numerically using explicit gradient iteration
scheme based on Newton's method. At each time step the hydraulics solution in
iterative manner converges to the truth one by updating geo-mechanical parame-
ters. This approach ensures the growth of numerical stability and reasonable linear
convergence of numerical solution. Besides, the time step is adjusted in such a way
the time cost of calculation keeps reasonable.
The strategy of space and time grid construction is chosen as follows. The number
of grid points in vertical direction is �xed, its meshing is uniform. As for the lateral
direction grid the idea is based on auto-growing calculation domain. At initial time
the domain represents three sequential cells: well cell, fracture cell, tip cell. In the
�rst and last cells the boundary conditions for slurry rate and zero �ow rate are
set, respectively. A new fracture cell is being added if the fracture opening at this
cell width exceeds a certain level. Spatial grid cells are situated in the region where
the fracture physically exists only while in most cases the calculation domain is pre-
de�ned and consequently unwanted cells are involved. The time grid is non-uniform.
The time derivative is approximated by the implicit �rst order Euler scheme while
the �uxes at the cell faces are approximated with backward scheme. In addition,
the fracture geometry changing is de�ned in accordance with criteria conditions for
its growth.

Figure 1: Lithology, fracture width pro�le, side view: upper picture - non-
equilibrium height growth, lower picture - equilibrium height growth

On the picture above two cases are examined: equilibrium height growth and non-
equilibrium one with the same in�ow regime, liquid properties and lithology (T =
10 min. - pumping period, q = 3.5m3/min.− pump rate, K and n are 0.05 and
0.6, respectively). The set of parameters for the cases is H = 10m for the height
of reservoir layer, µ = 0.05Pa · s for the �uid viscosity, ν = 0.3 for the Poisson's
ratio, E = 30GPa for the value of Young's module and KIc = 0.5MPa for the
fracture toughness. The Carter's leak-o� coe�cient is the same for all layers, Cl =
10−5 m · s−0.5.
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Neglecting viscous regime dissipation in vertical growth makes the height overesti-
mated by 16 % while the fracture length is underestimated by 10 %. The account for
viscous dissipation in lateral growth is vitally crucial in the context of breakthrough
problems (in particular, water or gas coning).

4 Discussion

The solution for joint problem of fracture growth within multi-layered lithology
and non-newtonian �ow inside is developed. Enhanced cell-based pseudo-3D model
is applied as it accounts for fracture height growth with viscous dissipation and
represents relatively reasonable agreement between the complexity and accuracy.
Sequentially, we ful�lled benchmarking analysis: comparing equilibrium and non-
equilibrium height growth models. As it turns out a signi�cant deviation between
two examined cases is observed (of order 10 %). Thereby, the risks of water or
gas breakthrough may be over-estimated signi�canty if neglecting with viscous-
dissipation in vertical growth.

References

[1] Bochkarev A., Budennyy S., Nikitin R., Mitrushkin D., Pseudo-3D Hydraulic
Fracture Model with Complex Mechanism of Proppant Transport and Tip
Screen Out // ECMOR XV - 15th European Conference on the Mathemat-
ics of Oil Recovery 2016;

[2] J. Adachi, E. Siebrits, A. Peirce, J. Desroches Computer simulation of hydraulic
fractures // International Journal of Rock Mechanics and Mining Sciences 2007.
V. 44. P. 739

[3] M. M. Rahman, M. K. Rahman A Review of Hydraulic Fracture Models and
Development of an Improved Pseudo-3D Model for Stimulating Tight Oil/Gas
Sand // Energy Sources, Part A: Recovery, Utilization, and Environmental
E�ects 2010. V.32

[4] JosÃ© I. Adachi, Emmanuel Detournay, Anthony P. Peirce Analysis of the clas-
sical pseudo-3D model for hydraulic fracture with equilibrium height growth
across stress barriers // International Journal of Rock Mechanics and Mining
Sciences 2010. V. 47. P. 625

[5] E.V. Dontsov, A.P. Peirce An enhanced pseudo-3D model for hydraulic frac-
turing accounting for viscous height growth, non-local elasticity, and lateral
toughness // Engineering Fracture Mechanics 2015. V. 142. P. 116

[6] E.V. Dontsov, A.P. Peirce Proppant transport in hydraulic fracturing: Crack
tip screen-out in KGD and P3D models // International Journal of Solids and
Structures 2015. V. 63. P. 206

[7] Lenoach, B. Hydraulic Fracture Model Based on Analytical Near-Tip Solutions,
Computer Methods and Advances in Geomechanics, 1994, 1597-1602 pp.

113



REFERENCES

[8] Economides, M. J. Reservoir stimulation / M. J. Economides, K. G. Nolte. 3rd
edition. Chichester: John Wiley and Sons Ltd, 2000. 856 p.

[9] Carter, R.D. Derivation of the General Equation for Estimating the Extent of
the Fractured Area, Appendix I of Optimum Fluid Characteristics for Fracture
Extension, Drilling and Production Practice, G.C. Howard and C.R. Fast, New
York, NewYork, USA, American Petroleum Institute, 1957, 261-269 pp.

114



A posteriori error estimates for approximate solutions and adaptive algorithms for
plane problems of elasticity theory

A posteriori error estimates for approximate

solutions and adaptive algorithms for plane

problems of elasticity theory

Maria A. Churilova, Maxim E. Frolov, Sergey I. Repin

frolov me@spbstu.ru

Abstract

This work is devoted to functional approach [1],[2],[3] to a posteriori er-
ror control in classical [2] and Cosserat elasticity [4]-[5]. The approach yields
reliable majorants that are valid for all conforming solutions of problems re-
gardless of methods used for a numerical implementation of a solution process.
Estimates include additional auxiliary �elds and mesh-independent constants.
It is shown that a reasonable and natural choice of conforming �nite element
approximations in the Hilbert space H(div) for additional variables provides
an e�cient implementation of the error control. E�ciency of the above tech-
nique is shown on one set of numerical examples including consequent mesh
adaptations with standard MATLAB tools as in [6].

1 Introduction

Nowadays, the theory of a posteriori error control is well-developed. The amount of
the corresponding literature is vast and it is increasing continuously from the end
of 1970-s (see, for instance, [3], [7], [8] for a review). Concerning error control for
various problems of the elasticity theory, the �rst �geometrical� method appeared
in [9] (much earlier than others, like [10], [11], [12]).
Fundamentals of the functional approach to a posteriori error control, including
estimates for various problems of continuum mechanics, have been worked out in
detail (see [13], [2], [3] for references). For example, functional a posteriori estimates
for linear elasticity were obtained in [14] and [2] using di�erent methodologies. Also
in [14] some estimates for plane stress, plane strain and axisymmetric problems are
considered.
Functional estimates for problems of Cosserat [15] elasticity have appeared during
the last few years. Such media possess a wider range of properties as compared with
classical continuous media. A mathematical description of Cosserat media can be
found in [16] and [17]. In the last decades, methods for the numerical solution of
problems related to the Cosserat continuum began to develop more intensively (see,
for example, [18], [19], [20], [21], [22]). On the other hand, there are only few papers
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addressed to a posteriori error control for computed approximations � [23], [24], [4],
[5], and this work requires further developments related to the evolution of adaptive
algorithms.

2 Statement

Majorants for both mathematical models (classical and Cosserat elasticity) have
some important features in common. Estimates have the form

|||e|||≤M := D(ũ, s∗) +R(s∗) + penalty terms, e := u− ũ, (1)

where u contains all components of the exact solution, ũ represents approximations
of these components, e is the corresponding error formed by deviations from ex-
act values, s∗ is a set of auxiliary variables, and |||...||| denotes the energy norm
of the error. Term D represents errors in constitutive relations, R is a residual
term including mesh-independent constants. The estimate (1) may contain optional
penalty terms that violate the symmetry condition in a weak form. The right-hand
side of (1) depends only on the known data � approximate solution, constants,
positive parameters, additional variables, and it can be calculated explicitly. This
estimate is exact in the sense that the equality is possible to be achieved with a
proper setting of parameters and variables. For instance, estimates for problems
in classical and Cosserat elasticity have the form (1) � see [2], [4] and [24] for de-
tails. All auxiliary �elds can be constructed on a basis of �nite elements suitable for
space H(div) � the Hilbert space of square summable vector-functions with square
summable divergence.
A correct choice of one or more free variables in functional-type error estimates
(majorants) allows obtaining accurate guaranteed upper error estimates. The func-
tional approach does not impose signi�cant additional restrictions (for example,
satisfaction of equilibrium equations) on free variables. Any functional-type error
estimate is universal � it is applicable to an arbitrary approximate solution from
the corresponding energy space. It remains valid regardless of the approach used
for calculating that solution, thus allows to take into account various error sources.
Functional estimate (1) includes constants that depend only on domain geometry
and not on the mesh for Finite Element Method (FEM). In addition to the global
error estimation, the functional majorant can be used as an indicator of the local
error distribution, considering the contributions to the global error on each �nite
element.
Modern adaptive algorithms for �nite element methods consist of four main steps:
solve, estimate, mark and re�ne. Concerning (1) the procedure can be speci�ed as
follows:
1. solve means compute ũ on a current �nite element mesh ;
2. estimate means compute (1) from individual loads to elements ;
3. mark means mark elements of a mesh with large local errors by some marking
strategy ;
4. re�ne means divide marked elements and locally re�ne a mesh.
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3 Numerical results

One of the e�cient ways to compute functional-type a posteriori error estimates
for plane problems is to use mixed-FEM approximations. For example, these may
be Raviart-Thomas [25] or Arnold-Bo�-Falk [26] approximations. For computation
of approximate solutions, the commercial software can be used. Below, we present
some recent results as an illustration.

Table 3: Comparison of results for uniform and adaptive mesh re�nements, where
the lowest-order Raviart-Thomas approximation is used for the implementation of
the majorant M from (1)

Uniform re�nement (classical elasticity)

MESH 1 2 3 4 5
NODES 295 1147 4522 17956 71560
ELEMENTS 557 2228 8912 35648 142592
RELATIVE ERROR, % 10.1 6.6 4.2 2.6 1.6

Reference indicator (classical elasticity)

MESH 1 2 3 7 20
NODES 295 353 423 765 2050
ELEMENTS 557 664 793 1428 3906
RELATIVE ERROR, % 10.1 6.9 4.9 2.6 1.6

Majorant-based indicator (classical elasticity)

MESH 1 2 4 5 7
NODES 295 323 536 876 2955
ELEMENTS 557 606 1002 1648 5693
RELATIVE ERROR, % 10.1 7.1 3.7 2.7 1.4
Ieff = M/|||e||| 1.2 1.2 1.3 1.3 1.2

Reference indicator (Cosserat elasticity)

MESH 1 2 3 7 22
NODES 295 348 410 720 2114
ELEMENTS 557 652 764 1334 3996
RELATIVE ERROR, % 12.0 9.8 8.0 5.1 3.0

Example (square domain with a hole). Let us consider one canonical example (see
�gure 1), where the results of adaptations and error estimation are compared for
classical elasticity and Cosserat elasticity. Geometry and material properties for this
example are taken from [19]: square side is 16.2 mm, hole radius is 0.216 mm, tradi-
tional elastic constants are λ= 0.11538e10 N/m2 and µ= 0.76923e9 N/m2, additional
parameters of a microstructure are B= 0.31762e2 N and µc= 0.25638e11 N/m2, size
of particles is 0.2 mm (we note that the radius of the hole is close to the size of
particles of a microstructure). The left edge of the square is clamped and a tensile
loading is equal to 1 MPa (applied to the opposite edge).
Results collected in table 3 are mostly devoted to the classical elasticity. We start
from the case where no adaptation is applied (uniform re�nements). This part of
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(a) 295 nodes (b) 2955 nodes (majorant)

(c) 2050 nodes (reference 1) (d) 2114 nodes (reference 2)

(e) ux (f) uy

Figure 1: (a) � initial mesh, (b) � result of adaptation by majorant-based indicator,
(c) � result of adaptation by the reference indicator for classical elasticity, (d) �
result of adaptation by the reference indicator for Cosserat elasticity, (e) and (f) �
components of the solution u for classical elasticity (displacements)

the table shows how the solution process proceeds without any a posteriori error
estimation. Values collected in lines of the table 3 are as follows: mesh numbers and
the corresponding amounts of nodes and elements, and the relative error computed
with the so-called reference solution � an approximate solution obtained on a �ne
mesh. Note that the reference solution is required only for numerical experiments
on validation and comparison of di�erent approaches. In engineering practise it is
too time-consuming to compute it. For example, the reference mesh for the mesh 5
of the uniform re�nement consists of 1141792 nodes and 2281472 elements. The
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reference solution is also used for the construction of the reference indicator based
on the energy norm of the di�erence between solutions on coarse and �ne meshes.
It is necessary for getting a �nal mesh (target) for comparisons, but this approach
yields a large amount of steps of consequent mesh adaptations to achieve a good
result.

The third block of the results is devoted to error estimation by the functional-type
error majorant from [2]. The ratio between the error majorant M and the error
|||e||| is used as the main quality measure. This parameter is usually called the
e�ciency index � it is denoted by Ieff . In the last part of the table, results for
similar reference indicator for the Cosserat elasticity are collected. Figure 1 includes
following subplots: the initial mesh (a), the mesh 7 for the majorant-based indicator
(b), the mesh 20 for the reference indicator for classical elasticity (c), the mesh 22
for the reference indicator for Cosserat elasticity (d), and the classical solution (e-f).

Results show that the functional approach provides reliable guaranteed upper
bounds of the energy norm of the error with stable e�ciency. Number of nodes
required to reach the 98%-level of the accuracy with uniform re�nements is 24-times
larger than for the adaptive algorithm with the majorant M from (1). Thus, such
approach saves a lot of computational resources to get an approximate solution of
a good quality. After comparison of (b), (c) and (d), we make the conclusion that,
for considered parameters, geometry and loading, both reference indicators and the
majorant come to similar adaptive meshing.

In addition, table 4 illustrates the behavior of error estimation for several steps with
uniform mesh re�nements for the simplest Arnold-Bo�-Falk approximation. From
these results for Cosserat elasticity we conclude that the e�ciency index of estimates
remains stable and overestimation of the true error is moderate and acceptable.

Table 4: Results for the lowest order Arnold-Bo�-Falk approximation for nested
meshes [5]

MESH 1 2 3 4
D.O.F.1 504 1872 7200 28224
RELATIVE ERROR, % 15.8 11.1 7.3 4.0
Ieff 1.2 1.2 1.2 1.3

1 number of degrees of freedom (111744 for the reference mesh)
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Conclusions

The main conclusions are:

� The functional approach is reliable and estimates are guaranteed upper bounds
of errors. This property is known from the theory and it is con�rmed practi-
cally in the process of execution of adaptive algorithms.

� For the considered classes of problems, H(div)-conforming approximations as
Raviart-Thomas or Arnold-Bo�-Falk yield good results from the viewpoint of
a stability of the e�ciency index and a moderate overestimation of the true
error.
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Abstract

The analytical solutions of nonlinear problems for bi-material plane with an
interface crack are obtained. The plane is made by joining of two half-planes
from di�erent materials. The plane is subjected to constant nominal (Piola)
stresses at in�nity. On the crack an external loading is applied. Mechanical
properties of half-planes are described by the model of John's harmonic ma-
terial. This model has allowed to use the methods of complex functions at
solution of nonlinear plane-strain problems. The stresses and displacements
are expressed through two analytic functions of a complex variable, de�ned
from nonlinear boundary equations on an interface crack. Two problems are
solved: a plane with a free interface crack and interface crack loaded uniform
pressure. In the second problem the boundary conditions on a crack are de-
pend from the deformation of its coasts. The exact analytical formulas for
stresses and displacements are found. Using a global solutions the asymptotic
expansions have been constructed for the stresses and displacements in vicinity
of a crack tip.

In nonlinear problem of uniaxial extension of a plane with free crack it is
established, that the formulas given the crack opening and the stress intensity
factors (SIF) near the crack tips completely coincide with the similar formulas
derived from the equations of a linear elasticity. The nominal stresses have the
root singularity at the tips of a crack; the Cauchy stresses have no singularity.

It was found out, that in the problem of the crack under action of uniform
pressure some critical pressures proportional to the shear module are exist and
their excess leads to loss of a material stability and large stresses and strains.

1 General relations

In cartesian coordinates (x1, x2) the equations of equilibrium and compatibility of
plane-strain problems in complex form are [1]

(s11 + is12)′1 + i(s22 − is21)′2 = 0, (1)
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(g22 − ig12)′1 + i(g11 + ig21)′2 = 0, (2)

where sij, gij are components of nominal (Piola) stress tensor S = sαβ eαeβ and
deformation gradient G = gαβ eαeβ. The complex variables of initial and current
con�gurations are z = x1 + ix2, ζ = ξ1 + iξ2 and the function of nominal stresses is
σ. The equations (1), (2) are satis�ed identically by substituting of expressions

s11 + is12 =
∂σ

∂z
− ∂σ

∂z
, s22 − is21 =

∂σ

∂z
+
∂σ

∂z
, (3)

g11 + ig21 =
∂ζ

∂z
+
∂ζ

∂z
, g22 − ig12 =

∂ζ

∂z
− ∂ζ

∂z
. (4)

Complex functions ζ and σ are de�ned from the law of elasticity and boundary
conditions of the problem.
John's elastic potential (strain energy density) is considered [2]

Φ = 2µ[F (I)− J ], I = λ1 + λ2, J = λ1λ2,

8µbF ′(I) = I +
√
I2 − 16bc,

where λ1, λ2 are principal stretches; the factors b, c are de�ned by transition to
Hookean law under small deformations: 4µb = 1 + µ/(λ+ 2µ), c = 2µ(1− 2µb).
The law of elasticity for plane problem we shall write in complex form [1, 3]

s11 + is12 = 2µ

[
2

I
F ′(I)

∂ζ

∂z
− ∂ζ

∂z
+
∂ζ

∂z

]
,

(5)

s22 − is21 = 2µ

[
2

I
F ′(I)

∂ζ

∂z
− ∂ζ

∂z
− ∂ζ

∂z

]
.

Substituting (3), (4) into (5), we obtain the equations for functions σ (z, z) and
ζ (z, z)

∂σ

∂z
+ 2µ

∂ζ

∂z
= 4µ

1

I
F ′(I)

∂ζ

∂z
,

(6)
∂σ

∂z
+ 2µ

∂ζ

∂z
= 0.

The solution of equations (6) is given by [4, 3]

ζ = bϕ(z) + ψ(z) +
cz

ϕ′(z)
,

(7)

σ = (1− 2µb)ϕ(z)− 2µψ(z)− 2µ
cz

ϕ′(z)
,

where ϕ(z), ψ(z) are analytic functions of z. From (7) it follows σ + 2µζ = ϕ(z).
For to simplify the boundary equations for functions ϕ(z), ψ(z) we shall introduce
an auxiliary function

Ω(z) =
c

ϕ′(z)
+ ψ′(z)− c ϕ

′′(z)

ϕ′2(z)
.
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The formulas for nominal stresses becomes:

s11 + is12 = (1− 2µb)ϕ′(z)− 2µ

(
2c

ϕ′(z)
− Ω(z) + c

(z − z)ϕ′′(z)

ϕ′2(z)

)
,

(8)

s22 − is21 = (1− 2µb)ϕ′(z)− 2µ

(
Ω(z)− c(z − z)ϕ′′(z)

ϕ′2(z)

)
,

In addition, the stresses and strains satisfy to the equalities

(s11 + is12) + 2µ(g22 − ig12) = ϕ′(z),

(s22 − is21) + 2µ(g11 + ig21) = ϕ′(z).

Consider the Cauchy's stress tensor T = tαβ eαeβ, from formula S = G−1 · JT we
obtain

κ1(t11 + it12) = s11 + is12,
(9)

κ2(t22 − it21) = s22 − is21,

where κk = |ek · JG−1| are the multiples of the areal change, J = det G.

2 The problem of the interface crack

A bi-material plane with an interface crack is considered. The crack is located in
the interval [−a, a] of interface line (Fig. 1). Nominal stresses are set at in�nity
sij → s∞ij (for each half-plane). The surfaces of the crack are free from stresses

(s22 − is21)+ = 0, (s22 − is21)− = 0, |x1|< a. (10)

The stresses (8) substitute in equations (10)

[(1− 2µ2b2)ϕ′2(z)− 2µ2Ω2(z)]+ = 0,
(11)

[(1− 2µ1b1)ϕ′1(z)− 2µ1Ω1(z)]+ = 0.

Here, we introduce the functions h(z) and r(z) which are analytic in all plane,
excluding the interface. It allows to simplify the statement of the boundary problems
and their solution. In upper half-plane S2

h(z) = (1− 2µ2b2)ϕ′2(z) + 2µ1Ω1(z),
(12)

r(z) = b2ϕ
′
2(z)− Ω1(z).

Complex potentials we shall express through functions (12)

ϕ′2(z) =
(h+ 2µ1r)(z)

1 + 2(µ1 − µ2)b2

,

(13)
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Figure 1: Bi-material plane with interface crack.

Ω1(z) =
[b2h− (1− 2µ2b2)r](z)

1 + 2(µ1 − µ2)b2

.

Formulas for the lower half-plane S1 we obtain by cyclic changing of the indexes.
The boundary conditions (11) in functions (12) take the form

h+(x1)− h−(x1) = 0, r+(x1) + δr−(x1) = 0, (14)

δ =
µ2(1− 2µ1b1)

µ1(1− 2µ2b2)
· 1 + 2(µ1 − µ2)b2

1 + 2(µ2 − µ1)b1

.

The solutions of equations (14) are

h(z) = h(∞), (r −Dh)(z) = AX(z)(z − 2iaβ),

where

X(z) =
1√

z2 − a2

(
z + a

z − a

)iβ
, β =

ln δ

2π
,

A =
1

2

(1 + 2b2(µ1 − µ2))(1 + 2b1(µ2 − µ1))

µ1(1− 2µ1b1) + µ2(1− 2µ2b2)
(s∞22 − is∞21),

D = −1

2

1− 2µ1b1 − 2µ2b2

µ1(1− 2µ1b1) + µ2(1− 2µ2b2)
.

The SIF of nominal stresses in vicinities of the crack ends are calculated under the
formulas similar to that are used in linear elasticity [5]

K± =
√

2π lim
r→±1±0

[
(±τ − 1)0.5±iβ(s22 − is21)(τ)

]
= (15)

= ±
√
π(1∓ 2iβ)2iβ(s∞22 − is∞21),

where τ = x1/a is dimensionless variable on an interface. The same SIF are obtained
in the linear problem of interface crack [5].
The displacements of the crack surfaces we shall �nd under the formula

g11 + ig21 = 1 + u′1 + iu′2 =
1

2µ
ϕ′(t),
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where u1 and u2 are the components of displacements. The disclosing of a crack for
uniaxial extension of plane by the stresses s∞22 is given by

∆u2(z) =
s∞22

2µ1µ2

√
(µ1 + 3µ2 − 4ν1µ2)(µ2 + 3µ1 − 4ν2µ1)

√
a2 − z2

(
a+ z

a− z

)iβ
.

The similar formula is obtained in a linear problem [5].
Let's assume z = a + reiθ and construct the asymptotic expansions of nominal
stresses in a vicinity of a right tip of crack at r → 0

s11 + is12 = A1 +B1(re−iθ)−iβ−0.5 +O(
√
r),

s22 − is21 = A2 +B2(re−iθ)−iβ−0.5 +O(
√
r),

where A,B are const. The nominal stresses have singularity 1/
√
r.

The multiples of the areal change κ1 and κ2 have a singularity 1/
√
r at r → 0,

hence the Cauchy stresses (9) have no singularities on the ends of the crack

t11 + it12 = C1 +D1

√
r +O(r), t22 − it21 = C2 +D2

√
r +O(r).

The calculations of displacements of crack surfaces are performed. The material
parameters are considered: µ1 = 1 MPa, µ2 = 5 MPa, ν1 = 0.48, ν2 = 0.45. One-
axis stretching along x2-axis is taken as external loading: s∞22 = 0.1 MPa (a) and
s∞22 = 0.3 MPa (b). The results of calculations are presented on Fig. 2.

(a) (b)

Figure 2: The displacements of crack surfaces.

3 Interface crack loaded by pressure

The nonlinear plane-strain problem of a bi-material plane with an interface crack
loading pressure is examined. Feature of a problem is dependence of boundary
conditions on deformation of coasts. It was found out, that there are some critical
pressures proportional to the shear module which excess conducts to the lost of
stability material. The boundary conditions on a crack are reduced to [4]

s22 − is21 = −p (g11 + ig21), (16)
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where p > 0 is value of pressure. Using formulas (8), (16) we obtain

s22 − is21 = − p

2µ− p
ϕ′(z), g11 + ig21 =

p

2µ− p
ϕ′(z). (17)

It is visible in (17), that stresses and strains tends to ∞ when p → 2µ. Function
ϕ′(z) 6= 0 if p = 2µ. The boundary conditions for nominal stresses on the coats of
crack are

[s22 − is21]+ = − p

2µ2 − p
ϕ′2(z), [s22 − is21]− =

p

2µ1 − p
ϕ′1(z). (18)

The sum and the di�erence of the equations (18), written through functions h and
r, gives us the equations

[h− pr]+(t)− [h− pr]− = 0,

r+(t) + δ(p) r−(t) = f(p), t ∈ (−a, a), (19)

δ(p) =
2µ2 − p
2µ1 − p

1 + 2(µ1 − µ2)b2

1 + 2(µ2 − µ1)b1

1− (2µ1 − p)b1

1− (2µ2 − p)b2

,

f(p) = − 1− (2µ1 − p)b1 − (2µ2 − p)b2

(2µ1 − p)[1 + 2(µ2 − µ1)b1][1− (2µ2 − p)b2]
(h+ pr)(∞).

The factor δ(p) in equation (19) changes a sign depending on value of pressure
p. If µ1 ≤ µ2, then at p < 2µ1 and p > 2µ2 a factor δ will be positive, and at
2µ1 < p < 2µ2 � negative. The form of the solution of the equation (19) depends
on a sign on this parameter. Further we shall consider separately three cases. Cases
δ = ∞ and δ = 0 to which correspond critical pressure p1 = 2µ1 and p2 = 2µ2,
accordingly, we exclude from consideration.
At p < 2µ1 and p > 2µ2 we have δ > 0, in this case the solution to equation (19)
holomorphic at in�nity is

r(z) = r(∞) +B [1− (z − 2iβa)X(z)], (20)

B = − [1 + 2(µ2 − µ1)b1 + 2(µ1 − µ2)b2] p

(2µ1 − p)[1− (2µ1 − p)b1] + (2µ2 − p)[1− (2µ2 − p)b2]
.

At segment 2µ1 < p < 2µ2 factor δ < 0. In this case the solution of equation (19) is
given by the formula

r(z) = r(∞) +B [1−X∗(z)]. (21)

X∗(z) =

(
z − a
z + a

)i β
, β =

ln| δ|
2π

.

The solution (21) remains limited near to the tips of a crack and anywhere does not
zero. In the formula (21) it is supposed, that δ 6= −1, the case δ = −1 has been
exclude. Value of parameter δ = −1 is special, the solution (20) tends to in�nity,
corresponding critical pressure p is a root of the equation 1 + δ = 0.
Thus, during research and solution of the equation (19) are revealed three special
values of parameter δ, namely, δ = ∞, δ = 0 and δ = −1 to which there corre-
spond critical values of pressure: p1 = 2µ1, p2 = 2µ2 and p∗ ∈ (2µ1, 2µ2). The
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analysis shows, that at approach of pressure to these critical values the maximal
displacements of coasts of a crack, and also stress intensity factors tends to in�nity.
The SIF for the right and left end of a crack we shall de�ne under formulas (15).
Let's consider a case when pressure on a crack satis�es to conditions p < 2µ1 or
p > 2µ2. In the equation (19) parameter δ > 0 and its solution is (20). The SIF are

K+ = −A
√
π(1− 2iβ)2iβ, K− = +A

√
π(1 + 2iβ)2−iβ,

where

A = B
(h+ pr)(∞)

[1 + 2(µ1 − µ2)b2][1 + 2(µ2 − µ1)b1]
.

For negative values of parameter δ in the equation (19), when pressure varies within
the limits of 2µ1 < p < 2µ2, the SIF are calculated under formulas

K+ = −A
√

2π 2−iβ, K− = −A
√

2π 2iβ.

The displacements of the coasts of crack it is convenient to de�ne by the second
formula (17)

g11 + ig21 = 1 + u′1 + iu′2 =
1

2µ− p
ϕ′(t),

after replacement of complex functions with expressions (14). The displacements on
normal to a crack are represented greatest interest

u+
2 = − a

√
δ(2µ1 − p)

√
1− ξ2

(2µ2 − p)[1 + 2(µ1 − µ2)b2]
B cos

[
β ln

1 + ξ

1− ξ

]
, ξ ∈ (−1, 1),

u−2 =
a(2µ2 − p)

√
1− ξ2

√
δ(2µ1 − p)[1 + 2(µ2 − µ1)b1]

B cos

[
β ln

1 + ξ

1− ξ

]
, ξ ∈ (−1, 1).

4 Conclusion

For model of John's harmonic material the problem of interface crack in bi-material
plane is solved. The cases of a free crack and a crack loaded by uniform pressure are
studied. The exact analytical formulas are found for the nominal (Piola) stresses,
Cauchy stresses and the displacements. On the base of the common solution the
asymptotic expansions of the listed functions are constructed in a vicinity of the
ends of a crack. The nominal stresses have a root singularity, Cauchy stresses have
no singularity. The stresses and displacements have an oscillation in the vicinity of
the tips of the crack. The stress intensity factors for nominal stresses are received.
Unlike a linear problem, where SIF have real physical sense, (the speed of liberated
energy of deformation at development of a crack), here SIF are entered formally.
The question about SIF in nonlinear problems is not studied and requires special
research. The formulas of disclosing crack (jumps of displacements) are obtained. It
is interesting, that formulas for SIF and disclosing of a free crack completely coincide
with the results of similar linear problem.
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Abstract

We develop a model of elastic microslip with account for deformations of
belt as a Cosserat rod. The general nonlinear problem with friction is divided
into two stages: �tting the belt on the pulleys and then deforming the belt
by the given pulley rotations. At the second stage we assume that friction
forces act in the contact areas providing the displacements of the belt points
equal to the displacement of pulley points. This problem is solved for small
displacements and rotations using the superposition principle.

1 Introduction

The �rst study of the belt mechanics from the point of view of shear model was re-
ported in [1]. An independent research of shear microslip concerning general friction
modelling can be found in [2]. A combination of the belt shear and extension was
presented in [3, 4], however the bending sti�ness was neglected there.
In the present paper we address the mechanics of the belt drive taking into account
the e�ect of elastic microslip. We formulate and solve the quasi-static nonlinear
problem of the belt deformation and contact interaction of the belt with two equal
non-smooth pulleys. The goal of the present study is in particular the analysis of in-
�uence of belt deformation and elastic microslip on the transmission ratio depending
on the applied load.
The belt is modelled as elastic rod which initial con�guration is a circle. In the
geometrically nonlinear formulation we take into account bending, transverse shear
and extension, and also friction on pulleys. The problem is solved in two stages.
At the �rst stage we model the �tting of the belt on the pulleys, determine the stress-
strain state of the belt and calculate the contact pressure. We overcome di�culties of
the nonlinear contact problem using computer mathematics. The arising boundary
value problems are solved numerically by the shooting method and by the �nite
di�erence method.
At the second stage we consider the problem with prescribed rotations of pulleys and
applied torques. We use the equations in variations superposed upon the stress state
calculated at the �rst stage. We derive and solve the linear ODEs which variable
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coe�cients are determined at the �rst stage. The state of the belt on pulleys is
described by the second-order ODEs, their solution allows determining the contact
pressure and friction forces. For the free spans of belt we formulate and solve the
sixth-order problems. As a result a general 16th-order system is combined and
solved. We apply computer mathematics here as well.

2 Equations in variations

Before the varying we have the nonlinear static problem with tension and shear [5, 6].
(The simpler versions are possible, without shear or without tension, see [7].) We
transform the obtained expressions for variables and constants using the coordinate
s ∈ [−s1, s4]; l = s4 + s1 is the belt length (see Fig. 1). This coordinate is the arc
coordinate in the reference undeformed con�guration. The belt form in the reference
con�guration is circle [5, 6, 7]. The simpli�ed model of elastic microslip in belt drive
is presented in [8].
The equations in variations [9] read:

Q̃′ = −q̃, M̃′ + u′ ×Q + r× Q̃ = −m̃,
M̃ = A−1 · θ′ + θ ×M, Q̃ = B−1 · γ + θ ×Q, γ ≡ u′ − θ × r′. (1)

Here we denote: (...)′ is the derivative with respect to coordinate s; (.̃..) is the
variation of a value; r, Q, M are the position vector of rod particles, force and
moment in the rod before varying, respectively; A, B are the compliance tensors
of the rod (we take physically linear model); the vectors u ≡ r̃, θ describe small
displacements and rotations, respectively; and the vectors Q̃, M̃ are the force and
moment variations, respectively. q̃ and m̃ are the variations of external load and
moment distributed per unit length, respectively.
In the present paper we restrict ourselves to the plane problem. Therefore the vectors
r, Q, u, Q̃, q̃ lie in the drawing plane xy, and the vectors M, M̃, θ, m̃ have
just one component (for example, M = Mk) directed along the z-axis. We take the
following expressions for belt compliance tensors: the tensor A = Akk determine
the bending compliance, the tensor B = B1e1e1 +B2e2e2 determine the tension and
shear compliance. The unit vectors e1, e2 are rotated with respect to Cartesian axes
x, y by an angle ϕ. The rules of di�erentiation are e′1 = ϕ′e2, e

′
2 = −ϕ′e1.

Figure 1: Scheme of belt drive
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The term θ × M vanishes for the plane deformation. We simplify and get the
following system from (1):

Q̃′ = −q̃, M̃ ′ + k ·
(
u×Q + r′ × Q̃

)
= −m̃,

M̃ = A−1θ′, Q̃ = B−1 · γ + θk×Q, γ = u′ −Dθn,
D ≡ |r′|=

√
(1 +B1Q1)2 + (B2Q2)2 = σ′, n = k× t. (2)

We shall write the systems in components speci�cally for the free segment and
contact segment using di�erent bases.

3 Contact segments

In the contact segment we decompose the vectors by the tangent and normal unit
vectors. With the rotation of the pulley of radius k−1 by an angle ω1 we have:

u = utt + unn = −(k−1ω1 + hθ)t,

t = D−1r′ = t1e1 + t2e2; t1 = D−1(1 +B1Q1), t2 = D−1B2Q2. (3)

The problem is linear, therefore we can take ω1 = 1. The formulae of di�erentiation
are

t′(s) = Dṫ(σ) = −Dkn, n′(s) = Dkt,

u′ = (u′t +Dkun)t + (u′n −Dkut)n = −hθ′t +D(ω1 + khθ)n. (4)

Now we rewrite the system (2) for the plane deformation in components. The
balance equations take the form:

Q̃′t +DkQ̃n = −q̃t, Q̃′n −DkQ̃t = −q̃n,
M̃ ′ + (u′t +Dkun)Qn − (u′n −Dkut)Qt +DQ̃n = −m̃. (5)

In the elasticity relations we express the sti�ness tensor in the following form:

B−1 = B−1
1 e1e1 +B−1

2 e2e2 = b = bttt + bnnn + btn(tn + nt),

bt = B−1
1 t21 +B−1

2 t22, bn = B−1
1 t22 +B−1

2 t21, btn = t2t1(−B−1
1 +B−1

2 ). (6)

We take into account the fact that n1 = −t2, n2 = t1. For the displacements, strains
and forces we have

u = −(k−1ω1 + hθ)t, γ = −hθ′t +Dn(ω1 − (1− kh)θ),

Q̃ = b · γ + θ(Qtn−Qnt),

Q̃t = btγt + btnγn − θQn = −bthθ′ + btnDω1 − (btnD(1− kh) +Qn)θ,

Q̃n = btnγt + bnγn + θQt =

= −btnhθ′ + bnDω1 − (bnD(1− kh)−Qt)θ. (7)

We write the relation between the force and moment loads in the form:

m̃ = hq̃t ⇒ M̃ ′ − hθ′Qn −D(ω1 + khθ)Qt +DQ̃n = h
(
Q̃′t +DkQ̃n

)
. (8)
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Then we substitute the variations of the force factors and derive the ODE for θ(s).
Let us rewrite this equation as follows:

L[θ] ≡ c0θ
′′ + c1θ

′ + c2θ = cωω1,

c0 ≡ A−1 + h2bt, c1 ≡ h2b′t,

c2 ≡ −bnD2(1− kh)2 +DQt(1− 2kh) + h(1− kh)(btnD)′ + hQ′n,

cω ≡ DQt − bnD2(1− kh) + h(btnD)′. (9)

Here we have the second-order ODE with variable coe�cients in the operator L.
The solution is determined by the values at the ends θ(−s1) ≡ θ4, θ(s1) ≡ θ1, it
depends on them linearly (according to the law of superposition):

θ(s) = ω1Θω(s) + θqΘ1(s) + θ4Θ4(s);

L[Θω] = cω, L[Θ1] = L[Θ4] = 0,

s = −s1 : Θω = Θ1 = 0, Θ4 = 1,

s = s1 : Θω = Θ4 = 0, Θ1 = 1. (10)

However the values θ1, θ4 are yet unknown; they will depend linearly on the angles
of pulley rotation ω1, ω2.
We solve this boundary value problem and �nd the bending moment. At the ends
of the segment they are

M+
4 = M+

4ω +M+
44θ4 +M+

41θ1,

M−
1 = M−

1ω +M−
14θ4 +M−

11θ1. (11)

The superscripts ± denote the shift of the considered point; s−1 is on the pulley, s+
1

is on the free span.
We consider the second pulley with the segment [s2, s3], unknowns θ2, θ3, and angle
of rotation ω2 in the same manner. However, the coe�cients in the operator L
are di�erent. Therefore we distinguish the operators L1, L2. We make the change
transiting to L2:

Q
(2)
t (s) = −Q(1)

t (l/2− s), Q(2)
n (s) = Q(1)

n (l/2− s). (12)

Here we account for symmetry of the state before varying. Similar to (11) we �nd

M+
2 = M+

2ω +M+
22θ2 +M+

23θ3,

M−
3 = M−

3ω +M−
32θ2 +M−

33θ3. (13)

The coe�cients of the expressions (11) and (13) will be present in the matrix of the
resolving linear algebraic system of equations for four unknowns θi below.

4 Free segments (belt spans)

We have the following system in these segments with the absence of distributed
loads

Q̃′ = 0, M̃′ + u′ ×Q + r′ × Q̃ = 0,

θ′ = A · (M̃− θ ×M), u′ = B · (Q̃− θ ×Q) + θ × r′. (14)
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Consider the projections onto Cartesian axes. We integrate the �rst two equations
as follows:

Q̃ = const, M̃ + u′xQy − u′yQx + xQ̃y − yQ̃x = M̃∗ = const. (15)

The third and the fourth equations of (14) become

θ′ = AM̃, u′x = Bx(Q̃x + θQy) +Bxy(Q̃y − θQx)− θy′,
u′y = By(Q̃y − θQx) +Bxy(Q̃x + θQy) + θx′. (16)

For the six unknowns Q̃x, Q̃y, M̃∗, θ, ux, uy we derive the linear homogeneous
system of ODE (the �rst three unknowns are constants, their derivatives equal zero):

Y ′ = F (s, Y ), Y ≡
(
Q̃x Q̃y M̃∗ θ ux uy

)T
. (17)

The boundary conditions are the prescribed displacements and rotations:

s = s1 : θ = θ1, u = −(k−1ω1 + hθ1)t1,

s = s2 : θ = θ2, u = −(k−1ω2 + hθ2)t2,

s = s3 : θ = θ3, u = −(k−1ω2 + hθ3)t3,

s = s4 : θ = θ4, u = −(k−1ω1 + hθ4)t4. (18)

Here the tangent unit vectors t1, ..., t4 are determined by the formula (3). At the four
contact area boundaries their projections onto the axes x, y are equal by magnitude,
but di�erent by signs:

t1x = t1 cosϕ1 − t2 sinϕ1 = t2x = −t3x = −t4x,
t1y = t1 cosϕ1 + t2 cosϕ1 = −t2y = −t3y = t4y. (19)

We solve the boundary value problem for the ODE system (17) with the given values
of θ at the ends (the displacements are given as well). We repeat this for both spans
and determine the bending moments:

M+
1 = M+

1ω +M+
11θ1 +M+

12θ2,

M−
2 = M−

2ω +M−
21θ1 +M−

22θ2,

M+
3 = M+

3ω +M+
33θ3 +M+

34θ4,

M−
4 = M−

4ω +M−
43θ3 +M−

44θ4. (20)

5 Calculation of the whole belt

In the expressions (11), (13) and (20) we have the set of 16 coe�cients and 8 free
terms. Using this set we take into account the obvious condition of moment con-
tinuity at the points si and form the resolving fourth-order linear algebraic system
for the unknowns θi:

MΘ = Ω,Θ = (θ1 θ2 θ3 θ4)T , Ωi = M−
iω −M+

iω,

M =


M+

11 −M−
11 M+

12 0 −M−
14

−M−
21 M+

22 −M−
22 M+

23 0
0 −M−

32 M+
33 −M−

33 M+
34

M+
41 0 −M−

43 M+
44 −M−

44

 . (21)
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Figure 2: Form of belt. Dashed line denotes intermediate state and pulleys

To construct the matrix M it is su�cient to solve the problem for the whole belt
four times, each time we take just one non-zero angle of rotation θi. For example,
with θ1 = 1, θ2 = θ3 = θ4 = 0 we get the �rst column of the matrix. And to �nd Ωi

we need to compute the jumps of moments at the points si with Θ = 0.
One of the main purposes of this paper is to calculate transmission ratio ω2/ω1. Due
to the e�ect of elastic microslip it is not equal to the pulleys radii ratio (one in the
case of equal radii as in the present work). Its value reduces with the increase of
load - the resistance moment on the driven pulley:

T = −k−1

s3∫
s2

q̃tds. (22)

The function under the integral q̃t is the friction force. It is determined from the
�rst equation of (5) after Q̃t, Q̃n. It must not exceed (by absolute value) the dry
friction limit.
The taken continuity of moment follows from the obvious impossibility of lumped
moment reactions. If there exist no lumped contact forces, then the vector Qmust be
continuous too - it gives eight matching conditions. However we have no remaining
values to satisfy these conditions. Even if we admit the translation of points s1, ..., s4,
it gives just four additional unknowns whereas we need eight.
Therefore we conclude: the chosen problem formulation is hardly suitable for smooth
belt without lumped contact forces. We can recommend the constructed solution
only for the toothed belts where the lumped forces are possible (the concentration
at the boundary teeth).

6 Numerical example

We consider a benchmark example with parameters: k0 = 4m−1 is the initial curva-
ture, k1 = 10m−1 is the pulley circle curvature, E = 109 Pa is the Young modulus,
ν = 0.5 is the Poisson coe�cient, 2h× b = 0.01× 0.01m2 is the cross section. The
loading parameters: P = 200N is the force taking the pulleys apart (�rst stage),
ω1 = 0.2, ω2 = −0.2 are the pulley rotation (chosen for illustrative purpose).
The belt form is shown in Fig. 2. Points indicate the contact boundaries.
The variations of distributed contact reactions are presented in Fig. 3 for the �rst
pulley, the picture for the second pulley is symmetrical. The resulting torques
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Table 5: Lumped contact forces

ω1 = 0.2, ω2 = −0.2 ω1 = 0.2, ω2 = 0

[[Q̃t]], N [[Q̃n]], N [[Q̃t]], N [[Q̃n]], N

s1 -2076 -11253 -802 -10562
s2 -1256 -12001 -64 -1052
s3 2076 11253 1274 692
s4 1256 12001 1192 10949

equal T1 = −T2 = 1912Nm (in the case ω1 = 0.2, ω2 = 0 they equal T1 = 1666Nm,
T2 = −246Nm). We calculate the variations of lumped contact forces as the jumps of
the force components, their values are written in Table 5; [[...]] = ...|s=si+0− ...|s=si−0.

Figure 3: Variations of contact reactions. Dashed line denotes normal component,
full line is tangent one

7 Conclusion

In the paper we presented the solution of the static problem for belt-pulley contact
interaction taking into account stick and deformations caused by it. We derived
the equations in variations superposed upon the stress state of �tting the belt on
the pulleys. We assumed that the points of contact areas move along the pulley
circles, hence the distributed contact reactions arise, both normal and tangential,
and distributed moment as well. The proposed model is suitable only for the toothed
belts, because the lumped contact reactions arise at the boundaries of contact zones.
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Abstract

We present the application of our variational-multiscale approach to nu-
merical/analytical calculations in the general quasi-classical set-up. The start-
ing points are Wigner-Weyl-von Neumann framework as well as Moyal (naive)
deformation quantization. Our technique allows to cover all complicated un-
derlying features of compex quantum dynamics based on the proper choice
of background functional spaces which determine dynamical properties to-
gether with the internal structure of pseudo-di�erential operators incorporated
in the full hierarchy of Wigner-like equations describing the evolution of the
quasiprobability beyond trivial gaussian-like area with pure postitive Wigner
functions. The choice of hidden underlying symmetry and its representation
on the orbits of proper actions provide us with the �ltration of the background
Hilbert space of states which implies the whole tower of internal hidden scales
by using multiresolution decomposition. All that allows to consider maxi-
mally localized quantum states and most sparse representation for all set of
observables. At the same time the orbit structure allows to consider basic non-
local phenomena like entanglement with possible subsequent decoherence. Our
main applications in this consideration are related with a description of quan-
tum properties in nonlinear beam dynamics, both in accelerator and plasma
physics but such general background provides all possibilities to describe the
modeling of prototypes of any future quantum devices.

1 Introduction

In this paper we consider some starting points in the applications of a new numerical-
analytical technique which is based on local nonlinear harmonic analysis (wavelet
analysis, generalized coherent states analysis) to the quantum/quasiclassical (non-
linear) beam/accelerator physics calculations. The reason for this treatment is that
recently a number of problems appeared in which one needs take into account quan-
tum properties of particles/beams.Our starting point is the general point of view
of deformation quantization approach at least on naive Moyal/Weyl/Wigner level
(part 2). The main point is that the algebras of quantum observables are the defor-
mations of commutative algebras of classical observables (functions) [1]. So, if we
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have the Poisson manifold M (symplectic manifolds, Lie coalgebras, etc.) as a model
for classical dynamics then for quantum calculations we need to �nd an associative
(but non-commutative) star product ∗ on the space of formal power series in h̄ with
coe�cients in the space of smooth functions on M such that

f ∗ g = fg + h̄{f, g}+
∑
n≥2

h̄nBn(f, g), (1)

where {f, g} is the Poisson brackets, Bn are bidi�erential operators C∞(X) ⊗
C∞(X) → C∞(X). There is also an in�nite-dimensional gauge group on the set
of star-products

f 7→ f +
∑
n≥2

h̄nDn(f), (2)

where Dn are di�erential operators. Kontsevich gave the solution to this deformation
problem in terms of formal power series via sum over graphs [1]. He also proved
that for every Poisson manifold M there is a canonically de�ned gauge equivalence
class of star-products on M. Also there is the nonperturbative corrections to power
series representation for ∗ [1]. In naive calculations we may use simple formal rules:

∗ ≡ exp
(ih̄

2
(
←−
∂ x

−→
∂ p −

←−
∂ p

−→
∂ x)

)
(3)

f(x, p) ∗ g(x, p) = f(x, p− ih̄

2

−→
∂ x) · g(x, p+

ih̄

2

←−
∂ x) (4)

= f(x+
ih̄

2

−→
∂ p, p−

ih̄

2

−→
∂ x)g(x, p) (5)

In this paper we consider calculations of Wigner functions (WF) as the solution of
Wigner equations [2] (part 3):

ih̄
∂

∂t
W (x, p, t) = H ∗W (x, p, t)−W (x, p, t) ∗H (6)

and especially stationary Wigner equations:

H ∗W −W ∗H = Ef (7)

Our approach is based on extension of our variational-wavelet approach [3]-[14].
Wavelet analysis is some set of mathematical methods, which gives us the possibil-
ity to work with well-localized bases (Fig. 1) in functional spaces and gives maximum
sparse forms for the general type of operators (di�erential, integral, pseudodi�er-
ential) in such bases. These bases are natural generalization of standard coherent,
squeezed, thermal squeezed states [2], which correspond to quadratical systems (pure
linear dynamics) with Gaussian Wigner functions. So, we try to calculate quantum
corrections to classical dynamics described by polynomial nonlinear Hamiltonians
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such as orbital motion in storage rings, orbital dynamics in general multipolar �elds
etc. from papers [3]-[13]. The common point for classical/quantum calculations is
that any solution which comes from full multiresolution expansion in all space/time
(or phase space) scales represents expansion into a slow part and fast oscillating
parts (part 4). So, we may move from the coarse scales of resolution to the �nest
one for obtaining more detailed information about our dynamical classical/quantum
process. In this way we give contribution to our full solution from each scale of res-
olution. The same is correct for the contribution to power spectral density (energy
spectrum): we can take into account contributions from each level/scale of reso-
lution. Because a�ne group of translations and dilations (or more general group,
which acts on the space of solutions) is inside the approach (in wavelet case), this
method resembles the action of a microscope. We have contribution to �nal result
from each scale of resolution from the whole underlying in�nite scale of spaces. In
part 5 we consider numerical modelling of Wigner functions which explicitly demon-
strates quantum interference of the generalized �coherent� states.

2 Quasiclassical evolution

Let us consider classical and quantum dynamics in phase space Ω = R2m with
coordinates (x, ξ) and generated by Hamiltonian H(x, ξ) ∈ C∞(Ω;R). If ΦHt :
Ω −→ Ω is (classical) �ow then time evolution of any bounded classical observable
or symbol b(x, ξ) ∈ C∞(Ω, R) is given by bt(x, ξ) = b(ΦHt (x, ξ)). Let H = OpW (H)
and B = OpW (b) are the self-adjoint operators or quantum observables in L2(Rn),
representing the Weyl quantization of the symbols H, b [1]

(Bu)(x) =
1

(2πh̄)n

∫
R2n

b

(
x+ y

2
, ξ

)
· ei<(x−y),ξ>/h̄u(y)dydξ, (8)

where u ∈ S(Rn) and Bt = eiHt/h̄Be−iHt/h̄ be the Heisenberg observable or quantum
evolution of the observable B under unitary group generated by H. Bt solves the
Heisenberg equation of motion Ḃt = (i/h̄)[H,Bt]. Let bt(x, ξ; h̄) is a symbol of Bt

then we have the following equation for it

ḃt = {H, bt}M , (9)

with the initial condition b0(x, ξ, h̄) = b(x, ξ). Here {f, g}M(x, ξ) is the Moyal brack-
ets of the observables f, g ∈ C∞(R2n), {f, g}M(x, ξ) = f]g − g]f , where f]g is the
symbol of the operator product and is presented by the composition of the symbols
f, g

(f]g)(x, ξ) =
1

(2πh̄)n/2

∫
R4n

e−i<r,ρ>/h̄+i<ω,τ>/h̄ (10)

·f(x+ ω, ρ+ ξ) · g(x+ r, τ + ξ)dρdτdrdω

For our problems it is useful that {f, g}M admits the formal expansion in powers of
h̄:

{f, g}M(x, ξ) ∼ {f, g}+ 2−j ·
∑

|α+β|=j≥1

(−1)|β| · (∂αξ fDβ
xg) · (∂βξ gD

α
xf), (11)
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where α = (α1, . . . , αn) is a multi-index, |α|= α1 + · · · + αn, Dx = −ih̄∂x. So,
evolution (9) for symbol bt(x, ξ; h̄) is

ḃt = {H, bt}+
1

2j

∑
|α+β|=j≥1

(−1)|β| · h̄j(∂αξHDβ
xbt) · (∂

β
ξ btD

α
xH). (12)

At h̄ = 0 this equation transforms to classical Liouville equation. Equation (12)
plays the key role in many quantum (semiclassical) problems. We consider its par-
ticular case�Wigner equation�in the next section.

3 Wigner equations

According to Weyl transform quantum state (wave function or density operator)
corresponds to Wigner function, which is analog of classical phase-space distribution
[2]. We consider the following form of di�erential equations for time-dependent WF

∂tW (p, q, t) =
2

h̄
sin
[ h̄

2
(∂Hq ∂

W
p − ∂Hp ∂Wq )

]
·H(p, q)W (p, q, t) (13)

Let

ρ̂ = |Ψε >< Ψε| (14)

be the density operator or projection operator corresponding to the energy eigenstate
|Ψε > with energy eigenvalue ε. Then time-independent Schroedinger equation
corresponding to Hamiltonian

Ĥ(p̂, q̂) =
p̂2

2m
+ U(q̂) (15)

where U(q̂ is arbitrary polynomial function (related beam dynamics models consid-
ered in [3]-[13]) on q̂ is [2]:

Ĥρ̂ = ερ̂ (16)

After Weyl-Wigner mapping we arrive at the following equation onWF in c-numbers:

H(p+
h̄

2i

∂

∂q
, q − h̄

2i

∂

∂p

)
W (p, q) = εW (p, q) (17)

or ( p2

2m
+
h̄

2i

p

m

∂

∂q
− h̄2

8m

∂2

∂q2

)
W (p, q) + U

(
q − h̄

2i

∂

∂p

)
W (p, q) = εW (p, q)

After expanding the potential U into the Taylor series we have two real partial
di�erential equations(

− p

m

∂

∂q
+
∞∑
m=0

1

(2m+ 1! )

(ih̄
2

)2md2m+1U

dq2m+1

∂2m+1

∂p2m+1

)
W (p, q) = 0 (18)
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( p2

2m
+ U(q)− h̄2

8m

∂2

∂q2
+
∞∑
n=1

1

(2n)!

(ih̄
2

)2nd2nU

dq2n

∂2n

∂p2n

)
W (p, q) =

εW (p, q) (19)

In the next section we consider variation-wavelet approach for the solution of these
equations for the case of arbitrary polynomial U(q), which corresponds to a �nite
number of terms in equations (18), (19) up to any order of h̄.

4 Variational multiscale representation

Let L be arbitrary (non)linear di�erential operator with matrix dimension d, which

acts on some set of functions Ψ ≡ Ψ(x, y) =
(

Ψ1(x, y), ...,Ψd(x, y)
)
, x, y ∈ Ω ⊂ <2

from L2(Ω):

LΨ ≡ L(Q, x, y)Ψ(x, y) = 0, (20)

where

Q ≡ Qd1,d2,d3,d4(x, y, ∂/∂x, ∂/∂y) =

d1,d2,d3,d4∑
i,j,k,`=1

aijk`x
iyj
( ∂
∂x

)k( ∂
∂y

)`
(21)

Let us consider now the N mode approximation for solution as the following ansatz
(in the same way we may consider di�erent ansatzes):

ΨN(x, y) =
N∑

r,s=1

ar,sΨr(x)Φs(y) (22)

We shall determine coe�cients of expansion from the following Galerkin conditions
(di�erent related variational approaches are considered in [3]-[13]):

`Nk` ≡
∫

(LΨN)Ψk(x)Φ`(y)dxdy = 0 (23)

So, we have exactly dN2 algebraical equations for dN2 unknowns ars.
But in the case of equations for WF (18), (19) we have overdetermined system
of equations: 2N2 equations for N2 unknowns ars (in this case d = 1). In this
paper we consider non-standard method for resolving this problem, which is based
on biorthogonal wavelet expansion. So, instead of expansion (22) we consider the
following one:

ΨN(x, y) =
N∑

r,s=1

ar,sΨr(x)Ψs(y) +
N∑

i,j=1

ãijΨ̃i(x)Φ̃j(y), (24)
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where Ψ̃i(x)Φ̃j(y) are the bases dual to initial ones. Because wavelet functions are
the generalization of coherent states we consider an expansion on this overcom-
plete set of bases wavelet functions as a generalization of standard coherent states
expansion.
So, variational/Galerkin approach reduced the initial problem (20) to the problem
of solution of functional equations at the �rst stage and some algebraical problems
at the second stage. We consider now the multiresolution expansion as the second
main part of our construction. Because a�ne group of translation and dilations is
inside the approach, this method resembles the action of a microscope. We have
contribution to �nal result from each scale of resolution from the whole in�nite scale
of increasing closed subspaces Vj:

...V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ ... .

The solution is parametrized by solutions of two reduced algebraical problems, one is
linear or nonlinear (23) (depends on the structure of operator L) and the second one
is some linear problem related to computation of coe�cients of algebraic equations
(23). These coe�cients can be found by the method of Connection Coe�cients (CC)
[15] or related method [16]. We use compactly supported wavelet basis functions for
expansions (22), (24). We may consider di�erent types of wavelets including general
wavelet packets (section 5 below). These coe�cients depend on the wavelet-Galerkin
integrals. In general we need to �nd (di ≥ 0)

Λd1d2...dn
`1`2...`n

=

∞∫
−∞

∏
ϕdi`i (x)dx (25)

According to CC method [15] we use the next construction for quadratic case. When
N in scaling equation is a �nite even positive integer the function ϕ(x) has compact
support contained in [0, N − 1]. For a �xed triple (d1, d2, d3) only some Λd1d2d3

`m are
nonzero: 2−N ≤ ` ≤ N − 2, 2−N ≤ m ≤ N − 2, |`−m|≤ N − 2. There are
M = 3N2−9N+7 such pairs (`,m). Let Λd1d2d3 be an M-vector, whose components
are numbers Λd1d2d3

`m . Then we have the following reduced algebraical system : Λ
satisfy the system of equations (d = d1 + d2 + d3)

AΛd1d2d3 = 21−dΛd1d2d3 , A`,m;q,r =
∑
p

apaq−2`+par−2m+p (26)

By moment equations we have created a system of M + d + 1 equations in M
unknowns. It has rank M and we can obtain unique solution by combination of
LU decomposition and QR algorithm. For nonquadratic case we have analogously
additional linear problems for objects (25). Solving these linear problems we obtain
the coe�cients of reduced main linear/nonlinear algebraical system (23) and after
its solution we obtain the coe�cients of wavelet expansion (22), (24). As a result
we obtained the explicit solution of our problem in the base of compactly supported
wavelets (22).
Also in our case we need to consider the extension of this approach to the case of
any type of variable coe�cients (periodic, regular or singular). We can produce
such approach if we add in our construction additional re�nement equation, which

144



Quasiclassics in Wigner-Moyal-von Neumann framework via Multiresolution

encoded all information about variable coe�cients [16]. So, we need to compute
only additional integrals of the form∫

D

bij(t)(ϕ1)d1(2mt− k1)(ϕ2)d2(2mt− k2)dx, (27)

where bij(t) are arbitrary functions of time and trial functions ϕ1, ϕ2 satisfy the
re�nement equations:

ϕi(t) =
∑
k∈Z

aikϕi(2t− k) (28)

If we consider all computations in the class of compactly supported wavelets then
only a �nite number of coe�cients do not vanish. To approximate the non-constant
coe�cients, we need choose a di�erent re�nable function ϕ3 along with some local
approximation scheme

(B`f)(x) :=
∑
α∈Z

F`,k(f)ϕ3(2`t− k), (29)

where F`,k are suitable functionals supported in a small neighborhood of 2−`k and
then replace bij in (27) by B`bij(t). To guarantee su�cient accuracy of the resulting
approximation to (27) it is important to have the �exibility of choosing ϕ3 di�erent
from ϕ1, ϕ2. So, if we take ϕ4 = χD, where χD is characteristic function of D, which
is again a re�nable function, then the problem of computation of (27) is reduced to
the problem of calculation of integral

H(k1, k2, k3, k4) = H(k) =

∫
Rs

ϕ4(2jt− k1) ·

ϕ3(2`t− k2)ϕd1
1 (2rt− k3)ϕd2

2 (2st− k4)dx (30)

The key point is that these integrals also satisfy some sort of algebraical equation
[16]:

2−|µ|H(k) =
∑
`∈Z

b2k−`H(`), µ = d1 + d2. (31)

This equation can be interpreted as the problem of computing an eigenvector. Thus,
the problem of extension of our approach to the case of variable coe�cients is reduced
to the same standard algebraical problem as in case of constant coe�cients. So, the
general scheme is the same one and we have only one more additional linear algebraic
problem. After solution of these linear problems we can again compute coe�cients
of wavelet expansions (22), (24).
Now we concentrate on the last additional problem which comes from overdeter-
minity of equations (18), (19), which demands to consider expansion (24) instead of
expansion (22). It leads to equal number of equations and unknowns in reduced al-
gebraical system of equations (23). For this reason we consider biorthogonal wavelet
analysis. We started with two hierarchical sequences of approximations spaces [16]:

. . . V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 . . . ,
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. . . Ṽ−2 ⊂ Ṽ−1 ⊂ Ṽ0 ⊂ Ṽ1 ⊂ Ṽ2 . . . ,

and as usually, W0 is complement to V0 in V1, but now not necessarily orthogonal
complement. New orthogonality conditions have now the following form:

W̃0 ⊥ V0, W0 ⊥ Ṽ0, Vj ⊥ W̃j, Ṽj ⊥ Wj,

translates of ψ span W0, translates of ψ̃ span W̃0. Biorthogonality conditions are

< ψjk, ψ̃j′k′ >=

∫ ∞
−∞

ψjk(x)ψ̃j′k′(x)dx = δkk′δjj′ ,

where ψjk(x) = 2j/2ψ(2jx− k). Functions ϕ(x), ϕ̃(x− k) form dual pair:

< ϕ(x− k), ϕ̃(x− `) >= δkl, < ϕ(x− k), ψ̃(x− `) >= 0 for ∀k, ∀`.

Functions ϕ, ϕ̃ generate a multiresolution analysis. ϕ(x − k), ψ(x − k) are syn-
thesis functions, ϕ̃(x − `), ψ̃(x − `) are analysis functions. Synthesis functions are
biorthogonal to analysis functions. Scaling spaces are orthogonal to dual wavelet
spaces. Two multiresolutions are intertwining

Vj +Wj = Vj+1, Ṽj + W̃j = Ṽj+1.

These are direct sums but not orthogonal sums. So, our representation for solution
has now the form

f(t) =
∑
j,k

b̃jkψjk(t),

where synthesis wavelets are used to synthesize the function. But b̃jk come from
inner products with analysis wavelets.

Figure 1: Localized contributions to beam motion.

Biorthogonal point of view is more �exible and stable under the action of large
class of operators while orthogonal (one scale for multiresolution) is fragile, all com-
putations are much more simple and we accelerate the rate of convergence of our
expansions (24). By analogous anzatzes and approaches we may construct also the
multiscale/multiresolution representations for solution of time dependent Wigner
equation (13) [14].
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5 Numerical Modelling

So, our constructions give us the following N-mode representation for solution of
Wigner equations (18)-(19):

WN(p, q) =
N∑

r,s=1

arsΨr(p)Φs(q), (32)

where Ψr(p), Φs(q) may be represented by some family of (nonlinear) eigen-
modes with the corresponding multiresolution/multiscale representation in the high-
localized wavelet bases (Fig. 1):

Ψk(p) = ΨM1
k,slow(p) +

∑
i≥M1

Ψi
k(ω

1
i p), ω1

i ∼ 2i, (33)

Φk(q) = ΦM2
k,slow(q) +

∑
j≥M2

Φj
k(ω

2
j q), ω2

j ∼ 2j. (34)

Our (nonlinear) eigenmodes are more realistic for the modelling of nonlinear classi-
cal/quantum dynamical process than the corresponding linear gaussian-like coherent
states. Here we mention only the best convergence properties of expansions based
on wavelet packets, which realize the so called minimal Shannon entropy property
(Fig. 1). On Fig. 2 we present numerical modelling [17] of Wigner function for a
simple model of beam motion, which explicitly demonstrates quantum interference
property. On Fig. 3 we present the N-mode multiscale/multiresolution decomposi-
tion (32)-(34) for solution of Wigner equation. It demonstrates a variety of possible
quantum states/patterns generated inside �deformed� Wigner-Moyal dynamics by
means of action of internal hidden symmetry on the Hilbert space of states pro-
vided by a base set of fundamental localized (nonlinear) eingenmodes. The full zoo
includes chaotic, entangled and decoherent states. Qualitative aspects will be con-
sidered elsewhere. Some novel approach to the description of quantum problems can
be found in our recent papers [18] and at web pages below.

References

[1] D. Sternheimer, Los Alamos preprint: math.QA/9809056, M. Kontsevich, q-
alg/9709040, V. Periwal, hep-th/0006001.

[2] T. Curtright, T. Uematsu, C. Zachos, hep-th/0011137, M.Huq, e.a., Phys. Rev.,
A 57, 3188 (1998).

[3] A.N. Fedorova and M.G. Zeitlin, Math. and Comp. in Simulation, 46, 527
(1998).

[4] A.N. Fedorova and M.G. Zeitlin, 'Wavelet Approach to Mechanical Problems.
Symplectic Group, Symplectic Topology and Symplectic Scales', New Appli-
cations of Nonlinear and Chaotic Dynamics in Mechanics , 31, 101 (Kluwer,
1998).

147



REFERENCES

[5] A.N. Fedorova and M.G. Zeitlin, CP405, 87 (American Institute of Physics,
1997). Los Alamos preprint, physics/9710035.

[6] A.N. Fedorova, M.G. Zeitlin and Z. Parsa, Proc. PAC97 2, 1502, 1505, 1508
(IEEE, 1998).

[7] A.N. Fedorova, M.G. Zeitlin and Z. Parsa, Proc. EPAC98, 930, 933 (Institute
of Physics, 1998).

[8] A.N. Fedorova, M.G. Zeitlin and Z. Parsa, CP468, 48 (American Institute of
Physics, 1999). Los Alamos preprint, physics/990262.

[9] A.N. Fedorova, M.G. Zeitlin and Z. Parsa, CP468, 69 (American Institute of
Physics, 1999). Los Alamos preprint, physics/990263.

[10] A.N. Fedorova and M.G. Zeitlin, Proc. PAC99, 1614, 1617, 1620, 2900, 2903,
2906, 2909, 2912 (IEEE/APS, New York, 1999).
Los Alamos preprints: physics/9904039, 9904040, 9904041, 9904042, 9904043,
9904045, 9904046, 9904047.

[11] A.N. Fedorova and M.G. Zeitlin, Proc. UCLA ICFA Workshop, in press, Los
Alamos preprint: physics/0003095.

[12] A.N. Fedorova and M.G. Zeitlin, Proc. EPAC00, 415, 872, 1101, 1190, 1339,
2325.
Los Alamos preprints: physics/0008045, 0008046, 0008047, 0008048, 0008049,
0008050.

[13] A.N. Fedorova, M.G. Zeitlin, Proc. LINAC00, 2 papers in press, Los Alamos
preprints: physics/0008043, 0008200.

[14] A.N. Fedorova, M.G. Zeitlin, Localization and Pattern Formation in Quantum
Physics. II. Waveletons in Quantum Ensembles, in The Nature of Light: What is
a Photon? SPIE, vol. 5866, pp. 257-268, 2005; quant-ph/0505115; Localization
and Pattern Formation in Quantum Physics. I. Phenomena of Localization, in
The Nature of Light: What is a Photon? SPIE, vol. 5866, pp. 245-256, 2005;
quant-ph/0505114.

[15] A. Latto, e.a. Aware Technical Report AD910708 (1991).

[16] W. Dahmen, C. Micchelli, SIAM J. Numer. Anal., 30, 507 (1993); Y. Meyer,
Wavelets and Operators, Cambridge Univ. Press, 1990.

[17] F. Auger, e.a., Time-frequency Toolbox, CNRS/Rice Univ. (1996).

[18] A.N. Fedorova, M.G. Zeitlin, Quantum objects in a sheaf framework, Jour-
nal of Physics CS, vol. 490, 012224, 2014; Quantum multiresolution: tower
of scales, Journal of Physics CS, vol. 490, 012216, 2014; arXiv:1703.09556;
arXiv:1703.09546.

148



REFERENCES

Antonina N. Fedorova, Michael G. Zeitlin

Mathematical Methods in Mechanics Group, IPME RAS, V.O. Bolshoj pr., 61, 199178,

St. Petersburg, Russia

http://math.ipme.ru/zeitlin.html, http://mp.ipme.ru/zeitlin.html

149



REFERENCES

−0.1

0

0.1

R
ea

l p
ar

t

Signal in time

024

Linear scale

E
ne

rg
y 

sp
ec

tr
al

 d
en

si
ty

50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

WV, lin. scale, Threshold=5%

Time [s]

F
re

qu
en

cy
 [H

z]

50
100

150
200

250

0

0.1

0.2

0.3

0.4

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

A
m

pl
itu

de

WV, lin. scale, Threshold=5%

Time [s]Frequency [Hz]

Figure 2: Wigner function for 3 wavelet packets.
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Multiscale structure of polynomial dynamics
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Abstract

We consider a wavelet based multiscale description for nonlinear optimal
dynamics (energy minimization in a high power electromechanical system as a
key example). In a particular case, we have the solution as a series on shifted
Legendre polynomials parametrized by the solutions of the reduced algebraical
systems of equations. In the general case, we represent the solution via mul-
tiscale decomposition in the base of various families of compactly supported
wavelets. In this case the solution is parametrized by solutions of two reduced
algebraic problems, one as in the �rst case and the second one is some lin-
ear problem obtained from the popular wavelet constructions: Fast Wavelet
Transform, Stationary Subdivision Schemes, the method of Connection Co-
e�cients. Such a machinery allows us to consider maximally localized bases
in the underlying functional spaces together with most sparse representation
for all type of operators involving in the initial set-up. All that provides the
best possible convergence properties and as a result our numerical modeling
is more �exible and saves CPU time. In addition, the �nal representation is
parametrized by the reduced pure algebraic construction (the so-called general
dispersion relations) and allows us to solve the dynamical or optimal control
problems (energy minimizatin, e.g.)in a most e�ective way.

1 Introduction

Many important physical and mechanical problems are reduced to the solving of
systems of nonlinear di�erential equations with the polynomial type of nonlinearities.
In this paper and related paper in this volume, we consider applications of methods
of nonlinear local harmonic analysis (a.k.a. wavelet analysis in a simple case of a�ne
group) to such problems. Wavelet analysis is a relatively novel set of mathematical
methods, which gives us the possibility to work with well-localized bases in functional
spaces and with the general type of operators (including pseudodi�erential) in such
bases. Many examples may be found in papers [11]�[18]. Now we apply our approach
to the case of a constrained variational problem: the problem of energy minimization
in electromechanical systems. We consider a synchronous electrical machine and a
mill as a load (in this approach we can consider instead of the mill any mechanical
load with polynomial approximation for the mechanical moment).
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We consider the problem of �electrical economizer� as an optimal control problem.
As result of the �rst stage we give the explicit time description of optimal dynamics
for that electromechanical system. As a result of the second stage we give the time
dynamics of our system via a construction based on the set of switched type functions
(Walsh functions), which can be realized on the modern thyristor technique. In this
paper, using the method of analysis of dynamical process in the Park system [1],
which we developed in ref. [9], [10], we consider the optimal control problem in that
system. As in [9] and [10], our goal is to construct explicit time solutions, which can
be used directly in microprocessor control systems. Our consideration is based on
the Integral Variational Method, which was develo ped in [21]. As we shall see later,
we can obtain explicit time dependence for all dynamical variables in our optimal
control problem. It is based on the fact that optimal control dynamic in our case is
given by some nonlinear system of equations which is the extension of initial Park
system. Moreover, the equations of optimal dynamics also is the system of Riccati
type (we use the quadratic dependence of the mechanical moment). It should be
noted that this system of equations is not the pure di�erential system but it is the
mixed di�erential-algebraic or functional system of equations [19].
In Section 2 we consider the description of our variational approach, which can be
generalized in such a way that allows us to consider it in Hamiltonian (symplectic)
approach [12].
In Section 3 we consider the explicit representation for solutions. Our initial dynam-
ical problem (without control) is described by the system of nonlinear di�erential
equations, which has the next Cauchy form (for de�nitions see [9], [10])

dik
dt

=
∑
`

A`i` +
∑
r,s

Arsiris + Ak(t)

where A`, Ars(`, r, s = 1, 6) are constants, Ak(t), (k = 1, 5) are explicit functions
of time, A6(i6, t) = a + di6 + bi26 is analytical approximation for the mechanical
moment of the mill. At initial stage of the solution of optimal control problem in
both methods we need to select from initial set of dynamical variables i1, . . . , i6
the controlling and the controllable variables. In our case we consider i1, i2 as the
controlling variables. Because we consider the energy optimization, we use the next
general form of energy functional in our electromechanical system

Q =

∫ t

t0

[K1(i1, i2) +K2(i̇1, i̇2)]dt,

where K1, K2 are quadratic forms. Thus, our functional is the quadratic functional
on the variables i1, i2 and its derivatives. Moreover, we may consider the optimiza-
tion problem with some constraints which are motivated by technical reasons [9],
[10]. Then after standard manipulations from the theory of optimal control, we
reduce the problem of energy minimization to some extended nonlinear system of
equations. As a result, the solution of equations of optimal dynamics provides: 1).
the explicit time dependence of the controlling variables u(t) = {i1(t), i2(t)} which
give 2). the optimum of corresponding functional of the energy and 3). explicit time
dynamics of the controllable variables {i3, i4, i5, i6}(t). The obtained solutions are
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given in the following form:

ik(t) = ik(0) +
N∑
i=1

λikXi(t),

where in our �rst case (Section 3), we have Xi(t) = Qi(t), where Qi(t) are shifted
Legendre polynomials [21] and λik are the roots of reduced algebraic system of equa-
tions. In our second case, corresponding to the generic wavelet example, considered
in Section 4, the base functions Xi(t) are obtained from the multiresolution de-
composition in the basis of compactly supported wavelets while λik are the roots of
corresponding algebraic Riccati systems with coe�cients, which are given by Fast
Wavelet Transform (FWT) [2] or by Stationary Subdivision Schemes(SSS) [6] or by
the method of Connection Coe�cients (CC) [23].
Giving the controlling variables in the explicit form, we have optimal, according
to energy, dynamics in our electromechanical systems. Obviously, the technical
realization of controlling variables via the arbitrary continuous functions of time is
impossible, but we can replace them by their re-expansions in the basis of switching
type functions, which can be realized now on the modern thyristor technique. We
considered this re-expansion in [9], [10], where we used Walsh and Haar functions [3]
as a base set of switching type functions. This is a special case of general sequency
analysis [20]. It should be noted that the best practical realization of the expansions
described in Section 4 is based on the general wavelet packet basis [4].

2 Polynomial dynamics

Our problems may be formulated as the systems of ordinary di�erential equations:

dxi/dt = fi(xj, t), (i, j = 1, ..., n)

with �xed initial conditions xi(0), where fi are not more than polynomial functions
of dynamical variables xj and have arbitrary dependence of time. Because of time
dilation we can consider only next time interval: 0 ≤ t ≤ 1. Let us consider a set of
functions:

Φi(t) = xidyi/dt+ fiyi

and a set of the corresponding functionals:

Fi(x) =

∫ 1

0

Φi(t)dt− xiyi |10,

where yi(t)(yi(0) = 0) are dual variables. It is obvious that the initial system
and the system Fi(x) = 0 are equivalent. We mention here, that we can consider
the symplectization of this approach (Hamiltonian version) [12] . Now we consider
formal expansions for xi, yi:

xi(t) = xi(0) +
∑
k

λkiϕk(t) yj(t) =
∑
r

ηrjϕr(t), (1)
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where, because of initial conditions, we need only ϕk(0) = 0. Then we have the
following reduced algebraical system of equations on the set of unknown coe�cients
λki of expansions (1):∑

k

µkrλ
k
i − γri (λj) = 0 (2)

Its coe�cients are

µkr =

∫ 1

0

ϕ′k(t)ϕr(t)dt, γri =

∫ 1

0

fi(xj, t)ϕr(t)dt.

Now, when we solve system (2) and determine unknown coe�cients for the formal
expansion (1), we therefore obtain the solution of our initial problem.
It should be noted that in case when we consider only truncated expansion (1) with
N terms then we have from (2) the system of N × n algebraical equations and the
degree of this algebraical system coincides with degree of initial di�erential system.
So, we have the solution of the initial value problem for nonlinear (polynomial)
system in the form

xi(t) = xi(0) +
N∑
k=1

λkiXk(t), (3)

where coe�cients λki are roots of the corresponding reduced algebraical problem (2).
Consequently, we have a parametrization of solution of initial value problem by so-
lution of reduced algebraical problem (2). But in general case, when the problem
of computation of coe�cients of reduced algebraical system (2) cannot be solved
explicitly as in the quadratic case, which we shall consider below, we also have
parametrization of solution (1) by solution of some set of the corresponding prob-
lems, which appear during calculations of the coe�cients of reduced algebraic system
(2).
As we shall see below, these problems may be explicitly solved in general wavelet
approach.

3 Solutions: simple case

Next we consider the construction of explicit time solution for our problem. The
obtained solutions are given in the form (3), where in our �rst case we have Xk(t) =
Qk(t), where Qk(t) are shifted Legendre polynomials and λik are roots of reduced
quadratic system of equations. In wavelet case Xk(t) correspond to multiresolution
expansions in the base of compactly supported wavelets and λik are the roots of
corresponding general polynomial system (2) with coe�cients, which are given by
FWT, SSS or CC constructions.
According to the variational approach, we provide the reduction from the initial
system of di�erential equations to algebraical one by means of computation of the
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objects γja and µji, which are constructed from objects:

σi ≡
∫ 1

0

Xi(τ)dτ = (−1)i+1, (4)

νij ≡
∫ 1

0

Xi(τ)Xj(τ)dτ = σiσj +
δij

(2j + 1)
,

µji ≡
∫
X ′i(τ)Xj(τ)dτ = σjF1(i, 0) + F1(i, j),

F1(r, s) = [1− (−1)r+s]ŝ(r − s− 1), ŝ(p) =

{
1, p ≥ 0
0, p < 0

βklj ≡
∫ 1

0

Xk(τ)Xl(τ)Xj(τ)dτ = σkσlσj +

αklj +
σkδjl

2j + 1
+

σlδkj
2k + 1

+
σjδkl
2l + 1

,

αklj ≡
∫ 1

0

X∗kX
∗
l X
∗
j dτ =

1

(j + k + l + 1)R(1/2(i+ j + k))
×

R(1/2(j + k − l))R(1/2(j − k + l))R(1/2(−j + k + l)),

if j + k + l = 2m,m ∈ Z , and αklj = 0 if j + k + l = 2m + 1; R(i) = (2i)! /(2ii! )2,
Qi = σi +P ∗i , where the second equality in the formulae for σ, ν, µ, β, α hold for the
�rst case.

4 Wavelet computations

Now we give construction for computations of objects like (4) in the generic wavelet
case. We use some constructions from multiresolution analysis [8]: a sequence of
successive approximation closed subspaces Vj:

...V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 ⊂ ...

satisfying the following properties:⋂
j∈Z

Vj = 0,
⋃
j∈Z

Vj = L2(R), f(x) ∈ Vj <=> f(2x) ∈ Vj+1

There is a function ϕ ∈ V0 such that {ϕ0,k(x) = ϕ(x− k)k∈Z} forms a Riesz basis
for V0. We use compactly supported wavelet basis: orthonormal basis for functions
in L2(R). As usually ϕ(x) is a scaling function, ψ(x) is a wavelet function, where
ϕi(x) = ϕ(x− i). Scaling relation that de�nes ϕ, ψ are

ϕ(x) =
N−1∑
k=0

akϕ(2x− k) =
N−1∑
k=0

akϕk(2x),

ψ(x) =
N−2∑
k=−1

(−1)kak+1ϕ(2x+ k)
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Let be f : R −→ C and the wavelet expansion is

f(x) =
∑
`∈Z

c`ϕ`(x) +
∞∑
j=0

∑
k∈Z

cjkψjk(x) (5)

The indices k, ` and j represent translation and scaling, respectively:

ϕjl(x) = 2j/2ϕ(2jx− `), ψjk(x) = 2j/2ψ(2jx− k).

The set {ϕj,k}k∈Z forms a Riesz basis for Vj. LetWj be the orthonormal complement
of Vj with respect to Vj+1. Just as Vj is spanned by dilation and translations of the
scaling function, so are Wj spanned by translations and dilation of the mother
wavelet ψjk(x). If in formulae (5) cjk = 0 for j ≥ J , then f(x) has an alternative
expansion in terms of dilated scaling functions only

f(x) =
∑
`∈Z

cJ`ϕJ`(x).

This is a �nite wavelet expansion, it can be written solely in terms of translated
scaling functions. We use wavelet ψ(x), which has k vanishing moments∫

xkψ(x)dx = 0,

or equivalently
xk =

∑
c`ϕ`(x)

for each k, 0 ≤ k ≤ K. Also we have the shortest possible support: scaling function
DN (where N is even integer) will have support [0, N − 1] and N/2 vanishing
moments. There exists λ > 0 such that DN has λN continuous derivatives; for
small N, λ ≥ 0.55. To solve our second associated linear problem we need to evaluate
derivatives of f(x) in terms of ϕ(x). Let be ϕn` = dnϕ`(x)/dxn. We derive the wavelet
- Galerkin approximation of a di�erentiated f(x) as:

fd(x) =
∑
`

clϕ
d
` (x)

and values ϕd` (x) can be expanded in terms of ϕ(x):

φd` (x) =
∑
m

λmϕm(x), λm =

∞∫
−∞

ϕd` (x)ϕm(x)dx

The coe�cients λm are 2-term connection coe�cients. In general we need to �nd
(di ≥ 0):

Λd1d2...dn
`1`2...`n

=

∞∫
−∞

∏
ϕdi`i (x)dx (6)
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For Riccati case we need to evaluate two and three connection coe�cients:

Λd1d2
` =

∫ ∞
−∞

ϕd1(x)ϕd2
` (x)dx, Λd1d2d3 =

∞∫
−∞

ϕd1(x)ϕd2
` (x)ϕd3

m (x)dx.

According to CC method [23] we use the next construction. When N in scaling
equation is a �nite even positive integer, the function ϕ(x) has compact support
contained in [0, N − 1]. For a �xed triple (d1, d2, d3) only some Λd1d2d3

`m are nonzero:
2 − N ≤ ` ≤ N − 2, 2 − N ≤ m ≤ N − 2, |` − m|≤ N − 2. There are
M = 3N2−9N+7 such pairs (`,m). Let Λd1d2d3 be an M-vector, whose components
are numbers Λd1d2d3

`m . Then we have the �rst key result: Λ satisfy the system of
equations (d = d1 + d2 + d3):

AΛd1d2d3 = 21−dΛd1d2d3 , A`,m;q,r =
∑
p

apaq−2`+par−2m+p.

By moment equations we have created a system of M + d + 1 equations in M
unknowns. It has rank M and we can obtain unique solution by combination of
LU decomposition and QR algorithm. The second key result gives us the 2-term
connection coe�cients:

AΛd1d2 = 21−dΛd1d2 , d = d1 + d2, A`,q =
∑
p

apaq−2`+p.

For nonquadratic case we have analogously additional linear problems for objects
(6). Also, we use FWT [2] and SSS [6] for computing coe�cients of reduced algebraic
systems. We use for modelling D6, D8, D10 functions and programs RADAU and
DOPRI for testing [19].
As a result, we obtained the explicit time solution (3) for our problem in a basis of
very e�ective high-localized functions, or nonlinear (in a sense of harmonic analysis)
eigenmodes.
In addition to standard wavelet expansion on the whole real line which we used here,
in calculation of the general Galerkin approximations, Melnikov function approach,
etc. we need to use periodized wavelet expansion, i.e. wavelet expansion on �nite
interval [5]. Our approach works in such a case too.
Also, for the solution of perturbed system, we need to extend our approach to the
important case of variable coe�cients. For solving last problem we need to consider
one more re�nement equation for scaling function φ2(x):

φ2(x) =
N−1∑
k=0

a2
kφ2(2x− k)

and corresponding wavelet expansion for variable coe�cients:

b(t) :
∑
k

Bj
k(b)φ2(2jx− k),

where Bj
k(b) are functionals supported in a small neighborhood of 2−jk [7].
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The solution of the �rst problem consists in periodizing. In this case we use expan-
sion into periodized wavelets [5] de�ned by:

φper−j,k(x) = 2j/2
∑
Z

φ(2jx+ 2j`− k).

All these modi�cations lead to transformations of the coe�cients of the reduced
algebraic system only, but the general scheme described above remains the same.
Extended versions and related results may be found in [11]�[18].
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Abstract

Cylindrical shells of di�erent types are the often used models in modern
engineering. It is the element of di�erent line tubes, supports, oil rigs and
so on. The problems of preventing from damaging of such the constructions,
reducing the vibrations of them are the actual problems of modern technique.
The exact calculation of such objects from one side needs great computational
resources and from another side often mask some important e�ects. For exam-
ple the e�ects of propagating of the waves with negative group velocity better
to analyze on the simplest mechanical models which have the exact analytical
solution. In report such the analysis is ful�lled on example of in�nite thin
cylindrical shell of Kirchho� - Love type. The problem of free oscillations of
such the shell is considered. The statement of the problem is considered in
the rigorous statement. The dispersion equation is found on the base of exact
analytical solution. The propagating waves are analyzed. The exploration of
waves with negative group velocity in the neighborhood of bifurcation point of
dispersion curves is ful�lled. The analysis of arising e�ects is ful�lled in terms
of kinematic and dynamic variables, and in the terms of energy �ux. The
relative advantages and disadvantages of these approaches are discussed. The
comparison of contributions in the integral energy �ux of various mechanisms
of energy transmission in the shell is ful�lled. The dependence of subzero
energy �ux, dynamic and kinematic variables on the relative thickness of the
shell, the mode number and other parameters of system is discussed. The
possible �elds of applicability of the gained e�ects are established.

1 Statement of the problem

The problem of oscillations of the systems containing cylinder shells is one of the
actual problems of modern techniques. It is important to estimate the parameters
of vibrations and acoustical �elds of such objects in order to provide the construc-
tion from damaging, but calculation of these complicated systems demands major
computing resources. Therefore the consideration of simple model problems which
have exact analytical solution ([1] - [5]) is actual. On these models it is possible
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to analytically explore main e�ects and also to use them as the test problems for
computing packages.
Let us start considering an in�nite cylindrical shell of Kirchho��Love type in the
cylindrical system of coordinates where the axis 0z coincides with axis of the cylinder.
The source of an acoustic �eld in a wave guide is the vibrations of the cylinder shell,
caused by the incident wave propagating from the in�nite part of the shell. The
frequency of this incident harmonic wave is equal to ω. All processes in the shell
are supposed to be harmonic with this frequency. The factor e−iωt describes the
time-dependence and is omitted.
The balance of forces acting on the shell has a view [6]

Lwu = (0,0,0)t. (1)

Here following notations are introduced: u(’, z) = (ut,uz,un)t is the displacement
vector of the shell (t is a badge of transposing), Lw is matrix di�erential operator
of the cylindrical shell of Kirchho��Love type

Lw ≡ [Lij] = w2I + L; i, j = 1, 2, 3

L=

 α1[∂ϕ+ν−∂̃
2
z ] ν+∂̃z∂ϕ ∂ϕ(1 + 2α2[1− ∂2

ϕ − ∂̃2
z ])

L21 ν−∂
2
ϕ + ∂̃z

2
ν∂̃z

L31 L32 α2(2∂2
ϕ − 2 + 2ν∂̃z

2
− [∂2

ϕ + ∂̃z
2
]2)−1

 (2)

Here L21 = L22, L31 = −L13, L32 = −L23, ∂̃z = R∂z, α1 = 1 + 4α2, ν± = (1± ν)/2,
I is the unit matrix operator.
The following geometrical parameters of the shell are used: R � radius, h � thick-
ness.
Properties of a material of the cylinder are characterized by E, ν and ρs - Joung's
module, Poisson coe�cient and volumetric density accordingly.
The surface density of the shell ρ̃ (ρ̃=ρsh) and the velocity of median surface defor-
mation waves of the cylindrical shell cs are introduced cs =

√
E/((1− ν2)ρs).

The following dimensionless parameters are put in: α2 = 1
12

( h
R

)2 (the relative thick-
ness of the cylindrical shell) and w = ωR/cs (the dimensionless frequency).

2 Determination of the general representation of vi-

brational �eld

The solution of the equation (1) is searching in the form ut

uz

un

 = Aeiλz

 ζ sin(mϕ)
ξ cos(mϕ)

γ cos(mϕ)

 , (3)

believing that |ζ|2+|ξ|2+|γ|2=1. Here following notations are introduced: A, ζ, ξ, γ
are arbitrary constants, λ is the the wavenumber which we are looking for.
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Figure 1: Dispersion curves (m = 21).
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Figure 2: Energy �uxes for the waves
from the �rst dispersion curve (m = 21).

After substituting (3) into (1) the following algebraic system is obtained

L̂wx ≡
(
w2I + L̂

)
x = 0; x = (ζ, ξ, γ)t (4)

Operator L̂w is the Fourier image of operator Lw. The dispersion equation is ob-
tained from the condition of existence of nontrivial solution of this system

det L̂w = 0. (5)

We are looking for the real positive solutions of this equation [7] - [8]. If the corre-
sponding set of wavenumbers is founded one can solve the equation (4) and de�ne
the previously unknown constants ζ, ξ, γ. After de�ning constants, the complete
solution of the problem in terms of displacements of the shell u(’, z) is determined.
For the cylindrical shell of Kirchho��Love type this equation has three real positive
roots w2

i = w2
i (λ

2), i = 1, 2, 3 which determine three dispersion curves wi(λ) :=√
w2
i (λ

2) ≥ 0, (curves 1, 2, 3 in Fig. 1). When λ = 0 the points of these curves are
designated as w0

i = wi(0), i = 1, 2, 3, w0
1 ≤ w0

2 < w0
3, where w

0
2 = m

√
ν−;

For certain combination of parameters points w0
1 and w0

2 can be coincided (in this
case their abscises is equal to w0 ≡ m

√
ν−) [5]. This point will be called the

bifurcation point for convenience.

3 Energy streams in the shell

As it was mentioned above all processes in the shell are supposed to be harmonic with
frequency ω. It is convenient to average the energy streams on period of oscillations
T = 2π/ω. The integral stream of the energy along axes z through the cross-section
of the cylinder shell has a view

Π =
ω

2

2π∫
0

Im
(
u4,Fu4

)
C

4 Rdϕ = Πt + Πz + Πn + Πm, (6)
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Figure 3: Energy �uxes for the waves
from the second dispersion curve (m =
21).
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Figure 4: Energy �uxes for the waves
from the third dispersion curve (m = 21).


Πt

Πz

Πn

Πp

 = πρc2
s

ω

2
Im


(−α1ν−∂̃zut − ν−∂̃ϕuz + 2α2(1− ν)∂ϕ∂̃zun)ut

(−ν∂ϕut − ∂̃zuz − νun)uz
unα

2(−2∂ϕ∂̃zut + ((2− ν)∂2
ϕ − ν + ∂̃2

z )∂̃zun)

α2(−2ν∂ϕut + ν(∂2
ϕ − 1)uz + ∂̃2

zun)(−∂̃zun)

 , (7)

where u4 = (ut,uz,un,−R∂zut)
t is the vector of generalized displacements, F is

the matrix di�erential operator 4 × 4 [5]. Here letters t, z, n, p marked tangen-
tial(rotating), longitudinal, normal and momentum components of energy �ux Π
and components of generalized vector u4.
In the particular case of axisymmetric rotating movements (m = 0) of the shell the
integral energy �ux Π0 of it consists of unique component Π0

t and is equal to

Π0 = Π0
t = 2πρc2

s

ω

2
|A|2β; β = w

√
α1ν− (8)

4 Numerical calculations

Formulas (6)-(8) can be used for obtaining the normalized energy stream in the shell
and it components

S = Π/Π0, St,z,n,m = Πt,z,n,m/Π
0. (9)

The following values of parameters of the system are assumed for calculations
ν=0.28, h/R=0.05 that corresponds to thin shell made of steel. Figures 1 - 4 are
calculated for the mode m = 21, others for m = 63. Dimensionless frequency w is
plotted along abscise axis on all �gures.
The regular case (absence of bifurcation point) is considered at �rst. In Fig. 1 the
dependence of dimensionless wavenumber λ := λR with respect to dimensionless

164



Waves with the negative group velocity in cylindrical shell of Kirchho� - Love type

37,79 37,80 37,81
0

1

2

3

c

b

Figure 5: Dispersion curves (m = 63).
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Figure 6: Integral energy �uxes and its
components (m = 63).

frequency w is shown (these curves are marked by digits I, II, III). The veering
(quasiintersection) of the curves I and II is well noted at w ≈ 25.0. The veering
is usual situation for the systems consisting of several subsystems. In our case it
is caused by interaction of the di�erent type of movements of the shell. It can be
analyzed by energy �uxes components in Fig. 2 - Fig. 4.
The integral energy �uxes (curves S) and their components St, Sz, Sn, Sp (curves
1, 2, 3, 4) for the waves from dispersion curves in Fig. 1 are shown in Fig. 2 - Fig. 4
correspondingly according to formulas (9). The dominating of bending component
in the wave from the �rst dispersion curve is changed to dominating of rotational
component and dominating of longitudinal component in the wave from the second
dispersion curve is changed to dominating of bending component. The interesting
fact is that rotational component in the second dispersion curve is negative in the
neighborhood of bearing point. There are no visible veering points for the third dis-
persion curve in Fig. 1 in the neighborhood of w ≈ 25.0 but energy �ux components
"feel" the change of the wave character. The dominating of rotational component
in Fig. 4 is changed to dominating of longitudinal component in this point.
It can be noticed that the veering of second and third dispersion curves is occurred
at w ≈ 70. The dominating of bending component in the wave from the second
dispersion curve is changed to dominating of longitudinal component and dominating
of longitudinal component in the wave from the third dispersion curve is changed
to dominating of bending component.
In Fig. 5 the case of bifurcation point is considered. Two dispersion curves w1(λ)
and w2(λ) (they will be called left and right brunches correspondingly) have the
same bearing point w = 37.80. The behavior of the wave from the left dispersion
curve di�ers from others signi�cantly. This dispersion curve consists the section
b with positive group velocity and smaller section a with negative group velocity.
Right brunch consists of the singular section c with positive group velocity.
For these sections of the curves the integral energy �uxes (curve S) and their com-
ponents St, Sz, Sn, Sp (curves 1, 2, 3, 4) are shown in Fig. 6. On these �gures
the curves with letters a, b, c in designations are corresponded to the sections of
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dispersion curves in Fig. 5. For convenience the dependencies of the wave processes
corresponding to the left dispersion curve are shown only for the frequencies less
than bifurcation one.
Fig. 5 illustrates the fact that group velocity for the waves from both brunches in the
neighborhood of bifurcation point is not equal to zero, have the opposite sign and
equal module. It well corresponds with the fact that integral energy �uxes and their
components have the opposite sign in this point (Fig. 6). Moreover the negative
character of the integral energy �ux is realized due to the negative character of the
longitudinal and rotating components of it with dominating of rotating one. By
contrast to this both integral �uxes (and its components) and group velocity are
tending to zero if λ→ 0 in regular case. The exceptional case is when the dispersion
curve is starting from the point (w, λ) = (0, 0) (m = 0) [5].
The numerical analysis shows that speci�c character of the waves with negative
group velocity is their quick switching in the energy transmission process on the
long waves (group velocity is not equal to zero at the point of their bearing).
The energy �ux analysis [9] - [10] gives additional opportunities to investigate dif-
ferent components of vibrating and energy �elds and their cross in�uence to each
other [4] - [5].
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Abstract

It is known that one of the main and most common �llers of rubbers
based on natural and synthetic caoutchoucs are carbon black (black soot)
and oxides of zinc (white soot). Putting into an elastomer such substances
can signi�cantly improve its mechanical properties (especially strength and
deformability). To date, these e�ects are well understood and can be said
that this method of modifying the properties of the rubber reached the ceiling.
Further progress requires a search for new nonconventional types of �llers. One
of perspective directions is the use of various clay minerals.

The paper presents the results of experimental studies of elastomeric
nanocomposites containing a new (for elastomers) type of �ller � montmo-
rillonite (MMT). This material, in particular processing, is capable to be dis-
persed nanoparticles of ultra�ne �akes with a minimum thickness of up to
1 nm, that may form individual packs of parallel plates � tactoids.

Experimental studies conducted by a special technique, based on cyclic
deformation of the sample with a stepwise variable amplitude of the defor-
mations. Tests of this kind are used in when it is necessary to receive in
one experiment comprehensive data about the viscoelastic and elastic-plastic
material properties. It was found that the addition of clay nano�ller rubber
contributes to signi�cant dissipative losses increase, indicating that the devel-
opment of viscoelastic processes in the composite during its deformation. Also,
the relative softening of material (compared with pure vulcanizate) occurred
at large cyclic strains (more than 3�4 times). And these e�ects were stronger
than for �llers with a larger basal spacing.

1 Introduction

It is known that the most common �llers of rubbers based on natural and synthetic
caoutchoucs are carbon black (black soot) and oxides of zinc ZnO (fumed silica).
The input of these substances in the elastomer can signi�cantly improve its me-
chanical properties (particularly strength and deformability). To date, these e�ects
are well understood and can be said that this method of rubber modifying reached
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the ceiling. Further progress requires a search for new and innovative types of
�llers. One promising area is the use of various clay minerals. This allows naturally
vary the shape and size of the �ller particles, depending on the task (for example,
montmorillonite provides ultrathin plates, palygorskite � nanoneedles, shungit �
nanoglobules).
Nanostructured materials are characterized by an extremely high total �ller surface
area (by orders of magnitude higher than in conventional composites with a �ller of
micron sizes). Therefore properties of nanomaterials signi�cantly more dependent
on structural e�ects generated by interphase boundaries ("linked" polymer layers
formed on the nanoparticle surfaces, interfacial adhesion, etc.).
The thickness of the interfacial layers is measured in nanometers, which is compara-
ble with the length of the polymer molecular chains, and the physical properties of
the layers can be signi�cantly di�erent from the rest of the matrix (due to the orien-
tation impact the of the particles surface). For example, these can explain the fact,
the addition of even small portions (usually 3�5% by weight) of silica nano�ller in
the polymer can signi�cantly improve its operational properties. Meanwhile, to get
a similar e�ect in conventional composite materials the �ller concentration should
be at least an order of magnitude higher [1, 2].
Historically, the �rst mineral-�lled nanocomposites were polyole�ns (polyethy-
lene, polypropylene, etc.) with a �ller of layered clay minerals (montmorillonite)
[3, 4]. Their �rst commercial application were di�erent auxiliary parts in cars
(Toyota, General Motors, Mitsubishi, Honda), as well as packaging for liquids (Alco
SCI, Nanocor). These materials are characterized by good thermal insulation prop-
erties, low di�usion permeability, high thermal stability and resistance to combus-
tion. Currently, one of the most promising applications of elastomers with mineral
nano�llers are the vehicle tires. Rubbers with this kind of �ller are cheaper and
di�er the raised wear resistance [5, 6].

2 The object of study

The main object of study were elastomeric nanocomposites containing relatively
new (for elastomers) type of �ller � montmorillonite (MMT). This material refers
to a class of swellable clay minerals and at certain treatments able to break up into
ultra�ne �akes with a minimum thickness of up to 1 nm and the characteristic size
from 30 nm to several microns. These nanoparticles can form separate bundles �
tactoids of parallel plates (up to tens). Natural montmorillonite consists of randomly
oriented tactoids.
MMT is a hydrophilic material, which makes it di�cult to wetting by organic sub-
stances (usually hydrophobic). Therefore, the particles of montmorillonite are mod-
i�ed to improve the thermodynamic compatibility with the matrix polymer, i.e. the
organophilic surface layers with the desired level of interaction with the polymer
matrix are created. Various surface active agents (surfactants) are used for this pur-
pose, including those organic. Surfactant layer thickness on the surface nanoplates
can reach 1�2 nanometers. Clay minerals treated with organic modi�ers, are also
called organoclays.
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Montmorillonite nanoparticles treated as surfactants by distearil dimethylammo-
nium chloride were used at carrying out of mechanical experiments [7, 8, 9]. The
characteristic average particle (tactoids) size DMMT was about 65�70 nm, the av-
erage distance between the layers in tactoids (basal) dMMT = 2.9�3.0 nm. MMT
density equaled 1.8 g/cm3.
Materials for the study were provided by the Leibniz Institute of Polymer Research,
Dresden, Germany (Leibniz-Institut fur Polymer for schung).
Vulcanizates of natural rubber (NR), containing carbon black (CB) of N330
brand were used as a matrix. Concentration of other additives (mineral oil,
white carbon (ZnO), sulfur, a vulcanization accelerator TBBS (N-tert-butyl-2-
benzothiazolylsulfenamide)) was the same for all samples. Accordingly, the matters
of their e�ect on changes in mechanical properties of the composite in this study
were not considered.
Thus, the following materials were studied in the experiment (ψCB � CB mass
concentration, ψMMT � mass concentration of MMT �ller):
1) NR: pure natural rubber without �ller (NR) as a basis for comparison;
2) NR-CB30: natural rubber, �lled with 30 phr of CB (ψCB = 21.2%-wt.);
3) NR-CB30-MMT5: natural rubber, �lled with 30 phr of CB (ψCB = 21.2%-wt.)
and 5 phr of MMT (ψMMT = 3.55 %-wt.).

3 Experiment

Experimental studies were carried out on the universal tensile testing machine Testo-
metric FS100kN CT. The special technique was used, based on cyclic deformation of
a sample with a variable step-by-step amplitude of deformations (and stops for relax-
ation when changing the direction of the load). Tests of this kind are usually used in
the study of polymers, when it is required to obtain in one experiment complex data
on the viscoelastic and elastoplastic properties of the material [10, 11, 12, 13, 14].
Speed of tensile machine grippers (in load increase and decrease) was 20 %/min. The
time for each relaxation was 10 minutes. Samples were manufactured in accordance
with the standard ISO 527-2-5A with working part 2 on 4 by 20 mm.

4 Results discussion

The dependences of the nominal stress σ0 on extension ratio λ for 12 loading cycles
of a pure elastomer (NR) are shown in Fig. 1. The maximum step values of λ ranged
from 1.5 to 7, increasing by 50% on each subsequent cycle. Unloading in each case
was carried out until the stresses in the sample completely disappeared. These
curves were used as the reference basis for comparison with the �lled elastomers.
It was found that the pure rubber behaved almost like an elastic material up to a
extension ratio λ < 3.5 (�rst 5 cycles). At large values of λ, it softened and began
to exhibit viscoelastic properties (a hysteresis loop appeared, the curve of each new
stretching was below the previous stretching curve). The residual deformations were
insigni�cant, that is, we can assume that there were no plastic �ows in pure rubber.
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Figure 1: Cyclic stretching of pure natural rubber (NR): 12 cycles

The results of similar cyclic tests (12 cycles) for samples containing carbon black
are shown in Figure 2. Adding 30 phr of CB signi�cantly a�ected the mechanical
properties of rubber:
First, the rigidity of the material has increased signi�cantly. So, for example, in
the samples �lled with CB, maximum stresses on the second (maximum λ = 2),
eighth (λ = 5) and twelfth (λ = 7) cycles increased approximately 3, 4 and 2 times,
respectively, compared to the pure elastomer. At the same time, the di�erences
between the unloading curves for �lled and pure materials were signi�cantly less.
Secondly, the dissipative losses increased signi�cantly. The hysteresis of the load-
unload curves was already observed on the second cycle, and, the larger the ampli-
tude of the cycle tension, the stronger this e�ect was. The graphs show that there
is also a signi�cant softening of the material (Mullins e�ect [15, 16]) and it becomes
viscoelastic.
Third, residual strains appeared in the �lled samples.

Figure 2: Curves of cyclic stretching of rubbers �lled with carbon black (NR-CB30):
12 cycles

Therefore, the input of carbon black �ller provokes the development of both re-
versible and irreversible rearrangements in the composite structure.
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The following graphs show how the presence of clay �ller a�ects the mechanical
properties of rubber. Figure 3 demonstrates the results of cyclic loading (with stops
at relaxation) samples NR-CB30 and NR-CB30-MMT5. Total twelve loading cycles
are presented in Figure 3a, and only the �rst four (enlarged) in Figure 3b.

Figure 3: Curves of cyclic stretching of rubbers �lled with ÑÈ and MMT. NR-CB30 �
black lines, NR-CB30-MMT5 � green lines; (a) 12 cycles with full unloading on each of

them; (b) 4 �rst cycles

At the initial stage of loading, the input of a clay nano�ller caused an increase in
stresses compared to composites containing only CB. With further increase in the
load, composites with clay nanoparticles became softer (compared to the systems
"NR + CB"). For clarity, the dashed lines connecting the maximum stresses on the
cycle for each material are plotted on the graphs.
In our opinion, this e�ect is due to the fact that at large extension ratios a re-
orientation of the montmorillonite particles along the extension axis occurs in the
composite structure. The plates in the tactoids can slip relative to each other un-
der the in�uence of external deformation, thereby unloading the overstressed places.
Consequently, less energy is required to deform the system and the level of macro-
stresses is reduced.
It is interesting to note that the unloading curves and residual deformations for
these materials turned out to be close, that is, the introduction of montmorillonite
a�ects these stages of cyclic loading poorly.
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As a result, we can conclude that the addition of relatively small amounts of mont-
morillonite to the rubber signi�cantly a�ects its mechanical properties, contributing
to the development of both reversible and dissipative processes (viscoelastic and
elastic-plastic) during deformation of the material. This is due to the peculiarities
of the structure of the �ller particles, which are bundles of parallel arranged ultrathin
silicate plates.
Reorientation and distortion of the shape of these �ller particles occurs in the process
of composite material loading. It leads to a decrease in stress concentration at the
level of microstructure and energy dissipation.
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Abstract

Through solving the Navier-Stokes equations of thermochemical nonequi-
librium �ow coupled with the ablating boundary condition, the hypersonic
shock wave-boundary-layer interaction �ows with ablation are numerically
simulated. 16 species and 29 chemical reactions are adopted in the simula-
tion. The oxidation and sublimation of C, as well as the recombination of O
catalyzed by C are considered at the wall surface. Both the compression cor-
ner �ow and the boundary-layer �ow with incident shock wave are calculated.
The compression corner angles are 15, 18, and 24 degree, and the angles of the
wedge that produce the incident shock wave are 15, 21, and 27 degree. The
free stream Mach number varies from 10 to 34 and the total enthalpy from 6
to 55 MJ/kg. Both ablating and non-ablating surface conditions are used to
investigate the e�ects of ablation on the �ow properties. The �ow structure,
the characteristics of shock wave-boundary-layer interaction, the separation
properties, and the distribution of the thermochemical properties are analyzed.
The results show that the possibility of �ow separation or the separation range
becomes larger as the corner angle (or the angle of the wedge which produce
the incident shock) rises, while smaller as the free stream Mach number is
increased. As compared with the cases with low-temperature wall, the �ow
separation zones are lager with ablating wall or with high-temperature wall in
radiation equilibrium, and this leads to further e�ects on the �ow properties
of the downstream.

Key words: hypersonic nonequilibrium �ow, ablation, compression corner
�ow, shock wave-boundary-layer interaction

1 Introduction

The hypersonic vehicle su�ers from intense aerodynamic heating when it �y at a
speed of more than 7 km/s in the atmosphere. The temperature of the surface
in radiation equilibrium may reach 2000K under which the internal device cannot
work normally. Ablative materials are often used to absorb heat through the phase
change of the material and the surface reaction between the material and the high
temperature gas, and keep the inner wall of the vehicle at a suitable temperature
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[1]. The ablation products ejected into the boundary layer may a�ect the properties
of the �ow �eld around the vehicle, such as the distributions of the temperature,
the heat �ux, the species mass fraction, and the ionization or radiation properties.
So the study of the reentry �ow �eld with ablation is signi�cant. A lot of work
has been carried out on the the �ow �eld over blunt nosed bodies [2∼8], and has
achieved fruitful results. In this paper, the study of hypersonic �ow with ablation
is extended to bodies with other shape.
For the reentry vehicle and the airbreathing hypersonic vehicle, the �ow in the
region of control surface the engine inlet needs in-depth study because shock wave-
boundary-layer interaction prevails in these regions, a�ecting the performance of
control surface and the engine e�ciency[9]. The compression corner �ow and the
plate boundary-layer �ow with incident shock wave are typical representatives of
the �ow in these regions. In the compression corner �ow, the boundary layer of
�at plate develops gradually from the leading edge and may be interfered by the
corner-generated shock. If the shock wave is strong enough, the boundary layer will
be separated, and the recirculation zone will form in the corner region. The thicker
boundary-layer compresses the incoming �ow, resulting in a separation shock wave.
The gas is compressed by the ramp near the reattachment point and a series of
compression wave is produced, which coalesce into a shock wave that interact with
the separation shock wave and a�ect the distribution of �ow parameters along the
compression surface. In the �ow of an incident shock-generated interaction with a
boundary layer, strong incident shock will lead to the separation of the boundary
layer. New waves are induced, and the complex interactions will change the �ow
�eld distribution of pressure and heat �ux, which may further a�ect the aerodynamic
performance of the vehicle.
Under the condition of freestream with high-enthalpy, the wave structure and sepa-
ration zone of the �ow�eld will be a�ected by the chemical reactions of the gas and
the ablative wall material at high-temperature. Both the compression corner �ow
and the boundary-layer �ow with incident shock wave corner are calculated. The
compression corner angles are 15, 18, and 24 degrees, the angles of the wedge that
produce the incident shock wave are 15, 21, and 27 degrees. The free stream Mach
number varies from 10 to 30 and total enthalpy from 6 to 55 MJ/kg. Both ablating
and non-ablating surface conditions are used to investigate the e�ects of ablation on
the �ow properties. The �ow structure, the characteristics of shock-boundary-layer
interaction, the separation properties, and the distribution of the thermochemical
properties are analyzed.

2 Thermochemical Model

The high temperature air is composed of 10 species in the study: N2, O2, NO,
N, O, NO£«, N2£«, O£«, N£«, e£. As graphite ablation occurs, the following
species may also appear in the �ow �eld: CO, CO2, C, C2, C3, CN. 29 chemical
reactions are considered for these 16 species. [10, 11] The two-temperature (trans-
lational/rotational and vibrational temperature) model is used to describe thermal
non-equilibrium and the coupling of vibration and chemical reactions. The ther-
modynamic and transport properties of the gas mixture are calculated with the
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method described in [10]. The surface reactions take into account the process of
thermo-chemical ablation due to both oxidation and sublimation [2, 3].

Table 1 Chemical reactions in the �ow�eld
Number Reaction Number Reaction

1 N2+M1 � N + N+M1 16 CO+C2 � C3+O
2 O2+M2 � O + O +M2 17 C3+N� CN+C2

3 C2+M3 � C + C +M3 18 C3+C� C2+C2

4 CN+M4 � C + N +M4 19 O + N� NO+ + e−

5 N2+e− � N + N+e− 20 N + N� N2
+ + e−

6 O+e− � O+ + e− + e− 21 CO2+M6 � CO + O+M6

7 N+e− � N+ + e− + e− 22 CO2+N� CN+O2

8 N2+O� NO + N 23 CO + NO� CO2+N
9 NO + O� O2+N 24 CO2+O� CO+O2

10 CO + C� C2+O 25 2CO� CO2+C
11 CO + O� O2+C 26 N2+CO2 � N + N + CO2

12 CO + N� CN + O 27 O2+CO2 � O + O + CO2

13 N2+C� CN + N 28 C2+CO2 � C + C + CO2

14 CN + O� NO + C 29 CN + CO2 � C + N + CO2

15 CN + C� C2+N

3 Governing Equations and Ablative Surface Bound-

ary Conditions

3.1 Governing Equations and Numerical Methods

The governing equations for the �ow �eld are the axisymmetric Navier-Stokes equa-
tions coupled with the vibrational and chemical kinetics, which are solved to obtain
the steady state solution of the �ow �eld. A �nite di�erence method is used in the
calculation. All inviscid terms are discretized with AUSMPW+ scheme [12]. The
viscous terms are discretized with center di�erence scheme.The inviscid �uxes are
discretized implicitly while the viscous terms explicitly. The implicit parts of the
di�erential equations are disposed in two steps with the LU-SGS approach [13]. The
details of the �ow �eld governing equations are described in [14].

3.2 Ablative Surface Boundary Conditions and the Solution

Method

To couple the �ow �eld to the heat shield during ablation, mass balance and energy
balance must be satis�ed at the surface. The surface mass balance for each species
is

− (æDs∇Cs • n)w + ṁw Cs,w = ṁs,w (1)

where the �rst term on the left side is the di�usion of species, n is the surface unit
normal vector (away from the wall), ṁw is the total mass �ux at the surface, and
ṁs,w , the mass �ux of species s per second, is determined from the surface thermo-
chemistry [2]. There are 15 surface mass balance equations in this study with the
assumption of quasi-neutral plasma.
The surface energy balance is expressed as

−qw + qcond ,w − ”œT 4
w +

∑
s

ṁs,w (hsolid ,w − Hw) = 0 (2)
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where qw is the heat �ux to the �ow from the wall, which contains both the heat
conduction and the di�usive chemical heat �ux, ”œTw

4 is the re-radiation of heat
into the �ow, qcond ,w is the heat �ux conducting energy to the surface from the heat
shield (set as zero here for the quasi-steady-state ablation), the fourth term in (2)
is the removal of energy from the surface due to mass removal. To set boundary
conditions for the pressure and velocity, an assumption is made that blowing occurs
only normal to the body. This allows the pressure and velocity to be related through
the equation of state and the conservation of mass for one-dimension.

(æV • n)w = ṁw (3)

The density of the gas in the above equation is determined from the equation of
state. Moreover, the normal gradient of pressure at the surface is assumed to be zero.
Then, from these surface boundary conditions (16 nonlinear equations), the surface
temperature, pressure, species densities and injection velocities can be determined
as part of the solution. Besides the ablative wall condition, three conditions without
ablation, namely fully catalytic and non-catalytic wall at temperature of 300K, and
non-catalytic wall in radiation equilibrium, are used in the �ow simulation to analyze
the e�ects of wall condition on �ow properties. At full catalytic wall, the species mass
fraction is set as the chemical equilibrium value at local temperature and pressure.
At non-catalytic wall, the species mass fraction is determined by the zero gradient
condition. The temperature of the wall in radiation equilibrium is determined by
the energy balance relation −qw = ”œT 4

w . The velocity at the wall is set as zero for
the cases without ablation.

3.3 Validation of the In-house Code

The two-dimensional compression corner �ow in Holden¡¯s Calspan 48-inch shock
tunnel [15] is calculated with the present in-house code, which can be used as a
validation of the code for simulating the hypersonic �ow with shock wave-boundary-
layer interactions. The freestream in the shock tunnel has a Mach number of 14.1,
temperature of 89K, and density of 5.27×10−4 kg/m3. The calculated wall pressure
and heat �ux are consistent with the experimental results given by [16], which is
described in detail in reference [17]. As a validation of the code for simulating
the hypersonic �ow�eld with ablation, the �ow over a sphere under the reentry
conditions (at speed of 10km/s and altitude of 65km) is calculated. The numerical
results are in good agreement with that of [3], and the details are given is in reference
[8].

4 Simulation and Analysis of the Compression Cor-

ner Flow

4.1 Case Conditions and Computational Mesh

The total length of the compression corner model is 0.6096m, of which the length of
the front plate is 0.3048m. The computational mesh (Figure 1) is 131× 81 with 131
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Figure 1: Computational mesh of compression corner �ow

points along the surface and 81 points in the �ow�eld normal to the body, only half
of the grid points in both directions are shown for clarity. Re�ned grids are used near
the leading edge, the corner and the position of peak pressure. Exponential stretch
is used from the wall. The �rst normal grid height at the wall is 6.096× 10−5m.

Three compression corner �ows at 48 conditions are simulated. The corner angles
are 15, 18, 24 degree respectively, the free stream Mach numbers are 10, 15, 20, 30,
and the gas densities are those of atmosphere at altitude of 40km, 45km, 50km and
55km. The e�ects of the freestream conditions, the corner angle and the boundary
conditions on the �ow properties are analyzed. The free stream temperature is set
as 300K.

4.2 Overview of the Flow�eld Characteristics under Di�erent

Freestream and Wall Conditions

The calculation results show that the increase of the compression corner angle will
promote the �ow separation, and the increase of �ow Mach number will suppress
separation. The separation and reattachment point positions (SP and RP) for the
corners with angle of 15 and 24 degree under 16 freestream conditions are listed In
table 1 and table 2. The symbol ′×′ in the table represents the case without �ow
separation. The comparison of the �ow separation characteristics under the four dif-
ferent wall conditions show that the results for fully catalytic and non-catalytic wall
at low wall temperature are similar, while the results for the radiation equilibrium
and ablative wall are similar. The �ow separation zones are larger for the latter two
wall conditions.
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Table 1. Flow separation and reattachment position (s/L) of 15 degree compression corner
Freestream condition 300K fully catalytic 300K non-catalytic Radiation equilibrium Ablationm
Altitude Ma SP RP SP RP SP RP SP RP

40

10 0.8297 1.168 0.8297 1.168 0.7215 1.269 0.7215 1.269
15 0.8904 1.153 0.8904 1.153 0.8056 1.251 0.8056 1.251
20 0.9578 1.124 0.9578 1.124 0.9219 1.184 0.9219 1.200
30 × × × × × × × ×

45
10 0.9353 1.124 0.9219 1.124 0.8297 1.234 0.8297 1.234
15 0.9950 1.046 0.9950 1.046 0.9219 1.184 0.9219 1.200

20,30 × × × × × × × ×

50
10 1.000 1.011 0.9950 1.011 0.9353 1.168 0.9353 1.168

15,20,30 × × × × × × × ×

55
10 × × × × 1.000 1.005 1.000 1.005

15,20,30 × × × × × × × ×

Table 2. Flow separation and reattachment position (s/L) of 24 degree compression corner
Freestream condition 300K fully catalytic 300K non-catalytic Radiation equilibrium Ablationm
Altitude Ma SP RP SP RP SP RP SP RP

40

10 0.6287 1.167 0.6287 1.167 0.4870 1.267 0.4870 1.267
15 0.7258 1.131 0.7258 1.131 0.6287 1.186 0.6287 1.186
20 0.8084 1.115 0.8084 1.115 0.7551 1.149 0.7551 1.149
30 0.8928 1.115 0.8744 1.115 0.8543 1.131 0.8543 1.149

45

10 0.5941 1.246 0.5941 1.246 0.3822 1.383 0.3822 1.415
15 0.7551 1.167 0.7257 1.186 0.5587 1.288 0.5587 1.288
20 0.8084 1.167 0.8084 1.167 0.7551 1.206 0.7551 1.206
30 0.9095 1.149 0.8928 1.149 0.8543 1.186 0.8543 1.167

50

10 0.5587 1.328 0.5587 1.328 0.3822 1.493 0.3822 1.493
15 0.6624 1.267 0.6624 1.267 0.5229 1.383 0.5229 1.383
20 0.8323 1.206 0.8323 1.206 0.7258 1.288 0.7258 1.288
30 0.9612 1.167 0.9246 1.186 0.8744 1.226 0.8928 1.226

55

10 0.6624 1.327 0.6624 1.327 0.5229 1.493 0.5229 1.493
15 0.7551 1.288 0.7551 1.288 0.5587 1.288 0.5587 1.468
20 0.8744 1.226 0.8744 1.226 0.7827 1.328 0.7827 1.328
30 × × × × 1.000 1.006 1.000 1.006

Figure 2 shows the wall pressure distribution of 24 deg compression corner at di�er-
ent Mach numbers and altitude of 40 km. As the Mach number increases, the �ow
separation zone decreases, and the peak value of the pressure on the ramp moves
forward. The reason that the increase of Mach number suppresses separation has
two points. On the one hand, as the Mach number increases, the shock angle of the
main shock formed by the ramp decreases and the shock is closer to the surface, with
the result of the decrease of the range of adverse pressure gradient. On the other
hand, as the Mach number increases, the subsonic region range in the boundary
layer decreases, which result in the decrease of the range for upstream propagation
of the pressure gradient.
However, the in�uence of freestream gas density on �ow separation at constant
Mach number is relatively complicated. As can be seen from table 1, for 15deg
compression corner �ow, increasing the density will facilitate �ow separation. At
altitude of 40km, separation occurs at Mach number of 10, 15 and 20, only the case
of Mach number of 30 is an exception; At altitude of 45km, there is separation at
Mach number of 10 and 15 but not at Mach number of 20 and 30; At altitude of
50km, separation occurs only at Mach number of 10; At altitude of 55km, separation
is observed only at Mach number of 10 and with wall in radiation equilibrium or
with ablation. However, for 24deg compression corner �ow, the e�ects of gas density
on �ow separation vary with Mach number. At high Mach number such as 30 and
20, the increase of density promotes separation; At Mach number of 15, the increase
of density basically promotes separation at the low-temperature wall conditions, but
postpones separation and decrease the separation zone at radiation equilibrium wall
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Figure 2: Surface pressure coe�cient at di�erent Mach numbers (24deg corner,
H=40km)
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Figure 3: Surface heat �ux at Mach number of 10 and 30 (15deg corner, H=40km)

and ablative wall; At lower Mach number (Ma=10), the increase of density mainly
postpones separation.

4.3 Analysis of the E�ects of Wall Conditions

When there is no �ow separation, the wall condition mainly a�ects the wall heat
�ux, having little e�ects on the �ow�eld structure. Figure 3 shows the surface heat
�ux for 15deg corner at Mach number of 10 and 30 and altitude of 55 km. The heat
�ux values of the four di�erent wall conditions are similar at the plate surface, but
at the ramp surface, the value of radiation equilibrium wall and wall with ablation
are much lower and the position of peak heat �ux moves downward than that of the
low temperature wall case.
As compared with the cases with low-temperature wall, the �ow separation zones
are lager with ablating wall or with wall in radiation equilibrium. This can be
attributed to the increase of the of the boundary layer thickness induced by the
increase in wall temperature. Moreover, the in�uence of wall conditions on the �ow
separation will further a�ect other �ow properties. Take 24 deg compression corner
at Mach number of 15 and altitude of 40 km and 55 km as examples, the �ow �eld
pressure distribution and the streamline in the recirculation zone for both the fully
catalytic wall at 300 K and the ablative wall are given in Figure 4 and Figure 5
respectively. It can be seen that the size of the separation zone at low temperature
wall is obviously smaller than that at ablative wall. This is due to the thickening of
the boundary layer caused by the higher wall temperature, which a�ects the shape
of the shock wave and its interaction with the boundary layer. With the same wall
temperature, the wall catalytic properties have no signi�cant e�ects on separation.
The range of the separation zone under the ablative wall condition is close to that
under the condition of radiation equilibrium wall without ablation.
Figure 6 shows the surface heat �ux for 24 deg corner at Mach number of 15 and
altitude of 40 km and 55 km. As compared with the low temperature wall case,
the surface heat �ux of radiation equilibrium wall and wall with ablation are fairly
lower. However, the separation zone is enlarged by the higher wall temperature,
and this cause the intersection of the separation shock, reattachment shock and the
main shock move farther downstream, which leads to the positions of peak pressure
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Figure 4: Pressure contour and separation zone streamline at H=40km (24deg cor-
ner, Ma=15)

Figure 5: Pressure contour and separation zone streamline at H=55km (24deg cor-
ner, Ma=15)

and heat �ux moving downstream.
Take the 24 deg corner �ow at Mach number of 10 and altitude of 40 km, which
has signi�cant separation, as an example to investigate the in�uence of the wall
conditions in detail. Figure 7 shows the normal distribution of pressure and tem-
perature at three typical positions, namely, the start point of the ramp (x/L=1),
the position of peak pressure and the point near the ramp end (x/L=1.9). The
point x/L=1 is just near the separation chock. The thickness of the shock layer
and the shock intensity under the condition of the radiation equilibrium wall and
the ablative wall are obviously larger than that under the low wall temperature
conditions. Moreover, the thickness for the case with radiation equilibrium wall is
slightly larger than that with ablative wall. This phenomenon can be explained as
follows. The increase of wall temperature leads to the thickening of the boundary
layer, and therefore, enhances the leading edge shock and the separation shock, and
at the same time pushes the shock away from the surface. The position of peak

Figure 6: Surface heat �ux at altitude of 40km and 55km (24deg corner, Ma=15)
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pressure is just near the intersection of the main shock and the separation shock.
The shock layer with high wall temperature is still thicker, and the peak values of
pressure and temperature are also higher than those with low wall temperature.

4.4 Thermochemical Characteristics of the Flow�eld

The 24deg compression corner �ow at Mach number of 30 has the strongest shock
wave, vibrational excitation, and chemical reaction. The extent of the �ow nonequi-
librium is enhanced with the raise of altitude and the resulting decrease of gas
density. The 24 deg corner �ow at Mach number of 30 and altitude of 55km is
taken as an example here to analyze the thermochemical characteristics of the �ow-
�eld. The case with wall ablation is mainly discussed, and the results with other wall
conditions are given only for comparison and analysis of the e�ects of wall condition.
Figure 8 and Figure 9 show the pressure and temperature distribution of the �ow
�eld respectively, and one can see from Figure 9 that the high temperature region
is near the front part of the compression surface, not coinciding with that of high
pressure (Figure 8). The gas in this region has been heated �rst by the leading edge
shock wave, then by the friction in the boundary layer, and last by the separation
shock, so the temperature is even higher than the gas behind the main shock, which
is heated only by the main shock from the low freestream temperature (300K).
Figure 10(a) and (b) gives the distribution of O, NO mass fraction, and Figure
10(c) gives that of the number density of electron. From comparison with Figure
9, one can see that the �ow is in thermochemical non-equilibrium. The increase of
the vibrational temperature and the chemical reaction lags behind the increase of
translational temperature. The high translational temperature zone is located at
the corner region for this case, and the translational temperature reaches its peak
value at £½1.16, while the high vibrational temperature zone locates after the main
shock, and the position of peak value is at £½1.4. The region of the high mass
fraction of atoms is coincident with that of high vibrational temperature. There
is a high temperature zone in the downstream of the main shock wave, and the
vibrational excitation and chemical reaction in this high temperature zone are more
signi�cant than other regions. The peak value of mass fraction is 0.166 for O, 0.202
for NO, and up to 0.0812 for N. The peak value of NO+ mass fraction is 7.0× 10−4,
slightly higher than that of N2+, which is 3.2 × 10−4. The order of magnitude of
mass fraction is 10−9for O+, and 10−10for N+. The peak value of electron number
density reaches the order of 1014 [Figure 10(c)].
The shock layer of the case with radiation equilibrium wall and ablative wall are
thicker than that with low wall temperature, which has been mentioned in 3.3, so
there are also di�erences in the species mass fraction between the cases with high
and low temperature wall. Further comparison is mainly on the species mass frac-
tion between the cases of radiation equilibrium wall and the ablative wall. Figure
11 shows the normal distribution of the mass fraction of the main air species at
the position of peak pressure and the end of the ramp under these two wall con-
ditions. There is no signi�cant di�erence in the shock layer thickness between the
two conditions, and the e�ects of the ablation are limited to the boundary layer.
The wall temperature and the surface heat �ux under the ablative wall condition
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Figure 7: Normal distribution of pressure and temperature at 3 positions (24deg
corner, Ma = 10, H = 40km)

Figure 8: Pressure contour (24ocorner, Ma=30, H=55km)
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Figure 9: Temperature contours (24deg corner, Ma=30, H=55km)

Figure 10: Contours of mass fraction of O and NO, number density of electron
(24deg corner, Ma=30, H=55km)

are higher than that under radiation equilibrium wall condition. The chemical re-
action and di�usion in the boundary layer are further a�ected by the di�usion of
the ablation products into the boundary layer, which increases the mass fraction of
neutral molecules (N2 and O2) and reduces those of the atoms (N, O) and the main
ion species (NO+, N2+).

The ablation products are mainly con�ned to the boundary layer, and ablative
species with highest mass fraction is in turn CO, C3, C2, and CN. Figure 12 shows
the mass fraction distribution of CO, C3 and CN. In addition, the peak value of
mass fraction is 0.0574 for C2, 0.0211 for C, and in the order of 10−3for CO2. Figure
13 shows the normal distribution of the mass fraction of the ablative species at the
position of peak pressure and x/L = 1.9. The ablation in the plate region is rather
small and the main ablation product is C3, which has a mass fraction of 0.01. The
ablation becomes much stronger in the high pressure region after the intersection of
the main shock and the reattachment shock, and the mass fraction of CO and C3

attain the order of 0.1. The mass fraction of the ablative species continues rising
downstream, and attaining their peak values near the end of the ramp.
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Figure 11: Normal distribution of species mass fraction at 2 positions (24deg corner,
Ma=30, H=55km)

Figure 12: Mass fraction contours of the main ablation species (24deg corner, Ma
= 30, H = 55km)
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Figure 13: Normal distribution of ablation species at 2 positions (24deg corner,
Ma=30, H=55km)

5 Simulation and Analysis of Boundary Layer Flow

with Incident Shock

5.1 Case Conditions, Computational Boundary Conditions,

and Mesh

Freestream density and temperature are set as those of the atmosphere at altitude
of 60 km. Six freestream Mach number (14, 18, 22, 26, 30, 34) are selected, and the
angles of the wedge which produces the incident shock are 15, 21, and 27 degree.
The boundary layer �ows with incident shock under a total of 18 case conditions
are simulated numerically.
The computational boundary conditions of the plate �ow �eld are set asa follows
(Figure 14). The left boundary of the is supersonic freestream, and the right bound-
ary is a supersonic exit. The "1" part of the lower boundary is the wall, and the
"2" part is the �ow in front of the plate and set as symmetric condition. The "3"
part of the upper boundary is the supersonic freestream (also the �ow before shock),
the "4" part is the condition after the incident shock. The "5" part can be set as a
non-re�ective boundary condition. The incident shock parameters are determined
through the numerical simulation of the nonequilibrium �ow over a wedge. The
freestream condition of the wedge �ow is the same as that of the plate �ow, and the
intensity of the incident shock under the same freestream is controlled by chang-
ing the wedge angle. The intensity of the incident "oblique shock" increases with
the increase of the wedge angle and the incoming Mach number. The method of
extracting the incident shock parameters from the wedge �ow�eld is described in
[17].
Fully catalytic wall at 300K condition is set for the calculation of wedge �ow. Four
di�erent wall conditions (the same as those for the corner �ow) are considered in
the �ow over the plate. The computational mesh for the wedge �ow is 121×101.
The plate length is 1m and the computational mesh is 121×101. The �rst normal
grid height at the wall is 10−4 m. Re�ned grids are used near the leading edge and
the wall.
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Figure 14: Boundary conditions of plate �ow�eld

5.2 Flow�eld Characteristics under Di�erent Freestream and

Wall Conditions

Flow separations are observed for all 18 cases under the four di�erent wall conditions.
Table 3 to Table 5 give the locations of the separation and the reattachment location
(x/L), in which L is the length of the plate, and x is the distance from the plate
leading edge. The results show that the increase of the wedge angle promotes the
separation while the increase of the Mach number delays the separation, which is
similar to the case of compression corner �ow. However, if the wedge angle and the
wall condition keep unchanged, the reattachment location keeps stable as the Mach
number changes. The separation characteristics under the fully catalytic and non-
catalytic wall at low wall temperature are similar, and the results for the radiation
equilibrium and ablative wall are similar. The �ow separation zones are larger under
the latter two wall conditions.

Table 3 Flow separation and reattachment position (x/L) for the case of 15 degree wedge

Ma
300 K fully catalytic 300K non-catalytic Radiation equilibrium Ablation
SP RP SP RP SP RP SP RP

14 0.4273 0.5311 0.4273 0.5311 0.3478 0.5489 0.3478 0.5489
18 0.4611 0.5311 0.4611 0.5311 0.4108 0.5489 0.4108 0.5489
22 0.4783 0.5311 0.4783 0.5311 0.4273 0.5311 0.4273 0.5311
26 0.4783 0.5311 0.4783 0.5311 0.4611 0.5489 0.4611 0.5489
30 0.4958 0.5311 0.4958 0.5311 0.4783 0.5489 0.4783 0.5489
34 0.5134 0.5489 0.5134 0.5489 0.4958 0.5489 0.4958 0.5489

Table 4 Flow separation and reattachment position (x/L) for the case of 21 degree wedge

Ma
300 K fully catalytic 300K non-catalytic Radiation equilibrium Ablation
SP RP SP RP SP RP SP RP

14 0.2394 0.3946 0.2277 0.3946 0.1657 0.4108 0.1657 0.4108
18 0.2905 0.3946 0.2905 0.3946 0.2394 0.3946 0.2394 0.3946
22 0.3184 0.3946 0.3329 0.3946 0.2771 0.3946 0.2771 0.3946
26 0.3478 0.3946 0.3478 0.3946 0.3042 0.4108 0.3042 0.4108
30 0.3478 0.3946 0.3478 0.3946 0.3184 0.3946 0.3329 0.3946
34 0.3631 0.3946 0.3631 0.3946 0.3478 0.3946 0.3478 0.3946

Table 5 Flow separation and reattachment position (x/L) for the case of 27 degree wedge

Ma
300 K fully catalytic 300K non-catalytic Radiation equilibrium Ablation
SP RP SP RP SP RP SP RP

14 0.0361 0.3184 0.0361 0.3184 0.0230 0.3329 0.0230 0.3329
18 0.1173 0.3042 0.1173 0.3042 0.0859 0.3042 0.0916 0.3042
22 0.1848 0.3042 0.1750 0.3042 0.1399 0.3184 0.1567 0.3042
26 0.2164 0.3042 0.1949 0.3042 0.1657 0.3184 0.1848 0.3042
30 0.2054 0.3042 0.1847 0.3042 0.1750 0.3184 0.1848 0.3042
34 0.2277 0.3042 0.2164 0.3042 0.1949 0.3184 0.2054 0.3042
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Figure 15 to Figure 17 show the �ow�eld pressure distribution and the streamline in
the recirculation zone under di�erent wall conditions. Figure 15 shows the results for
the case of 15deg wedge and Figure 16 the 27deg wedge, both with Mach number of
14 and 34 and with ablative wall conditions. Figure 17 shows the results for the case
of 27deg wedge under full catalytic wall at 300K conditions. Figure 18 shows the
distribution of the wall pressure and that of the friction coe�cient in the separation
zone for the case of 28deg wedge and Mach number of 14.

When the freestream Mach number keeps constant, the incident shock intensity
increases as the wedge angle increases. The impacts of the shock on the bound-
ary layer �ow increases, the possibility of separation and separation range becomes
larger. Take the �ow at Mach number of as an example, strong separation is ob-
served for the case of 27deg wedge [see Figure 16 (a) (b)]. There are a large vortex
and two small vortices in the recirculation zone. The separation for the case of 15deg
wedge is much weaker, as can be seen in Figure 15 (a).

If the wedge angle keeps constant, the possibility and range of separation are reduced
as the Mach number increases, which is obvious in Figure 15 and Figure 16. The
reason why the increase of Mach number suppresses the separation is as follows.
Although as the Mach number increases, the pressure after the incident shock rises
and so does the adverse pressure gradient in the boundary layer, at the same time
the kinetic energy of the gas in the boundary layer also increases. The post-shock
pressure is proportional to the square of the product of the Mach number and the
sine of the shock (the shock angle decreases with the increase of Mach number), but
the kinetic energy of the gas in the boundary layer is proportional to the square of
the freeatream Mach number. Therefore, the gas ability to withstand the adverse
pressure gradient may increase more than the adverse pressure gradient as the Mach
number rises, therefore possibility of �ow separation decreases as the Mach number
increases.

There is no signi�cant di�erence in the �ow separation characteristics between the
fully catalytic and non-catalytic wall at low wall temperature (300K), but the sep-
aration zone under radiation equilibrium wall and ablative wall condition are larger
than that under low temperature wall conditions. For example, under the fully
catalytic wall at 300K condition, a big and a small vortex can be seen in the re-
circulation zone in Figure 17 (the case at Mach number of 14 with 27deg wedge),
while under the fully catalytic wall. For the ablative wall condition [Figure 16(a)
and (b)] another smaller vortex can be seen above the big and the small vortex,
and the separation zone is larger than that in Figure 17. The friction coe�cients at
the separation point are all close to -0.004 under various wall conditions, and they
attain the negative peak values before the re�ected shock. The peak value is about
-0.022 under low temperature wall conditions and are about -0.026 under radiation
equilibrium wall and ablative wall conditions (see Figure 18). The reason of the
enhancement of �ow separation under radiation equilibrium wall and ablative wall
conditions is mainly because the thickening of the boundary layer. Figure 19 shows
the wall temperature distribution for the case at Mach number of 14 with 27deg
wedge. The rise in wall temperature will obviously promote separation.
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Figure 15: Pressure contour and separation zone streamline for the case of 15deg
wedge (Ma= 14 and Ma=34, ablative wall)

Figure 16: Pressure contour and separation zone streamline for the case of 27 deg
wedge (Ma= 14 and Ma=34, ablative wall)

Figure 17: Pressure contour and separation zone streamline for the case of 27 deg
wedge and fully catalytic wall (Ma= 14 )

Figure 18: Surface pressure and friction coe�cient (27deg wedge, Ma=14)
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Figure 19: Surface temperature at Mach number of 14 and 30 (27deg wedge)

Figure 20: Pressure contour and separation zone streamline (27deg wedge, Ma= 22)

5.3 Thermochemical Characteristics of the Flow�eld

The case at Mach number of 22 with 27deg wedge is taken as an example to investi-
gate the thermochemical properties of the �ow�eld. Strong chemical reactions take
place in the region after the incident shock (generated by the wedge), the separa-
tion and reattachment shock, and the re�ected shock. Ablation at the wall is also
evident. Considering that the e�ects of wall conditions are mainly con�ned to the
vicinity of the wall besides the in�uence on the �ow separation, only the results of
ablation wall conditions is given here.
Figures 20 to 22 show the distributions of pressure, temperature, mass fraction of
O and NO+ The �ow is in thermohemical nonequilibrium, the increase of the vi-
brational temperature after the incident shock lags behind the increase of the trans-
lational temperature, and the chemical reaction lags more. The peak temperature
appears in the vicinity of the reattachment and the re�ected shock, and the peak
mass fractions of atoms and ions appear near the end of the plate. This indicates
that chemical reactions undergo a long relaxation distance. The vibrational temper-
ature of the gas in the downstream of the incident shock is fairly high, and a certain
amount of atoms and ions exist, which will increase further after the re�ected shock.

Figure 21: Temperature contours (27deg wedge, Ma= 22)
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Figure 22: Mass fraction contours of O and NO+ (27deg wedge, Ma= 22)

Figure 23: Mass fraction contours of main ablation species (27deg wedge, Ma= 22)

The lag of vibrational excitation and chemical reaction after the re�ected shock is
obviously weaker than that after the incident shock, which is closely related to the
?pre-heating? of the gas by the incident shock before the re�ected shock.
The ablation products are basically con�ned to the recirculation zone and the bound-
ary layer near the wall. The ablative species with highest mass fraction is in turn
CO,C3,C2,CO2, and CN. The peak mass fraction of CO and CN appears near the
wall after the re�ected shock, while that of CO2 occurs in the recirculation zone,
because the high temperature near the wall after the re�ected shock leads to fur-
ther decomposition of CO2. The peak mass fractions of C3 and C2 appear after
the leading edge shock in the vicinity of the leading edge, which originate from the
sublimation of C. Then the amount of C3 and C2 decreases because of the reactions
with O and N, resulting the formation of CO and CN. Figure 23 shows the mass
fraction distribution of CO, C3, and CO2. Figure 24 shows the normal distribution
of the mass fraction of the ablative species at the positions of peak pressure and
peak temperature, and at the end of the plate. The range of the ablative species
can be seen from the �gure.

6 Conclusion

Taking the compression corner �ow and the boundary-layer �ow with incident shock
wave as examples, the shock wave-boundary-layer interaction �ows with ablation are
numerically studied at free stream Mach number of 10 to 34 and total enthalpy from
6 to 55 MJ/kg. The compression corner angles are 15, 18, and 24 degree, and the
angles of the wedge that produce the incident shock wave are 15, 21, and 27 degree.
The results show:
(1) For the compression corner �ow, the possibility of �ow separation and the sep-
aration range become larger as the corner angle increases, while smaller as the free
stream Mach number rises.
(2) For the boundary layer �ow with incident shock wave produced by a wedge,
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Figure 24: Normal distribution of mass fraction of main ablation species at 2 posi-
tions (27deg wedge, Ma =22)
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the increase of the wedge angle and the decrease of the free stream Mach number
increase the separation possibility and enlarge the separation zone.
(3) As compared with the cases with low-temperature wall, the �ow separation zones
are larger with ablating wall or with high-temperature wall in radiation equilibrium.
For the compression corner �ow, this make the positions for peak values of pressure,
skin friction and heat �ux move to downstream. For the boundary layer �ow with
incident shock wave, this also leads to further e�ects on the �ow properties of the
downstream. Therefore, the wall conditions have more evident e�ects on the �ow
properties for these shock wave-boundary-layer interaction �ows than that for the
�ow over a sphere or a cone.
(4) As the ablation species are mainly limited to the boundary layer except for the
circulation zone, the ablation e�ects are observed mainly in the boundary layer and
the circulation zone. Out of these two regions, the �ow properties for the radiation
equilibrium wall condition are similar to that for the ablative wall.
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Numerical treatment of a particle crusher
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Abstract

In this work micropolar media capable of microinteria production are
investigated. At the beginning a recently proposed kinetic equation for the
moment of inertia tensor containing a production term is presented in order
to extend the standard balances of continuum mechanics. The purpose of
this paper is twofold: a brief introduction to extended micropolar theory
studying resulting effects by means of a concise example and a discussion
of the numerical approach to the presented example. For this purpose a
continuous stream of matter through a crusher is considered so that the total
number of particles will change and an Eulerian approach is indispensable.
This stream is characterized by a sharp front propagating through the domain.
To resolve this sharp front, modern finite volume methods capable of shock
capturing are discussed and applied to the problem.

1 Introduction
Recently, Generalized Continuum Theories (GCTs) have gained the attention of
the materials science community. They are useful in context of high performance
materials with an inner structure for large and small scale applications ranging
from light-weight aerospace and automotive panels down to micromechanics and
microelectronic gadgets. One of the GCTs is the so-called micropolar theory, which
emphasizes the aspect of inner rotational degrees of freedom of a material, see [2], [3,
Sec. 13] or [1]. This theory is particularly promising for applications in context with
soils, polycrystalline and composite matter, granular and powder-like materials, and
even with porous media and foams.

It should be noted that traditionally, the tensor of the moment of inertia of a
discrete particle is a constant property in its co-moving reference frame—for a fixed
observer, this tensor only changes due to rotation, i.e., due to the angular velocity
field 𝜔. However, it has recently been emphasized by Ivanova and Vilchevskaya,
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[5], that the moment of inertia tensor density in a micropolar continuum should
be treated as an independent field variable just like the inertia linked to linear
momentum, namely the field of mass density, 𝜌. They were the first to propose a
balance equation for 𝐽 , which contains a production term, 𝜒𝐽 , of moment of inertia
due to “structural transformations” as they called it. This is supposed to mean that
the moment of inertia will change due to combination or fragmentation of particles
during mechanical crushing or chemical reactions. In addition, a production may
arise because of phase transitions or physical property changes, such as magnetization
or polarization due to electromagnetic field.

We therefore need to extend the original goals of micropolar theory. In what
follows we will initially formulate the corresponding equations in a rather general
manner, ignoring a possible coupling between translational and rotational kinetic
energy. After that we shall successively specialize to the needs of this paper. In this
spirit, we state the theory as follows:

The determination of the primary fields of micropolar theory, i.e., the mass
density 𝜌(𝑥, 𝑡), the linear velocity 𝑣(𝑥, 𝑡), the symmetric, second rank, and positive
definite specific moment of inertia tensor 𝐽(𝑥, 𝑡) in units of m2, and the spin 𝜔(𝑥, 𝑡)
(a.k.a. angular velocity), relies on field equations for the primary fields. The field
equations are based on balance laws and need to be complemented by suitable
constitutive relations. In regular points the macroscopic balances read as follows:

∙ the balance of mass and balance of momentum:

𝛿𝜌

𝛿𝑡
+ 𝜌∇ · 𝑣 = 0 , 𝜌

𝛿𝑣

𝛿𝑡
= ∇ · 𝜎 + 𝜌𝑓 , (1)

∙ the balance of the moment of inertia tensor:

𝛿𝐽

𝛿𝑡
+ 𝐽 × 𝜔 − 𝜔 × 𝐽 = 𝜒𝐽 , (2)

∙ and the balance of spin:

𝜌
𝛿𝐽 · 𝜔

𝛿𝑡
= ∇ · 𝜇 + 𝜎× + 𝜌𝑚 + 𝜌𝜔 · 𝜒𝐽 . (3)

We denote by

𝛿(∙)
𝛿𝑡

= 𝜕(∙)
𝜕𝑡

+ 𝑣 · ∇(∙) (4)

the substantial (a.k.a. material) derivative of a field quantity. Moreover, 𝜎 is the
(non-symmetric) Cauchy stress tensor, 𝑓 is the specific body force, 𝜒𝐽 (a second
rank symmetric tensor) is the production related to the moment of inertia tensor 𝐽 ;
𝜇 is the couple stress tensor, 𝜎× := 𝜖··𝜎 is the Gibbsian cross applied to the
(non-symmetric) Cauchy stress tensor, 𝜖 being the Levi-Civita tensor, and 𝑚 are
specific volume couples.

In context with Eqn. (2) several comments are in order. It has already been
mentioned that in its present form this equation can only be found in a recent paper
by one of the authors, [5]. There is a precedent to the equation for the inertia tensor,
𝐽 , namely what is called “conservation of microinertia” in [2, p. 15]. However, that
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equation does not contain a production term, 𝜒𝐽 . On the macroscopic continuum
level this new term must be interpreted as a constitutive quantity. One of the
purposes of this paper is to investigate such a constitutive relation for the production
of moment of inertia 𝜒𝐽 (see below).

Due to the production of moment of inertia, we face another problem: Continuum
mechanics of solids is typically formulated in the Lagrangian form, a.k.a. material
description, which is based on the concept of an indestructible “material particle.”
This particle is identifiable by its reference position vector, 𝑋, which can then be
used in a bijective mapping for describing uniquely the motion, 𝑥 = �̂�(𝑋, 𝑡), of
the particle through three-dimensional space in time. If the Lagrangian idea of
a material particle is followed, the material particles must stay together during
the motion and there should be no exchange of subunits between them. Particles
are neither destroyed nor generated. In other words, this concept is not applicable
to incorporate production. Also note that within the material description of a
micropolar continuum, each material point is phenomenologically equivalent to a
rigid body, such that its moments of inertia do not change.

However, as indicated, there is a catch: A granular medium (say) is frequently
milled. This affects the material particle, because its subunits will be crushed.
They will change their mass and their moment of inertia and, what is more, during
the milling process there might even be an exchange of crushed subunits between
neighboring material particles, which are then no longer material in the original sense.
Consequently, on a macroscopic scale the moments of inertia will change as well and
all of this gives rise to the production term, 𝜒𝐽 . This is why [5] have decided to
depart from the Lagrangian description and turned to the Eulerian perspective
(a.k.a. spatial description) instead.

Moreover, in this paper we are also not concerned with the determination of the
angular velocity field 𝜔(𝑥, 𝑡). In fact, it is our intention to show that a balance for
rotational inertia and hence the production term in Eqn. (2) are physical meaningful
by themselves, independent of the angular velocity. In the following, problems are
regarded where the angular velocity is equal to zero. Thus instead of Eqns. (1)–(3)
we are left with the following simplified set of equations for 𝜌, 𝑣, and 𝐽 :

𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌𝑣) = 0 , 𝜌

𝜕𝑣

𝜕𝑡
+ 𝜌𝑣 · ∇𝑣 = ∇ · 𝜎 + 𝜌𝑓 ,

𝜕𝐽

𝜕𝑡
+ 𝑣 · ∇𝐽 = 𝜒𝐽 . (5)

We now proceed and illustrate the theory with the example of a crusher and
consider what happens if the number of particles does change. A production term in
form of a linear population growth model has been proposed before in [5]. However,
in that paper only the time dependence in a homogeneous medium was studied,
whereas now an initial-boundary value problem is considered.

2 Analysis of a one-dimensional crusher
Consider the situation depicted in Fig. 1. We consider the following problem in
infinite one-dimensional space, −∞ < 𝑥 < ∞: A continuous flow of spherical
particles is moving in from left to right at a constant prescribed speed, 𝑣0. The flow
passes a subregion −𝛿 ≤ 0 ≤ 𝛿. There, the entering particles of the flow are crushed
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continuously to form smaller and smaller particles. As a simplification we assume
that the momentum balance given in (5) is identically satisfied and the balance of
mass and of moment of inertia read:

𝜕𝜌

𝜕𝑡
+ 𝑣0

𝜕𝜌

𝜕𝑥
= 0 ,

𝜕𝐽

𝜕𝑡
+ 𝑣0

𝜕𝐽

𝜕𝑥
= 𝜒𝐽 . (6)

For the production of moment of inertia we postulate the following relationship:

𝜒𝐽 (𝑥, 𝑡) =

⎧⎪⎪⎨⎪⎪⎩
0 if − ∞ < 𝑥 < −𝛿 ,

−𝛼 ⟨𝜌(𝑥, 𝑡)⟩0 ⟨𝐽(𝑥, 𝑡) − 𝐽*⟩ if − 𝛿 ≤ 𝑥 ≤ 𝛿 ,

0 if 𝛿 < 𝑥 < ∞ ,

(7)

where 𝛼 is a positive rate constant, 𝐽* indicates the moment of inertia pertinent
to the minimum crushing size of the particles, and ⟨∙⟩ denotes the Macaulay
bracket1. The density field is corporated by a Heaviside function to ensure that
the production vanishes if the density is zero.

𝑥𝑥 = 0 𝑥 = 𝛿𝑥 = −𝛿

crusher region

𝜌0 (𝑥)
𝜌0

Figure 1: Sketch of the idealized one-dimensional crusher problem. The initial
condition for the density is shown by the blue line.

The problem for the mass density can be solved in closed form by using the
method of characteristics for initial value problems on the infinite domain (see [8]).
We find:

𝜌(𝑥, 𝑡) = 𝜌0(𝑥 − 𝑣0𝑡) , (8)

where 𝜌0 is the initial mass density distribution, which, for simplicity, is assumed to
be a piecewise constant function, see Fig 1, defined as follows:

𝜌 (𝑥, 𝑡 = 0) = 𝜌0 (𝑥) :=

⎧⎪⎪⎨⎪⎪⎩
𝜌0 if − ∞ < 𝑥 < −𝛿 ,

0 if − 𝛿 ≤ 𝑥 ≤ 𝛿 ,

0 if 𝛿 < 𝑥 < ∞ .

(9)

In other words, the solution is a step function of height 𝜌0 steadily and uniformly
advancing from left to right with velocity 𝑣0.

We will now find the solution for the moment of inertia, Eqn. (6)2. Recall that
we have to distinguish various cases in Eqn. (7), and therefore the infinite interval

1A representation for the Macaulay bracket is given by ⟨𝑥⟩ = 1
2 (|𝑥| + 𝑥).
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−∞ < 𝑥 < +∞ is dissected into three regions, where the boundary value at 𝑥 = −𝛿
is known. Consequently, the method of characteristics as pertinent to a boundary
value problem must be used. The solution process is also detailed in [8] and the final
result with 𝐽0 = const. being the moment of inertia corresponding to the particles
with density 𝜌0 reads:

∙ at times 0 ≤ 𝑡 < 2𝛿
𝑣0

with the position of the shock front 𝑥s = −𝛿 + 𝑣0𝑡 < 𝛿:

𝐽 (𝑥, 𝑡) =

⎧⎪⎪⎨⎪⎪⎩
𝐽0 if − ∞ < 𝑥 < −𝛿 ,

𝐽* + (𝐽0 − 𝐽*) exp
(︁
− 𝛼

𝑣0
(𝑥 + 𝛿)

)︁
if − 𝛿 ≤ 𝑥 < 𝑥s ,

0 if 𝑥s ≤ 𝑥 < ∞ .

(10)

∙ at times 2𝛿
𝑣0

≤ 𝑡 < ∞ with the position of the shock front 𝑥s = −𝛿 + 𝑣0𝑡 ≥ 𝛿:

𝐽 (𝑥, 𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝐽0 if − ∞ < 𝑥 < −𝛿 ,

𝐽* + (𝐽0 − 𝐽*) exp
(︁
− 𝛼

𝑣0
(𝑥 + 𝛿)

)︁
if − 𝛿 ≤ 𝑥 < 𝛿 ,

𝐽* + (𝐽0 − 𝐽*) exp
(︁
−2𝛼𝛿

𝑣0

)︁
if 𝛿 ≤ 𝑥 < 𝑥s ,

0 if 𝑥s ≤ 𝑥 < ∞ .

(11)

In the following, numerical methods are assessed. It is analyzed which methods are
able to reproduce satisfactory approximations for the problem of the particle crusher.

3 Numerical treatment of hyperbolic problems
The numerical treatment of Eqns. (5) or (6) (say) is performed using a finite volume
approach. Problems in which transport phenomena are dominant are often solved
using finite volume methods, since this method can resolve discontinuities more
accurately than finite difference or finite element methods. The starting point of the
finite volume approach is a partial differential equation of the form

𝜕𝑞

𝜕𝑡
+ ∇ · 𝑓 (𝑞) = 𝑝 , 𝑤⊥[[𝑞]] + 𝑛 · [[𝑓 (𝑞)]] = 𝑝𝐼 . (12)

where the first equation describes the evolution of the state variable 𝑞 in regular
points, 𝑓 is the flux density vector and 𝑝 is a production density. The latter equation
represents the balance equation on singular surfaces with unit normal vector 𝑛
where jumps of the state variable occurs and the jump bracket [[∙]] is given by
the difference of limits from both sides, i.e., [[𝐴]] = 𝐴+ − 𝐴−. The quantity 𝑤⊥
represent the discontinuity’s velocity in surface normal direction, i.e., 𝑤⊥ = 𝑛 · 𝑤
and 𝑝𝐼 is a production density. Recall that if the productions vanish, i.e., 𝑝 = 0
and 𝑝𝐼 = 0, Eqn. (12) is called a conservation law. Note that the argument of flux
contains only the state variable itself and not its gradient. This form is chosen as this
section considers purely hyperbolic equations without second order space derivatives,
which may occur if, e.g., the heat conduction equation employing Fourier’s law is
considered. More precisely, the order of space and time derivatives in the considered
PDE should be equal, because this allows to recast the PDE containing higher
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derivatives such as elastodynamic’s wave equation to a first order system describing
the evolution of a state space vector.

In what follows, the basic principles of finite volume methods are introduced.
The main idea is to divide the space into a number of finite Eulerian cells 𝒞𝑖,
𝑖 = 1, . . . , 𝑁cells, and to take the volume average of Eqn. (12) on every cell. Hence,
the averaged equation reads:

1
vol (𝒞𝑖)

ˆ

𝒞𝑖

𝜕𝑞

𝜕𝑡
d𝑉 + 1

vol (𝒞𝑖)

˛

𝜕𝒞𝑖

𝑛 · 𝑓 (𝑞) d𝐴 = 1
vol (𝒞𝑖)

ˆ

𝒞𝑖

𝑝 d𝑉 . (13)

Through the application of the divergence theorem (Gauss integral theorem) the term
involving the flux was transformed to a surface integral. Note that the considered
cells do not change in time and therefore the time derivative in the first term may
be pull out of the integral. By introducing the average state and production in the
𝑖th cell through

𝑞𝑖 (𝑡) = 1
vol (𝒞𝑖)

ˆ

𝒞𝑖

𝑞 (𝑥, 𝑡) d𝑉 , 𝑝𝑖 (𝑡) = 1
vol (𝒞𝑖)

ˆ

𝒞𝑖

𝑝 (𝑥, 𝑡) d𝑉 , (14)

the averaged equation reads:

𝜕𝑞𝑖

𝜕𝑡
+ 1

vol (𝒞𝑖)

˛

𝜕𝒞𝑖

𝑛 · 𝑓 (𝑞) d𝐴 = 𝑝𝑖 . (15a)

For the one-dimensional case, the previous equation specializes to read:

𝜕𝑞𝑖

𝜕𝑡
+ 1

Δ𝑥𝑖

[︂
𝑓 (𝑞)|𝑥

𝑖+ 1
2

− 𝑓 (𝑞)|𝑥
𝑖− 1

2

]︂
= 𝑝𝑖 , (15b)

where Δ𝑥𝑖 = 𝑥𝑖+1/2 − 𝑥𝑖−1/2 denotes the 𝑖th-cell’s volume for the one-dimensional case
and can be regarded as a measure for the grid spacing.

For the one-dimensional specialization further comments are in order. Regarding
the discretization, consider Fig. 2. As before, the cells and also the cell centers, 𝑥𝑖,
are numbered using integers. As common in literature on finite volume methods, the
positions of the cell interfaces are numbered with half-integers. To each interface, a
unique unit normal is attached, such that the 𝑖th-cell’s normal vector coincides with
it for 𝑥𝑖+1/2. For 𝑥𝑖−1/2 the 𝑖th-cell’s normal vector is opposed to 𝑛, viz., it is given
by −𝑛. Hence, the cell interface at 𝑥𝑖+1/2 may be called the “positive” interface 𝛤 +

𝑖

and vice versa for the interface at 𝑥𝑖−1/2. This yields 𝑛 · 𝑓 (𝑞) = 𝑓 (𝑞) for 𝑥 = 𝑥𝑖+1/2

and 𝑛 · 𝑓 (𝑞) = −𝑓 (𝑞) for 𝑥 = 𝑥𝑖−1/2.
Note that the flux term is evaluated on the two surfaces of every cell. This requires

knowledge of the state variable 𝑞 at 𝑥𝑖−1/2 and 𝑥𝑖+1/2. However, as indicated in Fig. 3
by solid red lines, the numerical scheme approximates the state variable 𝑞(𝑥, 𝑡) by
means of cell averages 𝑞𝑖(𝑥, 𝑡), which may be interpreted as the state variable’s values
at the cell centers. Hence, a piecewise constant function with jump at each interface
results and these jumps can be regarded as Riemann problems occurring at each
interface. In the view of these discontinuities, some methods for solving Eqn. (15b)
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𝒞𝑖−1
+−

𝒞𝑖

+−
𝒞𝑖+1

+−

𝑥𝑥𝑖− 3
2

𝑥𝑖−1 𝑥𝑖− 1
2

𝑥𝑖 𝑥𝑖+ 1
2

𝑥𝑖+1 𝑥𝑖+ 3
2

𝑛 𝑛 𝑛 𝑛

Figure 2: Discretization of a continuous domain into a finite number of cells, i.e.,
finite volumes.

make explicit use of solutions to Riemann problems at each interface and are thus
closely related to the method of characteristics. In general, the numerical schemes
using Riemann solutions are characterized by the cyclic application of the following
three steps:

1. Reconstruct the interface values from the cell averages, viz., compute
𝑞+
(︁
𝑥𝑖+1/2, 𝑡𝑖

)︁
and 𝑞−

(︁
𝑥𝑖+1/2, 𝑡𝑖

)︁
for all 𝑖 = 1, . . . , 𝑁cells + 2.

2. Evolve the averaged equation on the time interval (𝑡𝑖, 𝑡𝑖 + Δ𝑡) by making use
of exact Riemann solutions, viz., one time integration step of Eqn. (15b) is
performed.

3. Average the result to obtain updated cell averages.
This procedure is known as Godunov’s scheme or the REA-algorithm (Reconstruct-
Evolve-Average) and can be regarded as a starting point to develop numerical schemes
for transport problems.

To summarize this very brief introduction to finite volume methods, time and
space discretization does not naturally yield a discrete equation in context of finite
volume methods, since the fluxes at the interfaces need to be approximated by
the average cell values. This is in contrast to finite difference methods, whose so-
called difference stencils are obtained by a straightforward application of a Taylor
expansion. But this expansion requires that the solution is continuously differentiable,
which is not the case in context of finite volume methods. The ability of finite volume
methods to resolve discontinuities is due to abstract numerical schemes, which need
to take the wave-like structure of the Riemann solution into account. To assess a
numerical scheme for a conservation law, the following properties should be fulfilled:
(a) low or vanishing numerical disspation, i.e., the considered quantity is conserved,
(b) high resolution of discontinuities, rarefactions and large gradients, (c) numerical
stability, i.e., absence of non-physical oscillatory.

3.1 High resolution methods
Recall that a reconstruction of the interface values is necessary in order to determine
the flux at the interfaces 𝛤 ±

𝑖 . As depicted in Fig. 3 by a red dashed line, a linear
reconstruction of the former continuous function (solid blue line) yields a discontinu-
ous representation with a jump at each interface, because the function’s slope cannot
be calculated exactly from a numerical approximation. Numerical schemes that
reconstruct a numerical solution based on more than piecewise constant functions are
usually termed as high resolution methods. This section presents two high resolution
schemes: the van Leer and the Kurganov-Tadmor scheme. The former one is
available in the open-source python-based finite volume library FiPy, cf. [4]. The

Micropolar media with structural transformations — Numerical treatment

203



𝑥𝑥𝑖− 3
2

𝑥𝑖−1 𝑥𝑖− 1
2

𝑥𝑖 𝑥𝑖+ 1
2

𝑥𝑖+1 𝑥𝑖+ 3
2

Figure 3: Approximation of continuous function (solid blue line) by cell average
(solid red line). The dashed red lines represent the reconstruction of the function
through piecewise linear polynomials.

two schemes are presented w.r.t. the following form of Eqn. (15b):
𝜕𝑞𝑖

𝜕𝑡
= − 1

Δ𝑥𝑖

[︁
𝐹𝑖+ 1

2
− 𝐹𝑖− 1

2

]︁
+ 𝑝𝑖 . (16)

Note that the flux 𝑓 appearing in Eqn. (15b) was replaced by a numerical flux 𝐹 in
Eqn. (16), which is governed by the employed numerical scheme. This numerical flux
in general depends on the limit values of the state variable at the cell interface, i.e.,
𝐹 = 𝐹 (𝑞+, 𝑞−). The discontinuities of the reconstructed state variable 𝑞 at the cell
interfaces are taken into account by denoting the limit values of the state variable 𝑞
at 𝑥𝑖+1/2 through 𝑞+

𝑖+1/2 and 𝑞−
𝑖+1/2 respectively, where 𝑞+

𝑖+1/2 and 𝑞−
𝑖+1/2 denote the limit

values of 𝑞 from the cell 𝒞𝑖 and 𝒞𝑖+1, respectively. Likewise, 𝐹𝑖+1/2 is a short-hand
notation for the numerical flux at 𝑥𝑖+1/2. Introducing the first space-derivative of
the averaged state variable by 𝑞′

𝑖, the discussed linear reconstruction of the interface
value yields the following interface values:

𝑞+
𝑖+ 1

2
= 𝑞𝑖 + 𝑞′

𝑖

Δ𝑥𝑖

2 , 𝑞−
𝑖+ 1

2
= 𝑞𝑖+1 − 𝑞′

𝑖+1
Δ𝑥𝑖+1

2 . (17)

In the following, first the two high-order numerical schemes are presented and
subsequently the determination of the slopes 𝑞′

𝑖 is discussed in Sect. 3.2.

3.1.1 van Leer scheme

The van Leer scheme is derived from Godunov’s method by applying piecewise
linear reconstruction for the linear flux 𝑓 (𝑞) = 𝑞𝑣, where the convective speed 𝑣 is
known, cf. [10]. In doing so, an explicit time integration using a first-order Euler
step is applied. Hence Eqn. (16) reads:

𝑞𝑛+1
𝑖 − 𝑞𝑛

𝑖

Δ𝑡
= − 1

Δ𝑥𝑖

[︁
𝐹 𝑛

𝑖+ 1
2

− 𝐹 𝑛
𝑖− 1

2

]︁
+ 𝑝𝑛

𝑖 , (18)

where the superscript 𝑛 represents an index indicating the respective time-step. The
convective flux for the piecewise linear construction reads, cf. [7, 10], as follows:

𝐹 𝑛
𝑖+ 1

2
=

⎧⎨⎩𝑣𝑞𝑛
𝑖 + 1

2𝑣 (Δ𝑥𝑖 − 𝑣Δ𝑡) 𝑞′𝑛
𝑖 if 𝑣 ≥ 0 ,

𝑣𝑞𝑛
𝑖+1 + 1

2𝑣 (Δ𝑥𝑖+1 + 𝑣Δ𝑡) 𝑞′𝑛
𝑖+1 if 𝑣 < 0 .

(19)
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A simple calculation shows how the interface value 𝑞+
𝑖+1/2 is comprised in the repre-

sentation for 𝑣 ≥ 0

𝐹 𝑛
𝑖+ 1

2
= 𝑣

(︃
𝑞𝑛

𝑖 + Δ𝑥

2 𝑞′𝑛
𝑖

)︃
− 𝑣

𝑣Δ𝑡

2 𝑞′𝑛
𝑖−1 = 𝑣𝑞+

𝑖+ 1
2

− 𝑣
𝑣Δ𝑡

2 𝑞′𝑛
𝑖−1 , 𝑣 ≥ 0 . (20)

The latter representation shows that the discussed flux is decomposed into the flux
resulting from the interface value and an additional term that is governed by the
slope. Note that the case discrimination stems from the fact that the transport
velocity 𝑣 determines the direction, in which the state variable 𝑞 is transported.

For this flux to be numerical stable in the sense that non-physical oscillations are
absent in the vicinity of shock fronts, the slope of the reconstructed solution needs
to be limited. The technique of slope limiting is a consequence of the total variation
property (TVD), for details the reader is referred to [7] among others. Hence, to
obtain the van Leer scheme for the convection equation, the van Leer slope
limiter is employed:

𝑞′
𝑖 = minmod

(︁
2𝑞′

𝑖,bwd., 𝑞′
𝑖,cnt., 2𝑞′

𝑖,fwd.

)︁
. (21)

For approximations of the slope through backward, central and forward differences
and the minmod-function see Sect. 3.2. Note that if such limiters are not used, the
scheme presented is not fulfilling the TVD property. Furthermore, predecessors to
the van Leer scheme were the Lax-Wendroff and Fromm scheme, which do not
use a slope limiter.

3.1.2 Kurganov-Tadmor scheme

The predecessor to the Kurganov-Tadmor scheme (KT) is the Nessyahu-
Tadmor scheme (NT), see [9], which uses a staggered grid in space and is a
Riemann-free solver using explicit time discretization. As outlined in [6], the main
advantage of the NT-scheme is the fact that it is less dissipative compared to the
non-staggered Lax-Friedrichs scheme. In a loose sense, the KT-scheme extends
the NT-scheme by incorporating local wave speed resulting from the discontinuities
at the interfaces. Furthermore, the KT-scheme possesses a semi-discrete form, which
allows to use explicit Runge-Kutta methods for time integration. The numerical
flux for the KT-scheme is given by, cf. [6],

𝐹𝑖+ 1
2

=
𝑓
(︂

𝑞+
𝑖+ 1

2

)︂
+ 𝑓

(︂
𝑞−

𝑖+ 1
2

)︂
2 +

𝑎𝑖+ 1
2

2

(︂
𝑞+

𝑖+ 1
2

− 𝑞−
𝑖+ 1

2

)︂
, (22)

where 𝑎𝑖+1/2 is the maximal local wave speed at 𝑥𝑖+1/2 which is given by

𝑎𝑖+ 1
2

= max
𝑞∈�̃�

𝜚
(︂

𝜕𝑓

𝜕𝑞

⃒⃒⃒⃒
𝑞

)︂
, �̃� = {𝑞+

𝑖+ 1
2
, 𝑞−

𝑖+ 1
2
} . (23)

Therein, 𝜚 (∙) denotes the spectral radius, i.e., the largest absolute value of the
eigenvalues.

Obviously, the numerical flux used in the KT-scheme is composed of two parts:
the average flux resulting from the two limit values and a local speed multiplied
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by the jump at the interface. For this scheme to prevent non-physical oscillations
close to shock fronts, the TVD property must hold as well, [6]. Likewise the slopes
of the reconstructed piecewise linear functions need to be limited in a numerical
implementation.

3.2 Flux and slope limiting
For a uniform spaced grid the backward, central and forward finite differences for
the first derivative read

𝑞′
𝑖,bwd. = 𝑞𝑖 − 𝑞𝑖−1

Δ𝑥
, 𝑞′

𝑖,cnt. = 𝑞𝑖+1 − 𝑞𝑖−1

2Δ𝑥
, 𝑞′

𝑖,fwd. = 𝑞𝑖−1 − 𝑞𝑖−1

Δ𝑥
. (24)

As to which derivative should be used is determined by a so called “slope limiter.”
A slope limiter is a function that takes different approximations of derivatives as
arguments and returns a derivative approximation limited to a realistic value. A
simple limiter is the minmod-limiter2 defined as:

𝑞′
𝑖 = minmod

(︁
𝑞′

𝑖,bwd., 𝑞′
𝑖,fwd.

)︁
.

It returns the smallest value if both arguments are of the same sign and zero otherwise.
The idea behind the construction of this limiter is that if forward and backward finite
differences have different sign, a vanishing slope might be a good approximation for
a sharp front, e.g., a sharp peak. It turns out that this limiter is a special case of a
so called limiter family, i.e., minmod-𝜗 limiter, defined as:

𝑞′
𝑖 = minmod

(︁
𝜃𝑞′

𝑖,bwd., 𝑞′
𝑖,cnt., 𝜃𝑞′

𝑖,fwd.

)︁
, 1 ≤ 𝜃 ≤ 2 . (25)

Alternatively, the “superbee”-limiter is used in this paper, which is defined as:

𝑞′
𝑖 = maxmod

(︁
minmod

(︁
2𝑞′

𝑖,fwd., 𝑞′
𝑖,bwd.

)︁
, minmod

(︁
𝑞′

𝑖,fwd., 2𝑞′
𝑖,bwd.

)︁)︁
, (26)

where the maxmod-limiter returns the maximum value if both arguments are of the
same sign and zero otherwise.

4 Numerical results
This section compares the numerical schemes introduced in Sect. 3. First a linear
advection equation is investigated and then the crusher is considered. In doing so,
the Kurganov-Tadmor scheme was implemented using the Python programming
language using a fourth-order Runge-Kutta scheme for time integration. For
comparison, the van Leer scheme from the FiPy package was used in junction with
an explicit Euler time stepping3, see [4].

2A representation for the minmod operation is given by minmod(𝑎, 𝑏) = 1
2 [sign(𝑎) +

sign(𝑏)] min{𝑎, 𝑏}.
3For all simulations using the KT scheme as well as the ones performed by FiPy the Courant

number a.k.a. CFL number was chosen as 0.5.
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4.1 Linear transport—comparison of numerical schemes
We consider the one-dimensional transport equation with constant velocity 𝑣0 and
piecewise constant initial conditions:

𝜕𝑞

𝜕𝑡
+ 𝑣0

𝜕𝑞

𝜕𝑥
= 0 , 𝑞(𝑥, 𝑡 = 0) = 𝑞0 (𝑥) =

⎧⎨⎩1 𝑥 < 𝑥0 ,

0 𝑥 ≥ 𝑥0 .

As detailed in Sect. 2, the exact solution is the initial condition simply shifted in
space, i.e., 𝑞0 (𝑥 − 𝑣0𝑡). As a first step, the various limiter functions presented in
Sect. 3.2 are compared. In order to do so, 𝑣0 = 0.1 m/s, 𝑥0 = 0 m was chosen and the
equation is solved on the interval 𝑥 ∈ (−1 m, 1 m) applying an inlet-outlet boundary
condition at both ends. The results for the superbee, minmod and minmod −𝜃
limiter are depicted in Fig. 4 for two time steps. Note that 𝜗 = 2 was applied, which
corresponds the limiter function applied in the van Leer scheme.

−1 −0.5 0 0.5 1
0

0.5

1

𝑥 in m

𝑞

exact
superbee
minmod
minmod-𝜗

(a) t = 0.25 s

−1 −0.5 0 0.5 1
0

0.5

1

𝑥 in m

𝑞

exact
superbee
minmod
mimmod-𝜗

(b) t = 1 s

Figure 4: Comparison of various limiters for the Kurganov-Tadmor scheme w.r.t.
the exact solution using 60 equidistant cells.

From Fig. 4 it can be seen that the analytic solution’s sharp shock front is not
retained by any of the limiters. However, non-physical oscillations do not occur and
the shock is tracked sufficiently well. By closer inspection, it is evident that the front
is resolved equally by all limiters at 𝑡 = 0.25 s, viz., the front is “smeared” or blurred
over two cells. In contrast to this, the blur gets larger at 𝑡 = 1 s. It is seen that
the superbee and mindmod-𝜃 limiter resolve the front within four cells, whereas the
minmod limiter uses six cells. This trends continues for larger times and it turns out
that the superbee limiter resolves the shock front the sharpest.

Next, the Kurganov-Tadmor and the van Leer scheme implemented in FiPy
are compared for the one-dimensional transport equation using the same initial and
boundary conditions as well as 𝑣0 = 1 m/s and 𝑥 ∈ (−1 m, 5 m). The simulations are
performed on a coarse grid consisting of 100 equidistant cells and results are shown
in Fig. 5. For the KT scheme, the superbee limiter was applied.

By comparing to the different numerical schemes shown Fig. 5, it can be see
that both solutions approximate the solution with reasonable accuracy. But a close
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Figure 5: Comparison of the Kurganov-Tadmor (KT) and the van Leer (FiPy)
scheme w.r.t. the exact solution.

observation of the results for 𝑡 = 5 s shows that the shock front is blurred more by
the scheme used in FiPy. The solution computed by FiPy uses seven cells in the
shock region whereas the KT scheme resolves the shock within (say) 5 cells. This
blur is more prominent if the space resolution, i.e., the number of cells, is reduced.
Therefore the KT scheme is regarded as preferable scheme for transport problems,
since it not only provides a higher resolution for same discretization but it is also
independent of the considered flux function.

4.2 Crusher problem
This section considers the crusher problem presented in Sect. 2 for 𝛿 = 0.25 m,
𝑣0 = 1 m/s, 𝐽* = 0.25 m2, and 𝛼 = 2.75 1/s. The problem is discretized using 200 cells
on the interval 𝑥 ∈ (−1 m, 4 m). As above the superbee limiter was applied for
the KT scheme. The integral resulting from the additional production term is
approximated by the midpoint rule for the KT scheme. In FiPy, this production
term is incorporated through an internal function called ImplicitSourceTerm, [4].
Fig. 6 depicts the results for the shock front located inside the crusher, at the crusher’s
right boundary and very far away of the crusher.

As shown in Fig. 6, the solution is approximated well for 𝑡 = 0.25 s and 𝑡 = 0.5 s
with exception of the blur of the shock front, which was already discussed in Sect. 4.1.
If the results for 𝑡 = 5 s are considered, the numerical results in the vicinity of the
crusher agree very well with the exact solution. However, the resolution of the shock
front is poor. Also, the estimation of the shock’s position from the numerical results
is not in agreement with the exact solution. This effect is slightly more prominent in
FiPy’s numerical results than for those of the KT scheme. Regarding this, a spatial
resolution of 25 cells per unit length was applied. In contrast to this, the spatial
resolution used for the example in Fig. 5 is given by approx. 16.67 cells. Despite the
lower spatial resolution, an estimation of the shock’s position from the results depicted
in Fig. 5 is better than the one from the results of the crusher problem depicted in
Fig. 6. Hence, the additional production term influences the numerical propagation
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Figure 6: Comparison of the Kurganov-Tadmor (KT) and the van Leer (FiPy)
scheme w.r.t. the exact solution for the crusher problem. The crusher region is
indicated by bold dashed lines.

speed of the shock front. To overcome this problem, a piecewise reconstruction of
integrand in the production term should applied as well.

5 Conclusions and outlook
This paper was dedicated to an investigation of micropolar theory in terms of
rotational inertia production, which requires spatial (Eulerian) description of
problems. In particular, the following tasks have been accomplished:

∙ Initially, the general balance equations of micropolar theory were stated. How-

Micropolar media with structural transformations — Numerical treatment

209



ever, in contrast to classical micropolar theory an extension was made, which
allows us to study the development of rotational inertial characteristics, namely
the specific moment of inertia tensor, 𝐽 , in addition to the translational mea-
sure of inertia, the mass density, 𝜌. It is noteworthy that the balance for 𝐽
contains a production term characteristic of structural transformations.

∙ As a consequence, the concept of an indestructible material particle became
obsolete and required us to employ a spatial (Eulerian) description when
solving the resulting field equations. The whole formulation is Eulerian
based—this includes balances, field equations, and mathematical solution
techniques.

∙ The set of general balance equations was then specialized to the case of the
primary fields: mass density, 𝜌, specific moment of inertia tensor, 𝐽 , and
translational velocity, 𝑣. This was done in order to demonstrate that rotational
inertia, 𝐽 , is a field of its own right and may develop without a present angular
velocity, 𝜔.

∙ An analytical solution to the corresponding field equations for non-homogeneous
crushing of particles was found based on the method of characteristics.

∙ A brief introduction to the finite volume method was given and two numerical
schemes were introduced—the Kurganov-Tadmor and the van Leer scheme.
In a first step, the schemes were compared and assessed regarding the linear
transport of a shock front. Additionally, a comparison for the crusher problem
was performed.

∙ Both schemes performed very well in regions where the solution is continuous.
In case of linear transport, the shock resolution was good but the KT scheme
is slightly preferable. For the crusher problem, the shock resolution was good
if the distance traveled by the shock front remains relatively small. For large
distances traveled, the prediction of the shock’s position is not correct.

∙ As a last remark, it should be noted the Kurganov-Tadmor scheme is in a
sense more versatile than the van Leer scheme implemented in FiPy because
it allows the use of non-linear flux functions. Future work therefore focuses on
the application of the KT scheme to non-linear transport problems such as the
Euler equation of gas dynamics incorporating micro-structural transformation
as proposed in this paper.
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Abstract

The purpose of this study is to determine the in�uence of the parameters
of treatments on the evolution of the behavior and the damage in tension, the
Brinell hardness, the microhardness, the resilience and the microstructure of
the alloy of chemical designation AlSi10Mg and numerical 43300 considering
three states of the material: crude of casting noted: F, tempered noted: T and
matured followed by an arti�cial aging designated T46. The addition of 10%
silicon which gives excellent casting ability and a percentage of magnesium
(≤ 1% Mg) to aluminum are the main agents for improving the mechanical
properties in addition to speci�c thermal treatments which reveal precipitates
of di�erent kinds which hinder the movement of dislocations. We studied the
in�uence of structural hardening, Mg addition and casting method: sand and
shell metal on the elasticity and plasticity characteristics of the polycrystalline
Al-10% alloy. This alloy supports mean mechanical stresses. Parts made from
this alloy are part of the components and realizations of the SNVI (Unit Alu-
minum of Rouiba) and Electro-Industries (Unit Freha Motors in Tizi-Ouzou),
Algeria.

keywords:Al - Si, sand, shell, tempered, tempering, mechanical properties..

1 Introduction

In this study we are interested in the mechanical properties of the alloy hypoeutec-
tic Al - 10% mass. If for �ve di�erent states (crude of casting noted: F, tempered
condition noted: T, ripened noted: M12h). The three states are respectively ma-
tured each followed by tempering noted: T46. Measurements of the characteristics
of strength and ductility were determined, respectively, at room temperature, using
the traditional method of uniaxial tension. The analysis shows that maturation
leads to changes in mechanical characteristics: rise and decline of the respective
elastic and plastic characteristics. The observed variations are associated with the
evolution of the microstructure: the presence of heterogeneities in the as-cast, re-
moving the last during the homogenization and reduction of internal stress during
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maturation of the material. The choice of this material was dictated by the fact
that it is very much used in various mechanicalÂ applications; while the addition of
10% silicon, (0, 17−0, 40)% Mg and ofÂ its heat treatment associated with the var-
ious industrial processes of molding of sandÂ and shell were selected following the
considerable improvements of certain required properties of which silicon gives him
excellent aptitudes forÂ casting combined withÂ magnesium which is the principal
agent of improvement of the mechanical characteristics [112].

2 Studied material

Â The material used isÂ a nuance containing a littleÂ magnesium added in small
quantity (0, 17 to 0, 40)% Mg toÂ alloyÂ to allow the hardening Â and for a rational
use in applications toÂ high mechanical characteristics withÂ the T46 state. This
alloy contains silicon 10% which confers to him very good properties of implemen-
tation in foundry (average �ow, weak volumetric contraction withÂ solidi�cation,
reduction in the withdrawal inÂ a solid state and dilation coe�cient.). It is used for
complex piece, withÂ requirements for average mechanical behaviors and of which
the thicknesses are very low (≈ 5 mm).

3 Elaboration of the alloy studies

3.1 The casting

The fusion of metal is done in an oven with gas of production tipping the forward
backward comprising a graphite crucible of capacity 350Kg of which charge is com-
posed approximately ≈ 40% of new bars in dimensions standard of composition and
characteristics AlSi10Mg although determined., delivered by the French Pechiney
company and a mixture of casting jets ≈ 60% return (appendages of feeding, evac-
uation and regulation, parts defective and rejected). The parts can be respectively
cast in the single metal shell or of the sand moulds prepared for this purpose, thus
the test-tubes of reference are called crude of casting noted: F To seek to increase
more the characteristics of resistances of the state F and to obtain essentially big
constraints of elasticity, big modules of rigidity with low deformations, and the ma-
terial of digital name 43300 is subjected to the noted speci�c treatments: T46.

3.2 Molding

1. Sand: this casting is composed of two half �ngerprints left by the model in
the packed sand.

2. Shell: in this method of casting, the mould is composed of two �oor screeds
(5% of chromium), which has the role to keep the �ngerprints. These �oor
screeds, separated by a joint plan, must be eventually prepared and heated to
a temperature (200div 300)◦ C After analysis, the test pieces cast in sand and
metal shell by gravity have the following chemical composition.
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Chemical elements Si Mg Fe
% According to analysis 9,62 0,34 0,15

Results of the chemical analysis after control on test-pieces cast in sand and shell.

This alloy is manufactured by two di�erent methods: casting sand and casting shell
considering 03 States rated respectively; crude of casting: F, tempered: T and
tempering: T46.

4 Experimental procedure

The physical characterization, chemical and mechanical in general especially crucial
importance for the design of various metal parts subjected to external forces varied
constituents various mechanisms in motion a mechanical component. The designer
can therefore neither calculate nor size these parts without identifying and quantify-
ing their characteristics. To determine them, we reproduce these loads using static
or dynamic tests, usually performed on standard specimens. Four techniques are
used, namely traction to identify the various constraints, the Brinell hardness HB
for the stress �eld, Kcv resilience tells us about the mode of fracture, brittleness
and impact resistance and metallographic shows the structures. We will describe in
more detail and present in the main mechanical characteristics obtained from the
chemical composition of material being AlSi10Mg purpose of this study

5 Results obtained and discussion

The average values â��â��of tensile mechanical properties, resilience and hardness
of the alloy AlSi10Mg are those given by averaging �ve identical specimens for each
of the respective cases and are represented in Figures 1 to 3 below.
In�uence of molding processes in the sand and in the shell for alloy
AlSi10Mg on the characteristics in:
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5.1 resistances

Figure.1 â�� Grouping of the mean curves of comparison (mean stress -
deformation) of the AlSi10Mg alloy casted in sand and in shell: a−K < F >
�S < F >, b−K < T > �S < T > and c−K < T46 > �S < T46 >.

Notation: F - Crude of casting, T - tempered, T46 - tempering, S â�� sand, K -
shell, Îµ (%) - deformation (%) and < σ > (MPa) - stress (Mega Pascal).
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Figure.2 â�� Grouping of the mean Graphs of comparison ( mean stress, mean
hardness and mean Young's modulus - states) of the AlSi10Mg alloy casted in sand
and in shell: a−K < σe > /S < σe >, b−K < σm > /S < σm >, c−K < σr >

/S < σr >, d−K < HB > /S < HB > and e−K < E > /S < E >.

Discussion. It is seen that all curves and all the graphs of the shell casting are
above those of the sand casting whatever of the states considered. In addition to
the increase in mean values â��â��of the characteristics of resistance is the state
F to the T state, reaching its maximum value to the state T46 whatever the two
modes of elaboration at the expense of ductility; This is probably due on the one
hand, the mode for cooling the molds, on the other hand the addition of alloying
elements combined with structural hardening treatment by precipitation.

5.2 Ductility

Figure.3 - Grouping of the mean Graphs of comparison (elongation, coe�cient of
necking, elongation of necking and resilience-states) of the AlSi10Mg alloy casted
in sand and in shell: a-K < A% > /S < A% >, bK < Z% > /S < Z% >, c−K <

Zu% > /S < Zu% > and d−K < Kcv > /S < Kcv >.

Discussion We see that all curves of sand casting are above those of the shell cast-
ing whatever of the states considered. In addition to the increase in mean values of
ductility characteristics is the state T46 that of T to reach its maximum value at
state F regardless of the two modes of elaboration to the detriment of the charac-
teristics of resistance.

Notation: < σm > (MPa) - mean maximum stress (Mega Pascal) ,< σe > (MPa)
- mean elastic stress (Mega Pascal), < σr > (MPa) - mean breaking stress (Mega
Pascal),< HB > - mean hardness Brinell HB,< E >(GPa) - mean Young's mod-
ulus (Giga Pascal), < A% > - mean elongation (%), < Z% > - mean coe�cient of
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necking, < Zu% > - mean elongation of necking, F - crude of casting, T - Â tem-
pered, T46 â�� tempering, - Sand and K-shell.

6 In�uence of hardening on the evolution of me-

chanical properties of the alloy AlSi10Mg mode

casting

Discussion in molding processes in the

6.1 Sand

The average curve of the sand casting to the S < T46 > state is in top of the
other curves i.e. those of the stateâ��s S < T > and S< F >. The constraints,
hardness HB and the coe�cient of rigidity means increase with a clear improvement
of state S < F > to the state S < T > by reaching the maximum values with state
S < T46 > to the detriment of the characteristics of ductility which decrease in
opposite direction. On the other hand the coe�cient of consolidation and Poisson's
ratios remain almost invariants for the sand casting.

6.2 Shell

In the same way the average curve of the shell casting to the K < T46 > state is
in top of the other curves i.e. those of the stateâ��s K< T > and K< F >. The
constraints, hardness HB and the coe�cient of rigidity means increase with a clear
improvement of state K < F > to the state K < T > by reaching the maximum
values with state K < T46 > to the detriment of the characteristics of ductility which
decrease in opposite direction. On the other hand the coe�cient of consolidation
and Poisson's ratios remain almost invariants for the shell casting.
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Dmitry G. Kiryan and George V. Kiryan
diki.ipme@gmail.com

Abstract

A natural physical approach to the analysis of the structure of closed grav-
itating systems has been formulated in the scope of classical mechanics. The
approach relies on the interrelation between densities of nested spheres in-
scribed in the circular orbits of the system bodies. An empirical law has been
defined for the evolution of closed gravitating systems differing in mass, time
scale and distance from the ground-based Observer. The gravitating systems
undergo modifications and evolve from their initial state, namely, a gas-and-
dust formation of almost constant density over the entire volume, to a certain
terminal phase of the process when the system structure becomes similar to
the planetary system (like the Solar system) where almost all the gravitating
mass is concentrated in the vicinity of the system center of gravity. Using the
proposed method of nested spheres, it is possible to reveal for the gravitating
system the character of radial distribution of matter density in the system
symmetry plane, quantitatively evaluate the density of medium containing
the gravitating system under consideration, and assess the current phase of
the system evolution. The research results have led us to a conclusion that
introduction into the scientific practice of such an entity as "dark matter"
has no physical background since it is based on a wrong interpretation of an
"unordinary" distribution of star orbital velocities in galaxies.

1. Definition of the problem

Let us consider as the study object a galaxy that is a closed system of material
bodies of various nature and size interacting purely by gravity. Assume that the
system under consideration is dynamically quasi-stable. The galaxy time scale and
distance from the Observer restrict significantly the methods and techniques for
studying the dynamics and nature of these systems of gravitating bodies.

The visible galaxy structures allow us to suggest the existence of rotation motion
about the dominant center of gravitational attraction since the straight-line motion
is impossible in the system of gravitating bodies. The instrumentally observable
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galaxy structures are nothing but manifestation of the current stage of gravitational
compaction. This is only an instant at the time scale of evolution from a condi-
tionally static gas-and-dust “cloud” to a quasi-stable rotating system of gravitating
bodies.

The only available observation data are the Doppler1 measurements of radial
velocities2 of some stars in the galaxy rotation plane. Hereinafter we assume that
all the stars and other material objects move in the galaxy rotation plane along a
circular trajectory about the dominant center of attraction.

Let us define the problem as follows: using linear velocities of a limited num-
ber of stars located in the galaxy rotation plane, construct the radial distribution
of the matter density ignoring the star formation processes and non-gravitational
interaction effects.

2. System of nested spheres

A galaxy is a quasi-stable cluster of material objects, such as stars, gas-and-dust
formations, nearly invisible and absolutely invisible objects. The total galaxy matter
as a whole participates in the complicated rotation about its dominant center of
attraction. As known from classical mechanics, the very possibility of a material
body motion in the gravity field along a circular orbit, i.e., with a constant radius
and constant orbital velocity, is due to the total gravitating mass enveloped by a
sphere inscribed in the circular orbit of the body under consideration.

Why it should be a sphere? Why not another rotary figure with the symmetry
axis coinciding with the galaxy rotation axis? It is of note here that the probe mass3

located in the galaxy rotation plane makes no difference (from the gravitational point
of view) between the gravitating mass of a sphere and another rotary body inscribed
in its orbit. We have chosen a sphere because parameters of other rotary figures can
hardly be quantitatively described due to multiple conditionalities and uncertainties
in the visible configuration of the galaxy.

Thus, the observed star belonging to the galaxy under consideration plays the
role of a probe mass by observing which it is possible to assess the gravitating mass
keeping it in the orbit (a circular orbit in our case).

Designate the dominant attraction center of the galaxy as O . Bring the xOy

Cartesian system into coincidence with the galaxy rotation plane (Fig. 1).
Assume that all the Ai stars, as well as the remaining matter, move about the

attraction center O in the xOy plane counterclockwise along circular orbits4. Based
on the Doppler shift of star spectrum lines, Observers determine the stars’ relative
radial velocities which are further used to calculate star orbital velocities vi .

Let us write down an expression for the gravitating mass of matter located in
a sphere whose radius is equal to that of the star Ai (a probe mass) circular orbit.
Taking into account that any selected star Ai with gravitating mass mi moves in

1The Doppler effect is the shift of spectral lines of a moving radiation source.
2The body velocity along the line connecting the Observer and radiation source.
3The "probe mass" is a material body (a research tool) that does not significantly distort the

studied gravity field of the system of gravitating bodies.
4Generally, trajectories of stars and other bodies are continuously evolving open spatial curves.
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Figure 1: Galaxy rotation plane xOy.

the galaxy symmetry plane along a circular orbit of radius r (hereinafter we omit
index i), the force balance equation for the gravity fg and centrifugal fω forces may
be written as:

fg ` fω “ 0 , (1)

where

|fg| “ rm

ghkkikkj
GĂM
r2

, rm “ m

ˆ
1 ´

ρ0

ρprob

˙
(2)

and

|fω| “ m rω2 , v “ ωr . (3)

Here G is the gravitation constant; ĂM is the gravitating mass of the sphere inscribed
into the star orbit of radius r; m, rm are the star inertia and gravitating masses5;
ρ0 is the density of medium containing the galaxy; ρprob is the probe mass (star A)
density; g is the gravity field intensity at distance r from the attraction center O;
ω is the angular velocity of the star rotating about attraction center O.

Therefore, based on the star A velocity and distance from the attraction center
O, we can find gravitating mass ĂM of the matter enclosed in the sphere inscribed
in the star A orbit of radius r. Using the force balance equation (1) and taking into

account (2) and (3), obtain the expression for gravitating mass ĂM

ĂMpr, vq “
1

Gkρ
rv2 , kρ “

ˆ
1 ´

ρ0

ρprob

˙
(4)

and density of the gravitating mass enclosed in the sphere of radius r

ρpr, vq “
ĂMpr, vq

V prq
“

1

4

3
πGkρ

´v

r

¯2

, (5)

5Interrelation between the inertial and gravitating masses is described in detail in paper [7, 8].
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where V prq is the volume of the sphere inscribed into the star A circular orbit.
Here we should emphasize that the assumption on the star orbit circularity stipu-

lates that the star is gravity-neutral to all the gravitating objects beyond the sphere
inscribed into its orbit and interacts only with all the averaged gravitating matter
located in the sphere. The orbit circularity also means that there is no friction with
the material medium ρ0 in density which is external to the star.

Now consider a group of n probe masses (stars) belonging to the galaxy under
study and lying in its rotation plane xOy. In the scope of the defined task, our goal
is to reveal how the gravitating matter is distributed in the galaxy rotation plane.
Let us assign a gravitating sphere of radius ri to each probe mass Ai moving along
a circular orbit of radius ri with velocity vi. As a result, a sequence of n nested
spheres with common symmetry center O was obtained. Designate the gravitating
mass of the sphere inscribed in the star Ai orbit as ĂMi. Assume that the matter
is uniformly distributed over the sphere volumes. The sequence of uniform spheres
nested in each other allows us to speak about a sequence of spherical layers, their
masses and densities. Assume also that the spherical layer index is equal to the
lesser of two orbit radii: ri ă ri`1. Gravitating mass ∆ĂMi of each i-th spherical
layer pri`1 ´ riq in thickness is equal to the total gravitating mass of all the material
bodies included in the considered spherical layer volume ∆Vi. Thus, we can define
the volume and mass of the i-th spherical layer as

∆ĂMi “ ĂMi`1 ´ ĂMi “
1

G

`
ri`1v

2

i`1
´ riv

2

i

˘
, (6)

∆Vi “ Vi`1 ´ Vi “
4

3
π

`
r3i`1

´ r3i
˘
, (7)

and use the obtained spherical layer volume and mass to derive the expression for
the density increment:

∆ρi “ ∆ĂMi { ∆Vi “
1

4

3
πG

ri`1v
2

i`1
´ riv

2

i

r3i`1
´ r3i

. (8)

Thus we have obtained the radial distribution for mass increment ∆ĂMpr, vq and
density increment ∆ρpr, vq of a sequence of spherical layers for the galaxy which
we regard as a system of nested spheres with respective gravitating masses that in
the first approximation make the stars moving circularly with velocities known from
observations.

In summary, we have defined in the scope of classical mechanics and based on
the classical law of gravitational interaction between two point masses a method
of nested spheres enabling deriving the radial mass (density) distribution from ob-
servations only of the star radial velocities and distances to the dominant galaxy
attraction center O without refining the observed configuration of the galaxy. The
method of nested spheres allows the transition from the real gravitating system
characterized by a high extent of uncertainty in geometry and matter distribution
to its centrosymmetric gravitational model.

Let us show that the approach suggested provides reliable and significant results
in analyzing closed gravitating systems of various sizes and configurations. Let us
test it by the example of such a relatively well studied system as the Solar System.
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Solar system. Let us construct a gravitationally equivalent model of the Solar
system in the form of a sequence of uniform nested spheres with the Sun as a
dominant center of attraction.

Generally, all the planet trajectories are perturbed orbits, i.e., open spatial curves
elliptic in the first approximation. We will rely upon the fact that we know only the
planet velocities in the pericenter and apocenter and also the distances from these
points of the elliptic orbit to the attraction center. Physical characteristics of the
planets are listed in Table 3 (appendix A).

Assume that all the planets orbit in circular orbits with constant velocities,
which a priori excludes from consideration their gravitational interactions. Each
planet is associated with a sphere of a radius equal to that of its orbit. Let us
take as the planet-to-Sun distance the elliptic orbit semiaxis and assume the planet
velocity (Table 3) to be the arithmetic mean of velocities in the orbit pericenter and
apocenter :

r̄ “ 1{2 prmin ` rmaxq , v̄ “ 1{2 pvmin ` vmaxq . (9)

The fact that we consider averaged velocities and orbit radii means that formally
we have turned to circular orbits. However, in switching from elliptic orbits to
circular ones, we should not lose the gravitational interconsistency of planet masses
which breaks immediately after averaging the orbit radii and velocities. What does
it mean? The planet gravitating masses should comply with the commonly accepted
and many times verified values, namely, the spherical layer masses should be equal
to the known planet masses. Gravitating mass of the sphere enclosing the Solar
system matter should monotonically grow with its radius, while densities of the
spheres inscribed in the planet orbits should form a decreasing sequence according
to formula (5).

The sequence of spheres inscribed in the planet orbits makes it possible to es-
timate gravitating masses of these planets via the spherical layer masses (6). The
order of the layer sequence depends on the planet distance from the Solar system
attraction center. The mass of the sphere inscribed in the orbit of Mercury, the first
planet, appears to be equal to the mass of the Sun and all the remaining matter
of the near-Sun space inside the Mercury orbit. Then, the difference between the
masses of spheres inscribed in the Mercury and Venus orbits is equal to the Mercury
gravitating mass. Cycling through the orbits, we can calculate masses of all the
planets except for Pluto since such calculation needs knowing orbital parameters of
the next planet6

As the quantity to be corrected in order to ensure physical interconsistency of the
system, the mean orbital velocity v̄ of the planets was chosen; it is defined by (9).
Designate the velocity v̄ matching correction as ∆v:

v “ v̄ ` ∆v . (10)

Strictly speaking, we might take as a corrected quantity the planet orbit radius
and fix the velocity, but we have chosen the velocity as a quantity to be corrected.

6Probably, here planet X is meant, whose existence has been justified in paper [1].
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Correction ∆v was derived from the condition of constancy of the planet gravitating
masses given in Table 3 (appendix A).

As a result, we have obtained a gravitationally balanced and centrally symmetric
model for the Solar system whose characteristics are presented in Table 1.

r, ˚min v, km/s ρ, kg/m
3

m{MC
ĂM{M@

Sun — — — 332937.079 1.000000000

Mercury 3.21945 47.87273 2 .14% 0.0395751 0.055 1.000000166

Venus 6.01583 35.02123 0 .01% 0.0113343 0.815 1.000002614

Earth 8.31659 29.78565 0 .02% 0.0059305 1.012 1.000005654

Mars 12.67127 24.13072 0 .43% 0.0025547 0.107 1.000005977

Jupiter 43.28383 13.05622 0 .18% 0.0002189 317.901 1.000960814

Saturn 79.69541 9.62656 0 .09% 0.0000646 95.184 1.001246705

Uranus 159.69159 6.80156 0 .02% 0.0000161 14.536 1.001290364

Neptune 249.89844 5.43722 0 .04% 0.0000065 17.152 1.001341881

Pluto 328.35911 4.74346 3 .29% 0.0000038 0.002 1.001341888

X 583.75857 3.55757 7 .38% 0.0000012 — —

Table 1: Interconsistent parameters of the centrally symmetric gravitational model of the
Solar system. Here m is the planet gravitating mass (including its satellites); r is the radius

of the planet circular orbit expressed in light minutes; ĂM is the gravitating mass of the sphere
inscribed in the planet orbit; M@ and MC are the Sun and Earth masses (the values are taken

from Table 3).

You can see that corrections ∆v to circular velocity v are quite insignificant in
percentage terms (see Table 1, the third column, italic type). However, just these
minor corrections helped the centrally symmetric gravitational model of the Solar
system to remain physically interconsistent with respect to the planet masses.

Fig. 2 represents the densities of nested spheres versus their radii, i.e., versus the
planet distance from the dominant center of attraction (Sun).
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Figure 2: Distribution ρpr, vq of densities of nested spheres inscribed in respective circular
orbits of the planets. The ordinate scale is logarithmic. Distance r is expressed in light

minutes.

Analysis of the spheres’ density ρ dependence on their radii r has shown that the
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dependence is well fittable by an power function with the correlation of almost 1 :

ρprq “ ar´3β ` ρ0 , β “ 0.999999789 *) (11)

where

a “ 4.7471194762 ¨ 1029 rkg{m3p1´βqs ,
ρ0 “ 7.6646813633 ¨ 10´11 rkg{m3s .

(12)

Hence, the density of gravitating spheres keeping the Solar system planets orbit-
ing circularly with constant orbital velocities varies according to a power law with
the power coefficient of ´3β. Fig. 2 clearly demonstrates that any already known or
yet unrevealed material body (e.g., planet X), its velocity and orbit radius should
not contradict the power law of density distribution in the sequence of nested gravi-
tating spheres. This means that, using formula (11) for the supposed average radius
of the planet X circular orbit, it is possible to find the gravitating mass of the sphere
inscribed in this orbit and then determine its circular velocity and respective period
of revolution about the Sun.

Galaxies. After making sure that the above-described method of the nested sphere
sequence is effective, let us apply this approach to spiral galaxies using their “rota-
tion curves” obtained from measured Doppler shifts of star spectral lines. Let us
consider the orbital velocity distribution for stars of the following galaxies: NGC6503,
NGC3198, NGC2403 [2]; NGC598(M33) [3]; NGC7331, Milky Way [4].

Assume that the observed stars of each galaxy move within the galaxy rotation
planes along circular orbits about dominant centers of attraction with constant
velocities. Fig. 3 represents "rotation curves" of the above-mentioned galaxies in
one and the same scale.
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Figure 3: Galaxy "rotation curves".

These velocities were obtained from the measurements of spectral line Doppler
shifts for stars lying predominantly in the galaxy rotation planes.

Substituting data on the radial distribution of orbital velocities (Fig. 3) into
relations (4) and (5), construct for the sequence of nested spheres distributions of
the gravitating masses (Fig. 4) and densities (Fig. 5).

The character of these plots lets us suggest mutual adequacy of kinematic and
physical parameters of the galaxies as well as similarity of their evolution processes.
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Figure 4: Increase in the sphere gravitating mass ĂM with increasing radius of the sphere
enclosing the galaxy matter.
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Figure 5: Radial distribution of the nested sphere densities.

Based on the velocity of the farthest star, we can quantitatively estimate the
galaxy matter gravitating mass and calculate the galaxy mass. Hence, theoretically
it is not difficult to estimate the galaxy mass; for this purpose one should merely
select the galaxy star outermost from the galaxy center of attraction and measure the
Doppler effect. However, here some technical difficulties arise, namely, the farther
is the star, the lower is its angular and, hence, radial velocity, which manifests itself
in the fact that the shift of the star spectral line is hardly detectable.

An important specific feature of falling sections of the plots representing a se-
quence of sphere densities shown in Fig. 5 is good fittability by a power function.
Parameters of power function (11) approximating the falling sections of the sphere
density plots are listed in Table 2. The results, including data on the Solar sys-
tem, are arranged according to the increase in dimensionless coefficient β. One can
see a regularity allowing an assumption that, as parameter β grows, the gravita-
tion compaction intensity decreases, and the gravitating mass concentrates near the
dominant center of attraction.

The obtained densities ρ0 of the background medium (Table 2) do not contradict
the estimates of densities of interstar space and Solar system interplanet matter.

Note. This concerns the comparison of two radial distributions of densities and
their possible interchangeability. Here we mean the density expressions (5) and (8).
For instance, Fig. 6 presents three curves constructed for galaxy NGC3198: the galaxy
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β a ρ0 , kg{m3 correlation

NGC598(M33) 0.5557725 7.4682219¨1012 1.9966367¨10´23 0.99973

NGC2403 0.6658555 5.0648252¨1019 3.4107570¨10´23 0.99969

NGC3198 0.7029228 1.4582120¨1022 4.6049746¨10´25 0.99972

NGC6503 0.7263460 2.0268896¨1023 3.3736620¨10´23 0.99976

NGC7331 0.7282799 1.3999389¨1024 2.0675915¨10´23 0.99938

Milky Way 0.7640299 8.5863233¨1025 1.2554146¨10´21 0.99996

Solar System 0.9999997 4.7471194¨1029 7.6646813¨10´11 1.00000

Table 2: Parameters of power function (11) fitting the falling sections of plots presenting
densities of nested spheres.

"rotation curve", distribution of the spherical layer densities, and distribution of the
nested sphere densities. The Fig. 6 curves show that it is quite possible to replace
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Figure 6: Comparison of density distributions for the sequence of nested spheres and spherical
layers for galaxy NGC3198. 1 – the galaxy "rotation curve"; 2 – density distribution for the
sequence of nested spheres, equation (5); 3 – density distribution for the sequence of spherical

layers, equation (8).

the actual distribution of spherical layer densities with a smoother distribution of
the nested sphere densities without losing physical sense. I.e., we may replace the
sequence of nested spheres with only one sphere with the radial density distribu-
tion (5). We can assert that this sphere characterized by a nonlinear radial distri-
bution of density is fully gravitationally consistent (via the probe mass) with the
real galaxy, because orbital velocity of the probe mass (star) located at the preset
distance from the center of attraction is consistent with observations.

3. Evolution of gravitating systems

The above-revealed power-like character of the nested sphere density distribution
for the Solar system (Fig. 2) and family of galaxies (Fig. 5) allows generalization
and makes it possible to formulate a law that functionally interrelates radius r of
the sphere inscribed in the probe mass (star) circular orbit and density ρ of this
sphere:

ρpr, βq “ ar´3β ` ρ0 , r ą 0 , 0 ă β ă 1 , ρ0 ą 0 . (13)
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Here β is the dimensionless coefficient characterizing the evolution stage of the
gravitating bodies system, which may be interpreted as, e.g., the ratio between the
current time and total time of existence of the system under study; ρ0 is the density
of medium containing the gravitating system. The dimension-matching factor a in
(13) may be derived from boundary condition

ρpr, βq
∣

∣

∣

r“rmax

“ ρmin . (14)

Condition (14) is valid for any value from the 0 ă β ă 1 range and may be regarded
as the law of the gravitating mass constancy in the process of evolution of the
closed gravitating system. Regardless of the way of the system gravitating matter
redistribution with respect to the dominant center of attraction, the total gravitating
mass remains constant at all the stages of the system gravitational compaction. All
this also follows from the initial condition stating that the gravitating system is
closed.

Substituting (14) into (13), define coefficient a as follows:

a “ pρmin ´ ρ0q r3βmax , ρmin ą ρ0 ą 0 , (15)

where ρmin is the density of matter enclosed by the sphere inscribed in the orbit
of the outermost observed object (probe mass) of the system under consideration;
rmax is the radius of this outermost object (probe mass) orbit.

Thus, the densities of nested spheres inscribed in the probe mass circular orbits
may be expressed as follows:

ρpr, βq “

"
ρprmin, βq , 0 ă r ď rmin ,

ρpr, βq , rmin ă r ď rmax .
(16)

Then, let us express the gravitating mass in terms of density and the circular velocity
in terms of mass by using the empiric density distribution law:

ĂMpr, βq “

volumehkkikkj
4

3
πr3 ρpr, βq , vpr, βq “

d
GĂMpr, βq

r

ˆ
1 ´

ρ0

ρprob

˙
, (17)

where ρprob is the density of a probe mass that is a body moving with velocity v

along a circular orbit of radius r about the center of attraction. The probe mass
circular velocity depends only on the gravitating mass of the sphere inscribed in its
orbit.

Choosing a few values of dimensionless parameter β successively growing from 0

to 1 and using (16) and (17), construct three curves for each fixed β: distributions of

density ρprq, gravitating mass ĂMprq, and orbital velocity vprq. The obtained plots
are presented in Fig. 7.

The Fig. 7 plots illustrate the unidirectional process of gravitational compaction
at the constant total gravitating mass. What is meant here is the density redistribu-
tion within the system. This process is characterized by dimensionless parameter β
from (13). Stating the empiric character of the inscribed spheres’ density distri-
bution and using the classical law of gravitational interaction between two point
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Figure 7: Here ρ is the density of a sphere from a sequence of nested spheres inscribed in
the probe mass circular orbits; v is the probe-mass orbital velocity; ĂM is the total gravitating
mass. Black dots indicate the densities, masses and velocities at distance rmax from the center

of attraction which remain invariant during the entire period of the system evolution.

masses (17), we have obtained a structured sequence of rotation curves (orbital
velocity distribution). For instance, β “ 0.67 relates to the orbital velocity distri-
bution having a plateau-like section, which is characteristic of spiral galaxies, while
β “ 0.98 correspond to the velocity distribution in the Solar system.

Thus, dimensionless parameter β of the power function characterizes the current
ratio between the densities of the nested spheres for a closed system of gravitating
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bodies, which, in its turn, determines the "rotation curve" character.

Note that the range limits β “ 0 and β “ 1 should be regarded as singular points
since they correspond to purely theoretical realizations of the physical systems. For
instance, parameter β “ 0 corresponds to the initial stage of evolution, namely, a
motionless gas-and-dust “cloud” whose components then begin rotate regularly about
the dominant center of attraction due to the internal gravitational interaction. The
limiting but not accessible state will be that of total completion of gravitational
compaction when all the gravitating mass concentrates in a finite volume with a
complete absence of matter outside it. This phase is characterized by β “ 1.

Actually, parameter β is a dimensionless time parameter characterizing the cur-
rent state of natural gravitational self-compaction of a closed gravitating system.
"Life times" of each closed gravitating system are different and depend on various
initial conditions of the matter distribution and its characteristics, as well as, to a
lower extent, on accompanying internal non-gravitational processes. The only fea-
ture common for all closed gravitating systems is the power-like character of the
gravitational compaction (13).

"Dark matter". Based on the results of systematic observations of spiral
galaxy 21 and empiric method for estimating the gravitating mass from star lu-
minosity, Rubin V.C. [5] has concluded that characteristic radial distribution of the
circular velocity with a plateau cannot be achieved in the absence of instrumentally
observable material gravitating mass. The presence of the plateau in the "rotation
curve" is out of the researchers’ evident expectations. The dependence was assumed
to be similar to the orbital velocity distribution in the Solar system since the planet
orbital velocities decrease with increasing distance from the Sun. Therefore, in ad-
dition to the classical matter, a hypothetical invisible matter referred to as “dark
matter” was introduced, its physical properties being very obscure.

For instance, Fig. 8 taken from the paper by Yang Y. and Yeung W.B. [2] presents
a characteristic plot demonstrating, in their opinion, a qualitative discrepancy be-
tween the observed linear velocities of the spiral galaxy stars and those calculated in
the scope of classical mechanics upon the condition that the main part of the galaxy
gravitating mass is concentrated in the center of attraction. The anomalousness
of the galaxies’ "rotation curves" 3, namely, the presence of plateaus, disappears if
the family of distributions of star angular velocities 9 in rotating about respective
dominant attraction centers of the galaxies is constructed. These curves are quite
ordinary. The angular velocities decrease towards the gravitating system periphery,
the character of the decrease being consistent with that of the Solar system, i.e., ev-
erything remains in the frame of classical mechanic. This is just the base for further
analysis. Everything located within the sphere inscribed in the star orbit, including
objects instrumentally invisible at present, is material and has a gravitating mass
dictating the star orbital velocity.

The existence of a plateau in the galaxy "rotation curve" can be explained only
by the current matter distribution in the galaxy depending on its gravitational com-
paction. The rotation curve plateau is merely a reflection of the current distribution
of the gravitating matter over the system, which corresponds to a certain stage of
the gravitational compaction of matter in its classical sense. The example of the
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Figure 8: Characteristic distribution of the observed and calculated linear velocities of the
stars over their distances from the Galaxy NGC3198 center [2].
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Figure 9: Angular velocities of rotation of stars about attraction centers of galaxies.

Solar system shows unambiguously that no additional gravitating mass with mystic
properties is needed.

The revealed empiric dependence (13) valid both for the Solar system and galax-
ies leads to an unambiguous conclusion that the hypothetical "dark matter" does
not physically exist as a gravitating substance.

4. Conclusions

Evolution of the gravitating system. The method of a sequence of nested

spheres applied to real gravitating systems enabled us to reveal an empiric law de-
scribing the nonstationary process of gravitational compaction. A nonlinear math-
ematical model of the matter density distribution over a closed gravitating system
has been created. Using the Doppler measurements of star velocities and the galaxy
"rotation curve", it is possible to construct the density distribution of the gravi-
tating matter and calculate the respective evolution parameter β. Dimensionless
parameter β allows estimation of the system relative age and its comparison with
that of other systems. Gravitating systems evolve from the initial state (a dust-and-
gas formation with the initial density distribution) to a final state when almost all
the system matter is concentrated in the vicinity of the dominant center of attrac-
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tion of the system. Essentially, the obtained empiric law of natural gravitational
self-compaction of the system is a variant of solution of the n -body gravitational
interaction problem.

Universality of gravitational interaction. Due to the fact that the falling sec-
tion of distribution of nested sphere densities in the Solar system and spiral galaxies
can be described by a power function, we can speak about universality of the Gravity
Law in its classical interpretation within the instrumentally observable Universe.

Vacuum density. Using the power function to describe the falling part of the
nested sphere density distribution, we succeeded in quantitative estimation of the
vacuum density, i.e., density of the inter-star and inter-galaxy medium containing the
system of gravitating bodies. The results obtained do not contradict the currently
known quantitative estimates of densities of different Universe regions.

"Dark matter". The analysis of "rotation curves" of galaxies belonging to the
instrumentally observable Universe has shown unambiguously the sufficiency of ex-
istence of a sole gravitating mass perceived through classical physical experiments.

The horizontal section (plateau) of the distribution of star orbital velocities is
merely a consequence of the current (by the moment of observation) distribution
of the matter density in the evolving galaxy. The use of such an entity as "dark
matter" for interpreting a "mystic" radial distribution of star orbital velocities in
galaxies should be regarded as one of misconceptions that, unfortunately, sometimes
occur in science7 and always lead away from the truth.

In summary, we can recommend you the following:

Entering an unknown room and seeing nothing but darkness, do not hurry

to create new entities — just switch on the light.

Here words "switch on the light" mean improvement of the physical experiment
technology and development of new physical principles and approaches to measuring
the Doppler effect.

7It so happened that, in interpreting the observed time variations in the Polar Star altitude,
astronomers have missed the fact that the star latitude variations are detected in the rotating
frame of reference with a period equal to a solar day [6]. Theoretical physics has postulated the
equality of the inertial and gravitating masses, however, time showed that this is valid only for a
material medium with zero density which does not exist in our Universe [7, 8].
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Appendix A. Solar System

planets pericenter apocenter mass radius

rp,
˚min vp, km/s ra,

˚min va, km/s mi{mC ri{rC

A – Mercury 2.55732 58.98 3.88157 38.86 0.05526 0.38293

B – Venus 5.97524 35.26 6.05641 34.79 0.81498 0.94989

C – Earth 8.17732 30.29 8.45584 29.29 1.00000 1.00000

D – Mars 11.48683 26.50 13.85569 21.97 0.10744 0.53202

E – Jupiter 41.16848 13.72 45.39918 12.44 317.83477 10.97331

F – Saturn 75.19368 10.18 84.19713 9.09 95.16123 9.14016

G – Uranus 152.39987 7.11 166.98329 6.49 14.53571 3.98085

H – Neptune 247.08482 5.50 252.71205 5.37 17.14831 3.86469

I – Pluto 246.66064 6.10 410.05756 3.71 0.00218 0.18631

– X 583.73716 3.84 583.77997 3.84 10.00000

Table 3: Parameters of the Solar System planets8. The constants used are: rC “ 6371 km
is the Earth’s average radius; mC “ 5.9726ˆ10

24 kg is the Earth’s mass. ˚min is the light
minute (distance expressed in time units). During one minute, light covers a distance of

17987547.4 km.

8http://nssdc.gsfc.nasa.gov/planetary/planetfact.html.
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Adjustment for decrease of magnetic motor noise

Adjustment for decrease of magnetic motor noise
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Abstract

The electric motor inside volume formed by the winding stator and several
rotor core elements is considered. Electromagnetic interaction between stator
�eld winding and the rotor �eld winding, mechanical motor vibrations and
air �uctuations from ventilation motor impeller excite the basic components
of air noise in a wide frequency range. Magnetostrictive forces causing ra-
dial deformation of the stator core rings under alternate �eld action bring the
special addition in motor noise. The dependence of the sound noise pressure
from electromagnetic vibrations inside of the small volume chamber SVC is
considered. The greatest linear size SVC less than half of wave length of the
longest eighen frequency is installed. The construction of the stator core of
the alternate bipolar commutator motor having two acoustic channels with
determinate diameters in the center of each magnet poles is shown. Except of
external surface stator core �uctuations there are two acoustic sources excited
by internal surface stator core and in�uence through two channels in antiphra-
sis according external surface stator core �uctuations into SVC. The e�ective
decrease of the carrying basic 100 Hz frequency magnetic motor noise is car-
ried out. The method of the equivalent generator for symmetric parts in the
electric analogue scheme is advanced. Equivalent generators as two sources
of acoustic �uctuations switched on towards each other are described. The
spectrograms illustrating of magnetic motor noise decrease are shown and the
adjustment for decrease of magnetic motor noise is supported.

1 Formulation of the problem of the low frequency

electric motor noise reducing

Perfection of acoustic measurement technique in low sound and infrasonic frequen-
cies, development of person protection methods from detrimental of health are very
importance as far as increasing functions of power transport and manufacture elec-
tronics.
Infrasonic �uctuations with long wavelength in�uence on all person surfaces by air,
body and bone conductivity with loss of natural localization on a source.
Electromagnetic interaction between electric motor stator and electric motor rotor,
mechanical external and internal vibrations and air rotation �uctuations excite the
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Figure 1

basic components of air noise in a wide frequency range [1]. It is essential the
transition e�ects of motor slip and transformation of rotor core �uctuations bring
appreciable spectral distortions in low sound and infrasonic frequencies.
The greatest distribution in power technical equipments with asynchronous motors
and commutate alternating current motors with magnetic, mechanical and aerody-
namic noise components have been received.
The magnetic motor noise components depending on stator core vibrations in the
small volume box (SVB) with the maximal size no more than half of air wave length
corresponded the double frequency network 100 Hz are investigated. Such SVB for
graduation of measuring microphones, for estimation of sound insulation of small
cabins and the casings damping noise by full or partial shielding of sources are
applied.
The stator �uctuations by the electromagnetic forces are excited. During each half of
a cycle of alternative electrical �eld the stator core as one compression - stretching
cycle is deformed. The doubling network frequency corresponding of mechanical
�uctuations 100 Hz is prevailed.
The sound pressure motornoise depended on motor force vibrationinto closed volume
SVB from Poisson equation are found

pm =
γP0QH

V lk

∫ lk

0

ξm cos kxdx =
pm sin klk

klk
, (1)

where γ = 1,4 is the adiabatic constant; P0 is atmospheric pressure; x is the coordi-
nate of SVB length lk; k is the wave number, c is the sound speed in air, QH is the
stator core external area.
Thus process as statistical is considered when the level of sound pressure is the same
in all points of the SVB and does not depend on coordinates. It is exact restriction
for infrasonic and low frequencies while eighen frequencies of the SVB considerably
above frequencies investigated are excited [2].

236



Adjustment for decrease of magnetic motor noise

Figure 2: The SVB installation: N, S � the stator magnetic poles; SLM - the sound
level meter; PC - the computer; M - the microphone; A - the acoustic short circuit
e�ect; B - the negative correlation e�ect

An electric motor widely using in electric tools (for example drills), household ap-
pliances (washing machines) for research of motor noise was taken.
The installation for analysis of magnetic noise reduction including the SVB with
the linear sizes 0,4m 0,5m 0,6m; the microphone with the ampli�er; the sound level
meter; the computer and the single-phase alternative current collector electric motor
800 Wt was developed (Fig.1).
All electric inputs into SVB and its cover during the measurements as much as pos-
sible were encapsulated and the electrical motor by the rubber damper was installed.

2 E�ect of acoustic short circuit

The e�ect of acoustic short circuit for calculation of loudspeaker enclosure is well
known. The alternative air compression and air stretch by opposite surfaces induc-
tion loudspeaker diaphragm are created. For example when sound pressure on the
forward surface loudspeaker diaphragm is increased than one on the back surface is
decreased. If loudspeaker acoustic ba�e is absent the e�ect of acoustic short circuit
on low frequencies is happened because of the di�raction of sound waves. The result
sound pressure in surrounding space is decreased (Fig.1 curves A).
The similar acoustic e�ect to reduce of low frequency electric motor noise is applied.
For study of the e�ciency factor of motor noise reduction the basic magnetic noise
component with carrying frequency 100 Hz in broadband spectrum of pressure is
examined.
The air capacity inside of the electric motor in the form of volume formed by winding
stator and rotor elements is considered. One hole with pro�le s through the stator
core as the acoustic channel for passing internal sound �uctuations was drilled.
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Figure 3: Frequency dependence between acoustic channel pressure and motor core
external pressure

The passing internal sound �uctuations summarizing with antiphase stator external
sound �uctuations are resulted. Then motor noise pressure into SVB as result of
the interference of internal and external stator core �uctuations is decreased.
For example when motor internal air pressure by compression of stator core �uctu-
ations is reduced then some air enters through the hole into motor. In the one hand
the pressure work for this process as product of force on a way uPs∆t is expressed.
On the other hand the pressure into SVB is reduced and the work of the force for
this process is V∆P. Then next equation is taken

uPs∆t = −V∆P, (2)

were u is the speed of sound �uctuations, s is an area of hole, V is volume of SVB
and P is acoustic pressure.
Passing to limit the equation (1) is presented

uPsdt = −V dP. (3)

The common decision of the equation (3) after integration is shone

p = Ae−
us
V
t, (4)

were A is a constant of integration.
Other conditions being equal the noise pressure into SVB is summarized with ex-
ternal stator core pressure Pex and some adding pressure of an acoustic channel

PSV B = Pex + Ae−
us
V
t (5)

The pressure into SVB changing under some law for example harmonious is consid-
ered

PSV B = Pm cosωt. (6)

For simpli�cation of the analysis the oscillating stator core as identity headphone
diaphragm exciting �at sound waves is represented. Substituting (6) in (3) the
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Figure 4: Noise pressure spectrogram for motor with a pier of stator core holes

di�erential equation having intensity in right part of the equation as the power
characteristic of sound �eld is obtained:

usPSV B + V
dPSV B
dt

= uPm cosωt. (7)

The decision in general view is represented in the form

PSV B = pm cos(ωt− ϕ) + Ae−
us
V
t, (8)

where A is a constant of integration, pm is pressure in the acoustic channel, PSVB
- pressure into SVB.
The values of pm and ϕ can be obtained as

pm = Pm/
√

1 + (ωV/us)2
,ϕ = arctg(ωV/us). (9)

If data about of the acoustic channel and the SVB is determined then preview
equations can be found out �nally but the product ωV/us especially if an equation
for volumetric speed in the acoustic channel for laminar stream (the law Hagen-
Poiseuille) is used in the form

u = πa4
k∆P/8µλk (10)

and also ratio for active component of viscous friction in the channel reduced to area
of diaphragm Sd is represented

rc = 8µλkSt/πa
4
k, (11)

where ak and λk are the radius and the length of the acoustic channel accordingly
and µ is the air dynamic viscosity coe�cient.
Then product ωV/us can be received in the form

ωV/us = ωcfrc = ωτs, (12)
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where cf is the air �exibility into SVB, ω is frequency of acoustic �uctuations and τs
is a time constant of the system: channel - SVB or it is the acoustic low frequency
�lter.
The transfer coe�cient of the acoustic channel kt into SVB can be found in the form

kt = pm/Pm = 1/
√

1 + (ωτs)2. (13)

The frequency dependencies kt in Fig.2 is shown.
The greatest e�ect of mutual antiphase compensation between the acoustic channel
�uctuations and external motor core �uctuations at small ωτk is shown in Fig. 2.

3 Negative correlation e�ect between two acoustic

stator core channels

The construction with two opposite holes drilled through bipolar stator core as one
in each magnetic pole has more e�ective result.
For discussion about e�ect of negative correlation method there are two motor noise
pressure spectrograms into SVB: without stator core holes (Fig.3) and with a pier
of stator core holes as two acoustic channels (Fig.4).
The frequency on abscissa (Hz) and the relative acoustic noise pressure (dB) on
ordinate axis are constructed. The integrate level noise pressure 88 dB by the sound
level meter RFT0024 was �xed. The maximum noise pressure value is corresponding
of the basic magnetic motor noise frequency 100 Hz.
The frequency on abscissa (Hz) and the relative acoustic pressure (dB) on ordinate
axis are constructed. The integrate level noise pressure 81 dB by the sound level
meter RFT0024 was �xed. There are two e�ects of motor noise reduction in Fig.3:
the acoustic short circuit (Fig.1 curves A) and the negative correlation e�ect for the
frequency 100 Hz and �rst harmonics (Fig.1 curves B).

4 Analysis of the magnetic noise reduction e�ects

From comparison of spectrograms in Fig.2 and in Fig.3 the reducing motor noise
pressure on 20 dB for the basic magnetic motor noise frequency 100 Hz is �xed.
Integrate level pressure from 88 dB (without acoustic channels) to 81 dB (with
acoustic channels) in wide strip is decreased.
As follows from stated the e�ective method developed making quieter electric mo-
tors for person protection in low sound and infrasonic frequencies and increasing
functions of power electronics on transport is provided.
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Abstract

For the e�cient error control of numerical solutions of the solid mechanics
problems, the two requirements are important: an a posteriori error bound has
su�cient accuracy and computation of the bound is cheap in respect to the
arithmetic work. The �rst requirement can be formulated in a more speci�c
form of consistency of an a posteriori bound, assuming that it is not improvable
in the order and, at least, coincides in the order with the a priori error estimate.
Several new a posteriori error bounds are presented, which improve accuracy
and reduce the computational cost. Also for the �rst time a new consistent
guaranteed a posteriori error bound is suggested. The presented a posteriori
bounds bear on the counter variational Lagrange and Castigliano principles
which are valid for a wide class of problems.

Introduction
The use of adaptive algorithms can considerably reduce the cost of the stress and
deformation states analysis of structures. The key module of such algorithms imple-
ments some a posteriori error bound or error indicator which allows adequate local
thickening, e.g., of the FEM (�nite element method) mesh in consecutive steps. In
the literature, illustrations of the e�ciency of adaptive algorithms, arranged in this
way, are numerous. Here only the references to [1, 2] are given, where several popular
error indicators are compared when used for the adaptive FEM stress state analysis,
and where many additional references can be found. There are also other strong
incentives for the development of e�cient APEB's (a posteriori error bounds), and
nowdays many commercial computer codes like ANSYS, ABAQUS, FLUENT etc.
contain modules allowing not only to solve the problem, but also to evaluate the
majorant for the error.
For derivation of APEB's many techniques have been developed, which are well
illuminated in the books of Verfurt [3] and Ainsworth & Oden [4], Neittaanmaki
& Repin [5] and, e.g., in recent papers of Ainsworth, Demkowicz & Kim [6] and
Braess & Schoeberl [7]. Primarily they are related to the problems described by
the 2nd order partial di�erential equations with much less attention paid to the
thin plate and shell bending problems, which are widely used in structures and
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are discussed in this paper. We generalize upon thin plate bending problem the
technique of Anufriev, Korneev & Kostylev [8, 9] based on the use of the exactly
equilibrated stress �elds. It allowed to suggest e�cient a posteriori error bounds for
the �nite element solutions of the theory elasticity problems and other 2nd order
elliptic equations. In [8, 9] it was shown by many numerical experiments that these
bounds are computationally cheap and provide very good e�ectiveness indices.

Classical formulations of thin plate and shell bending problems are described by the
4th order elliptic partial di�erential equations and systems of equations. At present,
numerical solutions of such equations are primarily obtained with the use of the
mixed methods. However, at least sometimas, solution of the 4 th order elliptic equa-
tions is, for some reasons, preferable. This inspired development of the a posteriori
estimators for the thin plate bending problem in classical formulations, including as
conform [1, 10, 11] so di�erent types of not conform and DG (discontinuous Galerkin)
methods, see [12, 13, 14, 15]. A part of this paper concentrates on the conform �nite
element approximations and expand the technique of [8, 9], which in this case can
be termed the technique of the exactly equilibrated resultants. Our main goals are to
reduce the computational cost of the evaluation of the bounds and to make them
sharper. For instance, in general the residuals, entering a posteriori bounds, contain
second order derivatives of the approximate values of the moments. In the contrast,
some bounds in this paper contain only �rst derivatives. More over, the norms
in the right parts of the bounds contain not �rst derivatives of the moments, but
one-dimensional integrals of them with variable upper limits. Clearly, both these
features improve the accuracy of our a posteriori bounds. This is supported by the
estimate of the order of convergence of the right part of the a posteriori bound, see
Proposition 1. Finally, in Section 2, one of the most important a posteriori bounds
of the paper is presented for the problem in an arbitrary su�ciently smooth domain.
We term this bound consistent implying that the right part of it has the same order
of smallness as predicted by the corresponding unimprovable a priori error bound.

To concentrate on the basic fatures of the exactly equilibrated resultants technique,
the model problem of a thin plate in rectangle is considered Section 1. However,
there is no principal di�culties visible for expansion of the bounds to the cases of
more general domains and more general equations, e.g., of thin linearly elastic shells.
For supporting the latter, we note that the equilibrated resultants and the spaces
of the self-equilibrated resultants were de�ned for such problems in [16] and used
there for construction of numerical algorithms.

The paper is arranged as follows. In Section 1 we consider approach based on
direct of the equilibrated testing moments. In Subsection 1.1 the problem of thin
linearly elastic plate bending is formulated. Also an example of a posteriori error
bounds by means of exactly equilibrated moments of smooth approximate solutions
are presented. Subsection 1.2 is allocated for a posteriory estimator of the type
termed often functional error majorants. The use of smoothed moments, recovered
from FEM, for the error estimation is considered in Subsection 1.3. The consistent
a posteriori bound is given in Section 2.

The notation ‖φ‖Hk(Q) will stand for the norms in the Sobolev's spaces Hk(Q) on a
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domain Q

‖φ‖2
Hk(Q) = ‖φ‖2

L2(Q) +
k∑
l=1

|φ|2Hl(Q), |φ|
2
Hl(Q)=

∑
q1+q2=l

∫
Q

(∂lφ/∂xq11 ∂x
q2
2 )2dx,

where ‖φ‖2
L2(Q) =

∫
Q φ

2dx1dx2. If Q = Ω, the simpler notations ‖·‖0, ‖·‖k and |·|k
will be used for ‖·‖L2(Ω), ‖·‖Hk(Ω) and |·|Hk(Ω), respectively. The �nite element space
is denoted as V (Ω) and it is always assumed that the �nite element assemblage
satis�es the generalized conditions of quasiuniformity with some mesh parameter
h > 0, see [17].

1 A posteriori error bounds by means of exactly

equilibrated moments

1.1 Problem and equilibrated bounds
For a model problem, it will be used the thin homogeneous linearly elastic plate in
the square π1 = (0, 1)× (0, 1) of the constant thickness h clamped at the boundary
∂π1. Its de�ection of the middle surface of the plate under the transverse load is
described by the equation

D∆∆u = f(x), x = (x1, x2) ∈ π1, u(y) =
∂u

∂n
(y) = 0, y = (y1, y2) ∈ ∂π1 (1)

where D = Eh3/(12(1 − ν2)) and n is the external normal to the boundary,
E and ν are the elasticity module and Poisson coe�cient. The vector M =
(M1,1,M2,2,M1,2)T of moments satisfy the equilibrium equation

LMM ≡
∂2M1,1

∂x2
1

+ 2
∂2M1,2

∂x1∂x2

+
∂2M2,2

∂x2
2

= f. (2)

The energy norms are important characteristics of the error of approximate solutions
of the problem, the squares of two norms can be written as

bvc2U =
D

2

∫
π1

[
(
∂2v

∂x2
1

)2 + (
∂2v

∂x2
2

)2 + 2ν
∂2v

∂x2
1

∂2v

∂x2
2

+ 2(1− ν)(
∂2v

∂x1∂x2

)2

]
dx,

bMc2M =

∫
π1

MTΞMdx

=
1

2D(1− ν2)

∫
π1

[
M2

1,1 +M2
2,2 − 2νM1,1M2,2 + 2(1 + ν)M2

1,2

]
dx (3)

where for the matrix Ξ stands

Ξ =
1

2D(1− ν2)

 1 −ν 0
−ν 1 0
0 0 2(1 + ν)

 .

Suppose ũ(x) is an approximation of the exact solution u, satisfying the boundary
condition in (1), and Φ =(Φ1,1,Φ2,2,Φ1,2)T is the corresponding vector of moments.
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For the �rst step, the case of a smooth ũ(x), e.g., having 4th bounded derivatives
is considered.If Z =(Z1,1,Z2,2,Z1,2)T is any vector of su�ciently smooth moments,
which satisfy (2), then the bound

bu− ũc2U ≤bZ − Φc2M (4)

is the direct consequence Lagrange and Castigliano principles, see, e.g., [18].
In order to get satisfactory bounds (4), the equilibrated vector of moments Z should
be as close as possible to the exact one. Since as a rule the most reliable information
about the exact solution is contained in the approximate solution ũ, it is natural
to use it for de�nition of Z. The simplest way to take it into account is to adopt
Zk,l = Φk,l for two components of the vector Z and de�ne the remaining one from
the equilibrium equation (2). For instance, one can set Zk,k = Φk,k, k = 1, 2, and
take into account that

∂2Z1,2

∂x1∂x2

= 0.5

[
f −

∂2Φ1,1

∂x2
1

− ∂2Φ2.2

∂x2
2

]
in π1. (5)

Taking these facts, the boundary conditions and the notation D = 2D(1 − ν) into
account, one comes to the bound (4) of the form

bu− ũc2U ≤ D
−1

∫
π1

{
2Φ1,2 −

∫ x2

0

∫ x1

0

f(η)dη+

+
∑
k=1,2

∫ x3−k

0

[
∂Φk,k

∂xk
(xk, η3−k)−

∂Φk,k

∂xk
(0, η3−k)

]
dη3−k

}2

dx (6)

Boundary conditions in (1) are essential and, at the numerical solution, e.g., by
Galerkin and FE methods, can be satis�ed exactly, i.e., Φ1,2 = 0 on Γ0. With the
use of this the a posteriori error bound can be also transformed into

bu− ũc2U ≤ D
−1

∫
π1

[∫ x2

0

∫ x1

0

[f(η)− LMΦ(η)] dη

]2

dx. (7)

The bounds (6), (7) are more "symmetric" than the corresponding bounds at the
choice, e.g., Z1,1 = Φ1,1, Z1,2 = Φ1,2 and computation of Z2,2 from (2).
It should be underlined that in the contrast with a posteriori error bounds of many
other types the evaluation of (6), (7) do not require any other computations (e.g., so-
lution of global or local systems of algebraic equations for the rezidual minimization
or local discrete equilibration etc.) except the evaluation of integrals.
1.2 Functional error majorants
For some purposes it is convenient to have an a posteriori bound with an arbitrary
testing resultant vector, i.e., not satisfying the equilibrium equations. This is the
case, when the right part of the a posteriori bound is supposed to be minimized
with the help of such vectors. Such bounds directly follow from the bounds of
the previous section. Let Y = (Y1,1, Y2,2, Y1,2)T be an arbitrary vector, su�ciently
smooth on π1, and Y Eq = Y + δY be the equilibrated vector. The latter can be
de�ned by Y exactly, as it was suggested to de�ne Z by Φ and, in particular, by
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setting Y Eq
k,k = Yk,k, k = 1, 2, and de�ning Y Eq

1,2 from (5), in which Φk,k are replaced
by Yk,k. At that, there is no di�culties to satisfy the boundary condition Y1,2 = 0
on ∂π1. In this way, we come to the �rst one of the bounds

bu− ũcU ≤
⌊
Y Eq − Φ

⌋
M
≤ bY − ΦcM+bδY cM ≤ bY − ΦcM+Ξ(Y1,2, f, Y

[1,2]), (8)

in which Y [1,2] = (Y1,1, Y2,2, 0) and

Ξ2(Y1,2, f, Y
[1,2]) = D−1

∫
π1

{
2Y1,2 −

∫ x2

0

∫ x1

0

f(η)dη +

+
∑
k=1,2

∫ x3−k

0

[
∂Yk,k
∂xk

(xk, η3−k)−
∂Yk,k
∂xk

(0, η3−k)] dη3−k

}2

dx.

The second bound follows from the �rst one by the triangular inequality and can be
rewritten in equivalent but simpler form

bu− ũcU ≤
⌊
Y Eq − Φ

⌋
M
≤
⌊
Y [1,2] − Φ[1,2]

⌋
M

+ Ξ(Φ1,2, f, Y
[1,2]). (9)

Clearly, the bound (7) turns into

bu− ũcU ≤ bY − ΦcM +

{
D−1

∫
π1

[∫ x2

0

∫ x1

0

[f(η) − LM Y (η)] dη

]2

dx

}1/2

. (10)

The drawback of this bound in comparison with (8), (9) is that it contains
2nd derivatives of the components of Y instead �rst derivatives in (8), (9).
For any smooth function F (x) on rectangle Π = (0, a) × (0, b), vanishing on
the intersections of ∂Π with the axes, there is valid the inequality

∫
Π
F 2dx ≤

c
∫

Π
(∂2F/∂x1∂x2)

2
dx with c ≤ 16a2b2/π4, from where and (10) it also follows

that

bu− ũcU ≤ bY − ΦcM +

{
c

D

∫
π1

[f(x)− LMY (x)]2 dx

}1/2

. (11)

The bound is only by the constant di�erent from the popular bound, found in
Neittaanmaki & Repin [5], in which c = cΩ is the depending only on the domain
constant from the Friedrichs type inequality. It is assumed, and it is often realized
in practice, that the appropriate Y is found by minimization procedure applied to
the right part of (11).
The bound (8), (9) has the advantages summarized as follows.
i) They do not contain constants beside one naturally entering the energy norm.
ii) The minimization of the right parts is done with respect only of two components
of Y, and, therefore, the dimension of the system of algebraic equations to be solved
is reduced by ∼1/3.
iii) (8), (9) contain on the right only �rst derivatives of Yk,k, k = 1, 2, implying that
the �nite elements of the class C can be used for de�nition of Yk,k.
iv) Under the integral over π1 we have the one-dimensional integrals of ∂Yk,k/∂xk,
which can additionally improve accuracy.
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1.3 The use of smoothed �nite element solutions

The minimization of the right parts can be circumvented if, before the equilibration,
the FEM solution is subjected to some procedure of smoothing, as it is often done in
many other approaches to the a posteriori error estimation, see [3, 4]. For instance,
one can use the bound (6) with the equilibrated vector Z, in which Zk,k = Φ̃k,k, k =
1, 2, where Φ̃k,k are smoothed �elds Φk,k, whereas Z1,2 is de�ned from (5) with Φk,k

replaced by Φ̃k,k. This transforms the estimate (9) into

bu− ũcU ≤ Ψ(h, u), Ψ(h, u) = where

=

{∫
π1

[
(Λ1,1)2 + (Λ2,2)2 − 2νΛ1,1Λ2,2

]
dx

}1/2

+ Ξ(Φk,k, f, Φ̃k,k), (12)

where Λk,k = Φk,k−Φ̃k,k. One of the options is conveniently to de�ne the components
Φ̃k,k as functions of a �nite element space V (π1) of the class C1 or even of the much
simpler class C. In particular, it can be the same �nite element space, which is
used for solving the problem in (1). For each node x(i) ∈ π1, the nodal parameters,
i.g., values of the moments and, if necessary, their derivatives, are evaluated by the
averaging with weights of the corresponding values of Φk,k and their derivatives at
x(i) over all �nite elements having x(i) for the node. We will call the procedure of
obtaining of smothed moment Φ̃k,l consistent, if for Φ̃k,l and Φk,l the same up to the
constant estimates of convergence hold.
Proposition 1. Suppose the FE mesh is a square mesh of size h, u ∈ Hp+1(Ω) and
the convergence estimates (16) hold. Suppose also that the procedure of obtaining of
smoothed moments Φ̃k,k is consistent. Then Ψ(h, u) satis�es the inequality Ψ(h, u) ≤
chp−5/2 |u|Hp+1(Ω) and can be calculated for O(N) arithmetic operations, where N is
the dimension of the FE space.
The proof is omitted, and it is worth mentioning that it is completed without use
of the super-convergence property of �nite element solutions, which under some
additional conditions can take place and allows to improve the order of hp−5/2 in
the above estimate up to hp−3/2. If the mesh is not rectangular, the computational
cost of Z1,2 can became super-linear with respect to N , even in the case of the
quasiuniform mesh. Some procedures, which are not discussed in this paper, can be
implemented to reduce the cost.

2 Consistent functional error majorant
The most desirable a posteriori error bound provides the exact order of accuracy,
i.e., not improvable for the particular numerical method, used for solution of the
boundary value problem. In this section, it will be presented the a posteriori error
bound, the order of which is the same with the approximation error for the �nite
element interpolation of the exact solution. We consider the problem

∆∆u = f(x), x ∈ Ω, u(y) =
∂u

∂n
(y) = 0, y ∈ ∂Ω, (13)

under the assumptions that the domain Ω with the boundary ∂Ω are su�ciently
smooth and f ∈ L2(Ω). From these assumptions it follows that for any f ∈ L2(Ω),
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the solution u of the problem (13) satis�es the inequality

‖u‖4 ≤ cΩ ‖f‖0 , cΩ = const. (14)

We assume that ũ ∈ H2(Ω) is the approximate solution of the problem by a compat-
ible �nite element method, i.e., of the class C1, which satis�es boundary conditions
of (13) and that the �nite element assemblage satis�es generalized conditions of
quasiuniformity (see [17]) with the mesh parameter h.
To formulate our result we need to introduce the spaces H2(Ω,∆∆) = {v ∈ H2(Ω) :
∆∆v ∈ L2(Ω)} and L2(Ω, LM) = {Y ∈ (L2(Ω))2 : LMY ∈ L2(Ω)}.
Theorem 1. Let u be the solutin of the problem and above assumptions be ful�lled.
Then the error of the �nite element solution of the problem (13) satis�es the a
posteriori bounds

|u− ũ|22 ≤ ch4 ‖f −∆∆w‖2
0 + 2 |w − ũ|22 ,

|u− ũ|22 ≤ ch4 ‖f − LMY ‖2
0 +

[∫
Ω

∑
k+l=2( ∂2ũ

∂xk1∂x
l
2
− Yk,l)2

]1/2

,
(15)

where w and Y are arbitrary function and vector �eld from the spaces H2(Ω,∆∆),
and L2(Ω, LM), respectively, and c = 4c2

2,4c
2
Ω is a constant with c2,4 from (16).

The a posteriori bound (15) possesses several good properties. Suppose that u ∈
Hp+1(Ω), p ≥ 3, and the a priori error estimates

‖(u− ũ)‖k ≤ ck,ph
p−k+1 ‖u‖p+1 , k = 0, 1, 2, ck,p = const. (16)

If to take for w a properly smoothed �nite element solution, which is denoted as
ũsm, then the right part of (15) has the same order hp−k+1 as the right part of the a
priori error estimate (16), assuming u ∈ Hp+1(Ω), p ≥ 3. Therefore, the bound (15)
is consistent.
The outline of the proof is similar and it results in similar bounds as for FEM
solutions of 2nd order elliptic partial di�erential equations. For simplicity, the proof
of a posteriori bound quite similar to (15) will be given below for the error of the
�nite element solution of the Poisson equation

Lu = −∆u = f(x), x ∈ Ω, u |∂Ω = 0. (17)

With respect to the problem (17) and its �nite element solution three assumptions
will be used. i) The domain Ω is su�ciently smooth, f ∈ L2(Ω) and, therefore, for
each such f the inequality

‖u‖2 ≤ cΩ ‖f‖0 , cΩ = const, (18)

holds. ii) The FEM mesh is a quasi-uniform mesh of size h and the conform FEM
solutuion ũ satis�es boundary condition ũ|∂Ω = 0. iii) The solution u of the problem
belongs H l(Ω) with some integer l, 1 ≤ l ≤ p+ 1, and

‖(u− ũ)‖k ≤ ck,ph
l−k ‖u‖l , k = 0, 1,

where p characterizes the order of the polynomials from the space on the respective
reference element.
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According to the assumptions and the technique of Sea, see, e.g., [19], the error in
the L2(Ω)-norm satis�es also the inequality

‖(u− ũ)‖0 ≤ c1,2cΩh ‖u− ũ‖1 =: c1,2,Ωh ‖u− ũ‖1 , c1,2,Ω = const. (19)

The subsidiary problem

Lu = −∆u+ σu = f1(x), x ∈ Ω, u |∂Ω = 0, (20)

with f1 = f + σu and an arbitrary positive number σ, obviously, has the same
solution with (17). According to (17), (18) and Theorem 22 of [19],

‖u− ũ‖2
1 + σ ‖u− ũ‖2

0 ≤ σ−1 ‖f1 − σũ−∆w‖2
0 + ‖u− w‖2

1 =

σ−1 ‖f − σ(u− ũ)−∆w‖2
0 + ‖ũ− w‖2

1 , (21)

where,

σ−1 ‖f − σ(u− ũ)−∆w‖2
0 =

σ−1 ‖f −∆w‖2
0 + σ ‖(u− ũ)‖2

0 + 2

∫
Ω

(u− ũ)(f −∆w)dx, (22)

and, therefore, for any ε>0

2

∫
Ω

(u− ũ)(f −∆w)dx ≤ ε ‖(u− ũ)‖2
0 +

1

ε
‖f −∆w‖2

0 . (23)

If to set ε = 0.5 ‖(u− ũ)‖2
1/‖u− w‖

2
0 and take into account (11), then one comes

to the inequality 1/ε ≤ 2 c2
1,2,Ωh

2, which when combined with (21) � (23) yields

0.5 ‖u− ũ‖2
1 ≤ [σ−1+2c2

1,2,Ωh
2] ‖f −∆w‖2

0+‖ũ− w‖2
1 ≤ ch2 ‖f −∆w‖2

0+‖ũ− w‖2
1

Since σ can be any positive number, this inequality above approves the bound

‖u− ũ‖2
1 ≤ ch2 ‖f −∆w‖2

0 + 2 ‖ũ− w‖2
1 , c = 4c2

1,2,Ω . (24)

The bound (24) is consistent. Together with (15) they greatly improve accuracy of
the similar type posteriori bounds obtained for the approximate solutions of 2nd and
4th order elliptic equations earlier [4, 8, 10]. The di�erence is in the appearance of
the multipliers h2 and h4 before the L2-norns in (24), (15), respectively, instead of
constants in the earlier bounds.

3 Concluding remarks
L2-norms of the residual type terms multiplied by constants are a common place in
the a posteriori error majorants of approximate solutions of the elliptic equations.
In the case of the thin plate bending problem this term depends on the 2 th-order
derivatives of the testing vector of moments. In the paper we obtained the majorant
in which this term is replaced by the other one depending only on the �rs derivatives.
This considerably simpli�es the numerical realization of the error majorant and at
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the same time essentially improves accuracy. Additionally we obtained the majorant
with the same as in the papers of other authors L2-norm of the residual type term,
but with the multiplier O(h2) instead of a constant. This improves the accuracy
of the majorant in the two orders of h making the majorant consistent with the a
priori error bounds. At the derivation of these majorant, only general properties of
solutions of the �nite element method and elliptic boundary value problems were
used. For this reason, there are no di�culties to generalize such error bounds to a
wide range of �nite element methods and elliptic equations. The generalization of
the consistent a posteriori error majorants on the elliptic equations of the order 2n
is considered in the forthcoming paper [20].
Research was supported by the grant from the Russian Fund of Basic Research,
project N 15-01-08847 a.

References

[1] Gratsch Th., Bathe K.-J. A posteriori error estimation techniques in practical
�nite element analysis. Computers and Structures. 2005. No. 83. Pp. 235�265.

[2] Zienkiewicz O. C., Zhu J.Z. A simple error estimator and adaptive procedure
for practical engineerng analysis. International Journal for Numerical Methods
in Engineering. 1987. No. 24. Pp. 337-357.

[3] Verfurt R. A Review of a Posteriori Error Estimation and Adaptive Mesh-
Re�nement Techniques. Chichester: Wiley. 1996.

[4] Ainsworth M., Oden J.T. A posteriori estimation in �nite element analysis New
York John: Wiley & Sons, Inc. 2000. 243 p.

[5] Neittaanmaki P., Repin S.I. Reliable methods for computer simulation Error
control and a posteriori esti-mates. New York: Elsevier. 2004. 305 p.

[6] Ainsworth M., Demkowicz L., & Kim C.-W. Analysis of the equilibrated resid-
ual method for a posterioti estimation on meshes with hanging nodes. Computer
Meth. Appl. Math. Engrg. 2007, No. 196(37-40). Pp. 3493-3507.

[7] Braess D. & Schoberl J. Equilibrated residual error estimator for Maxswell's
equations. Math. Comp. 2008. No. 77. Pp. 651-672.

[8] Anufriev I. E., Korneev V. G., Kostylev V. S. Exactly equilibrated �elds, can
they be e�ciently used for a posteriori error estimation? //Uchenyye zapiski
Kazanskogo gos. universiteta, Seriya: Fiziko-matematicheskiye nauki. Kazan:
Kazanskiy gos. universitet. 2006. No. 148. Str. 94-143.

[9] Korneev V.G. Prostyye algoritmy vychisleniya aposteriornykh otsenok chislen-
nykh resheniy ellipticheskikh uravneniy [Simple algorithms for computation of
a posteriri bounds for numerical solutions of elliptic equations] // Uchenyye za-
piski Kazanskogo universiteta, Seriya: Fiziko-matematicheskiye nauki. Kazan:
Kazanskiy gos. universitet. 2011. No. 154. Str. 11-27. (rus)

250



REFERENCES

[10] Neittaanmaki P., Repin S.I. A posteriori error estimates for boundary-value
problems related to the biharmonic operator. East-West J. Numer. Math. 2001.
No. 2. Pp. 157�178.

[11] Adjerid S. A posteriori error estimates for fourth-order elliptic problems. Com-
put. Methods Appl. Mech. Eng. 2002. No. 191. Pp. 2539�2559.

[12] Liu K. A Gradient Recovery-based a Posteriori Error Estimators for the Ciarlet
- Raviart Formulation of the Second Biharmonic Equations. Applied Mathemat-
ical Sciences. 2007. No. 1. Pp. 997 � 1007.

[13] Beirao da Veiga, Niiranen J., Stenberg R. L. A posteriori error estimates for
the Morley plate bending element. Numer. Math. 2007. No. 106. Pp. 165�179.

[14] Hansbo P., Larson M. G. A posteriori error estimates for continuous/discontin-
uous Galerkin approxima-tions of the Kirchho��Love plate. Preprint 2008:10.
Geoteborg, Sweden. Chalmers University of Technology. 2008.

[15] Georgoulis E. H., Houston P., Virtanen J. An a posteriori error indicator for
discontinuous Galerkin ap-proximations of fourth-order elliptic problems. IMA
Journal of Numerical Analysis. 2011. No. 31. Pp. 281�298.

[16] Korneev V. G. Numerical solution in stresses of problems of shell theory using
oblique-angled meshes. USSR Computational Mathematics and Mathemetical
Physics. 1981. No. 21. Pp. 184-194.

[17] Korneev, V.G., & Langer, U. Dirichlet-Dirichlet Domain Decomposition Meth-
ods for Elliptic Problems, h and hp Finite Element Discretizations. New Jesey-
London-Singapore-Beijing: World Scienti�c. 2015.

[18] Abovskiy N.P., Andreyev N.P., Deruga A.P. Variatsionnyye printsipy v teorii
uprugosti i teorii odolochek [Variational principles in theory elasticity and shells
theory]. Moskow. Nauka. 1978.

[19] Aubin J.-P. Approximation of elliptic boundary-value problems. New York-
London-Sydney-Toronto. Wiley-Interscience. 1972.

[20] Korneev V.G. O tochnosti aposteriornyh funktsional�nyh mazhorant pogresh-
nosti priblizhennyh reshenii ellipticheskih uravnenii (On the accuracy of a poste-
riori functional error majorants for approximate solutions of elliptic equations),
Doklady Academii Nauk. Matematika. (accepted for publication)

Vadim G. Korneev, St. Petersburg State University, Russia

In general, any smooth w(x), x ∈ π1, can be represented as

w(x) =

∫ x2

0

∫ x1

0

∂2w

∂x1∂x2

(η)dη + w(0, x2) + w(x1, 0)− w(0, 0). (25)

and, therefore,

Z1,2 =
1

2

∫ x2

0

∫ z1

0

[
f(η)dη −

∑
k=1,2

(
∂2Φ1,1

∂η2
1

(η))

]
dη + ϕ1(x2) + ϕ2(x1) + c◦, (26)
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where ϕk(x3−k) and c◦ are arbitrary functions and a number, respectively. However,
from the boundary condition in (1), it follows that M1,2 = 0 on ∂π1, and it can be
accepted Z1,2 = 0 on the set Γ0, which is the union of the left and the lower edges
of π1 and the point (0,0). As the result of this one can take ϕk(x3−k) ≡ 0, c◦ = 0
and set

Z1,2 =
1

2

{∫ x2

0

∫ z1

0

f(η)dη −
∫ x2

0

[
∂Φ1,1

∂x1

(x1, η2)− ∂Φ1,1

∂x1

(0, η2)

]
dη2

−
∫ x1

0

[
∂Φ2,2

∂x2

(η1, x2)− ∂Φ2,2

∂x2

(η1, 0)

]
dη1

}
. (27)
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Abstract

The paper deals with computer simulation of ionic wind in the needle-plane
electrode system with the positive polarity of the active electrode. Compli-
cated processes in the corona sheath are substituted with two types of bound-
ary conditions at the anode. The �rst method utilizes an approach, where
the density of the �ow of positive ions is set at the active electrode as the
linear function of the electric �eld strength. De�ning the function requires
experimental values of ignition voltage of corona discharge measured for each
electrode in the system under simulation. The second method uses a more
complicated boundary condition for the ion �ow, which bases on calculation
of the number of ionization collisions near the anode surface. The advantage
of the model is that it requires no experimental input data at a change of the
electrode con�guration. To verify the performance of the models, the structure
of ionic wind in the needle-plate system was studied experimentally. The I-V
curves of corona discharge were measured over a wide range of voltages. Air
velocity distributions in the inter-electrode gap were obtained by the Particle
Image Velocimetry method. Distributions of the electric �eld, charge density
and integral value of the current were calculated for both models. Air velocity
distributions in the ionic wind jet were obtained and analyzed. The simulation
and experiment results agree within su�cient accuracy.

Keywords: Ionic wind, Electrohydrodynamics, Corona discharge, Needle-
Plane, Computer Simulation, PIV method.

1 Introduction

Ionic wind is generated by the corona discharge due to the momentum transfer from
ions moving into the inter-electrode gap to neutral molecules [1]. The phenomenon
underlies a number of notable modern technologies, for example, it enables the cre-
ation of silent coolers for air ventilation [2] and e�cient electrostatic precipitators
[1]. The devices, based on corona discharge and ionic wind, demonstrate a number
of advantages over earlier types: they can function in a wide range of temperatures,
produce no noise, and have no moving parts, thus providing a higher reliability.
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However, the actual development of such equipment pivots on a detailed insight into
the physical processes that cause ionic wind. Computer simulation of the processes
requires signi�cant computational power; therefore, di�erent simpli�ed models are
relevant. The work aims to compare two idealized models. Simpli�cation consisted
of substitution of complicated processes in the corona sheath with a boundary condi-
tion at the active electrode. The �rst method utilizes an approach, when the density
of the �ow of positive ions is set at the active electrode as the linear function of the
electric �eld strength. Another way of setting a boundary condition was presented
in [3]. In case of the negative polarity of the high voltage electrode, it represents a
setting of the variation rate of electron �ow from the electrode. Work [4] adopted
this option for the positive polarity case.

2 Formulation of the problem

The calculation used the �nite element method in the Comsol Multiphysics software
for the needleâ��plane electrode system with axial symmetry S (Fig.1). The dis-
tance between the electrodes is �xed (d = 20 mm). The region of interest (hashed
on the �gure) is bounded from below by ground electrode B. Another boundary Ð¡
separates the region of interest and outer air and is formally open. A sharp tip of
anode A (needle) is considered to be spherical. The sphere radius (0 .125 mm) was
found by using photos of real needle that had been used in the experimental part of
the research.

Figure 1: Schematic of the under study system

The electrohydrodynamics equation set (1) in general case describes the outer area
of corona discharge, where ion-wind velocities are calculated [3]. The set includes
the Poisson equation (1.1), the Nernst-â��Planck equation (1.2) and Navierâ��-
Stokes equations (1.3)�(1.4), which are written in the incompressibility approxima-
tion. The interaction of ions and neutral air molecules, which sets the air in motion,
is expressed by introducing the volume force f = eniE that appears in the right-hand
part of the equation (1.3).
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∆’ = −eni

”
, (E = −∇’ ) (1.1)

∂ni

∂t
+ div (nibE− D∇ni) = 0 (1.2)

fl

(
∂V

∂t
+ (V,∇) V

)
= −∇p + ∆V + eniE (1.3)

divV = 0 (1.4)

(1)

Here ϕ is the electric potential, ni is the ion concentration, E is the electric �eld, V
is the air velocity, p is the pressure, e is the absolute value of the electron charge, ε
is the absolute air permittivity, b is the ion mobility, D is the di�usion coe�cient,
fl is the density of air, and  is the dynamic viscosity of air. The ion mobility was
chosen equal 1 .9 · 10−4 m2/(V · s), that is, within range given in [1]. The present
research considers only the outer region of the corona discharge and the propagation
of positive particles only (unipolar approximation). We can observe processes, which
are speci�c to an actual corona sheath, as a result of de�ning the boundary condition
at the active electrode. We consider two forms of the boundary condition.
In the case of �rst model, density of the �ow of positive ions is set at the active
electrode as the linear function of the electric �eld strength (2):

j (E ) = jn · en, jn =

{
k · (E − E0 ) , E ≥ E0

0 , E < E0
, k →∞ (2)

In order to de�ne this function we have to determine the value E0 , the electric
�eld strength, at which the corona discharge ignites (the threshold �eld). To this
end, the ignition voltage of corona discharge in the experimental electrode system
was �rst determined by approximation of the current-voltage characteristics found
experimentally. Then, computer simulation was used to tackle the auxiliary electro-
static problem (1.1) with the ignition voltage applied to the system, disregarding the
space charge. The maximum value of the electric �eld strength that was observed
at the needle was further used as E0 . Parameter k , which de�nes the slope of the
function (2), has an evident e�ect on the solution of the problem. In this work,
we hypothesized that the solution would attain a certain steady state with growing
k . In this case, the electric �eld strength at the needle surface will be close to the
threshold �eld strength E0 , at which the ionization processes start, in accordance
with the general principles used in various simpli�ed models of the corona discharge
[5].
The second method that was examined in the work utilizes a more complicated
boundary condition for the ion �ux, which bases on calculating the number of ion-
ization collisions near the electrode surface (3). The advantage of the model is that
it requires no experimental input data at a change of the electrode con�guration if
the photoionization coe�cient is known. If unknown, the coe�cient can be mea-
sured for the electrode once in an experiment. As [2] shows, further variations of
the geometrical parameters of the system require no additional experimental data
for computer simulation.
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∂

∂t
j = j

ØeM − 1

ø
(3.1)

ø = ØeM

b∫
0

ds

¯eE (s)
(3.2)

M =

b∫
0

ff (E (s)) ds (3.3)

(3)

Here j is the current density, the Ø is photoionization coe�cient, ¯e is the mobility
of electrons, M is the number of ionizing collisions. The variable of integration in
(3.2)�(3.3) is the coordinate along electric-�eld line, and limits 0 and b correspond
to electrode surface and the outer boundary of corona region, respectively. Function
ff (E ) is the ionization coe�cient. This research uses ff from [2]:

ff (E ) =

{
6 .54e5 [1/m] · ¯eE · exp (−193e5 [V /m] /E ) ,E < 151 .2e5 [V /m]
1 .14e6 [1/m] · ¯eE · exp (−277e5 [V /m] /E ) ,E ≥ 151 .2e5 [V /m]

(4)

Other boundary conditions are the same for both models. The full set is given in
the table:

High voltage
electrode

A

Symmetry
axis
S

Grounded
electrode

B

Open
boundary

C
both ϕ ’ = U (E, er) = 0 ’ = 0 (E,n) = 0
models V V = 0 (V, er) = 0 V = 0 p=0

model No2 M � � M=0 �
model No1 j = (E − E0 )

model No2
ni ∂

∂t
j = j ØeM−1

ø

(j, er) = 0 (∇ni ,n) = 0 (j,n) = 0

3 Experimental study

Veri�cation of computer models is conducted as a comparison of calculated variable
distributions to experimental data. Experimentally measured values are the elec-
trode system current and the air�ow velocity distribution. Current measurement is
actually the voltage measurement on a known resistance using an ADC. The particle
image velocimetry (PIV) method is used to visualize the �ows in the presence of
ionic wind: visualizing aerosol is sprayed in the air, its particles are illuminated with
a laser beam, which goes through a cylindrical lens in order to form a lighted plane.
The electrode system under study is placed in this plane in such a way that the
plane is aligned with the region of interest and passes through the axis of the nee-
dle. Two shots are taken with a high-speed camera. The pair of frames show images
of aerosol particle positions with a known time interval. Most probable displace-
ments are determined using cross-correlation function. With displacements and time
interval, velocity distribution is restored. In order to obtain reliable and authentic
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results, multiple frame pairs are taken, and the velocities are averaged. The method
reliability and absence of particles injection in�uence are proven in [7]. It should be
noted that the laser plane is approximately 1 mm thick, which is much greater than
the radius of curvature for high-voltage electrodes used in the study. This should be
taken into account, when comparing experiment and simulation results, especially
if the region of the greatest velocity gradient is of the same scale.

4 Analysis of results

Below is the comparison of calculations (for both models) and experimental results.
Additionally, some dependences and distributions are illustrated by the data ob-
tained from the simulation.
The I-V curves (Fig.2 (left)) display a parabolic plot shape, typical for corona dis-
charge. Besides, the fact follows from linearity of reduced I-V curves (current-voltage
characteristics divided by voltage) shown on Fig.2 (right). The results of both mod-
els agree with the experimental curve within su�cient accuracy (about 5%). The
�rst model describes the ignition voltage accurately, because the ignition voltage of
corona discharge is a part of determined conditions for the model. But the second
one predicts the threshold voltage with high accuracy also and requires no experi-
mental I-V curve.
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Figure 2: Current per voltage for the simulation and the experiment

The computer simulation allows �nding many di�erent quantities that we cannot
measure experimentally. Fig.3 (left) shows distributions of electric �eld strength
and ion concentration near the needle tip for voltage 8 .8 kV (the corona discharge
has already ignited for the voltage). It is hard to see any visual di�erence in the dis-
tributions for two models, so the results only for �rst model are shown on the �gure.
The surface plots demonstrate the characteristic corona discharge distributions: the
electric �eld attains the maximum on electrode surface and dramatically decreases
with growing distance from the needle tip; the ion concentration Fig.3 (right) has
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the same maximum point, but ions form a cloud that slowly spreads away from the
needle tip.

Figure 3: Distributions of electric �eld strength and ionic concentration in the region
of needle tip

Let us consider the distribution of the electric �eld strength at the needle tip (Fig.4
(left), the zero point of arc length in the plot corresponds to the centerline of the
system). Even though the surface �eld for the �rst method is stronger than for the
second one, the total current from the electrode is higher for the second model (it is
shown in I-V curve at Fig.2).The cause is that the �rst method uses the boundary
condition, which leads to the current start only from the part of the electrode, where
the electric �eld strength is higher than the threshold �eld (E0 ). In the case of the
second model, the produced current is independent of E0 and is de�ned by the
number of ionizing collisions (variable M in (3)). The needle tip distribution of M
is shown on Fig.4 (right) and it is clear that the distribution shape follows that of the
electric �eld. The relationship between these variables results from de�nition of M
and form of function ff (E ) (4). Consequently, the current in the case of the second
model depends also on electric �eld on the active electrode, but the dependence is
more complicated than in the case of the �rst one.
The plot of axisymmetric distribution of electric �eld (Fig.5 (left)) illustrates the
fact that the above-mentioned di�erence between models holds only for a small
region near the needle tip. Both models yield the same values at distances more
than 0 .5 mm from the needle (when the interelectrode gap is 20 mm).
The electric �eld maxima that correspond to di�erent applied voltages are shown on
Fig.5 (right). The plot illustrates that the di�erence between methods remains for
every considered voltage that is higher than the ignition one. For small voltages, the
plots are linear for both models, which is explained by space charge de�ciency. After
corona discharge ignition, electric �eld for both models tends to the stationary level
and the second method allows predicting its value (E0 in terms of the �rst one).
The velocity distributions were obtained from the simulation following the electric
characteristics. Fig.6 shows the comparison between surface velocity plots for the
experiment and the simulation near the symmetry axis for voltage 8 .8 kV . It is
hard to see any visual di�erence in the distributions for two models, so the �gure

258



The Comparison of Two Types of Boundary Conditions for the Active Electrode in
Simulation of Ionic Wind

0 0.05 0.1
1.4

1.6

1.8

2

2.2

E
0

E
le

c
tr

ic
 f
ie

ld
 s

tr
e
n
g
th

, 
V

/m

arc length, mm

 

 

model No1 model No2

0 0.05 0.1
12

12.5

13

13.5

14

14.5

M
, 
n
u
m

b
e
r 

o
f 
io

n
iz

in
g
 c

o
lli

s
io

n
s

arc length, mm

Figure 4: Electric �eld strength and number of ionizing collisions on the needle tip
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Figure 5: Axial distribution of electric �eld and electric �eld maximum from voltage

shows the results only for the �rst of them. Notice that the simulation gives us the
structure of the jet similar to the experimental one (the scales are chosen identical
and velocity maxima at right-hand plot are not shown). We can obtain more detailed
information from the analysis of the line velocity plots.

The plot of radial velocity distribution for the distance of 5 mm from the needle Fig.7
(left) illustrates a good agreement between models and the experiment in region
r > 0 .8 mm. There is a singularity in the experimental research for the needle-
plane system near the symmetry axis: the laser plane is about 1 mm thick, and
steep velocity gradient becomes smoothed. For this reason, we observe the average
velocities in that region; additionally, a slight jet oscillation increases that e�ect.
Therefore, it is not correct to compare results with the experiment for r < 0 .8 mm.
Let us consider the vertical velocity distribution for r = 0 .8 mm (Fig.7 (right)). It
allows comparing the �ow structures for the simulation and the experiment: they are
agree within good accuracy. This means the simulation predicts the jet structure,
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Figure 6: Velocity distributions experiment and simulation

typical for ionic wind: 0 − 3 mm is the acceleration region, 3 − 17 mm is the region
of jet formation and 17 − 20 mm is the deceleration region.

0 2 4
0

2

4

6

8

10

12

v
, 
m

/s

r, mm
0 10 20

0.5

1

1.5

2

2.5

3

z, mm

v
, 
m

/s

 

 

experiment model No1 model No2

Figure 7: Radial (5 mm from needle tip) and vertical (0 .8 mm from axis) velocity
distributions

5 Conclusion

The computer simulation of a positive corona discharge in the needleâ��plane elec-
trode system has been carried out. The results for ionic wind in unipolar approxi-
mation with the two types of boundary conditions on the ion �ow were compared
with those of experimental research. The analysis shows that the use of these types
of boundary conditions allows describing the phenomenon of ionic wind within ac-
ceptable accuracy. Both methods describe special aspects of the phenomenon such
as typical I-V curve and air velocity distribution.
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Distributions of electric �eld strength, space charge density, and current on the ac-
tive electrode surface demonstrate the coherence in investigated models. It should
be noted that the second method is more �exible and comprehensive than the �rst
one. This is grounded on a thorough understanding of corona discharge and gen-
eration of ionic wind. Thus, the model, based on calculation of the number of
ionizing collisions, makes it possible to determine electric �eld strength associated
with corona discharge ignition without experimental data. This fact is an advantage
of the second model.
In addition, we were able to �nd hard-to-detect physical quantities by use of com-
puter simulation because of similarities with the global experimental I-V curve. The
knowledge of current distribution in corona discharge, distribution of electric �eld,
ion concentration in the electrode gap, velocity of particles gives us an insight into
ionic wind.
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Abstract

We have numerically studied the transition to turbulent �ow in a layer of
a viscous incompressible �uid con�ned between concentric spherical bound-
aries performing counter-rotational oscillations relative to the state of rest.
The rotation speeds of both spheres were modulated at the same frequency
and amplitude with the phase shift Ï�. We used an algorithm of numerical
solution based on a conservative �nite di�erence scheme of the discretization
of the Navierâ��Stokes equations in space and semi-implicit Rungeâ��Kutta
scheme of the third order integration accuracy in time. Discretization in space
was performed on grids nonuniform in radial and meridional directions with
concentration near the boundaries and equatorial plane. The transition to
turbulence was caused by an increase in the amplitude of velocity modula-
tion. Using the concept of instantaneous frequency/phase of �ow (based on
the building of the analytical signal of the velocity time series by means of
Hilbert transform), it is established that the turbulence develops in a limited
region of liquid layer, outside which the �ow remains laminar. The turbulent
region of �ow exhibits intermittency of the chaosâ��chaos type with random
alternation of weak and strong turbulence.

1 Introduction

The transition of closed �ows in a viscous incompressible �uid layer from laminar to
turbulent regimes can take place under the action of temporally nonuniform rotation
of boundaries [1]. In a �ow of �uid con�ned between concentric spherical boundaries
and driven by their rotation about a common axis, known as the spherical Couette
�ow (SCF), transitions to turbulence have been previously studied in the case of
periodic variations in the velocity of one of the two boundaries. It was established
that a change in the frequency of modulation of the rotation speed of the inner or
outer sphere can lead to various turbulent �ow regimes near the boundary of their
formation [2, 3, 4].
Both the results of three-dimensional model calculations [2] and the measurements
of �ow velocity by laser Doppler anemometry [3] in combination with �ow imag-
ing showed that modulation of the rotation speed can lead to the development of
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temporally non-uniform turbulence. The most frequently observed non-uniformity
is intermittency of the cycleâ��chaos type, representing irregular alternation of the
laminar and turbulent regions spreading over the entire spherical layer [2]. With
increasing modulation frequency, intermittency of the chaosâ��chaos type (in the
form of randomly alternating regions of weak and strong turbulence) [3] and cy-
cleâ��chaosâ��chaos type [4] was observed. The further increase in the frequency
leads to the development of temporally uniform turbulence. Our measurements [3, 4]
were performed in the region of middle latitudes (i.e., between the equator and pole)
close to the outer sphere, which did not allow us to assess whether nonuniform tur-
bulence has been established in the entire spherical layer.
Previously, we have studied [2, 3, 4] the in�uence of modulation of the rotation speed
on the initial periodic �ow formed between counter-rotating spherical boundaries.
It would be also of interest to consider the possible transition to turbulence directly
from the state of rest. [5] investigated the �ow around a torsionally oscillating sphere
relative to the state of rest. Conclusions concerning the transition to turbulence
were based on the data of �ow imaging and the results of axisymmetric calculations.
However, both these approaches do not allow a �nal judgment to be drawn on the
establishment of a turbulent regime and its characteristics.
The present work aimed at numerically studying the possibility of turbulence for-
mation and characterizing its properties during counterwise rotational oscillations
of two spherical boundaries relative to the state of rest. We have considered the
case of equal modulation frequencies and amplitudes for both spheres, the angular
velocities of which vary with phase shift π.

2 Calculation method and �eld of study

The �ow of a viscous incompressible �uid in a spherical layer is described by a set
of the Navier-Stokes and continuity equations,

∂U

∂t
= U × rotU − grad

(
p

ρ
+
U2

2

)
− νrotrotU, divU = 0 (1)

which are supplemented by the conditions of no slip and nonpercolation at the
boundaries. In a spherical coordinate system with radial (r), polar (θ), and az-
imuthal (ϕ) directions, these conditions take the following form: uϕ(r = rk) =
Ωk(t)rk sin(θ), ur(r = rk) = 0, uθ(r = rk) = 0, k = 1, 2 where the subscripts 1 and
2 refer to the inner and outer sphere, respectively; U , p, and ρ are the �uid ve-
locity, pressure, and density; uϕ, ur, and uθ are the azimuthal, radial, and polar
components of the velocity; rk and Ωk are the radius and angular velocity of ro-
tation of the corresponding sphere; and ν is the kinematic viscosity of �uid in the
layer. The angular velocities of rotation of the spheres are periodically varied as
Ω1(t) = A sin(2πft+ψ1),Ω2(t) = A sin(2πft+ψ2), ψ1−ψ2 = π , where A and f are
the amplitude and frequency of modulation, and ψ1 and ψ2 are the corresponding
initial phases.
By analogy with [2], we have used the computation algorithm based on a conservative
�nite di�erence scheme of discretization for the Navier-Stokes equations and a semi-
implicit third-order accurate Rungeâ��Kutta scheme for integration with respect
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to the time [6]. The spatial discretization has been performed on non-uniform grids
with decreasing cell size toward the boundaries and the equatorial plane. The ratio
of the maximum to minimum cell size was 3, and the total number of nodes was
5.76 · 105.
Model calculations have been performed for the following set of dimensional pa-
rameters: ν = 5 · 10−5m2/s, r1 = 0.075m, r2 = 0.15m, and f = 0.51Hz. The
character of �ow depends on the values of A, f, r1, r2, and ψ1−ψ2. By analogy with
[5], the dimensionless parameters of similarity are introduced as Reynolds numbers
for the inner and outer spheres, Re1 = 2Ar1/2πfδ, and Re2 = 2Ar2/2πfδ (where
δ = (2ν/2πf))1/2 and relative thickness of layer β = (r2 − r1)/r1 = 1. The depen-
dence on the phase di�erence reduces to relation Ω1(t)+Ω2(t) = 0. For the parame-
ters indicated above, we have δ = 5.64 · 10−3m, which corresponds to seven nodes of
the computational grid. Time series of the �ow velocity were recorded at two points.
Point 1 is situated near the inner sphere at the equator (r = 3.55δ, θ = 1.586), while
point 2 is situated near the outer sphere at middle altitudes (r = 2.84δ, θ = 1.033)

3 Results

At Re1 ≤ 55, the �ow is symmetric relative to the axis of rotation and equatorial
plane and only the modulation frequency is present in the �ow velocity spectrum.
As Re1 increases, the �ow loses stability and becomes asymmetric relative to the
rotation axis. Near the inner sphere, the secondary �ow is asymmetric relative to the
equatorial plane and its wave number in the azimuthal direction is m = 1. Near the
outer plane, the �ow is quasi-symmetric relative to the equatorial plane and m = 2.
The velocity spectrum exhibits a second frequency, which is much smaller than the
modulation frequency. With further growth in Re1, the �ow becomes turbulent
and the level of the low-frequency (0.01 − 0.1Hz) region in the velocity spectrum
increases by no less than two orders of magnitude. In a narrow region near the
equator, the �ow retains a spatial structure characteristic of secondary �ow (Figure
1), while chaotization is observed at middle latitudes.
Let us quantitatively characterize the degree of �ow chaotization in terms of
correlation dimension D determined using the relation [7] C(r) ∼ rD, C(r) =

limm→∞
1
m2

∑m
i,j=1H(r(p) − |x(p)

i − x
(p)
j |) , where H is the Heaviside function, r(p)

is the distance in p - dimensional space, and x(ti), x(ti + τ), . . . , x(ti + (p− 1)τ) is a
point in the p - dimensional space that characterizes the state of the system at time
moment ti. The x(t0 + kt) series represents a discrete record of the �ow velocity
at interval ∆t. Thus, D is the slope of the plot of logC(r) = f(log(r)). Here, we
calculate the values of dimensions D1 and D2 using time series of uφ recorded at
points 1 and 2, respectively, and the value of dimension DA calculated for A3D [6],
which refers to the entire volume of �ow:

A2
3D = (3/4π)(r2

2 − r2
1)−1

∫ 2π

0

dϕ

∫ π

0

dθ

∫ r2

r1

(U − U2D)2r2 sin(θ)dr (2)

where U2D is the axisymmetric velocity component de�ned as U2D = (2π)−1
∫ 2π

0
Udϕ

The length of records was no less than 5.9 · 104 points for τ = 300s. The magnitude
of DA is plotted in Figure 2 (curve 1).

265



Proceedings of XLV International Summer School � Conference APM 2017

Figure 1: Equilevel lines uϕ[m/s]: (a) in the ϕ − θ plane near inner sphere (point
1), (b) in the ϕ− θ plane near outer sphere (point 2)), (c) in the meridional plane
passing through the axis of rotation. Re1 = 72, uϕmax = 0.1, uϕmin = 0.4, and
4uϕ = 0.1. White areas correspond to uϕ ≥ 0.1; increasing intensity of background
corresponds to decreasing uϕ. The moment of time corresponds to an increase in
the rotation velocities of 0.2s upon passage through the zero level.

Figure 2: Plots of (1) DA and (2) ∆ vs. Re1. Vertical bars indicate the possible
spread of correlation dimensions for various τ .
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Taking into account that, in spherical layers at constant speeds of rotation, the
correlation dimension at a threshold of the chaotic �ow regime formation falls in
the interval 3.5 ≤ D ≤ 4 [8, 9], we may conclude that transition to turbulence in
the case under consideration takes place at Re1 ≈ 65 (Fig. 2, curve 1). At constant
boundary conditions, the dimension is independent of their position of �ow velocity
recording [8, 10]. In order to check for this condition, let us consider the value
of ∆ = (D1 − D2)/DA. Maximum deviations of ∆ from zero are observed in the
transition region 55 ≤ Re1 ≤ 65 (Figure 2, curve 2). For all turbulent regimes, this
value is ∆ ≥ 0, which quantitatively characterizes a more pronounced stochasticity
of �ow at middle latitudes as compared to the near equatorial region, as is manifested
by the �ow structure (Figure 1). The dependence of the correlation dimensions on
the point of determination suggests that the in�uence of rotational oscillations of the
boundaries on the �ow is di�erently manifested in various regions. This circumstance
does not allow the �ow upon transition to turbulence to be considered as a uni�ed
dynamical system.
In order to con�rm this hypothesis, let us consider fragments of a record of the
azimuthal velocity upon the transition to turbulence at Re1 = 72 (Figure 3). As can
be seen, the behavior of uϕ near the inner sphere at the equator (curve 1) is close to
periodic with a weak irregular modulation of the amplitude, while �ow near the outer
sphere at middle altitudes (curve 2) becomes turbulent. Thus, the �ow is spatially
nonuniform so that the turbulence develops in a limited region and remains laminar
outside this region. The degree of temporal nonuniformity can be determined from
analysis of the behavior of instantaneous phase and frequency of the signal [11] by
analogy with the procedure used in [4]. According to this, instantaneous phase Ψ(t)
of velocity x(t) is de�ned as Ψ(t) = arctan(y(t)/x(t)), where y(t) is the orthogonal
complement to x(t), which is calculated as the Hilbert transform of the x(t) series
[11]. Derivative χ(t) = ∂Ψ(t)/∂t is then the instantaneous frequency of modulation.
Consider the di�erence of instantaneous phases and frequencies between the rotation
speed of the inner surface and �ow velocity at a given point of the �ow. As can be
seen, the phase di�erence at point 1 remains constant in time (Figure 3, curve 3)
while the frequency di�erence exhibits regular variations (curve 6). Thus, the �ow
at point 1 is fully synchronized with rotation of the boundary. At the same time,
these parameters at point 2 near the outer sphere vary with time. By analogy with
[4], it is possible to reveal regions of weak turbulence, where strong synchronization
also makes the phase di�erence constant and the frequency di�erence exhibits no
jumps. In regions of strong turbulences and weak synchronization, the phase di�er-
ence varies with the time and the frequency strongly deviates from average values.
Regions with di�erent character of turbulence are randomly alternating in the time,
which leads to the conclusion that there is intermittency of the chaos-chaos type.

4 Conclusions

Thus, an increase in the amplitude of counterwise rotational oscillations of spherical
boundaries leads to the formation of �ow with random alternation of weakly and
strongly turbulent regions in a part of the layer of �uid con�ned between these
boundaries. At the same time, in other parts of the turbulent �ow, the character of
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Figure 3: 1,2 time series of azimuthal �ow velocity uϕ and di�erences of instanta-
neous 3,4 phases and 5,6 frequencies between the rotation speed of the inner sphere
Ω1(t) and �ow velocity uϕ; 1,3,6 near the inner and 2,4,5 near the outer spheres vs.
time t for Re1 = 72. The dashed contours indicate regions of stronger turbulence.

�ow can be di�erent. It may be suggested that the approach described above, which
is based on the concept of phase/frequency di�erences, can be used for determining
boundaries both between the turbulent/nonturbulent regions of �ow and between
regions of temporally uniform/nonuniform turbulence.
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Destructive atmospheric vortices and the Earth's

rotation around its axis
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Abstract

Interesting atmospheric phenomena are often found in nature. These are
ascending swirling �ows of air, such as whirlwinds, tornadoes, tornado.The
results of theoretical and experimental studies of the ascending twisting �ows
encountered in nature in the form of tornadoes and tropical cyclones [1-3] are
represented.

Theorems on the existence and the uniqueness of the solutions to speci�c
initial-boundary value problems that, in particular, set the rotation direction
of tornadoes, tropical cyclones and �re vortices are proved for the system of
gas dynamics equations.

There are the constructed numerically the solutions of indicated systems
of partial di�erential equations that model the gas �ow from the simple planar
spiral currents to the three-dimensional nonstationary �ows in general. The
calculation results are consistent with both the data of natural observations
and the results of laboratory experiments.

The results of theoretical studies of the ascending twisting �ows encountered in
nature in the form of tornadoes and tropical cyclones [1-3] are proven in this research.
We consider the system of gas dynamics equations in dimensionless variables under
the action of gravity and Coriolis forses [3, 4]:

ct + ucr + v
r cϕ + wcz +

(γ − 1)
2 c

(
ur + u

r +
vϕ
r + wz

)
= 0,

ut + uur + v
ruϕ −

v2

r + wuz + 2
(γ − 1)

ccr = av − bw cosϕ,

vt + uvr + uv
r + v

r vϕ + wvz + 2
(γ − 1)

c
rcϕ = −au+ bw sinϕ,

wt + uwr + v
rwϕ + wwz + 2

(γ − 1)
ccz = bu cosϕ− bv sinϕ− g.

(1)
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Fig. 1.

The symbols in system (1) are the following: ρ � is the density; u, v, w � are the
projections of the velocity vector V on the axis of Cartesian coordinate system Oxyz
(see Fig.1) rotating together with the Earth and the beginning of which lies on the
surface of the Earth at the point O on the parallels with the latitude ψ; g � is the
acceleration vector of gravity; a = 2Ω sinψ; b = 2Ω cosψ; Ω � is the modulus of the
angular velocity vector Ω of the Earth's rotation.
The theorem on the smooth �ow into the vertical cylinder. For the system
of gas dynamics equations there are the speci�ed conditions describing the initial
time of the uniform, resting outside the cylinder

√
x2 + y2 = r0, r0 > 0 gas. Also

the smooth radial �ow into the cylinder are given. Then this problem has a unique
solution in the neighbourhood of the given point (t = 0, r = r0, ϕ = ϕ0, z = 0). Here
r, ϕ � are the polar coordinates in the plane xOy.
The properties of the solution of this problem that since the time t = 0 in the gas
�ow occurs the twisting directed in the positive direction in the case of the Northern
Hemisphere and the negative direction in the case of the Southern Hemisphere. This
direction of rotation corresponds to the direction of air like tornadoes and tropical
cyclones. If for the problem Ω = 0, so the twisting does not arize.
The theorem on the smooth heating of the vertical cylinder. For the system
of gas dynamics equations there are the speci�ed conditions describing the initial
time of the uniform, resting outside the cylinder

√
x2 + y2 = r0, r0 > 0 gas. Also the

smooth heating of this cylinder are given. Then this problem has a unique solution
in the neighbourhood of the given point (t = 0, r = r0, ϕ = ϕ0, z = 0).
The properties of the solution of this problem that since the time t = 0 the twisting
directed in the negative direction in the case of the Northern Hemisphere and the
positive one in the case of the Southern Hemisphere appears in the gas �ow. The
air around the �re vortices has such direction of twisting. If for the problem Ω = 0,
the twisting in the �ow is absent.
The paper provides examples of numerical construction of �ows under the action of
gravity and Coriolis forces for the system (1).
The geometric, speed and energy characteristics of stationary plane cur-
rents. The solution of problem (1) in the form convergent series, solves the corre-
sponding characteristic Cauchy problem with data on an impenetrable plane z = 0.
This solution describes a plane stationary spiral �ow of gas when the Coriolis force is
taken into account, which can be treated as a current in the bottom part of a tornado
or a tropical cyclone. And, depending on the input data, such �ows are obtained
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with di�erent geometric, speed and energy characteristics. The aim of the paper is
to construct and analyze �at stationary �ows in a tornado di�erent intensities and in
a tropical cyclone, consistent with the data of full-scale observations.Coordination
with the data of �eld observations of tornadoes and tropical cyclones is achieved
using the Fujita scale and data on tropical cyclones (Table 1).

Table 1
Classes F−0.5 F0 F0.5 F1 F2 F3 F4 F5 Cyclone
tornado,
cyclone
d = 2r0, 2.0 5.0 10.0 16.0 51.0 161 547 1609 60000

m
Wind
speed 15 19 25.5 33 51 71 93 117 51

V (r0),m/s

Fig. 2.

Based on the results of calculations on the left-hand side of Fig. 2 shows the graph
of the function c0(r), and in right - the graph of the function u0(r) for a tornado of
class F3

Fig. 3.

For this same tornado class on the left-hand side of Fig. 3 shows the graph of the
function v0(r), and on the right an instantaneous streamline emerging from the point
(r = 1, ϕ = 0).
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Abstract

Using a detailed chemical kinetics, detonation combustion of a stoichio-
metrical hydrogen-air mixture �owing at a supersonic velocity into a plane
symmetrical channel with a constriction was investigated with the purpose of
both determination of conditions that provide detonation stabilization in the
�ow and study of methods of stabilized detonation location control.

In case of detonation initiation by energy input, the investigation of condi-
tions of formation in the channel of a thrust developing �ow with a stabilized
detonation wave was carried out. The e�ect of variations of the in�ow Mach
number, the dustiness of the incoming gas mixture and the width of the out-
�ow channel cross section on stabilized detonation location was examined.
Some methods of controlling of detonation location in the �ow that ensure of
thrust increase have been proposed. The possibility of formation of the thrust
developing �ow with stabilized detonation in the channel under consideration
without any energy input has been detected.

1 Introduction

One of the main areas of research of the process of detonation combustion is the
investigation of detonation wave propagation in a supersonic gas �ow [1], in par-
ticular, the determination of conditions that provide detonation stabilization in the
�ow. A detailed review of works devoted to this theme was presented in [2]. So, the
conditions of stabilization of the formed detonation wave in a hydrogen-air mixture
�owing at a supersonic velocity into a plane channel with constriction the out�ow
section of which is smaller than the in�ow one were investigated in [3]. The stability
of the formed gas �ow with detonation to strong disturbances excited by an energy
input has been examined in [4].
In the present research the study of conditions of formation of the thrust developing
�ow with the stabilized detonation wave in the channel with constriction is carried
out, and some methods of control of stabilized detonation location are examined.
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Figure 1: The schematic of the upper channel part (above the plane of symmetry).
The arrow shows to �ow direction

2 Mathematical Model

Similarly to [3], [4] detonation propagation in a premixed stoichiometrical hydro-
gen-air mixture �owing at a supersonic velocity into a plane symmetric channel
with constriction is studied. The schematic of the upper part of the channel is
shown in Fig. 1. The in�ow boundary is x = x4, the out�ow boundary is x = 0.
In contrast to the cited researches the gas �ow in a channel with an output cross
section size exceeding the input one is considered. The combustible gas mixture
under the normal conditions (p0=1atm, T0=298K) is incoming into the channel
parallel to its plane of symmetry at a supersonic velocity that exceeds a velocity of
self-sustaining detonation propagation in the quiescent mixture with incoming �ow
parameters: that is M0 > MJ0 (here M0 is the incoming �ow Mach number, MJ0

is the Mach number of self-sustaining detonation). A stoichiometrical hydrogen-air
mixture �owing into the channel is assumed to be a mixture of the H2, O2, N2 and
Ar gases in the volume ratio 42 : 21 : 78 : 1, respectively.
The set of gas dynamics equations describing a plain two-dimensional nonstationary
�ow of the inviscid reactive multi-component gas mixture is:

∂ρ
∂t

+
∂(ρu)
∂x

+
∂(ρv)
∂y

= 0

∂(ρu)
∂t

+
∂(ρu2 + p)

∂x
+
∂(ρuv)
∂y

= 0

∂(ρv)
∂t

+
∂(ρvu)
∂x

+
∂(ρv2 + p)

∂y
= 0

∂(ρ(u2 + v2)/2 + ρh− p)
∂t

+
∂(ρu((u2 + v2)/2 + h))

∂x
+

+
∂(ρv((u2 + v2)/2 + h))

∂y
= 0

∂(ρni)
∂t

+
∂(ρuni)
∂x

+
∂(ρvni)
∂y

= ρωi

where x and y are the Cartesian coordinates; u and v are the corresponding velocity
components; t is the time; ρ, p and h are the density, the pressure and the speci�c
enthalpy, respectively; ni is the speci�c molar concentration of the ith species in the
mixture; and ωi is the speci�c rate of formation/depletion of the ith component.
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The equations of state of the combustible mixture considered as a pefect gas are as
follows

p = ρR0T
∑
i

ni, h =
∑
i

nihi(T ).

Here T is the temperature, R0 is the universal gas constant. The partial enthalpy
hi(T ) of the ith mixture component are determined from the reduced Gibbs energies
of the corresponding mixture components [5].
The in�ow boundary conditions are the incoming �ow parameters, the out�ow
boundary condition is necessary only in the boundary points with the subsonic
velocity of gas out�ow (in this case, the boundary condition is pout = p0). Slip
condition is imposed at the channel surface.
As the initial condition the steady plane channel �ow of the gas mixture obtained
by the marching to steady state method is used. As the zeroth approximation for
determining the initial condition the incoming gas �ow is taken. It should be noted
that the geometric parameters of the channel were chosen so that the steady �ow
formed in the channel is supersonic everywhere. The initial instantaneous supercrit-
ical energy input E0 (su�cient for direct initiation of detonation combustion) in a
domain in the shape of a thin layer, h in thickness, located near the x = x1 section
(shaded region in Fig. 1) with the Gaussian dependence of the energy input density
on the transverse coordinate is used for detonation initiation.
A set of Euler gas dynamics equations coupled with detailed chemical kinetics equa-
tions [6] has been solved using a �nite-di�erence method based on the Godunov's
scheme [7]. The size of mesh of a computational grid was selected so that the �ow
behind the detonation front (in particular, the �ow in the induction zone) was rep-
resented correctly. Thus numerical investigations were carried out on the grid at
step 0.02mm � 0.04mm.
In this research the plane channels with constriction the geometrical parameters of
which di�er from channel parameters of [4] by the value of l were considered, that is
x1=0.125m, x2=0.25m, x3=0.375m, x4=0.5m, l2=0.0175m, l3=0.035m, and l > l3.

3 Detonation stabilization in the supersonic �ow

The initial supercritical energy input E0 results in formation of two detonation
waves: one of which propagates downstream and rapidly is carried away from the
channel, whereas the other wave travels upstream. The conditions that provide
stabilization of the second wave in the �ow, so that the formed �ow develops thrust,
were studied. In the case under consideration thrust was de�ned as follows

T = 2

x4∫
0

p(x, y(x), t)ctgα(x) dx,

where y(x) is the function de�ning the form of the upper wall of the channel, α(x)
is the angle between the outer normal to this wall and the x axis.
It has been established that for some in�ow Mach number M0 the value of half-width
l of the output cross section can be selected so that the thrust developing �ow with
detonation stabilized in the divergent channel part is formed. In particular, it was
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a b

c d

Figure 2: Formation of the �ow with the stabilized detonation wave in the channel
with constriction in case of M0=5 and l=0.04m: a � t=0.0ms; b � t=0.2ms; c �
t=1.0ms; d � t=3.1ms

obtained that in the M0 = 5 case the su�cient condition for e�ective stabilization
of the detonation wave is the use of the channel with l = 0.04m (Fig. 2). Note
that, for the detailed representation of the �ow in Fig. 2 (and in the �gures that
follow below) the pressure �elds only in the channel part containing the detonation
wave are plotted. In the case under consideration the detonation wave initiated by
energy input near the x=0.125m section moves upstream and is stabilized with time
near x=0.143m section (near to the symmetry plane). It forms a three-shock Mach
con�guration with the oblique shock wave of the stationary �ow.

The control of stabilized detonation location in the gas mixture �ow in the channel
by means of variations of the in�ow Mach number, the dustiness of the in�owing
gas mixture and the width of the out�ow channel section was studied with the
purpose of increase in the e�ciency of detonation combustion. The extended over
multi-component mixtures [4] the one-velocity and one-temperature model [8], which
describes the �ow of gas with very small inert particles, was used for dusty-gas
mixture �ow simulation.

So, the decrease M0 (M0 = 4.9) leads to the situation in which the detonation wave
moves through the throat and leaves the channel in counter�ow direction (Fig. 3).
It has been established that the addition of �ne inert dust particles into the gas
�ow may be used for detonation stabilization. Thus, in case of dust density ρs0
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a

b

c

Figure 3: Propagation of the detonation wave in the channel in case of M0=4.9 and
l=0.04m: a � t=0.0ms; b � t=2.0ms; c � t=3.0ms

=0.1 kg/m3 in the incoming �ow of the dust-gas mixture (the �ow Mach number
M0 = 4.9) the detonation wave is stabilized (Fig. 4) upstream of detonation location
in the pure mixture in case of M0 = 5 and thrust increases more than 3 times.
Moreover, it was found that variation of a dust density in the incoming �ow makes
it possible to control the location of stabilized detonation.
Another mechanism of detonation location control is the variation of a width of the
out�ow channel section. So, in case of the pure combustible mixture �owing into
the channel at a velocity corresponding to M0 = 4.9, a width of the out�ow channel
section may be selected so that the formed in the channel �ow with the detonation
wave develops thrust that exceeds the one in the considered case of M0=5. Thus,
the small expansion of the output cross section (l = 0.045m) in case of M0=4.9
provides detonation stabilization in the divergent channel part and more than 2.5
times increase of thrust as compared to the considered case of M0=5 (Fig. 5).
The possibility of detonation initiation and formation of the thrust developing �ow
with the stabilized detonation wave in the channel without any energy consumption
has been detected. In these cases the obstacle (barrier) was used for detonation
initiation. Thus, in the latter considered case of M0=4.9 and l=0.045m a detonation
wave may be initiated by means of the barrier with height h=0.005m located on
the plane of symmetry near the xb=0.1375m section for period of time t=0.05ms
(Fig. 6). The detonation wave, formed in front of the barrier, is stabilized with
time in that particular place where detonation initiated by initial energy input was
stabilized. So, in this case the thrust developing �ow with detonation is formed
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a b

c d

Figure 4: Formation of the �ow with the stabilized detonation wave in the channel
with constriction in case of M0=4.9, l=0.04m and dust density in the incoming �ow
ρs0=0.1 kg/m3: a � t=0.0ms; b � t=0.5ms; c � t=3.5ms; d � t=3.9ms

a b

Figure 5: Formation of the �ow with the stabilized detonation wave in the channel
with constriction in case of M0=4.9 and l=0.045m: a � t=0.5ms; b � t=2.0ms
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a b

c d

Figure 6: Formation of the �ow with stabilized detonation in case of using the barrier
for detonation initiation for M0=4.9 and l=0.045m: a � t=0.01ms; b � t=0.05ms;
c � t=0.5ms; d � t=2.5ms

without any energy consumption.

4 Conclusions

Using a detailed kinetic model of chemical interaction, detonation stabilization in a
stoichiometrical hydrogen-air mixture �owing at a supersonic velocity into a sym-
metric plane channel with constriction the out�ow section of which exceeds the
in�ow one, and possibility of control of stabilized detonation location in the �ow
have been studied.

The possibility of formation of the thrust developing �ow with a stabilized detona-
tion wave in the channel has been established. The in�uence of variations of the
in�ow Mach number, the dustiness of the in�owing gas mixture and the width of the
out�ow channel cross section on the stabilized detonation location has been exam-
ined with the purpose of thrust increase. The methods of controlling of detonation
location have been proposed. The possibility of detonation initiation and formation
of the thrust developing �ow with the stabilized detonation wave in the channel with
constriction without energy consumption has been detected.
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Abstract

It is well-known and experimentally con�rmed that the mechanical re-
sponse to loading of small enough structures di�ers from what applies to the
macro-scale. This is valid for structures of linear measures at the nano-scale,
typically below about 50nm. In addition to pure size e�ects also the crystallo-
graphic orientation becomes important at this scale. This study demonstrates
the mechanical response to displacement controlled tensile loading of solid
nano-sized fcc single-crystal Cu beams of square shaped cross sections. The
investigation was performed through 3D molecular dynamic simulations using
the free-ware LAMMPS. Two di�erent crystal orientations and di�erent load-
ing rates were considered. Deformations and stress-strain curves were obtained
and the necking behavior was studied in detail.

1 Introduction

Fragmentation of metals due to high strain rate loading is a well-recognized phe-
nomenon at the global scale. The fragmentation pattern is a�ected by inertia as
well as by stress waves traveling within the specimen. Also material properties,
both the elastic and the plastic responses, are dependent on strain rate. This is true
at the global scale but applies also at the nano scale. For nano-sized components
further complications emerge because the material properties become size depen-
dent for small enough components. This size e�ect is experimentally demonstrated;
cf. e.g. [1, 2]. Further, from experiments Kraft and co-workers concluded that it
is the relative number of surface atoms as compared to number of bulk atoms that
in�uences the mechanical properties, cf. [3, 4, 5]. This is due to that surfaces imply
the absence of atomic bonds, leaving surface atoms in energy states deviating from
those of bulk atoms. The redistribution of the electron density close to a surface
a�ects the inter-atomic bonding forces and, thereby, both the local load carrying
capacity and the load distribution within the structure, cf. e.g. [6, 7, 8, 9]. Such an
in�uence is not noticed, and thus not taken into account, at the macro-scale since
the share of surface atom is small so that the mechanical response is ruled by the
bulk atoms. Another aspect that has to be taken into account at the nano-scale
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Figure 1: a) Beam con�guration and coordinate system. b),c) Crystallographic
orientations [100] and [110], respectively.

is the local crystallographic orientation, determining the elastic properties as well
as de�ning pertinent slip plane directions determining the plastic response, cf. [7].
For components at the global scale normally there is an even spread of crystal-
lographic orientations between the grains, eliminating directional dependence. In
this paper the strain rate dependence at tensile loading of beams of single-crystal
Cu of two di�erent crystallographic orientations and three di�erent cross section
sizes is investigated. To accomplish this, 3D molecular dynamics simulations have
been performed. As expected, both geometry and crystal orientation in�uences the
mechanical response.

2 Statement of the problem

2.1 Model geometry

Beams of single crystal fcc Cu, of length L and quadratic cross section with side
length s, are loaded under tension in their length direction x, cf. Fig. 1a) where a
coordinate system (x, y, z) is introduced. The beam length is kept constant equal to
L = 300a0, with a0 = 3.615 �A denoting the lattice constant for Cu. Three di�erent
cross section sizes are investigated, with s = 6a0, 12a0 and 18a0.
Two di�erent crystallographic orientations have been considered. For the �rst, re-
ferred to as the [100]-orientation, Fig. 1b), [100], [010] and [001] coincide with the
x−, y− and z-directions, respectively. For the second orientation, referred to as
the [110]-orientation, Fig. 1c, [110], [-110] and [001] coincide with the x−, y− and
z-directions, respectively.

2.2 Molecular dynamics

The molecular dynamics free-ware LAMMPS, [10] has been used for the simulations
and the atomic images are produced using OVITO developed by [11].
The beam is built from the repetition of Cu fcc unit cells and the interaction between
the Cu atoms is described by an EAM-potential, giving the potential energy of
an atom. This potential consists of one pair-wise repulsive part and one N -body
attractive part, with a cut-o� radii, cf. [12, 13]. The potential energy, of atom i of
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type α is given by Eq. (1):

Eα
i = fα

(∑
i 6=j

ρβ (rij)

)
+

1

2

∑
i 6=j

ϕαβ (rij) (1)

where α and β are two types of atoms, rij is the distance between atoms i and j, ϕαβ
is a pair-wise potential function, ρβ is the contribution to the electron charge density
from atom j of type β at the location of atom i, and fα is an embedding function
that represents the energy required to place atom i of type α into the electron cloud.
Here only one type of atoms is present so that α and β are the same. In this study
the potential �le named Cu-u3.eam, given in LAMMPS and developed by [14] have
been used.
The per-atom stresses, σikl, k, l = x, y, z , of atom i are in LAMMPS calculated as

σikl = − 1

V i

(
miνikν

i
l +

∑
j

F ij
k r

ij
l

)
(2)

Here V i is the atomic volume, assumed equal for all atoms and determined at the
start of the simulation after an initial relaxation of the system to �nd the equilibrium
state. Further, mi is the atomic mass, νik and ν

i
l the velocities of atom i in the k-

and l-directions, F ij
k the force in the k-direction between atoms i and j, and the

distance in the l-direction between atoms i and j.
A NVT-ensemble is generated and the temperature T is kept constant equal to
T = 0.01K by a Nos�e-Hoover thermostat according to [15]. Initially the atomic
ensemble is relaxed to its equilibrium state for 5000 time steps, corresponding to
25ps. Thereafter an axial elongation is e�ectuated by applying a constant velocity
vend in the +x- and −x-directions to four unit cells at each end of the beam at
the same time as the atoms of these cells are restricted from movements in the
y- and z-directions. Thus clamped boundary conditions are mimicked. All atoms
in between these end cells are free to move without constraints. The displacement
controlled load is applied with time step ∆t = 5fs and the end velocities investigated
are vend = Mv0, with v0 = a0/400/ps andM = 1, 2, 4, 6, 8. The results are evaluated
using the centro-symmetry parameter CSP according to [16], as being a measure of
the instantaneous lattice disorder. The centro-symmetry parameter for an atom is
de�ned according to Eq. (3),

CSP =

N/2∑
i=1

|Ri +Ri+N/2|2 (3)

where the N is the number of nearest neighbors in the surrounding lattice, equal to
12 for a fcc lattice. Ri and Ri+N/2 are the vectors corresponding to pairs of opposite
nearest-neighbors in the lattice. The value of the CSP signals whether an atom is
part of a perfect lattice, a local defect (a vacancy, partial dislocation or a stacking
fault), or part of a free surface. Commonly used CSP values for di�erent situations
in fcc lattices are shown in Table 6, cf. [17] for the values marked by ∗. However, for
atoms situated along edges or at corners, the CSP values reach much higher values
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than at a free surface. For the beam geometry with crystallographic orientations
[100] and [110] as studied here, the pertinent CSP values for surface atoms together
with edge- and corner-atoms are inserted in Table 6 and marked by ∆, cf. [18].

Lattice structure CSP

∗ Ideal fcc structure CSP < 3

∗ Partial dislocation 3 < CSP < 5

∗ Stacking fault 5 < CSP < 9

∗ Surface atoms 9 < CSP < 20

∆Surface atoms [100] 9 < CSP ≤ 21

∆Surface atoms [110] 9 < CSP ≤ 25

∆Edge- and corner atoms [100] CSP > 21

∆Edge- and corner atoms [110] CSP > 25

Table 6: CSP values for fcc lattices; ∗ after [17], ∆ after [18].

3 Results and Discussion

3.1 Rate dependence of plasticity initiation and rupture

During loading of the beams, the deformations are monitored in detail. The initi-
ation of plasticity, i.e. the time at the �rst slip event, is denoted ti, and the strain
at this event is denoted εi. At subsequent loading rupture of the beam eventually
occurs at time t1f , when the applied axial strain is ε1f . In some cases rupture is
found to occur more than once. The time at which this eventual second rupture
occurs, resulting in three separate parts, is denoted t2f . The times ti, t1f and t2f
are plotted in Fig. 2 for both orientations and all investigated velocities.
In Tables 7-9 the values of εi and ε1f are found for cross section side lengths s = 6a0,
12a0 and 18a0, respectively, for all investigated velocities and for both crystallo-
graphic orientations. The time delay to an eventual second rupture, ∆t = t2f − t1f ,
is also given. The results are plotted in Fig. 3 for clarity.
As seen from the Tables 7-9 and Fig. 3, the plastic initiation strain εi is almost
independent of size s. On the other hand, the dependence of εi on vend is obvious.
It seems that there is an overall tendency for εi to attend values at two di�erent
strain levels; very roughly εi ≈ 0.09 for the lower end velocities and εi ≈ 0.03 for
the higher for the [100]-orientation. Similarly, εi ≈ 0.07 at the lower end velocities
and εi ≈ 0.02 at the higher for the [110]-orientation. In both cases there is a drop
of about a factor of 3, with the transition around vend = 4v0.
For the [100]-orientation the strain at �rst rupture, ε1f , �rst increases with vend, but
beyond vend = 2v0 it decreases again. This coincides with the emergence of a second
rupture at time t2f , cf. Tables 8-10 and Fig. 2.
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Orientation [100] [110]

M εi ε1f Second ε1f ε1f Second

rupture, ∆t rupture, ∆t

1 0.0936 0.1291 no 0.0671 0.1326 no

2 0.0949 0.1479 0.525 0.0684 0.1300 0.425

4 0.0855 0.1300 0.100 0.0547 0.1146 0.100

6 0.0410 0.0975 0.150 0.0231 0.0949 0.075

8 0.0308 0.0752 0.050 0.0171 0.0821 0.125

Table 7: s = 6a0; εi = strain at plastic initiation; ε1f = strain at �rst rupture; ∆t
= time delay to second rupture (ps).

For the [110]-orientation, on the other hand, ε1f shows no tendency for an initial
increase followed by a decrease as for the [100]-orientation but instead a decrease
with end velocity is at hand. Also here a second rupture occurs at high enough
end velocities. Only one case di�ers from the rest, namely s = 12a0 at end velocity
vend = v0. Here a �rst rupture occurs after a substantial elongation of the beam,
with ε1f ≈ 0.53 and the second after an additional 0.275ps.
For both orientations hold that, as vend increases, decisive necking regions eventual

Figure 2: Time ti, t1f and t2f versus normalized end velocity vend/v0.
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Orientation [100] [110]

M εi ε1f Second ε1f ε1f Second

rupture, ∆t rupture, ∆t

1 0.0911 0.1488 no 0.0667 0.5314 0.275

2 0.0932 0.2035 no 0.0684 0.1377 no

4 0.0838 0.1881 0.500 0.0547 0.1778 no

6 0.0359 0.1231 0.025 0.0205 0.1359 0.050

8 0.0239 0.1060 0.050 0.0103 0.1163 0.050

Table 8: s = 12a0; εi = strain at plastic initiation; ε1f = strain at �rst rupture; ∆t
= time delay to second rupture (ps).

Orientation [100] [110]

M εi ε1f Second ε1f ε1f Second

rupture, ∆t rupture, ∆t

1 0.0911 0.1847 no 0.0667 0.5284 no

2 0.0915 0.2283 no 0.0684 0.5087 no

4 0.0770 0.1898 2.275 0.0479 0.2873 0.075

6 0.0334 0.2001 0.400 0.0180 0.1949 0.025

8 0.0239 0.1813 0.175 0.0137 0.1710 0.050

Table 9: s = 18a0; εi = strain at plastic initiation; ε1f = strain at �rst rupture; ∆t
= time delay to second rupture (ps).

leading to rupture develops closer to the clamped ends whereas rupture occurs more
centrally for low end velocities. Thus the chosen region of end velocities in the
present investigations cover the transition between these two behaviors.

3.2 Stress-Strain curves

Also the stress-strain relations were recorded for all cases. The axial stress σx[], with
[] holding the crystallographic orientation, was determined as the mean stress in the
axial direction calculated over all atoms in the beam. It was found that the stresses
σ0
x[] at εx = 0, directly after relaxation of the beams, were non-zero and decreasing
with increasing beam size for both orientations. In Figs. 2-5 the stress-strain curves,
compensated for σ0

x[] so that they all pass through the origin, are shown for cross
section side lengths s = 6a0, 12a0 and 18a0, respectively, for di�erent end velocities
vend and for both crystallographic orientations. The stresses at the vertical axes in
Figs. 4-6 thus equals the exceed stress σexceedx[] = (σx[] − σ0

x[]). The values of σ
0
x[] are

287



Proceedings of XLV International Summer School � Conference APM 2017

Figure 3: Applied axial strain εx versus normalized end velocity vend/v0. εi = strain
at plastic initiation; ε1f = strain at �rst rupture, versus normalized end velocity
vend/v0.

given in Table 10. All curves in Figs. 4-6 are shown up to the point of �rst rupture
strain ε1f .

s = 6a0 s = 12a0 s = 18a0

σ0
x[100] = 1.37 σ0

x[100] = 0.679 σ0
x[100] = 0.462

σ0
x[110] = 1.28 σ0

x[110] = 0.710 σ0
x[110] = 0.521

Table 10: Stress directly after relaxation (GPa).

As seen from the stress-strain curves the elastic behaviour is almost independent
on end velocity for each orientation and for each size. Also, the elastic parts are
nonlinear, most obvious for the [110]-orientation curves which are clearly convex.
The [100]-orientation curves, on the other hand, are slightly concave. Thus the
elastic behaviour is non-linear so that the modulus of elasticity varies with strain in
addition to the well-known fact that it varies with size.
The �rst peek stress of each curve corresponds to the �rst dislocation formation,
i.e. to plastic initiation, at strain εi. The yield stress is de�nes as the at which the
material begins to deform plastically. Since the stresses σ0

x[] at εx = 0, directly after
relaxation of the beams, were non-zero and decreasing with increasing beam size
for both orientations, we introduce here the exceed yield stress, σexceedY [] , de�ned as
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Figure 4: Axial exceed stress σexceedx[] versus applied axial strain εx, s = 6a0.

Figure 5: Axial exceed stress σexceedx[] versus applied axial strain εx, s = 12a0.

Figure 6: Axial exceed stress σexceedx[] versus applied axial strain εx, s = 18a0.
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σexceedY [] = (σx[](εi)− σ0
x[]), is given in Table 11 and plotted in Fig. 7. As seen, σexceedY []

does not vary much with size but, on the other hand, there is a drop in magnitude
of σexceedx[] between low and high end velocities, a factor of 3 − 4 for the velocity
range investigated here. The shift starts as vend exceeds 2v0. This holds for both
orientations and all sizes.

M 1 2 4 6 8
s = 6a0

σexceedY [100] 7.95 7.98 6.98 3.14 2.13

σexceedY [110] 4.778 4.7794 4.43 1.96 1.31

s = 12a0

σexceedY [100] 7.95 7.98 6.98 3.14 2.13

σexceedY [110] 4.778 4.7794 4.43 1.96 1.31

s = 18a0

σexceedY [100] 7.95 7.98 6.98 3.14 2.13

σexceedY [110] 4.778 4.7794 4.43 1.96 1.31

Table 11: Stress directly after relaxation (GPa).

Figure 7: Exceed yield stress σexceedY [] versus normalized end velocity vend/v0.
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3.3 Deformation developments patterns

How the plasticity in the beam develops and spreads depends on end velocity. After
plastic initiation the plasticity spreads from the initiation spots into the still elastic
parts of the beam through slip along preferred slip planes. This spread ceases more
or less as neck formation starts depending on the velocity; at this point most of the
slip events localize to the dominant necking regions and areas that still are elastic
after �nal rupture remain so. If necking starts early in the loading process, as is the
case if vend is high enough, the beam has not elongated very much and corresponding
rupture strain is low.

Figure 8: Snapshots of atomic arrangement along the curves in Fig. 4 for orientation
[100] and velocity 2v0.

Figure 9: Snapshots of atomic arrangement along the curves in Fig. 4 for orientation
[100] and velocity 6v0.

In Figs. 8-9 snapshots of the atomic arrangements for the [100]-orientation with end
velocities 2v0 and 6v0 , respectively, are shown, and in Figs. 10-11 the corresponding
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Figure 10: Snapshots of atomic arrangement along the curves in Fig. 4 for orienta-
tion [110] and velocity 2v0.

Figure 11: Snapshots of atomic arrangement along the curves in Fig. 4 for orienta-
tion [110] and velocity 6v0.

is shown for the [110]-orientation. Starting with [100]-orientation at low end velocity,
vend = 2v0 shown in Fig. 8, it is seen that plasticity at time t = 2.68ps, Fig. 8a),
has initiated over three parts of the beam, with the most intense development about
25% of the beam length from the right end, and the weakest close to the left end.
Following the snapshots over time, slip is seen to spread from the initiation sites
into the elastic areas and new spots of high plastic deformation emerge. Eventually,
for t = 4.20ps as seen in Fig. 8d), rupture occurs at the distance of about 15% of
the beam length from the left end, and this site is not one of the initial initiation
sites from Fig. 8a). After this �rst rupture, relaxation of the beam starts from the
rupture site but even so inertia causes a second rupture close to the right end at
t = 4.70ps, Fig. 8e). For the higher end velocity, vend = 6v0 and with snapshots
shown in Fig. 9, the development is di�erent. Plasticity concentrates close to both
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ends and accumulates there. When �rst and second ruptures have occurred, Fig. 9e)
at time t = 0.95ps, the central part of the beam is still elastic and una�ected by the
loading. As for the [110]-orientation the events are di�erent as seen in Fig. 10 for
vend = 2v0 and in Fig. 11 for vend = 6v0. Initiation always occurs close to the beam
ends, Figs. 10a)-11a), and the plasticity spreads towards the center of the beam.
Before rupture in the case of vend = 2v0 the entire beam is a�ected by slip before
two subsequent ruptures take place. For the high loading velocity with vend = 6v0

as seen in Fig. 11 the plasticity spread from the ends is limited, leaving most of the
center of the beam in an elastic state after the last rupture.

4 Conclusions

Through molecular dynamics simulations the in�uence of loading rate on the me-
chanical response of tensile single crystal fcc Cu nano beams have been investigated.
The beams had a constant length of 300a0, with a0 denoting the lattice constant for
Cu, and quadratic cross section with side length 6a0, 12a0 or 18a0. Two di�erent
crystallographic orientations, with loading in the [100] or the [110] directions, were
considered. The beams were loaded by applying a constant velocity vend = Mv0,
with v0 = a0/400/ps and M = 1, 2, 4, 6, 8, to each end of the beam and the de-
formation pattern was followed in detail and the stress-strain curves recorded. It
was shown that the elastic behavior of the beams was non-linear and, in practice,
independent of size for each orientation. On the other hand the strain rate depen-
dence was obvious. The strain at plastic initiation was found to be about three
times higher for the lowest end velocities as compared to the highest, with the swap
around M = 4. Also the yield stress was heavily reduced, by a factor of around
three or four, above M = 4. The hardening behavior di�ered between the orienta-
tions. It was substantial for the [110]-orientation but not very pronounced for the
[100]-orientation. This is due to the di�erence in slip patterns between the orienta-
tions. The symmetrical atomic arrangement for the [100]-orientation provides equal
deformations over beam height and beam width, which induces an hourglass shaped
necking region and from this rupture. This deformation pattern is not at hand for
the [110]-orientation since the Poisson ratio is di�ers between the height and the
width directions. Slip in this case causes a deformation pattern similar to that of
when tilting a deck of playing cards along the loading direction. The arrangement
allows for substantial elongations before a neck weak enough to rupture has been
formed.
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E�ciency of ionocrafts: experimental investigation
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Abstract

Ionocraft is a �ight facility which lifting force is created by means of ionic
wind. Ionic wind is air �ow caused by corona discharge. The �ux of mo-
mentum which is whirled away by ionic wind jet may be used for propulsion.
The ionocraft conception is known for decades but e�ciency of the prototype
models is still low. The main e�ciency parameter for ionocraft is the relation
of consumed electric energy and lifting force (â��thrust speci�c energy con-
sumptionâ�� Q � as an analogy to â��thrust speci�c fuel consumptionâ��
which is a commonly used as a term in aviation). It is necessary to reach a
certain level of thrust speci�c energy consumption for practical applications.

A classical construction of ionocraft segment â��� wire-cylinder â��� is
considered. Presumable ways of e�ciency improvement are discussed. For-
mally thrust speci�c energy consumption of ionocraft may be rather high es-
pecially for large interelectrode gaps. However, it usually leads to large air
volume occupied by construction with signi�cant total lifting force. Conse-
quently, more sophisticated criteria should be used such as: thrust speci�c
energy consumption level by �xed lifting force from unity volume.

1 Introduction

When high voltage is applied to interelectrode gap electrons accelerate in electric
�eld and gain energy enough to ionize air molecules. So avalanche takes place in-
creasing number of charged particles â��� positive ions and electrons. If secondary
processes of electrons production are intensive a new avalanche is caused by pass-
ing the �rst avalanche and self-maintained discharge process is formed which called
corona discharge [2]. Charged particles appear in the air as a result of collision
ionization in the corona layer. Coulomb force acts on charged particles in the in-
terelectrode gap. In fact, electric force generates because of coupling electric �eld
between electrodes and space charge. All kinds of ions (positive or negative �â��
it depends on the active electrode polarity) moving to the ground electrode gain
the momentum in the electric �eld and transfer it to air molecules owing to colli-
sions and the air starts to �ow. And this process generates electrohydrodynamic
�ow which called ionic wind [2]. The reactive jet force of ionic wind can be used
as a lifting force. So the lifting force is determined by the Coulomb force which
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acts on ionocraft from ions. In such a case, ions quickly transfer momentum to air
molecules.
There are many di�erent ionocraft constructions �â�� triangular, square, ring.
These systems work as reactive engine and as a result they can levitate. The main
issue in ionocraft designing is low speci�c thrust which is de�ned as the relation of
the lifting force to consumed power.
In this paper lifting force results from current and voltage in the wire-cylinder are
presented. The lifting force depends on the current I, interelectrode gap d and ions
mobility µ in air gap [3]:

F =
I

µ
d (1)

Equation for speci�c thrust can be obtained from (1):

Q =
F

UI
=

d

µU
(2)

As we can see from (2) thrust is lower when the voltage is higher. Consequently,
thrust decreasing is caused by lifting force increasing (in speci�c geometry). So the
main concern is searching a suitable con�guration which solution will depend on
applying technical restrictions (�xed voltage or �xed occupying volume). The next
simplifying can be used for equations (1�2):

1. There are electrons only near active electrode. We neglect them in air gap.

2. Air friction force acting on electrodes is much smaller than lifting force.

3. Vertical projection of the ion path between electrons equals d.

2 Experimental setup

Wire-cylinder was studied when the interelectode gap varied. Active electrode is a
wire with radius 0.042 mm and the ground electrode is cylinder with radius 0.93 mm.
both electrodes was pulled in the wooden frame (Fig. 1). The construction length is
20 cm. Voltage and current are registered with the help dual-channel analog-digital
converter (ADC) L-Card. Current was measured by voltage registration across the
resistor 19.2 kΩ in series source-discharge gap. High voltage supply occurs with the
help constant-voltage source. The setup allows to de�ne corona inception voltage in
wire-cylinder system and to analyze discharge current-voltage characteristic (CVC).
Ionocraft segment hang up so that the thrust was directed upward vertically. There-
fore, thrust value complements the ionocraft weight and the total value is measured
by scales. The measurement is di�er from usually applying ionocraft scaling [4]: de-
creasing lifting force is caused scaling the ionic wind jet which put pressure on scales.
Due to our measurement the ionic wind jet encounters board which is sti�ened (it
is under the scales) and it doesnâ��t in�uence on scales measurements.
Thus current and voltage oscillogramms and lifting force value can be analyzed.
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Figure 1: Experimental setup �ow diagram (on the left) and lifting force measure-
ment design (on the right).

Figure 2: Current-voltage characteristics under positive (on the left) and negative
(on the right) polarities. d â��- electrode gap.

3 Results

In Fig. 2 CVCs are presented. On the one hand they are classical squared but it is
incorrect for negative polarity. Analyzing the reduced CVC allows to state this fact
(the relation U/I from U â�� linear function for classical discharge CVC) (Fig. 3).
There is a deviation from linearity for reduced CVC with applying voltage over 20
kV under negative polarity.
In Fig. 4 lifting force dependence on current is shown. The linear dependence has
to be seen due to (1). It is held under positive polarity. However, the lifting force
isnâ��t proportional to the current where the CVCs deviate from quadratic form
under negative polarity. The structure of positive and negative corona discharge is
signi�cantly di�erent. but it is thought to be the outer zone characteristic which
structure less depends on polarity is more important for CVC and lifting force. We
can add that special aspects outer zone have a streamer form of corona discharge
in this case it is not seen the streamers in this system. At least there Is only
one signi�cant di�erence in positive or negative outer zone is electron existence in
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Figure 3: Reduced current-voltage characteristics under positive (on the left) and
negative (on the right) polarities. d â��- electrode gap.

Figure 4: Lifting force dependence from current (per unit length) under positive (on
the left) and negative (on the right) polarities. d â��- electrode gap.

outer zone. It is thought to be that there arenâ��t electrons in outer zone under
both polarities. But they can penetrate to the special distance which depends on
velocity adhesion under negative polarity. The more is voltage the higher is electric
�eld intensity and less velocity adhesion that is why by high voltage the length
of electron propagation into outer zone [3] [6]. However, there are no electrons in
outer zone under positive polarity because of the movement direction to the active
electrode. They canâ��t go out from the corona layer.
In such a way electrons locates in a wider space under negative polarity than under
positive polarity. Moreover, the location space of electrons will expand with increas-
ing voltage under negative polarity. That is why it is assumed that widening electron
presence space in interelectrode gap with increasing voltage results in reduced CVC
and lifting force deviation from linearity. Actually average charged particles mobil-
ity increasing in air gap is caused by the widening electron presence space and it
leads to current increasing (at preset voltage) and lifting force decreasing (at preset
current).
In Fig. 5 speci�c thrust dependence on lifting force are presented. According to (2)
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Figure 5: Speci�c thrust dependence from lifting force (per unit length) under pos-
itive (on the left) and negative (on the right) polarities. d â��- electrode gap.

speci�c thrust decreases with lifting force increasing besides electrode gap increasing
for �xed lifting force leads to speci�c thrust increasing. Is it more pro�table to use
higher electrode gap in constructions? Consider this issue in detail.

In Fig. 5 there are points according to speci�c applying voltage (e.g. 15kV). Al-
though the curve is higher with higher electrode gap but electrode gap increasing
(at preset voltage) leads to speci�c thrust increasing and lifting force decreasing.
Thus if one has a limitation on the operating voltage and the objective value of the
lifting force then the optimal interelectrode gap distance may be evaluated. The
voltage limitation may be linked to volume and isolation weight and also with size
and increasing voltage electric transformer weight.

The question of ionocraft optimization may be as well turned round the other way.
In a real construction one would rather have to use a set of parallel electrode systems
to reach a valuable lifting force value. Neighbored electrodes of the same polarity
in�uence against each other. It may be shown that wire-cylinder systems are possible
to pull together only at the distance proportional to electrode gap. The next pulling
together leads to quick growth the corona inception voltage. In this cast lifting force
from N pairs of electrode will be more less than NF (F is lifting force from one pair
of electrode). Therefore, occupying volume of one pair of electrodes can be evaluate
as 2d3dL, Ð³Ð´Ðµ L â�� system length, d â�� electrode gap. d increasing leads
to quick volume increasing occupying the system of electrode.

Consider dependence of the thrust speci�c energy consumption from the unite vol-
ume (Fig. 6). As we can see the corresponding dependences come to an agreement
with di�erent electrode gap within the scatter accuracy. It would be possible to
conclude that both electrode hap are equally pro�table. But it has been seen that
using less electrode gape at preset voltage we can reach more lifting force from unit
of volume if we consider the points according to the same applying voltage. On the
other hand the more electrode gap at preset voltage the more speci�c thrust.

These regularities may be useful in designing construction with a speci�c set of lim-
itations (thrust speci�c energy consumption, total lifting force, operationg voatge,
occupied volume).
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Figure 6: Speci�c thrust dependence from lifting force (per unit volume) under
positive (on the left) and negative (on the right) polarities. d -â�� electrode gap.

4 Conclusions

1. The reduced current-voltage characteristics and lifting force dependence on
current deviation from linearity has been seen under negative polarity under
a high applying voltage.

2. Using a system of electrode with higher electrode gap allows to gain more
e�ciency at preset lifting force from unit of distance but using a system with
less electrode gap may prove to be more pro�table in the case of the voltage
and volume limitation.
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Abstract

Carbon nanotubes (CNT) are one of the most widely used and ideal
nano�uidic devices. With an ever increasing �eld of applications, it be-
comes important to study novel mechanisms used to transport water molecules
through carbon nanotubes and to compare the e�ectiveness and rate of �uid
�ow provided by them. In this study, we have considered three popular non-
conventional mechanisms for pumping water through a CNT, namely, ther-
mally driven �ows, by rotating chiral CNT and by applying AC electric �eld to
a carbon nanotube. Using molecular dynamics simulations these mechanisms
are studied systematically to understand the �ow behaviour inside carbon nan-
otubes and the pumping mechanism. Finally, a comprehensive analysis, of the
e�ciencies of �ux obtained by the aforementioned mechanisms are presented
in this work.

1 Introduction

Understanding of water transport through nano�uidic devices is of immense im-
portance considering its potential applications in the �elds of medical drug delivery
systems, microbiological devices, nanorobotics, micro �ow control and thermal man-
agement in MEMS/NEMS devices etc. To this front, carbon nanotubes (CNT) [1]
are one of the most widely used and are also the ideal nano�uidic devices as they
allow almost frictionless �uid �ow through them [2]. The recent advances in the
manufacturing of carbon nanotubes as well their hydrophobic properties have seen
their widespread use in various industrial processes such as �ltration, desalination[3]
as well as in �ow meter devices[4].

The transport of water molecules through the CNTs are stimulated through various
mechanisms like hydrostatic pressure [5], rotation of a chiral CNT [6], AC electric
�elds [7], thermal �ows with a temperature di�erence along the ends of the CNT [8]
and passing Rayleigh waves along the surface of CNT [9]. The �ow of water through
CNT in all of the above-mentioned cases is governed through a multitude of factors,
such as the nature and magnitude of the driving forces, the thermodynamic state of
the system, the diameter, chirality and the length of the CNT. This clearly shows us
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that there are a large number of factors involved in choosing a suitable CNT and an
appropriate pumping mechanism to meet the needs of the user. Furthermore, there
may possibly be more than one combination through which desired �ow properties
(thermodynamic state and the �ow rate) can be obtained.

Three popular non-conventional mechanisms of pumping water through a CNT are,
namely, thermally driven �ows, rotation of chiral CNT and AC electric �eld driven
�ows. These mechanisms are explained in the following sections.

1.1 Thermally driven �ows

The temperature of any system provides the thermal �uctuations associated in the
molecules for the given value. Due to these thermal motions, the atoms move ran-
domly in all the directions. When a passage for these random motions becomes
restrictive than the atoms move only as the passage directs. This very nature of
motions is been utilised in the transport of water molecules through carbon nan-
otubes. When a passage viz., CNT, is provided to water molecules present in two
reservoirs at di�erent temperatures, the asymmetric thermal �uctuations causes the
water molecules to �ow from one reservoir to another, as described by Zhao et al. [10].
They found a continuous �ux of water being transported from the hot reservoir to
the cold reservoir when the temperature di�erence is about 15-70 K, through a small
(6,6) CNT. The �ux obtained through this system is equivalent to that of the �ux
generated by a hydrostatic pressure di�erence which is of the orders of megapascals.

Zhao et al. [10] theorised that the forces working in the direction of the �ow are
neither the thermophoretic forces nor the thermal transpiration. This is because, as
the water �ows rapidly against the chemical potential barrier, the �ow rate is inde-
pendent of the length of the CNT, and hence, it is independent of the temperature
gradient. The phenomenon that causes this �ow of water from the hot reservoir to
cold reservoir is not very clear and that forms one of the focuses of the current work
and in order to understand the phenomenon, a number of simulations are carried
out by varying the temperatures of the two reservoirs over a wide range.

1.2 AC electric �eld

When an electric �eld is applied to a CNT in the form of a travelling wave, it causes
the water molecules to follow the gradients in the electric �eld due to their existence
as dipoles. Klaus et al. [7] postulated an elaborate polarisation dragging theory to
describe the e�ect of AC electric �eld on water molecules by simulating a system
that uses discrete charged electrodes to simulate the travelling electric �eld wave.
This travelling wave breaks the spatio-temporal symmetry of the water molecules
and creates wave packets by periodically polarising the water in the direction of
the local electric �eld. The resultant of this localised e�ect is that the packets of
water molecules orient in opposite directions and are forced to travel along with a
particular wave packet. As the wave itself travels along the CNT, this causes the
water molecules to be dragged along with the wave packets and be pumped out of
the tube. Dependence on the strength of electric �eld is studied in this work.
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1.3 Rotation of CNT

Pumping water by rotating the chiral CNT is one of the unique concepts and it is
possible because of the structure of CNT. The structure of a chiral CNT is such
that there exists an asymmetry in one direction. This asymmetry interacts through
mechanical impingement with water molecules. When a chiral CNT is rotated,
this asymmetry of CNT produces the required axial force on the water molecules
which moves them ahead along the length of CNT. Feng et al. [6] attempted to �t
an empirical relation to the potential energy landscape to characterise the forces
pushing the water out and came up with an empirical relation of the following form
as given in Eq. 1 [6].

(1)

V (θ, z, ω, t) = a sin(n(
5√
3r
z + θ − ωt)) + b cos(n(

5√
3r
z + θ − ωt))

+ c sin(2n(
2√
3r
z − θ + ωt)) + d cos(2n(

2√
3r
z − θ + ωt))

+ e sin(3n(
1

3
√

3r
z + θ − ωt)) + f cos(3n(

1

3
√

3r
z + θ − ωt)) + V0

where, r denotes the radius of CNT, and a, b, c, d, e, f, V0 are constants being
obtained by �tting the function to the potential energy landscape.
The potential energy landscape depends on the parameters like radius and angular
velocity of CNT, which can be readily changed, hence changing the �ux of water
being pumped through it. The �ux is thought to increase with both radius and
angular velocity, however Feng et al. [6] claim that increasing the angular velocity
beyond a certain value decreases the pumping �ux as the water molecules fail to
adjust their structure to that of the fast rotating CNT. This is because as the time
period of the oscillating potential energy landscape is faster than the relaxation
time of water molecules. The interaction of the water molecules close to the wall to
those near the centre transfers this axial force across the radial direction. A thick
(16,32)CNT is used by [3] to ensure that the distribution of water molecules inside
the CNT is unstructured and thus more e�cient pumping of water is achieved.

This pumping e�ciency can also be increased by decorating the CNT with any
functional group. This functional group will induce a higher �ow rate through
physical means, such as that used in an Archimedes screw. Flow rates can also be
increased with electrically charged particles, which would simulate a moving electric
�eld on rotation of the CNT, similar to an AC electric �eld through the CNT.
This can also be seen in the potential function proposed by Feng [6], the decoration
increases the slope of the potential energy function, leading to larger forces.

In this study, we use molecular dynamics simulations to characterise various pump-
ing mechanisms. A detailed study to estimate the �ow rate of water molecules
through CNT by using the above-mentioned mechanisms are attempted. In the re-
mainder of the paper, computational details employed to describe each mechanism
is provided in Sec. 2 followed by results and discussion where an elaborate descrip-
tion of �ow rates obtained for each of the mechanisms are presented and �nally
concluding remarks are made in Sec. 4.
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2 Computational Details

All the molecular dynamics simulations are carried out using the LAMMPS [11],
an open source molecular dynamics package. Firstly, the common computational
details that are been maintained constant in all the case studies that are carried
out in this work are presented and later computational details that are relevant
to particular mechanisms are explained. The system consists of a single carbon
nanotube that connects the two reservoirs on either end of it as shown in the Fig. 1.
The carbon atoms present in CNT are terminated using hydrogen at both ends.
The TIP4P [12] model of water is used. The pppm style invokes a particle-particle
particle-mesh solver [13] which maps atom charge to a 3d mesh, using 3d FFTs to
solve Poissonâ��s equation on the mesh and then interpolates electric �elds from
the mesh points back to the atoms. The radial distribution function Fig. 2, plotted
for this model shows that the potential predicts the behaviour of water molecules
as obtained in literature [14]. CHARMM [15] force �elds are used to model the
interactions between carbon and water molecules. A time-step of 1 femtosecond is
considered for all the cases studied in this work.

To statistically average the data obtained, the length of CNT is divided into 40
bins, each bin 0.4 nm in length, and the centre of mass velocities from each bin is
calculated to determine the �ow characteristics. The CNT was also divided into 4
concentric bins, each of thickness 0.1 nm, to �nd the variation of the �ow charac-
teristics between the CNT axis and walls. The system is �rst relaxed to a state of
local minimum energy using the Polak-Ribiere [16] version of the conjugate gradient
(CG) minimization algorithm. Nos�e [17]-Hoover [18] thermostat is used to maintain
the temperatures of water molecules. The time integration for the water molecules
inside the CNT is performed by NVE integrator. Periodic boundary conditions were
used in all directions. The system is allowed to simulate for 11 ns out of which the
system is equilibrated for 1 ns and the next 10 ns of the simulation are considered
to obtain the desired results.

Now, the computational details pertaining to the speci�c pumping mechanism are
explained in following subsections.

2.1 Thermally driven �ows

To generate a thermally driven �ow a (15,14) CNT of 10 nm length is used to
connect the two reservoirs that are placed on either side, each consisting of 5120
water molecules and are con�ned between two graphene sheets, with dimensions of
100 �A x 50 �A x 32 �A as shown in Fig. 1. This corresponds closely to a density of
1 g/cc of water at STP. At the initial timestep, there are no water molecules inside
CNT. The CNT is held rigid and �xed in the same position. Various cases studies
are considered by varying the temperature of the two reservoirs.

2.2 AC electric �eld

In this case, the system dimensions follow same as that used for thermally driven
�ow expect that one of the reservoirs is �lled with water while the other is kept
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empty. A number of cases studies were carried out by varying the magnitude of the
electric �eld from 0 to 0.1 V/�A keeping the wave number and frequency constant.

2.3 Rotation of CNT

To pump water molecules through a rotating CNT, an asymmetric (chiral) CNT is
required. Therefore, a chiral (16,32) CNT of length 10 nm is used. Each reservoir
has the dimension of 100 �A x 50 �A x 63 �A and possesses 10240 water molecules,
corresponding to the density of 1 g/cc of water. Case studies by varying the angular
velocities of CNT are carried out and also the CNT is rotated both clockwise and
counterclockwise direction to better understand the pumping mechanism. Fig. 3
shows the schematic of the simulation domain for this case.

3 Results and Discussion

In this section, we present and discuss the functioning of each mechanism used to
pump water molecules through CNT. The focus of the present work is to understand
the pumping mechanisms and calculate the �ux rate for each mechanism. We have
also calculated the number density of water molecules present across the CNT. This
number density distribution across the CNT helps us to analyse where the water
molecules are more concentrated. In the subsequent subsections, results and their
analysis for each of the mechanism to pump water is presented.

3.1 Thermally driven �ows

To study the thermally driven �ow, several cases were considered in which the
temperature of each of reservoirs are varied so as to have a temperature di�erence
that would drive the molecules from one reservoir to another. As mentioned in the
Sec. 2, the time integration for the water molecules in the reservoir were carried out
by NVT ensemble while the time integration for water molecules inside CNT was
performed by NVE ensemble.

Firstly, radial number density across the channel is calculated for various temper-
atures considered in this work. It is observed that the number of water molecules
remained larger at the centre of CNT and gradually reduced when moved towards
the walls. This clearly indicates that friction o�ered by the walls is very less, as the
reduced number density near the walls indicate lesser �uid-surface interaction. The
following Fig. 4, shows the distribution of number density radially across the CNT
for various cases. Fig. 4, also clearly indicates that the radial distribution of number
density does not vary much with the change in temperature.

Next, the �ux of water molecules �owing through the CNT is presented in Table 12.
As the temperature di�erence increases the �ux rate also increases due to increased
internal energy in the molecules. The sign of �ux indicates the direction of �ow
and it is evident that the movement of water molecules is from the reservoir having
the higher temperature to that of reservoir kept at lower temperature. Observing
the direction of �ow of water molecules we can say that due to increased internal
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energy and con�nement along a passage, the water molecules are forced to move in
one particular direction.

Center of mass velocity (Z component) plotted along the CNT (aligned in Z direc-
tion) as shown in Fig. 5 indicates that the water molecules in the reservoir kept at
higher temperature prefers to move towards the reservoir kept at lower temperature,
while the molecules from the lower temperature reservoir move towards the higher
temperature reservoir. However, due to their higher kinetic energies, the molecules
of the high-temperature reservoir clearly dominate over the others, thus driving a
net �ow. Thus, it is the thermal motion of water molecules that drives the water
molecules through CNT.

3.2 AC electric �eld

To study the pumping mechanism by using AC electric �eld, a travelling electric
�eld is applied to the water molecules present in the CNT. This travelling wave
drags the water molecules along it as it is explained in Sec. 1.2 By varying the
strength of electric �eld from 0.1 V/�A to 1 V/�A, properties like radial number
density distribution across the CNT and �ux of water molecules are calculated.

The behaviour of radial number density across the channel is similar to that of the
thermally driven case where the number of water molecules is higher at the centre of
CNT than at the walls. For all the cases considered the behaviour remained similar
without much di�erence indicating that the e�ect of electric �eld on the number
density distribution negligible. The Fig. 6 show the distribution of number density
radially across the CNT for various values of electric �eld.

Now, the �ux of water molecules �owing through the CNT due to the presence
of electric �eld are calculated and is presented in Table 14. With the increase in
strength of electric �eld, the �ux of water molecules also increased. This is because
the moving travelling electric �eld has greater strength to pull the water molecules
with it now. It is also observed that when the phase of this electric �eld is shifted
by 180 degrees the results obtained remained same as that without phase shift.

3.3 Rotation of CNT

We now present the results for the case of rotating CNT obtained by our molecular
dynamics simulations. The system consists of thick, chiral (16,32)-CNT, connecting
two reservoirs, one of which is empty while the other is �lled with water as mentioned
in Sec. 2.3. The CNT is rotated at various angular speeds in both clockwise and
anticlockwise directions.

Interestingly, the behavior of the radial number density distribution remained the
same showing the consistency in the results obtained. As the CNT used for this
case has a larger diameter than the other mechanisms, the graph appears di�erent
as can be seen in Fig. 7. Here the distribution remains constant for certain distance
near the centre and distribution does not vary much with the variation in rotational
speeds.
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We then calculate the �ux of water molecules that is being pumped out of CNT.
We observe that the �ux of water molecules shows a signi�cant dependence on the
angular speed of CNT. Table 14 shows the �ux of water molecules that have been
pumped out through CNT when CNT is rotated at various angular speeds in both
clockwise and anticlockwise direction. It is observed that with an increase in angular
speed, there is an increase in the number of water molecules that have been pumped
out. It is found to be in qualitative agreement with the results from the works of Tu
et al. [3] and of Feng et al. [6], who found a strong relationship between the rotation
speed and cumulative �ux of water molecules through CNT. It can also be observed
that the there is negligible change in �ux when the CNT is rotated either in the
clockwise or anticlockwise direction as indicated in Table 14.

4 Concluison

In this study, molecular dynamics simulations were employed to study three
nanoscale pumping mechanisms to transport water molecules through CNT. In the
case of thermally driven �ow case, the temperature di�erence maintained between
two reservoirs enabled the transport of water molecules through the CNT. Due to
high temperature, the thermal modes in water molecules have agitated and by con-
�ning the movement �nite �ow rates were achieved. In the case of AC electric �eld,
the travelling wave drags the water molecules along with it and thus creating a �nite
�ux.

Though with the increase in AC electric �eld the �ux of water molecules increases,
achieving very high electric �eld is di�cult and at very high electric �elds there
is a possibility of breaking the water molecule. In the last mechanism, rotation of
CNT, the transport of water molecules takes place due to structure (chirality) of
CNT. Only a chiral CNT can transport water when rotated. It is also observed
that as the rotational speed of CNT is increased, the �ux of water molecules also
increased. Flux is observed not to vary much with the direction of rotation. Thus,
the above-mentioned nanoscale scale pumping mechanisms have crucial applications
in various �elds and to increase the pumping rates with higher e�ciencies one can
develop a hybrid mechanism combining the above-mentioned mechanisms.
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Table 12: Table showing �ux of water molecules being pumped out of CNT for
various temperatures of reservoirs

Temperature (K) Flux of water molecules
Upper Reserviour Lower Reserviour

300 300 0.00510
400 300 -0.0700
500 300 -0.0515
500 400 -0.0650
600 500 -0.0340

Table 13: Table showing �ux of water molecules being pumped out of CNT for
various electric �elds

Electric Field (eV) Flux of water molecules
0 0.198

0.025 0.254
0.05 0.254
0.075 0.260
0.1 0.295

Table 14: Table showing �ux of water molecules being pumped out of CNT for
various rotational speeds in both clockwise and anticlockwise rotation

Rotational Speed (rad/ns) Flux of water molecules
Clockwise Anti-Clockwise

0 0.04 0.04
6.195 0.12 0.09
12.39 0.25 0.27
24.78 0.74 0.75

Figure 1: Schematic of simulation domain
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Figure 2: Radial distribution function of oxygen atoms in water molecule.

Figure 3: Schematic of simulation domain used to study rotation of CNT case
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Figure 4: Cumulative radial number density of water molecules inside carbon nan-
otube in radial direction for various temperatures of reservoirs

Figure 5: Center of mass velocity (Vz) of water molecules in each bin along the
length of CNT
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Figure 6: Cumulative radial number density of water molecules inside carbon nan-
otube in radial direction for various electric �elds

Figure 7: Cumulative radial number density of water molecules inside carbon nan-
otube in radial direction for various rotational speeds
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Abstract

Electrohydrodynamics (EHD) �ow is induced by Coulomb force acting on
excess charges in a dielectric �uid under a high electric �eld and can be applied
to pumping. There are two types of EHD pump, ion drag pump and conduc-
tion pump that utilize excess charges caused by charge injection and electric
�eld enhanced dissociation, respectively. This paper investigates numerically
the interaction of the ion drag action and conduction action on EHD pump
characteristics using three types of electrode con�gurations. It is found that
when the ion drag and conduction act simultaneously, the developed pressure
is augmented and is higher than the sum of the pressures developed separately
by each action, and that the degree of pressure augmentation strongly depends
on electrode con�guration.

1 INTRODUCTION

Electrohydrodynamics (EHD) �ow is induced by Coulombâ��s force acting on ex-
cess charges in a dielectric �uid under a high electric �eld and can be applied to
pumping and heat transfer. Excess charges in the �uid are generated by charge injec-
tion from an electrode and/or a non-equilibrium state of dissociation-recombination
of dissociative molecules. An EHD pump that utilizes the former phenomenon is
called the ion drag pump and the one that utilizes the latter phenomenon is called
the conduction pump. Both types of EHD pump have been widely investigated ex-
perimentally and numerically[1, 2, 3, 4]. However, the research on the interaction
of the two charge generation phenomena is very limited[3]. This paper investigates
numerically the e�ect of the interaction of the two charge generation phenomena on
EHD pump characteristics.

2 NUMERICAL MODELING

The governing equations are the continuity equation (Eq. (1)), the Navierâ��S-
tokesâ�� equation (Eq.(2)) including Coulomb's force (Eq. (3)) as an external force,
Gaussâ�� law (Eq. (4)) and the charge conservation equations (Eqs. (6)-(10)).
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∇ · v = 0 (1)

(v · ∇)v = − 1

æ
∇p + v∇2v + f (2)

f = −qtotal

æ
∇Œ (3)

∇2φ = −qtotal
ε

(4)

qtotal = qin + q − w (5)

In the equations, v=(u, v) is the velocity,ρ is the density, p is the pressure, v is
the kinematic viscosity, f is the Coulomb's force, qtotal is the total charge density
de�ned by Eq. (5), φ is the electric potential, ε is the permittivity, qin is the positive
charge density injected from a positive electrode, q and w are the densities of the
positive and negative charges generated by dissociation, respectively. In this model,
it is assumed that only positive charges are injected and that the injected positive
charges are not combined with the negative charges generated by the dissociation.
The charge conservation equations of the injected charges and dissociated ones are
described separately as follows[2].

∇ · jin = 0 (6)

jin = ¯inqinE + qinv −Di∇qin (7)

∇ · j = kr

(
w2

0F(E)− qw
)

(8)

j+ = ¯i + qE + qv −Di∇q (9)

j− = ¯i −wE + wv −Di∇w (10)

jin is the current density of the injected charge, µin is its mobility, E is the electric
�eld strength, Di is the charge di�usion constant, j+ and j− are the current densities
of the dissociated positive and negative charges, respectively, k r is the recombination
rate constant, w0 is the negative charge density at an equilibrium (=q0), F(E) is a
function representing the �eld enhanced dissociation, Î¼ i+ and Î¼i− are the mobil-
ities of the positive and negative dissociated charges, respectively. It is assumed for
simplicity that Î¼in=Î¼i+=Î¼i−. To obtain F(E), an electric �eld dependence of
the electric conductivity of dibutyl sebacate (DBS) was measured in laboratory us-
ing concentric cylinder electrodes [5]. Linear approximation was used to determine
F(E).

F (E) =
kd
kd0

=
( σ
σ0

)2

(11)

σ

σ0

= γE + 1 (12)
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kd is the dissociation constant, σ is the electric conductivity. The results is shown in
Fig.1. It was found from the measurement that γ = 2.46Ã�10−7 m/V for DBS. The
�eld dependence of the electric conductivity was calculated from Onsager theory[6]
and it was found that γ =1.31Ã�10−7 m/V. The measurement result was larger than
the value predicted from the theory. In this numerical simulation, the measured
value was used.
The recombination rate constant kr and the negative charge density at equilibrium,
w0 are expressed by

kr =
µ+ + µ−

ε
(13)

w0 =
σ0

µ+ + µ−
(14)

The charge density, qe, injected from an electrode can be given by Eq. (15)[4],

qe = k(Estatic − Ethres) (15)

where k is the proportionality constant, Estatic is a mean value of the electrostatic
�eld strength at the charge injection region (see Fig. 2) and E thres is the threshold
value of Estatic below which no charge injection takes place. The model detail is
presented in Refs. [1, 2, 3].

3 ELECTRODE CONFIGURATION

Three EHD pumps with di�erent electrode con�gurations in Fig. 2 are simulated.
Plate-bar electrodes, two-plate electrodes mounted on the wall, and embedded two-
plate electrodes are inserted in a two-dimensional �ow channel. The geometries of
the three types of electrodes are symmetrical about the centerline and, therefore,
numerical simulations were conducted using half models in Fig. 1. The dimensions
of the computational domain are 0.5 mm height and 8 mm length. The plate-bar
electrodes consist of a plate 0.1 mm thickness and 0.5 mm length located in the
center of the �ow channel, and of two square bars with a cross-section of 0.3 Ã�
0.3 mm2 mounted on the walls. The plate electrode is connected to a positive high
voltage (HV) and the square bar electrodes are grounded. The two-plate electrodes
on the wall consist of plate electrodes with di�erent lengths of 0.15 mm and 0.5 mm
and their thickness is 0.1 mm. The short electrode is connected to the positive high
voltage and the long one is grounded. The two-plate electrodes embedded in the wall
are basically the same as the two-plates electrodes mounted on the wall, except that
the electrode surface is �ush with the channel wall. The gap between the electrodes
is 0.2 mm for the three types of electrodes. Numerical simulations were made for
three cases: (1) only charge injection phenomenon (ion drag action), (2) only non-
equilibrium phenomenon of dissociation-recombination (conduction action), and (3)
both phenomena (ion drag + conduction actions) take place. Inlet �ow rate is
imposed as a boundary condition from zero to a maximum, at which the pressure
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Figure 1: Electric �eld dependence of conductivity.

Figure 2: Electrode con�guration (not to scale) (unit : mm).

di�erence between the outlet and inlet of the computational domain is zero, to obtain
the pressure-�owrate characteristics. Charge injection region is imposed at a corner
of each high voltage electrode, as shown in Fig. 2.
Table 1 Working �uid properties.

Table 15: Working �uid properties.
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Figure 3: Charge density distribution (Ve=1.2 kV , Uin=0 m/s). Note that range
of color bar of (a, c-1) and (b, c-2) is di�erent.

Figure 4: Coulomb's force distribution (Ve=1.2 kV , Uin=0 m/s). Dashed line is
the boundary where the force is zero.

Figure 5: Flow velocity distribution (Ve=1.2 kV , Uin=0 m/s).

Figure 6: Pressure distribution (Ve=1.2 kV , Uin=0 m/s). Note that range of color
bar is di�erent.

Figure 7: Distribution of potential and electric �eld (Ve=1.2 kV , Uin=0 m/s).
Results of both ion drag and conduction actions.
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Figure 8: Charge density distribution (Ve=2.0 kV , Uin=0 m/s). Note that range
of color bar of (a, c-1) and (b, c-2) is di�erent.

Figure 9: Coulomb's force distribution (Ve=2.0 kV , Uin=0 m/s). Dashed line is
the boundary where the force is zero.

Figure 10: Pressure distribution (Ve=2.0 kV , Uin=0 m/s). Note that range of color
bar is di�erent.

Figure 11: Charge density distribution (Ve=2.0 kV , Uin=0 m/s). Note that range
of color bar of (a, c-1) and (b, c-2) is di�erent.

Figure 12: Coulomb's force distribution (Ve=2.0 kV , Uin=0 m/s). Dashed line is
the boundary where the force is zero.
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Figure 13: Pressure distribution (Ve=2.0 kV , Uin=0 m/s). Note that range of color
bar is di�erent.

Figure 14: Pressure - �ow rate characteristics (Ve=1.2 kV for (a) and 2.0 kV for (b)
and (c)).The �ow rate is calculated as the channel depth of 5mm.

In the simulation, physical properties of dibutyl sebacate (DBS, C18H34O4) as
working �uid were used and are listed in Table 1. A cone-plate rotational viscometer
(TOKI SANGYO RE80) was used for viscosity measurement. Relative permittivity
was measured using a probe consisting of two concentric cylinders (RUFUTO Model
871). The proportionality constant k in Eq. (15) was determined by �tting the
simulated pump pressure to the measured pressure when the �ow rate is zero4. The
ionic mobility was determined by the Walden's rule. Boundary conditions are listed
in Table 2, where n stands for the unit normal vector.
Table 2 Boundary conditions.

Table 16: Boundary conditions.

4 RESULTS AND DISCUSSION

Plate-bar electrodes

The distributions of charge density, Coulomb's force, �ow velocity, pressure, po-
tential and electric �eld are shown in Figs. 3-7. The cases for ion drag action,
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conduction action, and ion drag and conduction actions are compared at the ap-
plied voltage of +1.2 kV and zero net �ow rate.
Figure 3(a) shows the injected charge density distribution under no dissociation (no
conduction action). For this case, the injected charges do not spread in y direction.
Dissociation charges are generated more in higher electrode areas and surround the
electrode with a sign opposite to the charges as shown in Fig. 3(b). When both
charge injection (ion drag action) and dissociation (conduction action) take place,
as can be seen by comparing Fig. 3(a) to Fig. 3(c-2), the injected charge density
distribution changes to a straighter and thicker distribution from the HV electrode
to the ground electrode. This change is caused by the conduction �ow attracting to
the HV electrode as shown in Fig. 5(b).
The maximum Coulomb's force in Fig. 4 is 5Ã�105 N/m3 at the corner of the
HV electrode for ion drag action. When conduction e�ect is added, the maximum
Coulomb's force is weakened because negative charges are collected near the positive
HV electrode. Although the maximum Coulomb's force is weakened, the developed
pressure in Fig. 6 increases by 36
The maximum electric �eld strength in Fig. 7 is 15 MV/m on the charge injection
region of the positive HV electrode. The electric �eld strength is not a�ected by
conduction e�ect although not shown in the �gure.
Two-plate electrodes mounted on wall

The distributions of charge density, Coulomb's force and pressure are shown in Figs.
8-10. The cases for only ion drag, only conduction and both actions are compared.
The applied voltage is +2.0 kV and the �ow rate is zero.
Comparison of Fig. 8(a) to Fig. 8(c-1) shows that the injected charge density
distribution changes from a thin, �at shape to a thick, round shape. This change
is caused by the conduction �ow. In Fig. 8(b), dissociation charges are distributed
more widely near the ground electrode than near the HV electrode. This is because
the ground electrode is 3.3 times longer than the HV electrode. Such an asymmetric
distribution of the charges may generate a net �ow for the direction from narrow
to wide electrode. This is the well-known working principal of conduction pump,
which can be seen from the Coulomb's force distribution in Fig. 9(b). The area
where the Coulomb's force acting to the right on and above the ground electrode
is larger than that acting to the left on and above the HV electrode. When charge
injection is added (Fig. 9(c)), the zero force boundary tilts toward the HV electrode,
then Coulomb's force to the ground electrode is enhanced.
As shown in Fig. 10(c), high pressure appears at the left corner of ground electrode
when both ion drag and conduction act. The pressure on and downstream the
ground electrode for the case of both ion drag and conduction acting is higher than
that for the case of only conduction.
Embedded two-plate electrodes

The distributions of charge density, Coulomb's force and pressure are shown in Figs.
11-13, respectively and are very similar to those for the two-plate electrodes mounted
on the wall.
As with the mounted plates, dissociation charge occupies whole of the channel (Fig.
11(c-2)), so the Coulomb's force induced by the dissociation charge covers wide
range of the channel (Fig. 12). In Fig. 13, high pressure area appears near the HV

323



REFERENCES

electrode in case of only conduction �ow, on the other hand, the area is near the
ground electrode in case of the both ion drag and conduction �ow. This change is
because the charge injection from the HV electrode make pressure near the ground
electrode high and weaken the Coulomb's force induced by the dissociation charge
near the HV electrode.
Comparison of pressure - �ow rate characteristics

Fig. 14 presents simulated pressure - �ow rate characteristics for the three electrode
con�gurations. The pressure di�erence between the outlet and inlet of the channel
is plotted at di�erent �ow rates. The net �ow direction is from left to right in Fig.
1. In Fig. 14(a), the pressure developed by the ion drag action is higher than that
by conduction action, while the situation is reversed in Fig. 14(b) and (c). In all
con�gurations, the pressure developed by both ion drag and conduction actions is
the highest. At zero �ow rate in Fig. 14(a), the developed pressure is 29 Pa for only
ion drag action, is 5 Pa for only conduction action, and is 40 Pa for both actions.
When the ion drag and conduction act simultaneously, the developed pressure is
augmented and is higher than the sum of the pressures developed separately by
each action. The augmentation e�ect in Fig. 14(b) is the largest of all. In Fig.
14(b), the developed pressure for ion drag action is 4.9 Pa. On the other hand,
the conduction action develops 12 Pa. When the ion drag and conduction act
simultaneously, the pressure increases to 49 Pa. This pressure augmentation may
result from the variation of the Coulombâ��s force distribution in Fig. 9, which is
caused by the variation of the dissociation charge distribution induced by the ion
drag �ow.

5 CONCLUSIONS

This paper investigates numerically the interaction between the ion drag and con-
duction actions using plateâ��bar, mounted plates and embedded plates electrodes
in two-dimensional channel. It is found that when the ion drag and conduction act
simultaneously, the developed pressure is augmented and is higher than the sum of
the pressures developed separately by each action. It is also found that the pressure
augmentation depends strongly on electrode con�guration.
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Abstract

In this review paper, we present a family of closely related models for
multiphase �ows at all stages of the technology of hydraulic fracturing, which
is used for stimulation of production from oil and gas wells. The models
are derived from conservation laws using asymptotic methods in the multi-
�uid approach. Five separate problem formulations are distinguished: (i)
suspension �ow down the well, (ii) suspension �ow and sedimentation in a
hydraulic fracture, (iii) inertial migration of particles in the horizontal section
of a vertical hydraulic fracture, (iv) �ltration of �uid with �ne particles through
a random close pack of proppant in a closed hydraulic fracture, and, �nally,
(v) a gas-liquid �ow in a well during cleanup and startup after the end of
hydraulic fracturing. Advantages and drawbacks of the multi-�uid approach
are discussed, in comparison to simpli�ed semi-empirical e�ective-�uid and
drift-�ux models.

1 Introduction

The technology of hydraulic fracturing of a hydrocarbon bearing underground for-
mation is based on injecting a �uid laden with rigid particles under a high pres-
sure (up to several hundred bar) into the well to create fractures in the porous
medium, which are �lled with particles. After the end of pumping, fractures closed
on packed granular material provide high-conductivity channels to transport hydro-
carbons from reservoir to the well and all the way up to the surface. The well may
be vertical (when a single bi-wing fracture is formed) or near-horizontal with several
perforation clusters providing reservoir contact (the so-called multi-stage fracturing
in low-permeability formations). The latter case gives rise to several transversal
fractures.
With respect to di�erent stages of the hydraulic fracturing technology, we consider
four classes of multiphase �ows that can be modelled within the multi-continua (or
multi-�uid) approach [1]. In a more detail, we distinguish the following classes: (i)
the �ow of suspension of �uid with particles in a circular pipe at high Reynolds
numbers during pumping, (ii) the �ow of suspension in a narrow vertical hydraulic
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fracture at moderate Re during pumping [2, 3], (iii) suspension �ltration through
a packed of proppant particles in a closed fracture during cleanup [4], and (iv)
multiphase gas-liquid �ow with admixture of rigid particles in a circular pipe during
well start-up, cleanup and testing in a wide range of the Reynolds numbers [5].
We discuss the advantages and limitations of the multi-�uid approach based on the
simulation examples from each of the four classes of multiphase �ows, in comparison
with simpli�ed semi-empirical approaches, e.g. the drift-�ux model for well �ows,
the e�ective-�uid model for suspension transport in fractures, and the deep-bed
�ltration model. The talk ends up with recommendations for future research on the
topic. A detailed review of the state of the art in numerical modeling of hydraulic
fracturing can be found in [7], and the most recent review with a speci�c focus on
�uid mechanics of hydraulic fracturing is [6].

2 Two-�uid model for suspension transport in a

fracture

In this section, we present in a lumped form the two-�uid model for suspension �ow
and sedimentation in a hydraulic fracture. This model was derived in the multi-
continua approach [1] using asymptotic methods in the lubrication approximation.
The key assumption is that the width-to-length ratio of the fracture is a small
parameter: ε = w/L � 1. The cross-�ow particle concentration pro�le is assumed
uniform. In the width-averaged variables, the equations are as follows [2]:

∂wC

∂t
+∇ (wCVp) = 0 (1)

∂w

∂t
= ∇

[
w3

12µ(C)
(∇P + Bu [1 + C(η − 1)] e2)− wCVs

]
− 2vl (2)

Vf = − w2

12µ(C)
(∇P + Bu [1 + C(η − 1)] e2) , Vp = Vf + Vs (3)

Vs = − St

Fr2

(
η − 1

η

)
f(C)e2, f(C) =

(
1− C

Cmax

)5

, µ(C) =

(
1− C

Cmax

)−1.89

.

Bu =
ρ0
fgL

2

µ0U
, ρ0

p/ρ
0
f .

Here, Cartesian coordinate system Oxy is introduced in the cell plane, so that y-
axis (with the basis vector e2) is vertical and origin O is located in the bottom left
corner of the computational domain; C is the particle volume fraction; w(x, y, t) is
the width of the fracture (in hydraulic fracturing simulators, the width is available
from solving the geomechanics problem of fracture growth [7]); Vf , Vp, Vs are the
width-averaged velocities of the �uid and the particles, and the settling velocity of
particles relative to the �uid; vl is the velocity of �uid leak-o� through the porous
walls; di�erential operator `∇' acts in the (x, y) plane as we applied the averaging
procedure along the cell width. The �ow scales are as follows: L is the cell length,
U is the scale of the injection velocity, d is the cell width scale, ρf0 is the fracturing
�uid density, µ0 and τ0 are the fracturing �uid plastic viscosity and yield stress,
respectively; g is the gravity acceleration; Bu is the Buoyancy number.
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Figure 1: Particle concentration fronts in the fracture of elliptic cross-section at
t = 0.5 for Bu = 326 (a) and Bu = 3260 (b). Result are obtained by the e�ective-
�uid model (dashed line) and the two-�uid model (solid line).

Boundary and initial conditions for the hyperbolic equation for concentration (1)
are given by:

t = 0 : C = 0, (x, y) ∈ [0, L/H]× [0, 1]; x = 0 : C = C0, y ∈ [y1, y2]

Boundary conditions for the pressure equation (2) are as follows:

x = 0 :
∂p

∂x
= −12µ (C)

w2
, y ∈ [y1, y2];

∂p

∂x
= 0, y ∈ [0, y1], [y2, 1]

x = L/H :
∂p

∂y
= −Bu; y = 0, 1 :

∂p

∂y
= −Bu(1 + C|y=0, 1(η − 1))

The particle settling velocity is given by an empirical formula, which is the general-
ization of the well-known Richardson-Zaki expression, taking into account the fact
that particles slow down and stop completely when reaching the packed bed on the
bottom. The existing e�ective-�uid models of suspension �ows [8] contain an as-
sumption that the volume-averaged suspension velocity is governed by the Poiseuille
law, while in the present two-�uid model it is shown based on the derivation from
the conservation laws that the Poiseuille law governs the mass-averaged velocity of
the carrier �uid (3). Also, earlier models contained an assumption in the algebraic
expression for the particle velocity (3) that the particles settle relative to the volume-
averaged velocity of the suspension [8], and not relative to the �uid, as is the case
on the two-�uid approach [2]. As a result, in contrast to the existing models the
two-�uid model includes an additional term −∇(wCVs) in the right-hand side of
the pressure equation (2), which takes into account the two-speed e�ects.

3 Cross-�ow inertial migration of particles in a frac-

ture

Particle migration in fractures is essentially a multi-scale problem, spanning from
the lift force on a single particle settling in a slot [9], through the inertial igration
in a suspension �ow in the horizotnal section of a fracture [10, 11] to the e�ects of
cross-�ow migration on the global transport and sedimentation in the entire fracture
[12].
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In thi seciton, we will consider in detail the inertial migration of particles in a dilute
suspension �ow through the entry region of a plane channel, which is important
in application to modeling of proppant migration in the near-wellbore zone of the
fracture. Within the two-�uid approach, an asymptotic one-way coupling model of
the dilute suspension �ow in the entry region of a channel is constructed in [10]. The
carrier phase is a viscous incompressible Newtonian �uid, and the dispersed phase
consists of identical non-colloidal rigid spheres. In the inter-phase momentum ex-
change, we take into account the drag force, the virtual mass force, the Archimedes
force, and the inertial lift force with a correction factor due to the wall e�ect and
an arbitrary particle slip velocity. The channel Reynolds number is high and the
particle-to-�uid density ratio is of order unity or signi�cantly larger unity. The solu-
tion is constructed using the matched asymptotic expansions method. The problem
of �nding the far-downstream cross-channel pro�le of particle number concentration
is reduced to solving the equations of the two-phase boundary layer developing on
the channel walls. The full Lagrangian approach is used to study the evolution of
the cross-�ow particle concentration pro�le.

Figure 2: Asymptotic domains in the suspension �ow in the horizontal section of an
entry region of a fracture: 1 � the entry region, 2 � the boundary layer, 3 � the region
of overlapping of the boundary layers, 4 � the lower sublayer, 5 � the far downstream
region of the fully developed Poiseuille �ow. Symbol ⇔ de�nes asymptotic matching
of solutions in adjacent domains.

The system of equations of the two-phase boundary layer are as follows [10]:

∂u

∂x
+
∂v

∂η
= 0,

∂ρsus
∂x

+
∂ρsvs
∂η

= 0, (4)
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Here the latter terms in the right-hand side of the momentum conservation equations
for the particulate phase correspond to the virtual mass force and the Archimedes
force. Additionally, ϕ is the Blasius function from the well known solution of the
boundary layer problem [13]. External �ow is uniform, hence the longitudinal pres-
sure gradient is zero. Boundary conditions take the form:

x = 0 : us = ρs = 1, vs = 0; (5)

η = 0 : u = v = 0; η →∞ : u→ 1.

The inertial migration in the entry region of a plane channel (a circular pipe) re-
sults in particle accumulation on two symmetric planes (an annulus) distanced from
the walls, with a non-uniform concentration pro�le between the planes (inside the
annulus) and particle-free layers near the walls. When the particle-to-�uid density
ratio is of order unity, an additional local maximum of the particle concentration
on inner planes (an inner annulus) is revealed. The inclusion of the corrected lift
force makes it possible to resolve the non-integrable singularity in the concentra-
tion pro�le on the wall, which persisted in all previously published solutions for the
dilute-suspension �ow in a boundary layer [14]. The numerical results are compared
with the tubular pinch e�ect observed in experiments, and a qualitative analogy is
found.

Figure 3: Trajectories of the particles in the boundary layer for the nondimensional
intensity of the lift force κ0 = 20, the particle-to-�uid density ratio ξ = 3 (a) and
ξ = 5 (b).
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Figure 4: Far-downstream asymptotics of the cross-�ow concentration pro�le ρs
depending of the stream function θ in the boundary layer, κ0 = 20 and ξ = 5, 4.5,
Ð¸ 4 � curves 1-3. Pro�les in each layer of the fold (a) and the total concentration
pro�le (b).

In this case the trajectories shown in Fig. 3 are substantially di�erent from the case
of a dusty gas. The reason is that in the case of a suspension the particle-to-�uid
density ratio is of order unity ξ ∼ 1, and the terms due to the Archimedes force
and the virtual mass force should be retained in the momentum conservation laws.
These terms result in the formation of an additional local maximum in the cross-�ow
concentration pro�le (see Fig. 4,(a)).

4 Suspension �ltration in proppant packings in a

closed fracture

Suspension �ow in the propped fracture is described within the three-continua ap-
proach: suspended partices (solid particles carried by the �ow of a �uid within the
porous space), trapped particles (solid particles, which are sedimented in pores), and
carrier �uid (viscous incompressible Newtonian �uid). Suspended particles are char-
acterised by the phase density ρmobp and the mass-averaged velocity Umob

p ; the phase
of trapped particles is characterized by the density ρsedp ; the carrier phase is char-
acterised by the mass-averaged velocity Uf and density ρf . Particles have constant
substance density ρ0

p, and the �uid � a constant substance density ρ
0
f . Multi-continua

modeling of suspension �ows is applicable if the following hierarchy of scales exists:
particle diamter is signi�cantly smaller than the diameter of pore channels, while
being signi�cantly larger than the mean free path of the �uid molecules [1]. Large
pore channels are the pore space excluding trapped particles and the void space
between those. Small pore channels are pore space between trapped particles (Fig.
5, b).

Density of the particle phases are related to the porosity and the particle concen-
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Figure 5: The sketch of suspension �ow in a porous medium (a); a scheme of the
porous space (b): large pore channels (1) and small pore channels (2).

tration by the following relations [15]:

ρmobp =ρ0
pCφc, ρsedp =σρ0

p, ρf =ρ0
f (φt − Cφc),

φt =φ0 − σ, φc =φ0 − σ/Cmax, (6)

where C is the particle volume fraction in the pore space available for the �uid to
�ow (in large pore channels), σ � the volume concentration of trapped particles in the
entire volume of the porous medium, Cmax is the maximum packing concentration
(random close packing), φt � the porosity of the medium formed by the trapped
particles and the matrix (large and small channels in total), φc � the porosity of the
medium formed by the large pore channels; φ0 � initial porosity of the medium.
The mass conservation equation for particles and �uid is written as [19]:

∂ρmobp

∂t
+

1

rj
∂(ρmobp Umob

p rj)

∂r
=− qs,

∂ρsedp
∂t

+
1

rj
∂(ρsedp U sed

p rj)

∂r
=qs, (7)

∂ρf
∂t

+
1

rj
∂(ρfUfr

j)

∂r
= 0.

Here j = 0 in a plane �ow and j = 1 in a radial �ow, qs is the rate of trapping and
mobilization of particles in the matrix, determined by the formulas [16]:

qs = ρmobp Umob
p λ− ρ0

pασδ(Us − Ucrit), (8)

δ(Us − Ucrit) =

{
Us − Ucrit, Us > Ucrit

0, Us < Ucrit
.

Here λ is the colmatation coe�cient (intensity of particle trapping) [20], α � the
coe�cient of mobilization of trapped particle, Us is the �ltration velocity in large
and small pore channels, Ucrit is the critical suspension velocity, above which trapped
particles are mobilized.
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In large pore channels with the permeability k(σ), the suspension is �owing with
the viscosity µ(C). In small pore channels with the permeability ks(σ), only the
clean �uid is �owing with the dynamic viscosity µ0. The momentum conservation
equations (Darcy laws) for the carrier phase, suspended particles and the suspension
as a whole are obtained by volume-averaging in large and small pore channels:

U =− k(σ)

µ(C)

∂p

∂r
, Us =−

[
k(σ)

µ(C)
+
ks(σ)

µ0

]
∂p

∂r
, (9)

U filtr
f =−

[
(1− C)

k(σ)

µ(C)
+
ks(σ)

µ0

]
∂p

∂r
, Up =− C k(σ)

µ(C)

∂p

∂r
,

U filtr
f = Uf (φt − Cφc).

Here U is the suspension �ltration velocity in large and small pores, U filtr
f is the �uid

�ltration velocity in large and small pore channels, Up = Umob
p Cφc is the volume-

averaged velocity of suspended particles in large pore channels, p � pressure.
The work [3] suggests the following relation between the permeability in large pore
channels and the volume fraction of trapped particles:

k(σ) = k0

(
1− σ

φ0Cmax

)3

. (10)

Permeability in small pore channels:

ks =ks0

( σ

φ0Cmax

)3

, ks0 =
(1− Cmax)3d2

180C3
max

. (11)

Here ks0 is the permeability of small pore channels during full packing of porous
space (σ = φ0Cmax), determined from the Kozeny-Carman formula [21]; d is the
diameter of particles in suspension.
Using the de�nitions introduced above, the conservation equations can be reformu-
lated as:

∂(Cφc)

∂t
+

1

rj
∂(CUrj)

∂r
= −UCλ+ ασδ(Us − Ucrit), (12)

∂σ

∂t
= UCλ− ασδ(Us − Ucrit),

∂(Usr
j)

∂r
= 0.

Classical deep-bed �ltration models of suspension �ow do not take into account
the fact that the particles trapped in pores form a secondary porous medium (a
random close packing of sedimented particles) with the permeability smaller than
the permeability of the matrix. Filtration through the close packing of trapped
particles is not considered in the classical models.
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Below for comparison we present the classical model of deep-bed �ltration in large
pore channels without considering the �ow in small pore channels in the packed bed
of trapped particles (φc = φt = φ0 − σ, U = Us, ks = 0) [3, 5, 15, 24, 18]:

∂(Cφc)

∂t
+

1

rj
∂(CUrj)

∂r
= −CUλ(σ) + ασδ(U − Ucrit),

∂σ

∂t
= CUλ(σ)− ασδ(U − Ucrit),

∂(Urj)

∂r
= 0, U = − k(σ)

µ(C)

∂p

∂r
. (13)

Experiments on colmatation of core sample [23] have shown that the model (13) can
be improved by introducing the following expression:λ = λ0(1 +βσ). Here, λ0 is the
original colmatation coe�cient. Thus, the classical model (13) contains two tuning
parameters λ0 Ð¸ β.
Two versions of boundary conditions are considered: - (i) pressure is speci�ed at the
entry and at the outlet of the core sample (a): r = r0 : p = p0, C = C0; r = L : p = 0.
- (ii) the �ltration velocity is speci�ed at the inlet, and pressure � at the outlet (b):
r = r0 : Us = U0, C = C0; r = L : p = 0.
Initial conditions: t = t0 : φ = φ0, σ = 0.
Closure relations for permeability of the random close packing of proppant in a hy-
draulic fracture can be found from direct numerical simulation supported by proper
conductivity experiments (see, for example, LBM simulations in mixed packing of
proppant particles of various shape in [25]).

5 Gas-liquid �ows in a well during cleanup

In this section we will discuss the �rst-principles derivation of simpli�ed drift-�ux
equations for gas-liquid �ows in a well [26]. We consider a transient isothermal
�ow of a gas-liquid mixture in a long circular pipe with a variable inclination angle
to the horizon. The �ow is assumed to be axisymmetric and non-swirling. The
liquid is a continuous carrier phase. The gas is a dispersed phase present in the
form of monodisperse spherical bubbles suspended in the carrier �uid. The gas
is compressible, and the liquid is incompressible. The cross-�ow migration of the
bubbles and their merging are not considered; however, we take into account the
resulting nonuniform cross-�ow pro�le of the gas volume fraction, which is formed
as a result of the migration of the bubbles. The pressure di�erence in the bubbles
and in the surrounding liquid due to surface tension is neglected. The bubble size is
assumed to be much smaller than the spatial scales of variation of the �uid velocity,
and the Reynolds numbers of the �ow around individual bubbles are small.
The two-phase �ow is considered within the approach of interpenetrating and inter-
acting continua [1]. The problem is described by conservation laws in di�erential
form, written for gas and liquid phases. The mass transfer between the phases is
absent.
The balance laws of mass and momentum in the di�erential form for gas and liquid
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take the form [1]:

∂

∂t
(αiρi) + ∇(αiρivi) = 0 (14)

αiρi
divi
dt

= −∇pi + ∇ · øi + αiρig + nbFij (15)

di
dt

=
∂

∂t
+ (vi · ∇).

Here, the indexes i, j = g, l (i 6= j) denote gas and liquid, respectively, αi, ρi, and
vi are the volume fractions, densities and velocities of the phases, pi and øi are
the pressures and viscous stress tensors in each phase, and g is the gravity force
acceleration. The momentum exchange between the phases is described by the
term ±nbFij, where Fgl = F is the force exerted on a single bubble by the �uid,
Flg = −Flg, and nb is the number concentration of the bubbles.
For simplicity, the following calculations are performed for a vertical pipe, although
the results may be generalized to the case of an inclined pipe, excluding �ows in
near-horizontal pipes.
It is assumed that the chaotic motion of the bubbles can be neglected, and the
deviation of the bubble velocity from the mass-averaged velocity of the dispersed
phase vg is small, hence the stress tensor in the dispersed phase can be neglected
[2]. The presence of the dispersed phase a�ects the stress tensor of the carrier phase.
On the other hand, the bubbles of a compressible gas travel with a velocity di�erent
from that of the �uid, and the bubble volume fraction varies. Accordingly, the
condition ∇vl = 0 is no longer true. In this sense, the averaged liquid phase is
compressible, in contrast to the liquid as a material. Therefore, the stress tensor of
the carrier phase is written as for a viscous compressible �uid, with the coe�cients
of shear viscosity µ and bulk viscosity ζ dependent on the gas volume fraction:

øl = 2µ(αg)

(
el −

1

3
∇vlI

)
+ ζ(αg)∇vlI.

Here, el is the strain rate tensor, and I is the unit tensor. To determine the
dependences µ (αg) and ζ (αg) is a separate problem, which is usually solved for
neutrally-buoyant particles, neglecting the phase slip. In what follows, we assume
that µ (0) = µ0, where µ0 is the viscosity of the pure �uid, and ζ (αg)∇vl → 0 as
αg → 0.
The bubble radius is bounded by a limiting value Rc above which the bubble loses
the spherical shape, becomes unstable, and is fragmented into smaller bubbles:

R ≤ Rc '
1

3

(
σ

ρlg

) 1
2

' 10−3m.

Here, σ is the gas-liquid surface tension. Under the above assumptions, the to-
tal force exerted on a bubble by the �uid is a superposition of the Stokes Fs, the
Archimedes FA, the added mass Fam, and the Basset-Boussinesq FBB forces. Ac-
cordingly, the forces on a bubble can be written in the form:

F = FSt + FA + Fam + FBB
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FSt = 6πµR(vl − vg), FA =
4

3
πR3ρl

(
dlvl
dt

g

)
, Fam =

2

3
πR3ρl

dg
dt

(vl − vg)

For a transient �ow in a well, the equations of the drift-�ux model, known in the lit-
erature and implemented in the commercial reservoir simulator ECLIPSE (Schlum-
berger), take the form [27, 28]:

∂

∂t
(Aαiρi) +

∂

∂z
(Aαiρivi) = 0 (16)

ρm

(
∂vm
∂t

+ vm
∂vm
∂z

)
= −∂p

∂z
+ ρmg cos θ +

2fρmvm|vm|
d

(17)

vg = C0vm + vd. (18)

Here, A is the pipe cross-section, vm = αgvg+αlvl is the volume-averaged velocity of
the mixture, ρm = αgρg +αlρl is the mixture density, f = f(αg, vm, p) is the friction
coe�cient, d is the pipe diameter, and θ is the angle between the pipe axis and the
vertical.
In the applications, a quasi�steady-state variant of the drift-�ux model is widely
used, in which the time-derivative in the momentum equation for the mixture is ne-
glected and the total pressure di�erence is equal to the sum of the terms responsible
for the gravity force, friction, and acceleration [27]. In the literature, this model
is referred to as the no-pressure wave model, since it does not take into account
the disturbance propagation with the transport velocity. In contrast to this quasi�
steady-state formulation, we retain the time derivative of velocity in the momentum
equation to take into account highly transient e�ects.
In the literature, formula (18) [1] (where C0 = C0(αg, vm, p) is the pro�le parameter
which takes into account a non-uniform cross-�ow pro�le of the bubble volume
fraction and the carrier-phase velocity, and vd = vd(αg, vm, p) is the drift velocity)
is called the drift-�ux model relation.
There is also another known formulation of the drift-�ux model [29], with the mix-
ture momentum equation written as

∂

∂t
(αgρgvg + αlρlvl) +

∂

∂z
(αgρgv

2
g + αlρlv

2
l + p) = Ql + Qg, (19)

where Qi are the source terms for each phase, and the drift-�ux relation written as

vg − vl = Φ(αg, vg, p) (20)

The asymptotic equations are derived in the long-channel approximation ε � 1,
similar to the boundary-layer approximation, the narrow-channel approximation for
fracturing �ows [2], and the lubrication approximation for thin-�lm �ows [30].
To come up with an algebraic relation between the phase velocities, additionally it
is assumed that

εStη � 1, η � 1,
St

Fr2η ∼ 1, εRe ∼ 1, εξ0 � 1.
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Thus, the drift-�ux model in the form (16)-(18) can be derived from conservation
laws only in the following three cases: (i) small volume fraction of the dispersed
phase α � 1; (ii) no phase velocity slip |C0 − 1|� 1, ηSt/Fr2 � 1; and (iii)
inertialess �ows εRe� 1.
Our analysis demonstrates that the drift-�ux model [27, 28] in the form (16)-(18)
for the present �ow con�guration strictly follows from the conservation laws in the
limited number of cases (i)-(iii) and represents essentially the e�ective-�uid model.
The closure relations published in open literature are obtained from a calibration
against a large body of experimental data [27, 28] for the governing parameters
satisfying at least one of conditions (i)-(iii). At the same time, our analysis indicates
that the drift-�ux model [29] in the form (16), (19), and (20) is more general because
it follows from the balance laws without any additional assumptions, besides the
requirement of noninertial slip εSt� 1.

6 Conclusions

We review a family of closely-related multi-scale models derived by the author from
conservation laws within the multi-�uid approach using perturbation methods to
describe all stages of the technology of hydraulic fracturing. The models cover sus-
pension injection into the well to create primary fractures, suspension transport and
sedimentation in a fracture, cross-�ow inertial migration of particles in a horizontal
section of a hydraulic fracture, �ltration of suspensions of non-colloidal particles in
a random close packing of proppant particles in the closed fracture, and gas-liquid
�ows in a well during cleanup and startup. In particular, our review covers:
1. A novel two-�uid model of suspension transport in a hydraulic fracture. It is
shown that the model is di�erent from the existing e�ective-�uid model of suspension
�ow by additional terms due to two-speed e�ects. These terms are important at
high buoyancy numbers Bu, which corresponds to the case of high-rate slick-water
fracturing. In the case of conventional fracturing with high-viscosity cross-linked
gels, the models match. This model is then generalized to the case of a Bingham �uid
�ow and validated against four di�erent sets of experiments on slumping, Sa�man-
Taylor �ngering in Newtonian �uids, �ngering and channeling in yield-stress �uids,
and suspension transport and sedimentation in a slot with formation of a packed
bed of particles at the bottom.
2. A multi-scale model of particle migration in a dilute-suspension �ow through the
fracture is developed, including the expression for the lift force on a particle settling
in a horizontal �ow through a vertical slot, the model of particle migration in the
entry region of a plane channel with account for the Sa�man lift force on a particle
with the correction due to the wall e�ect, the model of migration of settling particles
in a fully developed Poiseuille �ow in a channel. Using the full Lagrangian approach,
the particle concentration pro�le with an integrable singularity is obtained as a
solution to the problem of the two-phase boundary layer. This achievement marks
the �rst time that a self-consistent solution is obtained for the two-phase boundary
layer problem within the dilute-suspension approximation, as all earlier solutions
contained a non-integrable singularity thus making the model of dilute suspension
inapplicable. New 2D width-averaged equations of suspension transport in a fracture
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are derived with account for the non-uniform cross-�ow particle concentraiton pro�le
formed as a result of the migration.
3. A three-continua model is constructed for the suspension �ow in a porous medium
with account for the e�ects of particle trapping and mobilization. The model takes
into account the e�ect of trapped particles forming a secondary porous medium
of random closed packing with smaller permeability. Fluid �uxe through packed
trapped particles is taken into account. In order to close the model, for the �rst
time in a wide range of porosity we derived a permeability-porosity correlation for
the random close packing of non-spherical particles based on the 3D simulation of
viscous �ow using the lattice-Boltzmann method, validated against lab conductivity
tests.
4. The derivation of asymptotic equations of the drift-�ux model for a dilute gas-
liquid disperse two-phase �ow in a circular pipe is presented in the long-channel
approximation. This asymptotic model is obtained as a limit of the full equations
based on the balance laws, written for each phase in the multi-�uid approximation.
The key assumptions are determined, which make it possible to derive the drift-
�ux model from the balance laws. This model contains an algebraic relation for
the phase velocities and a single equation for the mixture momentum, written for
the volume-averaged velocity of the mixture. To derive the drift-�ux relation for
the phase velocities, when one phase is continuous and the second dispersed, it is
required to assume only that the characteristic length scale of the problem is sig-
ni�cantly greater than the velocity relaxation length. To derive the single equation
for mixture momentum, it is necessary to assume additionally that one of the fol-
lowing conditions is satis�ed: (i) the dispersed-phase volume fraction is small, (ii)
the phase velocity slip can be neglected, or (iii) the �ow is inertialess, i.e. the mix-
ture acceleration can be neglected. At the same time it is shown that the drift-�ux
model, in which a single mixture momentum conservation equation is obtained as
the sum of two momentum conservation equations for the phases, follows from the
conservation laws under one assumption that the characteristic length scale of the
problem is signi�cantly larger than the phase velocity relaxation length; hence, this
model is more general.
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Abstract

Presently in rules for fatigue assessment of steel, and in particular, welded
structures in di�erent technologies subjected to intensive alternating service
loading the Stress-Life (S-N) criteria are recommended in several versions of
approaches. These are the Nominal stress approach based on typifying welded
joints and representing fatigue resistance of the joints by classed S-N curves;
the Hot-spot stress approach focused on evaluation of «structural» stress by
the means of �nite-element analysis (FEA) and the Notch-stress approach
based on the FEA-based assessment of the local stress caused by the geometry
of structural detail and the weld shape. The criteria and approaches provide
assessment of fatigue properties of structures, however, accompanied with a
series of approximations and uncertainties. The nature of drawbacks of the S-N
criteria and approaches is commented and feasible means of improvement the
fatigue criteria evaluation and applications in fatigue assessment procedures
are proposed.

1 Introduction

The Stress-Life (S-N) criteria are recommended presently in rules for fatigue as-
sessment of structures subjected to intensive alternating service loading in versions
(approaches) di�ering mostly by the procedure of considering e�ects of stress con-
centration in critical locations. [1, 2, 6], etc. The approaches are supplemented with
the linear damage summation rule to consider random character of service loading
in fatigue analysis of structures. The criteria and approaches were derived aimed at
a non-complicated application in practical problems; however, a series of drawbacks
and inaccuracies of those was being noted. Firstly, the experimentally obtained
data base � S-N curves - providing evaluation of fatigue properties of structures
was collected by testing of «classed» (including typi�ed welded joints, as in the
case of the Nominal stress approach [6]) specimens under cyclic loading terminated
at almost complete failure («separation in two parts»). This was leading to un-
certainties in considering fatigue properties of materials in welded joints, e�ects of
residual welding stress, de�nition of the state of damage in structural components,
crack size, corresponding exhaustion of fatigue life. Further, recommendations for

341



Proceedings of XLV International Summer School � Conference APM 2017

testing specimens comprising typi�ed welded joints which were aimed at consider-
ing e�ects of materials of the joint (weld material, material of fusion zone, etc.), of
residual welding stress, implemented in the data base did not provide identity of
fatigue damage between specimens and structural details. Partly, it was because
of diversity of geometry of structural details comprising «typi�ed» joints, which
was recognized decades ago. Development of the �nite-element analysis (FEA) fa-
cilities allowed analyzing the stress �eld in actual structural details, in particular,
stress at critical locations. These facilities [3] and experience of strain measurement
in welded components [4] were used to derive the Hot-spot stress approach (HSS)
[1, 2], etc. The approximate estimation of the local stress caused by the particulars
of the stress �ow at the welded joint in HSS, necessity to account for the e�ects
of geometry of the weld itself, resulted lately in development of the Notch stress
approach [5], etc. Assessment of local stress causing the damage process allowed
reducing the range of the design S-N curves to those presenting properties of the
base and weld material only. However, apart from solving the problem of e�ects of
geometry of structural detail on the damage process, the mentioned above disad-
vantages were not corrected. The above criteria and approaches are commented in
more details in the below focused on problems of practical application and certain
remedial actions are proposed.

2 Introduction

The Stress-Life (S-N) criteria are recommended presently in rules for fatigue as-
sessment of structures subjected to intensive alternating service loading in versions
(approaches) di�ering mostly by the procedure of considering e�ects of stress con-
centration in critical locations. [1, 2, 6], etc. The approaches are supplemented with
the linear damage summation rule to consider random character of service loading
in fatigue analysis of structures. The criteria and approaches were derived aimed at
a non-complicated application in practical problems; however, a series of drawbacks
and inaccuracies of those was being noted. Firstly, the experimentally obtained
data base � S-N curves - providing evaluation of fatigue properties of structures
was collected by testing of «classed» (including typi�ed welded joints, as in the
case of the Nominal stress approach [6]) specimens under cyclic loading terminated
at almost complete failure («separation in two parts»). This was leading to un-
certainties in considering fatigue properties of materials in welded joints, e�ects of
residual welding stress, de�nition of the state of damage in structural components,
crack size, corresponding exhaustion of fatigue life. Further, recommendations for
testing specimens comprising typi�ed welded joints which were aimed at consider-
ing e�ects of materials of the joint (weld material, material of fusion zone, etc.), of
residual welding stress, implemented in the data base did not provide identity of
fatigue damage between specimens and structural details. Partly, it was because
of diversity of geometry of structural details comprising «typi�ed» joints, which
was recognized decades ago. Development of the �nite-element analysis (FEA) fa-
cilities allowed analyzing the stress �eld in actual structural details, in particular,
stress at critical locations. These facilities [3] and experience of strain measurement
in welded components [4] were used to derive the Hot-spot stress approach (HSS)
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[1, 2], etc. The approximate estimation of the local stress caused by the particulars
of the stress �ow at the welded joint in HSS, necessity to account for the e�ects
of geometry of the weld itself, resulted lately in development of the Notch stress
approach [5], etc. Assessment of local stress causing the damage process allowed
reducing the range of the design S-N curves to those presenting properties of the
base and weld material only. However, apart from solving the problem of e�ects of
geometry of structural detail on the damage process, the mentioned above disad-
vantages were not corrected. The above criteria and approaches are commented in
more details in the below focused on problems of practical application and certain
remedial actions are proposed.

3 Stress-Life Approaches

The current S-N (Stress-Life) approaches to fatigue analysis and design of structures,
e.g., [6], are based on assumption that material of structure nominally deforms elasti-
cally in service loading conditions. Respectively, in the range of fatigue lives between
104 ≤ N(S) ≤ (2 . . . 5)106 (the left-hand �gure is related to the above statement,
and the right-hand one corresponds to the long-established practice of assessment
the fatigue limit stress in mechanical engineering) the S-N curve is usually approx-
imated in logarithmic coordinates by the straight line, equation if which is given by
the Basquin�s formula (1910):

N(S) = C/Sm, (1)

where S is the stress range, C and m are the «material constants», m is the S-
N curve «slope parameter». The range of endurances of the design S-N curves is
limited from the left side, as said, by the number of cycles prior to failure equal to ,
which approximately corresponds to the nominal stress amplitude around the yield
stress.
Damaging e�ects of stress amplitudes below the conventional fatigue limit stress
in service irregular loading histories is considered by the «two-slope» shape of S-N
curves and by introducing the «cut-o�» fatigue limit stress, substantially lower than
the conventional one, �g. 1 [6].
The mechanics of fatigue damage of welded joint materials is implied (not de�nitely
speci�ed) as built into the design S-N curves based on analysis of results of fatigue
testing of specimens comprising the typi�ed (classed) welded joints, e.g., shown in
�g. 2.
The base and weld material mechanical properties are not speci�ed, and the S-N
curves uniquely represent fatigue properties of a range of structural steels supporting
the so-called «Nominal stress approach», as shown in �g. 1, whereas it is known
that fatigue strength of steels is approximately proportional to the ultimate strength
[7], although resistance of welded joints may depend substantially on the mechanical
properties of the electrode material. The scheme of evaluation of the nominal stress
in example of a bracket welded to the �ange of sti�ener in ship structure (�g. 2) is
shown in �g. 3.
Speci�c of the testing specimens� procedure is automated termination of test when
initiated and growing fatigue crack notably a�ects the specimen compliance preced-
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Figure 1: IIW classed design S-N curves for structural steels [6]

ing complete fracture in two parts. Therefore, the test result, the number of cycles
by the test completion includes, roughly, a portion of life until the macroscopic crack
origination and a part when crack propagates from the origination site. Respectively,
when the approach is applied to assess fatigue resistance of a structural detail, the
state of damage, corresponding crack size, occurs uncertain what attracted atten-
tion of experts (e.g., [5, 8, 9]). Fig. 2 shows a specimen with typi�ed welded joint
(one-side attachment) and a structural detail (in ship bottom structure) attributed
to the same type of the joint. It may be seen a resemblance but not the identity
between the specimen and detail, especially when the geometry and the crack exten-
sion particulars would be mentioned. Attempts were made to develop procedures
which might have assisted in establishing the fatigue identity of welded joints in
structural detail and respective test pieces and design S-N curves [8, 9]; however,
the suggested procedures were substituted by implementing other approaches.
What is important, fatigue tests of typi�ed welded joins at cyclic loading were being
carried up with positive load ratio (ratio of the minimum to the maximum load in
the cycle) to avoid buckling in the compressive part of the load cycle. This means the
design S-N curves are related to the mentioned type of loading. Lately, attempts
were made to consider in fatigue analysis of structural details e�ects of di�erent
loading conditions [10]. Meanwhile, loading asymmetry plays secondary role in the
crack initiation phase which is controlled almost completely by the stress ranges,
excursions causing slip processes in material microstructure [7, 12], etc. When the
crack is initiated its further extensions substantially depend on the tensile part
of alternating loading. Respectively, since a substantial portion of fatigue life of
specimens represents the crack growth, it introduces additional uncertainty into the
results of fatigue analysis of structural details.
The brie�y mentioned disadvantages of the Nominal stress approach promoted devel-
opment and application in practice of the Hot-spot stress (HSS) [1, 2], etc., and lat-
terly, of the Notch-stress approach (NSA) [5], etc. These approaches are supported
by respective Stress-life criteria, addressed to avoiding ambiguity in establishing the
identity between classed welded joints and actual structural details, and providing
considering e�ects of stress concentration in structural details by the �nite-element
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Figure 2: a) - Fractured specimen, FAT63 Class (Fig.1); b) - Crack in a ship struc-
tural detail identi�ed as FAT63 (Courtesy B.Purtle, Lloyd�s Register of Shipping,
UK)

analysis. With regard to the principles of the HSS and the NS approaches the set
of design S-N curves is reduced to those of the base material and material of welded
joint (butt-welded joint), completed with the design curves for details in corrosive
environment [10].
In HSS approach the stress at a critical location, typically at the weld toe, as show
arrows in Fig.2, has to be found by extrapolating stress in element centroids towards
the weld toe, �g. 3; by this the stress raise is assumed caused by the shape of
structural detail and the role of the weld bead geometry is related to properties
of the respective S-N curve (class D curve, butt-welded joint). Substantially �ne
meshing of the welded detail model in the NS approach allows obtaining local stress
at the weld toe considering, both, e�ects of the detail and the weld bead geometry,
as schematically shown in Fig.3; at the same time it is assumed that at the weld
toe there is a smooth, radiused, transition from the parent to the weld material [5].
Such assumption is based on physics of liquid metal contact with the solid where
meniscus appears.
So far, e�ects of stress concentration in critical locations of structure in the HSS
and NS approaches are considered by multiplying the nominal stress range by the
respective stress concentration factors or calculation local stress using, as said, the
�nite-element technique.

Figure 3: Assessment of characteristic stress for fatigue analysis of structural details
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Fig. 4shows the types of meshing of the bracket ending in ship structure (�g. 2,b,
�g. 3) designed for application of the mentioned approaches. The mesh type in
�g. 4,a is attributed to the Hot-spot stress approach; its design follows the principle
«t x t», t is the �ange thickness and the size of �nite elements at the bracket
ending [9]. Another mesh, �g. 4,b, �ts the requirements of the FE modeling when
the Notch-stress has to be applied: the element size at the weld toe is 0.2 of the
assumed weld toe radius [5].
It should be emphasized that assessment of the local stress in these approaches is
based on assumed linear elastic material behavior in critical locations. Referring
further the characteristic stress to the classed S-N curve makes rather an illusion of
proper assessment of damage.

Figure 4: Structural detail and examples of FE meshes designed for application of
the HSS (a) and the HSA (b) approaches [11]

In fact, it means evaluation of the damage with uncertainty, although somewhat on
the conservative side. In the high-stress range of the service loading the input of this
over-estimation of fatigue damage in the total sum might be regarded insigni�cant
due to stochastic properties of excitation and relatively infrequent intensive loading
of structures. Whereas at the moderate service loading, in the high-cycle regime,
which provides the predominant damage, the above approaches neglecting the e�ects
of material microplasticity at critical locations, may substantially over-estimate the
damage.
Comparative analysis of fatigue properties of ship structural detail shown in �g. 4,
«Post-Liberty» dry cargo ship, non-speci�ed wave climate, upper deck structure
amidships [11], resulted in substantially di�ering values of fatigue damage related
to 20 years of ship service: application of the HSS approach indicated D = 1.24,
whereas the Notch-stress approach use shown the damage index as D = 0.54, and
the Strain-life approach, where the inelastic behavior of material was accounted for,
resulted in D = 0.35. The mentioned comparative study just illustrates the problem;
perhaps, a comprehensive analysis might be needed. However, �rstly, the apparent
disadvantages of the current Stress-life methodologies should be corrected. First,
the Hot-spot stress approach barely might be improved: the prospects of perfection
of the technique of evaluation the hot-spot stress are not seen, receipts for design the
FE model of welded detail barely allow for considering material inelastic behavior,
the crack size, residual welding stress is accounted for fairly approximate.
The feasible means of improvement of the approaches and S-N criteria might be
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Figure 5: FE-models of tubular welded joints: a) � model developed for fatigue
analysis with Strain-life approach [13]; b) � model of the joint for the HSS aided
analysis [15]. Arrows indicate the critical locations

focused mostly on the Notch stress approach and be the following:

� In formulation of the S-N criteria fatigue testing of specimens has to be carried
out until origination of macroscopic crack. It would need in application of the
well developed methods and technique of crack detection and in respective
improvement of the test procedure,

� Fatigue testing reasonably should be carried out at symmetrical loading, so
that when necessary e�ects of mean stress on the damage might be reasonably
accounted for,

� Approximate considering the inelastic cyclic behavior of the critical location
material by correction of the local stress with the means of the notch factor
value, e.g., formulated by Peterson [14]:

Kf = 1 + (Kt − 1)/(1 + g/r), (2)

� whereKt is the theoretical stress concentration factor, g is "material structure"
parameter, according to [14], this parameter for structural steels with the yield
strength in the range of 235-390 MPa may be estimated by g = 0.38(350/σu),
where σu is the ultimate strength of material, r is the notch root radius,

� As to the e�ects of residual welding stress it may be assumed part stress
relaxation at the very crack initiation phase due to the cyclic plasticity of
material accentuated at the critical location.

The Notch stress approach may be completed by the procedure of evaluation of the
crack initiation and extensions by further development of the damage accumulation
principle suggested in [13, 16, 17], etc., complemented by designing the �nite-element
models of structural components with the necessary �neness of the mesh at critical
locations and in the plane of expected crack growth, e.g. as shown in �g. 5,a.
Material (�nite) elements should be deigned small enough to neglect the stress and
strain gradients through the element, but large enough to apply the continuum
mechanics format.
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Let the number of load cycles corresponding to crack initiation in themost stressed
elements along the notch root (weld root as in �g. 4,b, 5,a) is ; then damage accu-
mulated at this step in the surrounding elements:

dinitial = N0/Ni (3)

So far, ni = N0 is the initial part of the «fatigue process», Ni is the number of
load cycles to failure in the successive stress range conditions, in every consecutive
«material element» where stress range prevailed the non-damaging level (cut-o�
fatigue limit stress) in the initial and sequential loadings, which develop due to
«failure» of elements. The «failure» is de�ned by the condition:

d = dinitial +
∑

(ni/Ni) = 1 (4)

Here ni = ni(Si) is the number of load cycles corresponding the stress range Si, which
completes the damage accumulation in a particular FE («material element»), d, at
every «crack extension». - As said in above, e�ects of residual welding stress may
be insigni�cant in the crack initiation phase and neglected; however, in analysis of
the crack extensions the residual stress in�uence cannot be ignored and should be
considered in dependence on the redundancy of structure.
I should be noted, the procedure would need in rearrangement of the mesh (au-
tomated procedure is presently provided by the FE software) and stress �eld as-
sessment at every crack extension through successive �nite elements («material el-
ements»).
The approach would make feasible fatigue analysis of the damage process commenc-
ing from initiation of service loading through the crack initiation at a structural
discontinuity and growth until onset of a critical condition, e.g., until the through
crack in a pipe line (e.g., [13, 16], etc.).
What may be regarded promising, the damage accumulation model may be comple-
mented by the crack growth model given by the Linear fracture mechanics (LFM)
principles, e.g. [18], which would allow for predicting conditions for the instable
fracture of a structural component. The approach was successfully tested in several
examples where the crack extensions in �llet-welded joint were simulated [16], in
analyses of crack growth in test specimens [17]; results of numerical simulation were
in good agreement with the test data.

4 Conclusions

The Stress-Life (S-N) criteria applied in the Nominal stress approach, Hot-spot
stress and Notch-stress approach provide assessment of fatigue properties of struc-
tures accompanied with a series of approximations and uncertainties. The most
substantial drawbacks of the S-N criteria-based techniques of fatigue analysis are
the problems of identity of damage between classed specimens and actual struc-
tures, considering e�ects of stress concentration in structural details, uncertainty
of the crack size corresponding completion of estimated fatigue life of a structural
component, etc. Several means of improvement of the Notch-stress approach and
respective S-N criteria are suggested proved by results of a series of studies.
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Abstract

The interest in electrohydrodynamics of �ows in micro- and nano-size chan-
nels, which has been observed in recent years in the literature, is caused by the
need to manage the motion of ultrasmall portions of �uids in various devices
employed in biological research, biotechnology, pharmacy, medicine, and other
areas of science. This work is focused on the study of the in�uence of strong
non-uniform electric �elds on the ionization processes in partially ionized liq-
uid mixtures as they �ow through plane microchannels. The e�ects caused by
the action of a non-uniform �eld on the bulk electrochemical kinetics in low-
conductive liquids at moderate values of the Debye number are analyzed. In
weakly conducting chemically reacting environments the applied electric �eld
can a�ect the ionization process both indirectly, through redistribution of re-
active charged components, and directly, by means of increasing the kinetic
rate of ionization. In the last case, in the near-wall layers with a strong non-
uniformity of the �eld, bipolar structures of uncompensated space charge are
formed, which can be a�ected by the applied longitudinal �eld. The presence
of the layers with the opposite Coulomb forces brings about in�ection points in
the velocity pro�le. This may cause instability of the �ow and thereby induce
the mixing of the liquid in the microchannel.

1 Description of the �uid model

We consider a two-dimensional nonstationary �ow of a multicomponent liquid con-
taining charged particles of two kinds: positively and negatively charged. Di�usion
and drift of the particles of each kind of charge in the electric �eld, bulk reactions
of ionization and recombination, and surface electrochemical processes that cause
generation and absorption of charged particles are taken into account. The motion
of the liquid as a whole is described by the conventional equations of conservation of
momentum for viscous medium with due regard for the bulk Coulomb force, and the
continuity equation for an incompressible �uid. The laws of conservation of mass
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for the charged components and Poisson's equations for the �eld have the form [1]:

∂ni
∂t

+ div ni~Ui = w(E)− an1n2, i = 1, 2,

ni~Ui = ni~u+ sign(ei)nibi ~E −Di∇ni, e1 > 0, e2 < 0,

ε div ~E = 4πq, ~E = −∇F.

(1)

The boundary conditions for Equations (1) represent the balance between the ion
�uxes from the bulk to the surface and the �uxes of the particles generated at the
surface [2]:

ni~Ui · ~v = Aki (E, nm, . . .)−Kk
i ni. (2)

Here v is the external normal to the interface, Aki , K
k
i are the e�ective parameters

of the surface electrochemical processes, which depend on the properties of the kth
surface of the channel walls, liquid content, etc. In formulae (1), (2) the quantities
~u, ni, Ui, Di, bi, ei, q, E, F are, respectively, the velocity of the liquid as a whole,
concentration, velocity, coe�cients of di�usion and mobility, and the charge of the
particles of ith kind, the volume charge density, the strength and the potential of
the electric �eld, ε is the dielectric permeability, w is the bulk ionization rate (the
rate of dissociation of the neutral molecules of the liquid into positive and negative
ions), which may depend on the �eld strength, and a is the coe�cient of the bulk
recombination of ions.

2 Results

Let us consider the results of the calculation of a steady �ow through a plane channel
under the conditions that an electrical potential di�erence is applied to the channel
walls from an external source and the channel walls exhibit di�erent surface charac-
teristics. Suppose that at one of the walls the surface reaction for the positive ions
n1 is in equilibrium with the corresponding value of their concentration, and for the
negative ions n2 this wall is chemically neutral (zero �ux of this kind of ions to the
wall). The potential of this wall (anode) is positive. The situation at the other wall
is supposed to be the opposite: the equilibrium for the negative ions (for the sake of
simplicity, with the same value of the equilibrium concentration), and zero �ux of
the positive ions to the wall. The potential of this wall (cathode) is equal to zero.
The dependence of the bulk source of ions on the applied �eld was studied in [3], [4].
In the calculations presented in this work we use Frenkel's relation [3] (wo is the rate
of dissociation in the absence of the applied �eld):

w(E) = w0(T, . . .) exp(2γE0.5), γ = e1.5/(ε0.5kT ). (3)

Note that one of the �rst works devoted to the study of electrohydrodynamic �ows
through channels with regard to the e�ect caused by the applied �eld on the rate of
the bulk dissociation within the framework of Onsager's model [4] was carried out
by professor Antonio Castellanos [5].

352



The structure of the interelectrode layers in low-conductive liquid �ows in
microchannels with a ion source a�ected by an applied �eld

Figure 1: Distribution of the concentrations of ions n1 (curve 1) and n2 (curve 2),
and density of the volume charge q with (curve 4) and without regard for the �eld
dependence of the ionization rate (γ = 0, curve 3) in the channel cross-section.

The distributions of the dimensionless concentrations of ions n1, n2 and the space
charge q in the cross-section of the channel for a given di�erence of the potentials
between the walls are presented in Fig. 1. The concentrations are divided by the
initial quasineutral concentration of ions, the coordinate is normalized by the chan-
nel width. The values of the equilibrium concentrations of ions speci�ed in the
calculations are presented in the �gure.

It is seen that even in the case of a plane channel, when the applied uniform �eld
is not distorted by the geometry and is constant across the channel, the presence
of a �eld-dependent source of ions essentially changes the distribution of the space
charge near the electrodes. In particular, in the vicinity of the anode (y = 0) a
bipolar structure arises: the negatively charged near-wall layer is replaced with a
layer of positive charge. This is due to the fact that the additional source of ions
that arises in a strongly nonuniform �eld appreciably alters the distribution of their
concentrations in the near-wall layers. The distribution of the dimensionless �eld
and potential across the channel is presented in Fig. 2. The �eld and the potential
are divided by the thermal potential and the corresponding �eld. It is seen that at
moderate values of the Debye number, when the Debye length has the order of the
characteristic size of the channel, the charged layers occupy a su�ciently large part
of the channel cross-section and signi�cantly alter the applied �eld. In particular,
as the volume charge changes its sign in the bipolar layer near the anode, a local
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Figure 2: Distribution of the normal components of the �eld strength E (curves 1,
2) and potential F (curves 3, 4) in the channel cross-section. Curves 2, 4 � with
regard for the �eld dependence of the ionizsation rate, curves 1, 3 � without regard
(γ = 0). Curve 5 shows the applied external �eld.

extremum of the �eld strength occurs. Note that a local extremum of the �eld
strength near the surface of the plane electrode caused by the bipolar structure of
the near-wall layer was experimentally observed in [6]. In paper [7] in the framework
of the tree-ion model a mechanism for the formation of the near-electrode bipolar
layer with the �eld extremum was proposed. The key role was played by the bulk
recombination processes which involve the ions injected by the wall. The e�ect
caused by the �eld on the rate of ionization was disregarded. The results of this
work suggest that the formation of the bipolar near-electrode structures may be
governed by another mechanism.

Figure 3 shows the distribution of the bulk Coulomb forces FK = qE a�ecting the
�uid in the applied transverse �eld. It is seen that in most part of the charged
domains the �eld repels the �uid from the walls. Such a con�guration of forces
directed towards each other is favourable for the rise of an instability analogous to the
Rayleigh�B�enard thermogravitational instability in conventional hydrodynamics [8].
The fact that the bulk source depends on the �eld aggravates the matter.

As is shown in Fig. 1, under nonsymmetric boundary conditions for the ion con-
centrations, in the channel cross-section domains with positive and negative space
charge are formed, which are adjacent to di�erent walls. If an external electric �eld is
applied along the channel, then the arising longitudinal component of the Coulomb
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Figure 3: Distribution of the normal component of the Coulomb force FK = qE
a�ecting the �uid. Curve 2 � with regard for the �eld dependence of the ionization
rate, curve 1 � without regard (γ = 0).

force is directed in the opposite ways near the opposite channel walls, thereby speed-
ing up and slowing down the �ow of the �uid. Figure 4 shows the cross pro�les of
the �uid velocity calculated with and without regard for these forces.

It is seen that in the domain of the negative space charge the Coulomb force, which
slows down the �ow, gives rise to a thin layer of the return �ow and causes the
appearance of in�ection points in the velocity pro�le. This may cause the Kelvin�
Helmholtz shear instability of the �ow and thereby enhance the mixing of the fuild
in the channel [8].

3 Conclusions

The study of the structure of the interelectrode space in a plane channel shows that
the direct e�ect caused by the �eld on the rate of dissociation of the molecules of the
�uid into positive and negative ions can signi�cantly redistribute the concentration of
these particles in the domains of the strong nonuniform �eld in the near-wall layers
of the plane channel. If the channel walls have di�erent surface electrochemical
properties, then the external electric �eld applied along the channel may cause
vigorous mixing of the �uid that �ows along the micro-channel.
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Figure 4: Velocity pro�les of the liquid �ow in the channel: the Poiseuille pro�le
(curve 1) and the pro�le that has been transformed under the action of the longitu-
dinal Coulomb forces in the applied longitudinal �eld (curve 2).
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Abstract

Analysis of the mathematical models that can write the in�uence of the
angular momentum and delay in mechanics is suggested: under interaction
of many particles, in continuous mechanics, in kinetic theory. Disturber of
the ergotic is discussed for the classic equations of continuous environment.
The new method of calculation pressure and energy for multicomponent envi-
ronment was suggested. Non-symmetrical stress tensor is obtained as results
of in�uence of angular momentum for continuous medium. The method for
writing of interaction discretion and continuous mediums was suggested. At-
tention pays on delay for processes discrete mediums. Analytical results are
obtained for cases of large gradient. The nucleus of the Navier-Stokes equa-
tions is obtained. Equations S.V. Vsallander were received from the kinetic
equation.
Key words: Angular momentum, delay, conservation laws, non-symmetrical
stress tensor, Boltzmann equations, Chapman-Enskog method, conjugate
problem Navie-Stokes equations, equations S.V. Vsallander.

1 Introduction

An important area of current research is to study the e�ect of the angular momentum
and the delay in the whole mechanics including quantum mechanics. The process is
changing so it associated with the appearance of additional forces, which can play
the role. These e�ects may a�ect at critical and near critical aircraft modes, rockets,
various devices, building structures, as well as some natural processes. The value of
the additional force is determined by the gradient of the value of physical quantities
(density, velocity, momentum) and the structure of the object being studied. In the
case of the dynamic formation of the structure, the position of the center of mass is
changing, which entails a change of angular momentum of a small perturbation that
a�ects the stability of the structure. In the static case, the angular momentum oc-
curs at non-uniform distribution of parameters. For elementary volume is important
that volume is rotated about its center of mass, and the involvement of volume in
larger rotation. The de�nition of the velocity of divergence and the vortex velocity
how the of decomposition with respect to an arbitrary point inside the elementary
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volume is incorrect, as vortex part is the component of the velocity relative to the
axis of inertia of the elementary volume. The mechanics is considering the Lagrange
function for non-interacting and collectively interacting particles equally but this is
questionable, especially in metallic and ionic bonds. In classical continuum mechan-
ics had an opinion on the small contribution of the angular momentum force against
surface forces, as their action has a volume character. In the classical mechanics of
a continuous medium, there was an opinion about the small in�uence of the angular
momentum with respect to the contribution of surface forces, since their action is
of a bulk nature.

For long bodies and large gradients parameters contribution is signi�cant and can
be a cause of instability, leading to changes in the �ow structure or destruction of
the body. The second important e�ect-delay [1,2]. Delay in mechanics plays an
important role under the relaxation in the case of the commensurability the time
of relaxation and delay times. The new proposed option is to consider accounting
delay between the time derivative as a limit and �nal value free path in a rare�ed
gas and time between collisions. This situation is typical for transition from dis-
crete to continuous environment and is a key issue of mechanics and computational
mathematics. For particles without structure is usually considered central of the
interaction, i.e. variant, where the momentum cannot play a role in conditions close
to equilibrium. For the remaining cases semi-empirical theory is included. In the
classical approach, the law of conservation of angular momentum is not constructed.
In view of these formulations actually postulated symmetry of any material system
of reference and as a result, the symmetry of the angular momentum, the symme-
try of the stress tensor and the violation of "continuity" of the medium, while for
arbitrary perturbations of the motion of a material point is a non-inertial.

Selecting the conditions of equilibrium of momentums of forces leads to new formu-
lations of equations [3-5]. Therefore, subject to the balance of power we come to a
private classical formulation of continuum mechanics. The resulting formulation of
conservation laws associates with the recording of the conservation laws for a system
that is exchanging the components of physical quantities only by normal convection
rate and ignoring all processes within an elementary volume, and the lack of rotation
of the volume. Determination of physical quantities in the form of a sum of delta
functions and terms of integrals by volume that tends to zero, leads to the same
equations. This con�rms what we said. Everything that is happening in the volume
and with the volume are not considered. This has led to an incomplete accounting
of the processes. The accumulated experimental facts led to the hypothesis of the
importance of spatial gradients and time derivatives, which also contributed to the
change of the momentum. The importance of these e�ects observed for �uid me-
chanics and gas plasma, and for the solid. It should be noted that in the kinetic
theory (Boltzmann equation), the law of conservation of angular momentum is not
executed. The existing representation likely linked to the consideration of an ele-
mentary volume as the closed. The e�ect of the angular momentum of the motion
at the equations of the continuum mechanics in [7-9] was studied. The proposed
theoretical method of accounting the angular momentum without new empirical
constants equations, bases on the fact that in the angular momentum do not have
new dimension. Another method was proposed in [10].
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The order of given equations and boundary conditions requires a revision. The total
consideration of the e�ects leads to a cumbersome system of equations, and therefore
requires the allocation of the major e�ects in a particular situation. Examples were
given showing the contribution of the no symmetric part of the stress tensor in
the simplest problems of elasticity theory and boundary layer. Conclusion modi�ed
equations for gas based on the kinetic theory, for which it was suggested that the
angular momentum need be included as an additional variable; to use a more precise
asymptotic approach to Hilbert's paradox. As already mentioned, the elementary
volume can itself rotate around the axis of inertia, or to be involved in a rotary
motion. In both cases, the density of the �ow across the border is changed to the
valued(ρu)

dr
· (r′− r) + · · · in rotation of the elementary volume. The contribution of

other components is small, taking into consideration a little volume and the absence
of rotation at the axis. In our opinion there is an inaccuracy in the calculation of
the Lagrangian function as a sum mutually interacting particles. The position axis
of inertia under equilibrium conditions and non-equilibrium conditions are di�erent,
and that leads to the existence of collective e�ects. Interestingly, the e�ects of the
in�uence of the angular momentum and changing the position of the center of mass
can be important in quantum mechanics when considering the particles decay into
three or more particles; when writing potential in the Schrodinger equation.
As is known, the equation for the macro parameters can be derived from the Boltz-
mann equation by the Chapman-Enskog [11-15] method. We give qualitative and
quantitative assessment of the impact of using a classic method of the Chapman-
Enskog method of the calculation of local-equilibrium distribution function of the
macro parameters (density, velocity and temperature), calculated from the zero ap-
proximation (of the Euler equations), without correction results using Navier-Stokes
equations. The existence of the problem of coordination of macro parameters was
pointed Gilbert on solution of the Boltzmann equation by a series expansion in the
small parameter. We have proposed an algorithm for matching macro parameters
locally equilibrium distribution function [3-5]. In the classical theory believe∫

ϕ(ξ)f 0dξ =

∫
ϕ(ξ)fdψ = β ,

ï¿½ï¿½ï¿½ β - macro parameters,

f (t, x, ξ) ≡ f0 (t, x, ξ) = n
( m

2πkT

)3/2

exp
{
− m

2πkT
c2
}
,

c2 =
(
c2

1 + c2
2 + c2

3

)
= (ξ − u)2 ,

ï¿½ ï¿½ï¿½ ï¿½ï¿½ï¿½ï¿½ï¿½ ï¿½ï¿½ï¿½

f = f0

[
1 +

pijm

2pkT
cicj −

qim

pkT
ci

(
1− mc2

5kT

)]
and the quantities are determined through the total distribution function
t - time, xi - position, ui - velocity, ν̃ - viscosity, ρ - density, T - temperature, q -
heat �ux, Pij - the tensor of viscous pressure, X - force. The Boltzmann equation
is invariant with respect to the choice of macro parameters.
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Consequently, the coincidence of Navier-Stokes equations and built equation has a
formal character, order of approximation and the parameters in a locally equilibrium
distribution function vary. Therefore, when constructing the �rst approximation in
the Chapman-Enskog (Navier-Stokes equations), it seems necessary to clarify the
values of density, velocity and temperature for matching orders of approximation.
Therefore, in the equations of the �rst order terms will be responsible for clari�cation
of macro parameters. Throw away they cannot be due to their de�nitions in the
kinetic theory. However, after factoring formal kind of balance function does not
change, but the macro parameters are responsible macro parameters Navier-Stokes
equations. In the derivation of the �rst approximation in the Chapman-Enskog
made implicitly signi�cant approximation. Part of the terms discarded only after
integration over the phase velocity, they di�er in arbitrary locations. It does not take
into account that in this case the integrals for fξ(ρu) �ow (ρu) and speed on the
density of the product in the �rst approximation, di�er from each other (analogue
divergent and non-divergent di�erence schemes). In view of the di�erence obtained
by the conservation equations S. V. Vallander [16, 17]. The paper summarizes the
results of the study. For the multi-component gas and gas with rotational and
vibrational degrees of freedom o�ered another form of calculation of the average
values of pressure, temperature and energy. The e�ect of correlation of zero and
�rst approximations of the Boltzmann equation for writing continuum mechanics
equations.

2 Equations

The equations of motion, energy and angular momentum have been obtained earlier,
but the use as force equilibrium condition does not require the calculation of the
moment. Therefore, in the classical theory of equations conservation of angular
momentum is not used explicitly. The modi�ed equation

∂ρui
∂t

+
∂

∂xi

(
ρuj + Pij + xi

∂Pij
∂xi

)
− Xi

m
ρ = 0 .

∂

∂t
ρ

(
3

2
RT +

1

2
u2

)
+

∂

∂xi

[
ρuj

(
3

2
RT + u2

)]
+

+
∂

∂xi
xi

∂

∂xj

[
ρuj

(
3

2
RT +

1

2
u2

)
+ ukPkj + qj

]
= 0

∂
→
r

∂x
× →
px +

∂
→
r

∂y
× →
py +xj

∂

∂xj

(→
Pj

)
= MI

Where t - time, x, y, z - coordinates, ρ is the density, Pij - stress tensor, u - velocity,
q - heat �ow, R - gas constant.
This equation is used to determine the degree of no symmetry of the stress tensor.
The issue arose when writing the law of conservation of density. We will try to get
it from the phenomenological principles. The modi�ed equation for the density was
obtained from the kinetic theory in the form of

∂ρ

∂t
+
∂ρui
∂xi

+
∂

∂xi

(
xi
∂ρui
∂xi

)
= 0 ,
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From Fig. we can see that velocity u = ω × (r′ − r) is the velocity with respect to
the point M quasi solid movement around the axis r without forward speed. The
point M may itself be in rotation around the axis of inertia. For elementary volume
formula u = ω×(r′−r) means that the rotation occurs around the axis of inertia, but
the axis of rotation can lie outside the volume. Therefore, we obtain for elementary
volume ∫

(s)

(∇ρu (r′ − rc))n ds =

∫
(s)

div (∇ρu) (r′ − rc) dv .

Figure 1: Elementary volume for the density

The degree of no symmetry of tensor derived from the law of conservation of mo-
mentum (in projections) (σ = τ). Designations is standard.

y

(
∂σxz
∂x

+
∂σyz
∂y

+
∂σzz
∂z

)
− z

(
∂σxy
∂x

+
∂σyy
∂y

+
∂σzy
∂z

)
+ σzy − σyz = 0 ,

x

(
∂σxz
∂x

+
∂σyz
∂y

+
∂σzz
∂z

)
− z

(
∂σxx
∂x

+
∂σyx
∂y

+
∂σzx
∂z

)
+ σzx − σxz = 0 ,

x

(
∂σxy
∂x

+
∂σyy
∂y

+
∂σzy
∂z

)
− y

(
∂σxx
∂x

+
∂σyx
∂y

+
∂σzx
∂z

)
+ σyx − σxy = 0 .

The procedure of calculation is to calculate the degree of no symmetry the stress
tensor by the last equations and substitution of these values in the rest of the
equations. The equation of state remain the same because as they are the higher-
order corrections. Interestingly, some elasticity theory provisions lï¿½ses force in
case no symmetric stress tensor. For example, we have for two opposite sides of an
elementary volume of its direction of principal stressestg tg2θ1 = 2τxy

σx−σy , tg2θ2 =
2τyx
σx−σy and since τxy 6= τyx we get di�erent results. Thus, at each point we have main
its direction of stresses.

3 Delay E�ects

In the kinetic theory when considering the role of delay should deal with the question
of what measures the experiment: the instantaneous values or averaged. If the
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experiment was dealing with averages, it is important to choose the time and scope
of averaging. At the agreed time, in this case to take into account the delay is not
necessary, except in cases of commensurable of relaxation times and delay, otherwise
it is necessary to bear in mind the following:
The mean free path of molecules of the i-th group relative to the molecules of the
j-th group is equal in classical mechanics

λij =
ξi

σijnjgij
.

The mean free path of molecules

λ =

∑k
i ξini

1
2

∑k
i,j=1 σijninjgij

.

The mean velocity of molecules

g =
1

2n2

k∑
i,j=1

ninjgij .

The mean time

τ =
λ

g
.

Taking this into account, the Boltzmann equation can be written in the form

df
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=
∂f
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I = ∆− −∆+

df

dt
↔ df

dt
+ τ

∂2f

∂2t

f ′ (t, x, ξ′)↔ f ′ (t, x, ξ′)

f (t, x, ξ)↔ f
(
t+ τ , x+ λ, ξ

)
↔ f (t, x, ξ) + τ

∂f

∂t
+ λ

∂f

∂x
+ · · ·

f1 (t, x, ξ1)↔ f1

(
t+ τ , x+ λ, ξ1

)
↔ f1 (t, x, ξ1) + τ

∂f1

∂t
+ λ

∂f1

∂x
+ · · ·

In general, this formula is necessary to write in this form, but for small gradients
for simple gas can be limited to one time and one length of path. However, for
structural gas, for example, at heights of more than 120 km of the mean for three
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Mach numbers the lag time 10−8 c. and can be more that can be comparable with
the relaxation time. In fact, the expression can be simpli�ed, if given the orders of
magnitude. Then

ff1 − f ′f ′1 ↔ ff1 − f ′f ′1 + τ
∂f 0

∂t
f 0

1 + τ1f
0∂f

0
1

∂t
+ λ

∂f 0

∂x
f 0

1 +

+λ
∂f1

∂x
f 0 + · · · − τ ′∂f

′0

∂t
f ′

01 − τ ′1f 0∂f
′0
1

∂t
− · · · − λ′∂f

′0

∂x
f ′

0
1 − λ′1

∂f ′01
∂x

f ′ − · · ·

The integrals can be calculated, and you can �nd the appropriate kernel of Navier-
Stokes equations. Thus, for small and medium gradients mean free time is one and
the mean free path for a single-component gas is one. Signi�cant di�erences will
be in the interaction of gases with very di�erent properties. So for some organic
molecules the relaxation and time of the delay time with the mean free path is
comparable (about 10−9 − 10−8 c.)
It should be noted that, in general, ergodicity is not observed, which is very im-
portant, especially for turbulent �ows. This analysis was made by T.G. Elizarova
[18]. Averaging is performed for the space but is no for time. This is if we use the
integral method for the construction of continuum mechanics equations. Perhaps
more appropriate for the theory is the formulation of an integral equations with the
average in the space and in the time that should be the average time between col-
lisions of molecules. Otherwise, to record the derivative in a case of �nite length of
middle-free path of molecules (rare�ed gas), we take into account only the molecules
at high speed as slow collisions do not have the time to collision. One of the ways
using in the kinetic theory, the replacement of discrete distribution on the smooth
distribution function. However, even for the uniform distribution of function this
way to replace it was not study in the transient case. A new wording of the de�nition
of pressure, temperature and energy are suggested. The conventional formulation
[11-16]
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(
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here k - number of components, the T is the temperature, ck = ξk−u , its own rate
ξk - molecule speed. Another de�nition
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In this case, one term, the traditional second-connected with a second viscosity. For
the pressure tensor
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The question is what is measured in the experiment!

f (0)
ν =nν

( m

2πkT

)3/2

exp
(
− m

2kT
cν2
)

or temperature

f (0)
ν =nν

( m

2πkT ν

)3/2

exp
(
− m

2kT ν
cν2
)

We may have the wrong result for average temperature.
Old formulas remain for internal energy, but the de�nition of temperature varies.
The results allow one to obtain Maxwell's equation for temperature.

4 The S.V. Vallander equations and the Chapman

-Enmskog method for the Boltzmann equation

A known solution of the Chapman-Enskog obtained using many approximations
[15]. On the other hand, the classical laws of conservation, that we study in this
part, the normal velocity component [19] is enters.

∂

∂t

∫
τ

ρδτ +

∫
σ

ρVnδσ =

∫
τ

Mδτ . Consequently,

f
(
t+ dt, x+ (ξ · n)dt, x+ (ξ · τ)dt, ξi +

x0i

m
dt
)
dx dξ =

= f(t, x, ξi)dx dξ +
(
∆+ −∆−

)
dx dξ dt .

As a result, we need to get the conservation law in the form of

∂ρ

t
+
∂ [(ρu) · n+ (ρu) · τ ]

∂xi
= 0 .

Where n, τ - the unit vectors along the normal and tangential to the surface. If
the Boltzmann equation is written out in the projections, more properly, all the
same in the arbitrariness of the volume should be considered normal and tangential
velocities. The velocity projections on the coordinate axes are used in the numerical
analysis. Therefore, the error values are of the order of self-di�usion and thermal
di�usion, which will be determined by the tangential components. To understand
the process of self-di�usion and thermal turn to the equilibrium distribution function
and investigate the e�ect of small additions to the values of macroscopic parameters
on its value. The equilibrium function

f0 = n0
( m

2πkT 0

)3/2

e−
m(ξ−u)2

2kT0 .

Let ∆ is a small correction. The behavior of the function we are interested in the ef-
fect of calculating the Hilbert hypothesis macro parameters through the equilibrium
distribution function.

365



Proceedings of XLV International Summer School � Conference APM 2017

For ρ · u
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We are using the formula in the series expansion given that in both cases one of the
formulas for ρ · u u and (ρu) matches. The di�erence between the approximations
de�ned with �rst-degree order and has a structure of the solution of the Chapman-
Enskog.
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)
For large values of the number of particles of both formulas coincide. In general,
we obtain values of various functions. Functionally-Boltzmann equation is invariant
with respect to the selection of macro-distribution function. You must compare
equilibrium distribution function with macro parameters that taken from the Euler
and from the Navier-Stokes equations.
The di�erence will give us a small increment functions. We �nd that for the Euler
equations (zero approximation of the Chapman-Enskog) the di�erence is zero. There
are di�erences to the �rst approximation. The �rst approximation is responsible for
the tangential component (pij - tensor of viscous stresses). Euler equations are
obtained with the use of locally-equilibrium distribution function. Consequently,
they are responsible for the normal component of the velocity values. In case pij of
receipt of the �rst order correction of the parameters included in the �nal decision
of the Chapman-Enskog we leave only part of terms after integration over the phase
velocity ξ. The integrals are taken from fξ functions, i.e. for (ρu). Consider
regardless of macro parameters.

Df0

dt
=

1

n
f0
∂n

∂t
+

3

2

1

T
f0
∂T

∂t
+

mc2

2kT 2
f0
∂T

∂t
+ f0

(
m

kT
(ξ − u)

∂u

∂t

)
+

366



REFERENCES

ξ ·
{

1

n
f0
∂n

∂x
+

(
−3

2

)
1

T
f0
∂T

∂x
+

mc2

2kT 2
f0
∂T

∂x
+ f0

(
m

kT
(ξ − u)

∂u

∂t

)}
=

= 2J
(
f0, f0ϕ

k
)

=

∫
f0f

0
1

(
ϕ

(k)′

1 + ϕ(k)′ − ϕ(k)
1 − ϕ(k)

)
g b db dε dξ1 ξ = 0 .

In classical case

∂f0

dt

∣∣∣∣
t=0

= f0

{
m

kT

(
cicj −

1

3
c2δij

)
∂ui
∂t

+
1

2T

∂T

∂t
ci

[( m
kT

)
c2 − 5

]}
.

The Boltzmann equation is written relative to the total distribution function and
consists of locally-equilibrium functions and additional term.
The tangential component of the velocity, which is obtained due to the arbitrary
direction of the velocity relative to the position of the coordinate axes, is equal to∫

n · (τ · fξ) ds dξ =

∫
div (τ · fξ) dx dξ

τf gives us additional term. In addition to locally equilibrium function has a term

f0

[
pij
2p

( m
2T

)
cicj −

qi
p

( m
kT

)(
1− c2

5

m

kT

)
ci

]
The main contribution to the integral will give the derivatives of locally equilib-
rium distribution function, which determines the self-di�usion equations and termo-
di�usion S.V. Vallander. The second derivative appears due term ci · ∂f∂ri .

5 Conclusion

The paper proposes a re�nement of the equations of a continuous environment and
the Boltzmann equation with allowance for the angular momentum and delay, as
well as the position of the center of inertia of the elementary volume. The possibility
of describing discrete media in the framework of continuum mechanics is analysed.
Set the role of dispersion and delays in physical and chemical processes of relaxation
type. Equations by S.V. Vallander theory were obtained from the kinetic results.
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Charge accumulation and dissipation in

micrometer sized powders.

Quintanilla, M.A.S., P�erez-Vaquero, J.
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Abstract

When moving, dry particles tend to acquire electric charge due to collisions
between themselves and other solid surfaces, in a process called tribocharging.
Provided there is enough number of collisions in a short amount of time, the
charge accumulated can be high enough to constitute and electrostatic hazard.
However, when the particles �nally come at rest, the electric charge tends to
dissipate, even if the particles are made of insulating material. In fact, in
general the time it takes for the charge to dissipate is much shorter than
what it would be expected from the electrical conductivity of the material of
the particles. In this work, we present a model that describes the discharge
of a powder layer formed by the settling of charged particles based on the
assumption that the settled powder has an e�ective conductivity. We compare
the model with the results of an experiment in which particles are charged
and collected in a Faraday cage. The value of the conductivity that the model
requires to match the experimental results is compared with the electrical
conductivity of the bulk powder measured directly.

1 Introduction

Dry powder handling operations are usually accompanied by electric charge built-up
due to triboelectri�cation. Pneumatic transport is specially prone to triboelectri-
�cation as the particles carried by the gas experience many collisions with other
solid surfaces, each collission contributing to the built up of charge in the particles.
Once the particles settle to form a packed powder, the concentration of charge can
create electric �elds large enough to trigger electrical discharges. The likehood of
electrical discharges depends on the charge accumulated in the settled powder at
any given time, which depends on the balance between the electric charge accreted
by the incoming particles in the heap and the dissipation of electric charge to the
surroundings. In this work, we study the temporal evolution of charged particles dis-
persed in a gas stream, ressembling pneumatic transport which, after being charged,
are allowed to settle by gravity.
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Material dp (µm) Material dp (µm)

Sipernat D10 3.4 5-50 glass beads 33.9
TiO2 3.7 70-110 glass beads 92.0
Sand 4.0 90-150 glass beads 125.4
Sipernat 320DS 6.6 Pmma beads 200
Cornstarch 7.3 sugar 720
Coated cornstarch 7.3 semoline 796
Regolith 9.7

Table 17: Materials used in the experiments presented in this report. With the
exception of PMMA beads, whose size is provided by the manufacturer, their mean
particle size dp (surface-mean diameter) was measured in a Mastersizer 2000 using
the Sirocco 2000 air dispersion unit (air dispersing pressure 1 bar).

2 Materials

The materials used in the experiments are listed in Table 17 in ascending average
particle diameter. Di�erent samples of the same material were stored at di�erent
controlled relative humidities in chambers with 10%, 30% and 60% R.H. Samples
were contained in these chambers for months and were taken out only to perform
experiments, after which they were placed again in the controlled ambients.

3 Experimental set-up

We have built two experimental set-ups. In one of them a sample powder is dis-
persed in a gas stream, charged by collisions against solid surfaces and the charge
acquired by the particles is measured. In the second set-up, we have measured the
electrical conductivity of a powder layer. The set-up used to charge powder samples
is composed of three units: the disperser, the tribocharger and the collection unit.
A picture of the set-up showing the tribocharger and collection unit is shown in Fig.
1. The disperser makes use of a venturi device which entrains powder particles in a
gas stream prior to the injection in the tribocharger system. The sample is fed into
the venturi through a low pressure port, with a mass rate that should be as constant
as possible, and with total masses of tens of grams at least.
We have made experimental runs with two tribochargers: a nylon cyclone tri-
bocharger with a cone shape on its bottom part (350 mm in length, 74 mm internal
diameter) and a steel pipe (length 540 mm and internal diameter 21 mm). Collisions
of particles against the tribocharger inner walls generate the electrical charge build
up on the particles surfaces. In the experiments with steel pipe as the tribocharger,
a programmable electrometer (Keithley 6512) working in the ammeter mode con-
nects ground to the tribocharger, thus measuring the electric current involved in
the charge transfer process between powder and steel pipe. The electric charge Qd

transferred to the particles while they are dispersed into the gas stream is obtained
by numerical integration of the registered current.
After exiting the tribocharger, charged powders fall by gravity into a cylindrical
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Picoammeter

Electrometer

Balance

Faraday pail

Steel tube

tribocharger

Cyclone

tribocharger

(w/o

shielding)

Figure 1: The experimental setup for measuring triboelectri�cation levels, with the
steel tube tribocharger in place and the nylon cyclone tribocharger in the inset,
shown without electric shielding. The Faraday pail resting on the balance collects
the powder coming from the tribocharger. The electric current �owing into the
Faraday pail is measured by the picoammeter and recorded by a PC. When the steel
pipe is used as tribocharger, the electrometer depicted in the �gure is connected to
it and its data is also registered by the PC. The metallic mesh around all the setup
is grounded to reduce electric noise from the rest of the lab. The dispersion units
do not appear in the �gure.

cell made of insulating material (a methacrylate tube), closed at its bottom with a
metallic �lter to help separate the particles from the gas. The �lter inside cell is
electrically insulated to the outside of the cell. The cell is located inside a Faraday
pail consisting of an inner and an outer cage made of conductive material, the
former being connected to ground through a picoammeter (Keithley 6485). The
picoammeter measures the current �owing from ground to the inner cage of the
Faraday pail as the collecting cell is �lled by the material exiting the tribocharger.
Integration of this current yields the charge Qs(t) in the settled powder as a function
of time. The Faraday pail system rests on a mass balance that measures the collected
powder mass m(t) as a function of time. More details of this experimental set up
are given in ref. [1].
The experimental set-up to measure the e�ective electrical conductivity of bulk
powders σ consists on a cell of rectangular cross section (internal dimensions 48×24
mm) in which a layer of powder rests on a porous metallic plate (5µm pore size).
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Figure 2: Electric diagram of the experimental arrangement to measure powder
electrical conductivity. The granular material in the cell has an electric resistance
Rpowder. The HV source is enclosed in dotted line. Ammeter and voltage probe are
pictured as A and V.

The cell has transparent methacrylate walls. The sample of powder in the cell is
compressed by a punch of rectangular cross-section (dimensions 10% smaller than the
inner dimensions of the cell), also made of transparent methacrylate walls, except for
the face of the punch pressing the powder, which is made of the same porous metallic
plate as the cell �lter. With this arrangement, a �ow of gas can be set to pass through
the powder and exit the layer of powder through the �lter on the punch. The reason
to allow gas to pass through the powder is that other authors working in similar
experiments [2, 3] have found that the humidity of the gas changes the electrical
conductivity of the powders. For each of the materials used in the experiments,
we have tested one sample with a �ow of dry nitrogen and another with a �ow of
humid air that had passed bubbling through a beaker holding hot water. In both
cases, the �ow of gas is maintained during 60 minutes before inserting the punch to
start the measurement of the powder conductivity. Before inserting the punch, the
relative humidity inside the cell was measured with a hygrometer. When using dry
nitrogen, the relative humidity inside the cell was found to be 14% RH, while when
using humid air it was 80 % RH. Since the consolidation stress acting on the powder
can also a�ect the powder conductivity, the punch can be loaded using weights. Two
weights have been used in each experiment: for the smaller weight, the combined
weight of the punch and the weight is 218 g, while for the larger weight is 3218 g.
The resulting consolidation stresses acting on the layer of powder in the cell are 1.9
and 27.3 kPa, respectively.
Both �lters also serve as electrodes: the �lter on the cell is connected to a high
DC voltage source (Spellman RHR20) while the �lter on the punch is connected
to ground through a picoammeter (Keithley 6485) to measure the current intensity
through the sample. A multimeter equipped with a high voltage probe measured
the voltage drop between the live electrode in the cell and ground. With minor
modi�cations undergone through the several experiments, the equivalent circuit of
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the set-up is shown in Figure 2. Powder conductivity is tested measuring the current
through the powder I as a function of the voltage drop V across the cell, ideally
lying on a straight line. Readings from the ammeter are taken as soon as a voltage
V is set adjusting the high the voltage source, since the number of mobile charge
carriers within the powder normally decreases with time, and so it does the current
passing through the cell [3].
The slope of the best �t straight line throught the I − V plot is the electrical
conductance G of the cell loaded with powder, which is the sum of the electrical
conductance due to the powder Gp and the electrical conductance due to the walls
of the cell Gw (G = Gp + Gw). Only if Gp � Gw are the results meaningful. This
fact makes it necessary to measure the conductance of the empty cell at the two
relative humidities used in our experiments. The results for a gap of 9 mm between
the electrodes for 14% RH and a gap between the electrodes of 15 mm for 80 %
RH are 4.1× 10−4 nS/m and 1.6× 10−3 nS/m, respectively. Both the conductance
of the powder Gp and the conductance of the empty cell Gw depend on the gap h
between the electrodes, because this gap represents the distance the charge carriers
must travel between the two electrodes. The electrical conductance of the cell is
assumed to be inversely proportional to the gap h between the electrodes.
From the powder conductance Gp = G−Gw, the powder conductivity is determined
as:

σ = Gp
h

wd
(1)

where w and d are the dimensions of the cross section of the cell. In practice, the
current that �ows through the cell walls limits our measurement of the conductivity
of a powder to values larger than about 3×10−3 nS/m at 14 %RH and about 2×10−2

nS/m at 80 %RH

4 Results.

The charge acquired by the particles in the tribocharger while they are dispersed
in the gas stream qd can only be evaluated for the steel tube tribocharger, for
which the total charge Qd given to the powder can be measured. Assuming the
sample is monodisperse and that all particles have the same charge to mass ratio,
the individual particle charge is qd = Qd(mp/m) where mp is the particle mass.
Fig. 3 shows the value of qd as a function of the particle radius rp (half the surface
mean diameter listed in Table 17) for the experiments using the steel tribocharger.
Since there is always some powder that remains stuck to the inner walls of the
tribocharger, using the collected mass m somewhat overestimates the value of qd.
The typical mass loss ranges from 19% to 69% of the total mass of dispersed powder
for 5-50 µm glass beads and 1% to 20% in 90-150 µm. In general, the mass loss
decreases with larger particles and higher storage humidity. Such overestimation in
charged mass contributes to the experimental error in qd in �gures 3. In this �gure
a grey coloured bar by each group of symbols indicate the uncertainty in qd, when
mass losses between 19% and 69% are considered for the 5-50 µm glass beads, and
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Figure 3: Results of absolute values of transferred charge qd from the steel pipe
tribocharger to particles of di�erent materials. The line marks the theoretical values
for maximum charge of particles limited by planar corona discharge.The dispersing
gas and storage conditions of the material at each experimental point are given
according to the following color code: Black: storage RH not controlled, dispersed
in compressed air. Blue: stored at 56% RH, dispersed in compressed air. Red:
stored at 30% RH, dispersed in compressed air. Green: stored in dry N2, dispersed
in dry N2. Error bars indicate the typical uncertainty for each size range. For the
larger particles particles, error bar and symbol are aprox. the same size.

20% for the 90-150 µm glass beads. The bar corresponding to a mass loss of 1% is
neglected since its e�ect is not visually noticeable.
In Fig. 3 we have drawn a line for the maximum particle charge qd,max, assuming the
value of qd,max is given by the condition that the electric �eld on the particle surface
equals the breakdown �eld for corona discharge as suggested in Ref. [4], that is:

qd,max = 4πεor
2
pEc , (2)

where we assume the breakdown �eld is equal to Ec = 3× 106 V/m irrespective of
particle size and εo is the electric permittivity of the gas surrounding the particle,
which we assume is equal to the permittivity of vacuum (εo = 8.85 × 10−12F/m).
All the experimental data lie very close to the corona discharge line, which means
that, when dispersed, particles charge up to their maximum attainable value.
If the powder particles did not discharge during collection of the sample into a
settled powder, the charge Qs in a settled sample would equal the total charge Qd

transferred to its particles in the steel tube tribocharger. However, this is not so:
in experimental runs Qs < Qd. The average electric charge per particle in the
collected sample can be calculated from qs = Qsmp/m. For the experiments with
the steel tube tribocharger qs can be compared with the electric charge per particle
when the sample was dispersed in the gas stream qd to evaluate the amount of
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Figure 4: Speci�c charge qmr (charge to mass ratio) of the collected sample as a
function of the collected mass m. Data for all the experimental runs are included.
The void symbols represent data from experiments using the steel tube tribocharger.
Data with �lled symbols represent data from the experiments using the nylon cyclone
tribocharger. The solid line represents the result of the model presented in discussion
for 5-50 µm glass beads.

charge lost during settling: in most cases qs is between 1/100 to 1/10 of the charge
qd acquired from the tribocharger. Fig. 4 illustrates the speci�c charge qmr of the
collected powder against the collected mass m for all the available experiments, that
is, using the steel tube and the nylon cyclone tribochargers. For a given material,
the speci�c charge qmr tends to decrease when more mass is collected. Although
the data points presented in Fig.4 have a large scatter, there is a visible tendency
of decreasing speci�c charge qmr with sample mass m. More details of the results
obtained with this set up are given in ref. [1].
Some of the missing charge may be in the layer of powder that remains stuck on the
inner walls of the tribocharger. However, this layer forms in the initial seconds of
each experimental run which lasts for a few minutes. Once the layer of stuck powder
is formed, all the electric charge �owing to the tribocharger has no option but to
be carried away by the particles, so this argument does not explain the decreasing
trend of speci�c charge qmr with collected mass m.
The remain option is that the charge in the collected bulk powder is somehow lost
while the powder is being collected. As the particles settle to form a bulk powder,
there is a increase in the spatial concentration of the electric charge and we must
expect the electric �eld on the bulk powder to increase to very high levels, high
enough to cause ionization of the surrounding air. Ions of opposite polarity of the
charge in the bulk powder would be attracted to the powder surface, neutralizing its
charge with time. The charge inside the bulk powder must also have some mobility,
to be able to reach the powder heap surface and be neutralized. So a model the
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of charge accumulation and dissipation must account for: (1) Charge accumulation
due to the in�ow of charged settling particles; (2) charge dissipation on the bulk
powder surface due to attraction of ions of opposite polarity from the surrounding
air and possible transfer to the conductive surfaces of the Faraday pail, and (3)
charge redistribution inside the powder, which can be represented as an e�ective
conductivity.
Regarding the conductivity of powders, we have tested four materials: 70-100 µm
glass beads, 5-50 µm glass beads, sipernat 320DS (a hydrophilic micron-sized silica) a
sipernat D10 (a hydrophobic micron-sized silica). The conductivity of these powders
is represented in Fig. 5 and its accompanying Table. The electrical conductivity of
Sipernat D10 was so small that their I−V plot did not di�er signi�cantly from that
of an empty cell in the same conditions of relative humidity and electrode gap and
therefore no value is quoted.
While the consolidation stress acting on the powder has little e�ect on the conduc-
tivity, the relative humidity has a very large e�ect, changing the conductivity by
one to two orders of magnitude. Although three data is too little a sample to judge
trends, the electrical conductivity decreases as the particles gets smaller when the
interstitial gas is dry, but increases as the particles get smaller for wet air. Both
trends can be explained if the mobility of the electrical charge in a bulk powder is
caused by the presence of physisorbed water layers on the surface of the particles.
The electrical conductivity raises with the humidity because the thickness of the ph-
ysisorbed water layer increases with increasing relative humidity. And the increase
may be more marked for smaller particles because the pores between the particles
are smaller and capillary condensation favors the growth of the water layer. Be-
sides, this mechanism would explain why the Sipernat D10, which is hydrophobic,
is much less conductive than the hydrophilic Sipernat 320DS. The decrease of the
conductivity for smaller particles for 14% RH would be explained if, at this level
of humidity, charge carriers had to pass from one particle to the other at existing
particle contacts. Powders with smaller particle sizes have lower solid fractions and
lower average number of contacts between particles than larger sized powders.

5 Discussion.

To make a model we assume that as particles settle there is a corona discharge from
the surface of the settled sample to the surrounding air and that the remaining
charge is determined by the condition that the electric �eld at the surface of the
sample must equal the electric �eld for corona discharge in air, which we take for
simplicity as Ec = 3 × 106 V/m. Since the calculation of the electric �eld created
by a cylindrical heap of powder is not straightforward, the sample is assumed to be
an in�nite layer in the XY plane that grows in the positive Z direction by uniform
addition of particles to its surface. The layer rests on a conductive plate representing
the metallic �lter of the collecting cell. The mass �ow rate of new particles per unit
area is Fm, so if the mass density of the powder layer is ρm, the height H of the
powder layer grows as:

H =
Fm
ρm

t (3)
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5-50 µm glass beads 2.28 ± 0.14 2.37 ± 0.13 26.7± 0.7 21 ± 12
Sipernat 320DS 0.056 ± 0.022 0.33 ± 0.02 79.0 ± 2.5 113 ± 12

Figure 5: E�ective electrical conductivities of glass beads 70-110 µm and 5-50 µm
and hydrophylic sipernat 320 DS as a function of consolidation pressure and relative
humidity of the gas �owing through the cell.

until at t = to the sample collection stops and the powder layer attains its �nal depth
Hf . The powder layer has an electrical conductivity σ that represents the ability
of the electric charge inside the powder layer to move. The temporal evolution of
the charge per unit volume ρ(z, t), the electric displacement ~D(z, t) inside the layer
as well as the surface charge density on the conductive plate σp(t) are given by the
solution of the set of equations:

∇ · ~D = ρ+ σpδ(z)

∂ρ

∂t
+∇ ·~j = ρoδ(t− z

ρm
Fm

) (4)

dσp
dt

= −jz(0, t) = −σ
ε
Dz(0, t)

where δ(t− zρm/Fm) is the Dirac's delta function and ρo represents the charge per
unit volume on a newly deposited layer of powder. Due to the geometry of the
problem, spatial derivatives are given by ∇ = ~uz∂/(∂z) , the electric displacement
by ~D = Dz~uz and the current density by ~j = σDz/ε~uz. As the powder losses its
charge, the charge per unit volume ρ(z, t) decreases from the value ρo: part of the
charge is lost to the surrounding air by corona discharge and part migrates to the
metallic �lter. As initial conditions we take that the initial height of the powder
layer is zero and that the plate representing the �lter is discharged.
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The solution of Eq. 4 for t ≤ to is:

ρ(z, t) = ρo exp

[
−σ
ε

(
t− ρm

Fm
z

)]
Θ

(
t− ρm

Fm
z

)
Dz(z, t) = ρo

ε

σ

Fm
ρm

{
exp

[
−σ
ε

(
t− ρm

Fm
z

)]
− exp(− σ

2ε
t)

}
σp(t) = ρo

ε

σ

Fm
ρm

[
1 + exp(−σ

ε
t)− 2 exp(− σ

2ε
t)
]

(5)

The total charge per unit area in the layer of powder for t ≤ to is given by:

Q

A
=

∫ H(t)

o

dzρ(z, t)⇒ Q

A
= ρo

ε

σ

Fm
ρm

[
1− exp

(
−σ
ε
t
)]

(6)

While the powder layer is growing t� ε/σ the electric displacement on the surface
of the powder layer tends to the value:

Dz(H, t)→ ρo
ε

σ

Fm
ρm

= Dz,lim (7)

The electric �eld outside the powder layer is given by Ez = Dz(H, t)/εo. If we
identify the value of the electric �eld obtained from Eq. 7 with the electric �eld
Ec = 30 kV/cm for corona discharge on air, we get:

Ec = ρ0
ε

εo

1

σ

Fm
ρm

(8)

From this equation we can also evaluate the e�ective conductivity of the powder σ
if we assume that the charge per unit volume of a newly deposited layer ρo is formed
by particles charged up to the limit set by Eq. 2. In this case:

ρo =
3εoEc
rp
→ σ =

3εFm
rpρm

(9)

In our experiments, the mass �ow rate into the collecting cell was 0.2 g/s, while the
diameter of the collecting cell was 4 cm. In total, the mass �ow rate per unit area is
0.16 kg/(m2s). In using Eq.9, we assume the solid fraction of the settled material is
φ = 0.6, the density of bulk glass is 2.5 g/cm3, rp = 17.0 µm for the 5-50 µm glass
beads and rp = 46.0 µm for the 70-110 µm glass beads. The dielectric permittivity
of both powders is ε = 2.95εo assuming the dielectric constant of bulk glass is 5
and that the dielectric constant of glass powder can be found using Bruggeman
mixing rule [5]. Under these assumptions Eq. 9 predicts an e�ective conductivity of
σ = 0.29 nS/m for 5-50 µm glass beads and σ = 0.10 nS/m for 70-110 glass beads,
one order of magnitude less than the value measured directly (see Fig. 5).
The theoretical model outlined here predicts that the total charge per unit area in
the collected layer of powder layer is given by:

Q

A
+ σp = 2ρo

ε

σ

Fm
ρm

[
1− exp

(
− σ

2ε
t
)]

(10)
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If the values obtained for ρo, σ and ε are substituted in Eq. 10 we can obtain a
prediction of the speci�c charge qmr as a function of the collected mass m(t). The
resulting curve for 5-50 µm glass beads is plotted in Fig. 4, where it can be compared
with the experimental data. The model seems to give the correct trend in the data
of speci�c charge against collected mass, although the values of the speci�c charge
are about an order of magnitude smaller than the experimental values if a value
of σ = 0.29 nS/m is used. Larger values of the e�ective conductivity increase the
discrepancy between the predictions of the model and the experimental results.

6 Conclusions.

From the experiments presented in this manuscript it can be concluded that the
rate of charge dissipation in a settled bulk powder would depend on the e�ective
conductivity of the powder. Large accumulations of electric charge would appear
in those situations in which the charge on the bulk powder is replenished by the
arrival of charged particles at a rate faster than the rate of charge dissipation. If
the uncharged particles leave the bulk powder for some reason, there would be an
equilibrium between in�ow of charge and its dissipation leading to a stable value of
the charge to mass ratio. If the uncharged particles remain in the bulk powder, as it
is the case for example of heap formation, the charge to mass ratio of the powder will
decrease with time even as new charged particles are constantly arriving. However,
although as a whole the powder discharges, those regions of the bulk powder formed
by newly arrived particles would still hold large concentrations of electric charge,
giving rise to localized regions of high electric �elds.
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Abstract

The paper considers the capability of ion wind, caused by corona discharge,
of changing the wake structure behind a circular cylinder, the maximum
Reynolds number being 3600. Computer simulation of positive corona dis-
charge uses the unipolar model. The electrode system consists of a grounded
circular cylinder and a high-voltage wire placed behind the cylinder. The
corona discharge has been shown to be capable of changing the wake struc-
ture of Karman vortex street signi�cantly. Frequencies of the vortices decrease
2.5 times with applications of 30 kV voltage, sizes and rotation speeds of the
vortices increasing notably as well. The drag force is mostly de�ned by the
pressure distribution on the cylinder surface and displays quasi-periodic be-
havior. The average value of the force is a linear function for studied voltages.
The value decreases markedly with increasing voltage.

1 Introduction

The control of aerodynamic characteristics of bodies is an important applied prob-
lem of mechanics. When a body is blu�, the viscosity component of the drag force
is less then pressure one, so the problem of lowering the drag force in the case re-
duces to that of making the pressure di�erence on the surface of the blu� body
smaller. The pressure drag force emerges because of the boundary layer separation.
There are many ways of changing the separation angle, both active and passive.
The former require additional power and include blowing out the separated layer,
acoustic perturbation, vibrating walls. The latter comprise regulating surface rough-
ness and placing wake structure separators. When the Reynolds number is 50-105,
the Karman vortex street behind blu� bodies appears [1]. It is a periodic motion
with vortices, which detach alternately from the top and the bottom of the body.
Mechanical oscillations, caused by vortices, might bring about vibrations, noise and
even the system destruction.
Despite many studies in the �eld of physics, of interest today is controlling the wake
structures by ion wind, caused by a corona discharge. The manner of control has
many advantages: it is simple, robust, cost-e�ective, and has no moving parts.
A corona discharge occurs in electrode systems with small curvature radius; this is
needed to establish strong and localized electric �eld near the sharp electrode. The
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�eld makes charged particles collide and thus ionize, so the number of ions in the
air grows exponentially. The region, where the electric �eld is strong enough to
ensure the collisions, is called the corona sheath and is typically rather small (near
0.1 mm in radius). Outside the corona sheath, the ions drift under the action of the
electric �eld and share their momenta with neutral particles in collisions; the air is
set in motion in the direction from the sharp electrode to the grounded one. This
phenomenon is called the ion wind.
The paper presents the computer simulation of the positive corona discharge and
the ion wind. In case of the positive corona discharge, electrons appear near
corona sheath because of photoionization [2], are drawn into the sheath, forming
an avalanche, and disappear on the surface of the sharp electrode. The �ux of the
positive ions moves outwards. The simulation uses an original unipolar model of the
positive corona discharge, which replaces the ionization processes in the sheath with
a boundary condition on the sharp electrode [3, 6]. The input parameters include
physical quantities, which can be measured independent, such as ionization rate,
ions mobility, di�usion coe�cient, critical value of ionization collisions. The authors
of the current paper sought to demonstrate the capability of controlling the wake
structures of the air�ow near a circular cylinder by means of a corona discharge. The
drag force was calculated, the Karman vortex street was analyzed in great detail,
and it was shown how these characteristics change when a voltage is applied.

2 Simulation

Figure 1: Geometry for the computer simulation (wire is not in scale).

The wire-cylinder electrode system is placed into an aerodynamic tunnel with air�ow
velocity V0. The wire has radius r = 45 µm and is at a high voltage, the cylinder
has a radius R = 3 cm and is grounded. The wire is placed behind the cylinder,
and the electrodes are spaced at 3 cm. Figure 1 shows the geometry of computer
model. Simulation used the plane geometry with width L = 28 cm. In�ow velocities
V0 were 0.6 m/s and 0.8 m/s; the Reynolds numbers for the velocities in case of
the circular cylinder and no applied pressure are 2700 and 3600, respectively. The
applied voltage was in range 16.2kV-30kV. The experiments [4] show that, when the
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voltage is more than 30 kV, an electric breakdown occurs in such electrode systems.

∆ϕ = −|e|n+

ε0

(1)

−→
E = −∇ϕ (2)

∂n+

∂t
+ div

[
−D∇n+ + bn+

−→
E
]

= 0 (3)

ρ
d−→v
dt

= −∇p+ η∆−→v + |e|n+
−→
E (4)

div−→v = 0 (5)

∂js
∂t

= js
e−McreM − 1

τ
(6)

M =

∫ s

0

αeff (E (s)) ds (7)

The mathematical model of ion wind includes Poisson equation (1) for the electric
potential ϕ, the equation linking the electric �eld

−→
E and the potential (2), the

Nernst-â��Planck equation (3) for the concentration of positive ions n+, the Navie-
Stokes equation for the air velocity −→v and the pressure p (4) with external volume
force, the continuity equation (5) for uncompressible air. The unipolar model [3, 6]
includes boundary condition (6) for the partial time derivative of positive ions �ux
density js from the sheath of corona discharge to exterior. The e−Mcr coe�cient is
an photoionization coe�cient, M is the collision number (7) along the electric �eld
line in the corona sheath, which depends on e�ective ionization coe�cient αeff , s
is the coordinate along the electric �eld line, τ = 10−3s is the characteristic time.
Mcr is the value of ionization collisions needed for the discharge ignition. Boundary
conditions are shown in the table 18 ( −→n is the normal vector of surface, −→ex is the
x-axis vector, U is the applied voltage).

Table 18: Boundary conditions for the simulation

air �ow electrostatics transporting of ions

wall −→v =
−→
0 −→n ∗

−→
E = 0 −→n ∗ (−D∇n+ − bn+

−→
E ) = 0

inlet −→v = V0 ∗ −→ex −→n ∗
−→
E = 0 −→n ∗ (−D∇n+ − bn+

−→
E ) = 0

outlet
∑3

j=1 [−pδij + ησij]nj = −p∗ni; p∗ ≤ 0

σij = ∂vi
∂xj

+
∂vj
∂xi

(zero relative pressure)

−→n ∗
−→
E = 0 −→n ∗ (−D∇n+ − bn+

−→
E ) = 0

wire −→v =
−→
0 ϕ = U js (5)

cylinder −→v =
−→
0 ϕ = 0 jτ = 0

η is the air viscosity (16 µPa*s), ρ is the air density (1.2 kg/m3), e is the electron
charge (1.6*10−19 C), D is the e�ective di�usion coe�cient of positive ions (10
mm2/s), b is the e�ective mobility of positive ions (2.14*10−4 m2/(V*s)), ε0 is the
vacuum dielectric permittivity (8.85−12 F/m). The simulation was carried out with
COMSOL Multiphysics.
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3 Results

The calculated current-voltage curve (I-V curve) of the corona discharge agrees quite
well with the experimental one [4] for given electrode system Figure ??. The I-V
curve is the quadratic function and equation (??) is suitable for it:

I = KU(U − U0) (8)

K - is the coe�cient of I-V curve growth and depends on geometry of electrodes and
the positive ion mobility. b was taken equal 2.1*10−4 m2/(V*s), it conform with
data from di�erent literature [2, 5]. U0 - is the treshold voltage, which depends on
Mcr. For this study Mcr = 11, so treshold voltage is nearly 7 kV. This value of
Mcr also was used in studies [3, 5] and match with experiments. Figure (??) shows,
that the experimental treshold voltage is nearly 10 kV. If Mcr increases, the treshold
voltage does so, too. The treshold voltages may be made equal, but Mcr =18-20 is
the value of streamer ignition. Such di�erence between current at low voltages less
than 10 kV might be caused by currents too low for registration.
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Figure 2: The I-V curve of the corona discharge: the simulation and the experiment
[4].

When U and V0 attain steady-state, the air�ow is considered quasi-periodic. Figure
??a shows Karman vortex street without the corona discharge at V0= 0.6m/s, and
Figure ??b shows the street with the applied voltage 21.2 kV at V0= 0.6m/s. The
ion wind moves from the wire to the cylinder and it pushes vortexes to the cylinder
and enhance them. This phenomenon could be called "ion wind enhancement of
vortexes�. Figure ??b shows the vortexes that much bigger than common ones. The
maximal vortex radius in this paper is nearly 2 times bigger than the cylinder radius
and the maximal rotation speed increases in 3 times.
In addition, there is a region between the vortex and the cylinder, where small
vortices may occur and cause small and fast oscillations of the drag force (Figure
4).
Figure 4 shows the time-dependent drag force F(t) at V0 = 0.6 m/s and U = 0
kV; 21.2 kV. There are quasi-periodic oscillations. If a voltage is applied, the main
period becomes longer, the amplitude rises, the mean value decreases. The shape of
oscillations becomes non-harmonic.
Figure 5 shows one period of the drag force for some parameters V0, U . The part,
where F(t) is decreasing, is considered the part of the vortex accumulation, the
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a) b)

Figure 3: Contour plots of air velocity with streamlines. 3a: V0 = 0.6 m/s U = 0
kV; 3b: V0 = 0.6 m/s, U = 21.2 kV.
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Figure 4: The drag force vs. time for cases: no applied voltage and U = 21.2 kV;
V0 = 0.6 m/s.

Figure 5: The accumulation and the detachment parts of a period of drag force.

second part is the vortex detachment. While the voltage is increasing, the accumu-
lation part becomes longer. So, it has to be considered that the vortices plays the
main role in the drag reduction. If the accumulation time grows, the mean value
of the drag force decreases. Below, some relative dimensionless quantities will be
calculated. The equation for them is number (9): a ratio of the value of a quantity
at some applied voltage to its value without applied voltage.
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relative variable =
variable(U)

variable(U = 0)
(9)

Figure 6 shows the relative variable of the vortex frequencies. Freq(U = 0, V0 = 0.8
m/s) = 8.13 Hz, Freq(U = 0, V0 = 0.6 m/s) = 5.48 Hz.
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Figure 6: Relative frequency of vortexes vs applied voltage for di�erent velocities of
in�ow.

As it was expected, when V0 rises, the frequency rises, too, because higher velocities
make vortices move away faster. At U = 30 kV, the relative frequency decreased 2.5
times. It happens because of the stronger ion wind push on vortices; the accumula-
tion time and sizes of vortices increase.
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Figure 7: The accumulation time vs applied voltage for di�erent in�ow velocities.

Figure 7 shows dependence between the relative accumulation time and the applied
voltage for di�erent in�ow velocities. Timeacc(U = 0, V0 = 0.8 m/s) = 66 ms,
Timeacc(U= 0, V0 = 0.6 m/s) = 108 ms. The accumulation time rises along with
the voltage. In addition, the time plays the main role in the frequency decreasing.
Figure 8 shows the relative detachment angle vs applied voltage at di�erent in�ow
velocities. The angles are reckoned counter-clockwise and the starting point is the
most right point of the cylinder (Figure 1). There are voltages, where angles are
nearly constant. Afterwards, the visible rise occurs, which starts earlier at smaller
in�ow velocities. It is related with the phenomenon of the wind enhancement of
vortices. The enhanced vortices signi�cantly change the wake structure and might
be considered as obstacles so the angle increases. The plot can be used to evaluate
the voltage, at which small oscillations of the drag force occur.
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Figure 8: The relative detachment angle vs the applied voltage for di�erent in�ow
velocities.
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Figure 9: The relative mean value of drag force vs. the applied voltage for di�erent
in�ow velocities.

Figure 9 shows the relative mean value of drag force vs. the applied voltage at
di�erent in�ow velocities. The mean value is a decreasing linear function of the
applied voltage. For higher in�ow velocities, the mean value decreases slower. For
V0=0.6 m/s, U = 26 kV is the voltage, at which the drag force is zero. At this
voltage, the ion wind e�ect balances the one of the external �ow.

4 Conclusion

The simulation has shown the corona discharge to signi�cantly change the periodic
behavior of Karman vortex street. The maximal drop of the vortex frequencies is
2.5 for U = 30 kV as compared with U = 0 kV. At high voltages, the vortices can
accumulate more momentum, because the corona discharge pushes them stronger.
Increasing the accumulation time by corona discharge can reduce the mean value of
the drag force. The pressure distribution plays a major part in the drag force. The
mean value of drag force is a linear function of the applied voltage. The drag force
is quasi-periodical. There is a voltage, at which the drag force is zero. For higher
velocities, all considered e�ects are less noticeable, because the vortices move away
faster.
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Abstract

Streamer discharge propagates in air by impulse voltage impact. It is
not dangerous for high voltage devices itself. However if streamer channel
closes a pair of electrodes �â�� breakdown may occur. Barrier insulation
may be used to increase breakdown voltage â��� solid dielectric elements are
placed on the supposed path of the streamer. Elongation the shortest path
through air between electrodes ("arcing length") leads to proportional increase
of breakdown voltage in a �rst approximation. In this regard the following
question occurs â��� what is a limitation on this method of breakdown voltage
increasing.

1 Rounding breakdown mode in system with dielec-

tric barrier

In systems of electrodes with a highly inhomogeneous distribution of electric �eld
both without barriers and with a barrier, a streamer discharge arises from a certain
voltage level [1]�[4]. If the voltage is large enough, the streamers reach the surface of
the barrier and change the direction of their propagation to a tangent to the surface
of the barrier. In this case they propagate �rst along the surface of the barrier, and
then, reaching the edge of the barrier, they germinate towards the counter electrode.
From a certain voltage level the length of the streamers becomes su�cient to go
around the edge of the barrier and then reach the counter electrode. When streamers
reach an opposite (grounded) electrode and close the interelectrode gap, a spark
breakdown is possible. The spark channel in this case is located above the surface of
the barrier ("envelopes" the barrier), passing mainly through air, at some distance
from the surface of the solid dielectric (Fig. 1�2). Such a situation is analogous to the
classical breakdown mode at small interelectrode distances without a solid dielectric:
the barrier only extends the trajectory of the closing streamers and the subsequent
leader, forcing them to walk through the air in order to bypass the obstacle. We
will call such a breakdown mode as an "enveloping leader" or â��enveloping mode
of breakdownâ��.
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Figure 1: "Enveloping" breakdown mode outline.
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Figure 2: Negative of a photograph of spark breakdown in the sphere-plane system.
"Sa" â��� high voltage spherical electrode, "Pg" â��� plane spherical electrode,
"b" â��� dielectric barrier. The leader has an "enveloping" shape � spreads over
the barrier surface and envelops the dielectric barrier through air.
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2 Opposite streamers

The source of standard lightning voltage pulses is used (the duration of the leading
edge is 1.5 µs, the trailing edge is 50 µs). The stand is equipped with a highly
sensitive camera, which provides receiving photos of leaders and streamers. Expo-
sure time exceeds the duration of the applied voltage pulse, therefore the resulting
photographs are not instantaneous images of the glow of the discharge, but inte-
gral pictures. Visualization of the surface charge at the barriers is accomplished by
applying an electrically conductive powder.
If the barrier diameter is su�ciently large, one can observe the formation of stream-
ers on the either side of the barrier (Fig. 3). A similar situation arises both in
"symmetric" systems such as sphere-sphere, cylinder-cylinder, and in systems with
a �at counter electrode. Why is the formation of streamers possible not only near
the high-voltage electrode, but also near the grounded one, where the �eld strength
is lower? The reason is the distortion of electric �eld by the "primary streamers"
(propagating between the high-voltage electrode and the barrier). The occurrence
of conductive channels between the high-voltage electrode and the barrier leads to
the fact that the �eld strength in this air gap decreases, and, in contrast, increases
between the barrier and the counter electrode (potential di�erence between the elec-
trodes is �xed and equals to the voltage).
Experimental evidence of electric �eld redistribution by streamers development is
the accumulation of surface charge at the barrier. Since the barrier material has
electrically insulating properties, a signi�cant portion of electric charge remains on
it after exposure to a voltage pulse, its distribution can be visualized, and the charge
density can be measured.
Fig. 4 shows the distribution of the surface charge at the upper and lower sides
of the barrier. As can be seen, a wider spot is observed from the side of the high-
voltage electrode � this is the "imprint" of the "primary" streamers, which provide
redistribution of electric �eld in favor of the gap between the barrier and the counter
electrode. The trace of the "secondary" streamers is more concentrated � these
streamers propagate directly to the center of the barrier.
Thus, streamers develop on both sides of the barrier at a su�ciently high voltage.
The structure of streamers from the positive and negative electrodes corresponds to
the previously described structure of positive and negative streamers in the air gap
[1].
Both the "primary" and "secondary" streamers deposit surface charge on the barrier
(Fig. 4). The polarity of charge on the opposite sides of the barrier di�ers. Thus,
an electric capacitor appears on the barrier, the "plates" of which are two spots of
surface charge.

3 Opposite leader formation and breakdown

Consider breakdown in systems with a large barrier size (Fig. 5). The spark channel
has a complex shape. A common feature of spark channels in such systems is
the pair sections of channels that run along the barrier surface on its both sides
opposite each other ("2" and "3" in Fig. 4). Sometimes spark channels branching is

393



Proceedings of XLV International Summer School � Conference APM 2017

Figure 3: Photos of streamers from di�erent angles. Negatives of photographs. "Sa"
�â�� high voltage spherical electrode, "Sg" �â�� grounded spherical electrode, "b"
�â�� dielectric barrier. "p.s." � positive streamers, growing from the active elec-
trode, "n.s." � negative (â��oppositeâ��) streamers, growing from the grounded
electrode. Images of electrodes and a barrier on a photo are put arti�cially during
processing of the data.
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Figure 4: 1) Negative of a photograph of spark breakdown in the sphere-sphere
system. "Sa" �â�� high voltage spherical electrode, "Sg" �â�� grounded spheri-
cal electrode, "b" �â�� dielectric barrier. 2-3) surface charge visualization on the
opposite barrier sides.
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observed, which is reproduced on the other side of the barrier. It is interesting that
in this situation the spark channel does not go along the shortest path between the
electrodes: at the photo (Figure 5b) the spark channel does not close from the end
of the barrier directly to the grounded plane � instead the channel goes along the
opposite side of the barrier and closes on the plane opposite the active electrode.
This property can be explained by assuming that regions "1" and "5" are �rst formed
(in Fig. 5a) � connecting electrodes with a barrier (resulting in two unclosed leader
areas), and then the resulting pair of leaders propagate along the barrier ("2" and
"3" in Figure 5a), and only when they close at the edge of the barrier, there is a
single spark A channel that closes the electrodes and provides a breakdown.
The described mechanism is shown schematically in Fig. 6. This scheme also ex-
plains why the breakdown of gaps in the case of a large-diameter barrier occurs
with a small length of streamers, which is not enough to bend the barrier. Indeed,
the leader channels originate from short streamers connecting the electrodes to a
barrier, and further propagation of the discharge occurs already in the leader stage.
However, it is generally assumed that at moderate voltages (up to about 400 kV
[3]), the formation of a leader is possible only when the pair of electrodes close up
the streamers. Otherwise, the heating of the streamer channels with Joule heat
is not enough to transfer the plasma in the channels from the low-temperature
(nonequilibrium) to the high-temperature (equilibrium) state. As in this case, the
necessary heating is achieved, if the streamer channels do not explicitly close the air
gap (Fig. 4), they are separated by a solid dielectric barrier.
The necessary heat is released as a result of the capacitance presence described
above, which arises between the charge spots on the barrier. Due to the large area
of the spots and the small thickness of the barrier, the capacity can be quite large.
Consider in the �rst approximation the situation after the emergence of primary and
secondary streamers as charging the RC circuit from the voltage source U , in which
C is the capacity of the pair of charge spots on the barrier, R is the resistance of the
streamer channels. In such a system, the energy stored in the capacitor (CU2/2)
is equal to the energy of Joule losses scattered by the resistance. This implies the
presence of a link �â�� increasing the capacitance C entails an increase in the
thermal energy released in the streamer channels. It is due to the large capacity
between the charge spots on the barrier that it becomes possible to form a pair of
leaders ("opposite leaders") from unclosed streamer channels.

4 Consequences for high-voltage insulation

Since the threshold for the formation of opposite leaders in the described scheme
is determined by the capacitive electric energy accumulated in the barrier between
the charge spots, the breakdown voltage in such a situation does not depend on the
diameter of the barrier. Indeed, experiments show that while the diameter of the
barrier is small, the breakdown voltage depends linearly on the diameter. However at
some point the curve su�ers a break and reaches a constant (within the inaccuracy)
level (Fig. 7). Analysis of the photographs of spark channels shows that in the �rst
section of this dependence the channels have an "enveloping" shape, and on the
second one � the channels stick along the surface in pair, which is characteristic for
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Figure 5: Breakdown by opposite leaders in the sphere-sphere electrode system (a)
and in the cylinder-plane electrode system (b). Pictures negatives. "Sa" � high-
voltage electrode, "Sg" â�� grounded spherical electrode, "Pg" �â�� grounded
plane electrode, "b" â�� dielectric barrier. "1" � the section of the positive leader
channel from the active electrode to the barrier, "2", "3" � a pair of positive and
negative leader channels spread along the upper and lower surfaces of the barrier: on
the side of the active ("2") and grounded ("3") electrodes , "4" � the section of the
negative leader channel spreads over the surface of the barrier from the side of the
grounded electrode, "5" � the negative leader channel section from the grounded
electrode to the barrier, "6" �â�� the branch point of the positive leader chan-
nel. The images of the electrodes and the barrier are arti�cially imprinted to the
photograph during the processing of the data.
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Figure 6: "Opposite leaders" formation outline.
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Figure 7: Dependence of breakdown voltage on the "o�set" b.

opposite leaders.

5 Conclusions

1. A new mechanism for leadersâ�� formation in systems with solid dielectric
barriers is identi�ed and described � "opposite leaders". The feature of the
mechanism is the formation of di�erent polarity leaders pair, extending to the
barrier from di�erent sides.

2. In â��opposite leadersâ�� mode the heating in streamers channels (which is
necessary for streamer-to-leader transform) is due to the passage of signi�cant
charge deposited on the barrier. The accumulation of signi�cant charge on the
barrier becomes possible due to the fact that charge accumulates in the form of
two large unipolar spots spaced a short distance (the thickness of the barrier).
Thus, an e�ective large capacity is formed in which charge is accumulated.

3. The mechanism of "opposite leaders" limits the breakdown strength of sys-
tems with large-diameter dielectric barriers, in which breakdown along the
trajectory "bypassing" the barrier is obstructed
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Abstract

In this activity, we systematize some results on the study of the equations
of a motion of dynamically symmetric four-dimensional �xed rigid bodies-
pendulums located in a nonconservative force �elds. The form of these equa-
tions is taken from the dynamics of real �xed rigid bodies placed in a homoge-
neous �ow of a medium. In parallel, we study the problem of a motion of a free
four-dimensional rigid body also located in a similar force �elds. Herewith,
this free rigid body is in�uenced by a nonconservative tracing force; under
action of this force, either the magnitude of the velocity of some characteristic
point of the body remains constant, which means that the system possesses a
nonintegrable servo constraint, or the center of mass of the body moves recti-
linearly and uniformly; this means that there exists a nonconservative couple
of forces in the system.

1 Introduction

Earlier (see [1, 2]), the author already proved the complete integrability of the equa-
tions of a plane-parallel motion of a �xed rigid body�pendulum in a homogeneous
�ow of a medium under the jet �ow conditions when the system of dynamical equa-
tions possesses a �rst integral, which is a transcendental (in the sense of the theory
of functions of a complex variable, i.e., it has essential singularities) function of
quasi-velocities. It was assumed that the interaction of the medium with the body
is concentrated on a part of the surface of the body that has the form of a (one-
dimensional) plate. In [2, 3], the planar problem was generalized to the spatial
(three-dimensional) case, where the system of dynamical equations has a complete
set of transcendental �rst integrals. It was assumed that the interaction of the homo-
geneous medium �ow with the �xed body (the spherical pendulum) is concentrated
on a part of the body surface that has the form of a planar (two-dimensional) disk.
Later on (see [4, 5]), the equations of motion of the �xed dynamically symmetric
four-dimensional rigid bodies, where the force �eld is concentrated on a part of the
body surface that has the form of a (three-dimensional) disk.
In this activity, the results relate to the case where all interaction of the homogeneous
�ow of a medium with the �xed body is concentrated on that part of the surface
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of the body, which has the form of a three-dimensional disk, and the action of the
force is concentrated in a direction perpendicular to this disk. These results are
systematized and are presented in invariant form.

2 Model assumptions

Let consider the homogeneous three-dimensional disk D3 (with the center in the
point D), the hyperplane of which perpendicular to the holder OD in the four-
dimensional Euclidean space E4. The disk is rigidly �xed perpendicular to the
tool holder OD located on the (generalized) spherical hinge O, and it �ows about
homogeneous �uid �ow. In this case, the body is a physical (generalized spherical)
pendulum. The medium �ow moves from in�nity with constant velocity v = v∞ 6= 0.
Assume that the holder does not create a resistance.
We suppose that the total force S of medium �ow interaction perpendicular to the
disk D3, and point N of application of this force is determined by at least the angle
of attack α, which is made by the velocity vector vD of the point D with respect
to the �ow and the holder OD; the total force is also determined by the angles
β1, β2, which are made in the hyperplane of the disk D3 (thus, (v, α, β1, β2) are the
(generalized) spherical coordinates of the tip of the vector vD), and also the reduced
angular velocity tensor ω̃ ∼= lΩ̃/vD, vD = |vD| (l is the length of the holder, Ω̃ is
the angular velocity tensor of the pendulum). Such conditions generalize the model
of streamline �ow around spatial bodies [3, 5, 6].
The vector e = OD/l determines the orientation of the holder. Then S = s(α)v2

De,
where s(α) = s1(α)sign cosα, and the resistance coe�cient s1 ≥ 0 depends only on
the angle of attack α. By the axe-symmetry properties of the body�pendulum with
respect to the point D, the function s(α) is even.
Let Dx1x2x3x4 be the coordinate system rigidly attached to the body, herewith,
the axis Dx1 has a direction vector e, and the axes Dx2, Dx3 and Dx4 lie in the
hyperplane of the disk D3.
By the angles (ξ, η1, η2), we de�ne the position of the holder OD in the four-
dimensional space E4. In this case, the angle ξ is made by the holder and the
direction of the over-running medium �ow. In other words, the angles introduced
are the (generalized) spherical coordinates of the point D of the center of a disk D3

on the three-dimensional sphere of the constant radius OD.
The space of positions of this (generalized) spherical (physical) pendulum is the
three-dimensional sphere

S3{(ξ, η1, η2) ∈ R3 : 0 ≤ ξ, η1 ≤ π, η2 mod 2π}, (1)

and its phase space is the tangent bundle of the three-dimensional sphere

T∗S
3{(ξ̇, η̇1, η̇2; ξ, η1, η2) ∈ R6 : 0 ≤ ξ, η1 ≤ π, η2 mod 2π}. (2)

The tensor (of the second-rank) Ω̃ of the angular velocity in the coordinate system
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Dx1x2x3x4, we de�ne through the skew-symmetric matrix

Ω̃ =


0 −ω6 ω5 −ω3

ω6 0 −ω4 ω2

−ω5 ω4 0 −ω1

ω3 −ω2 ω1 0

 , Ω̃ ∈ so(4). (3)

The distance from the center D of the disk D3 to the center of pressure (the point
N) has the form |rN |= rN = DN (α, β1, β2, lΩ/vD) , where rN = {0, x2N , x3N , x4N}
in system Dx1x2x3x4 (we omit the wave over Ω).

3 Set of dynamical equations in Lie algebra so(4)

Let a four-dimensional rigid body Θ of mass m with smooth three-dimensional
boundary ∂Θ be under the in�uence of a nonconservative force �eld; this can be
interpreted as a motion of the body in a resisting medium that �lls up the four-
dimensional domain of Euclidean space E4. We assume that the body is dynamically
symmetric. In this case, there are two logical possibilities of the representation of its
inertia tensor in the case of existence of two independent equations on the principal
moments of inertia; i.e., either in some coordinate system Dx1x2x3x4 attached to
the body, the operator of inertia has the form

diag{I1, I2, I2, I2}, (4)

or the form diag{I1, I1, I3, I3}. In the �rst case, the body is dynamically symmetric in
the hyperplane Dx2x3x4 and in the second case, the two-dimensional planes Dx1x2

and Dx3x4 are planes of dynamical symmetry of the body.
The con�guration space of a free, n-dimensional rigid body is the direct product
Rn × SO(n) of the space Rn, which de�nes the coordinates of the center of mass
of the body, and the rotation group SO(n), which de�nes the rotations of the body
about its center of mass and has dimension n+ n(n− 1)/2 = n(n+ 1)/2.
Respectively, the dimension of the phase space is equal to n(n+ 1).
In particular, if Ω is the tensor of angular velocity of a four-dimensional rigid body
(it is a second-rank tensor, see [3, 6, 7, 8]), Ω ∈ so(4), then the part of the dynamical
equations of motion corresponding to the Lie algebra so(4) has the following form
(see [9, 10, 11, 12]):

Ω̇Λ + ΛΩ̇ + [Ω, ΩΛ + ΛΩ] = M, (5)

Λ = diag{λ1, λ2, λ3, λ4}, λ1 =
−I1 + I2 + I3 + I4

2
,

λ2 =
I1 − I2 + I3 + I4

2
, λ3 =

I1 + I2 − I3 + I4

2
, λ4 =

I1 + I2 + I3 − I4

2
,

M = MF is the natural projection of the moment of external forces F acting on
the body in R4 on the natural coordinates of the Lie algebra so(4) and [., .] is the
commutator in so(4). The skew-symmetric matrix corresponding to this second-rank
tensor Ω ∈ so(4) we represent in the form (3), where ω1, ω2, ω3, ω4, ω5, ω6 are
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the components of the tensor of angular velocity corresponding to the projections
on the coordinates of the Lie algebra so(4).
In this case, obviously, the following relations hold: λi − λj = Ij − Ii for any
i, j = 1, . . . , 4.
For the calculation of the moment of an external force acting on the body, we
need to construct the mapping R4 × R4 −→ so(4), than maps a pair of vectors
(DN,F) ∈ R4 × R4 from R4 × R4 to an element of the Lie algebra so(4), where
DN = {0, x2N , x3N , x4N}, F = {F1, F2, F3, F4}, and F is an external force acting on
the body. For this end, we construct the following auxiliary matrix(

0 x2N x3N x4N

F1 F2 F3 F4

)
.

Then the right-hand side of system (5) takes the form

M = {M1,M2,M3,M4,M5,M6} =

= {x3NF4 − x4NF3, x4NF2 − x2NF4,−x4NF1, x2NF3 − x3NF2, x3NF1,−x2NF1},

where M1, M2, M3, M4, M5, M6 are the components of tensor of the moment of
external forces in the projections on the coordinates in the Lie algebra so(4),

M =


0 −M6 M5 −M3

M6 0 −M4 M2

−M5 M4 0 −M1

M3 −M2 M1 0

 .

In our case of a �xed pendulum, the case (4) is realized. Then the dynamical part
of the equations of its motion has the following form:

(I1 + I2)ω̇1 = 0, (I1 + I2)ω̇2 = 0,

2I2ω̇3 + (I1 − I2)(ω2ω6 + ω1ω5) = x4N

(
α, β1, β2,

Ω

v

)
s(α)v2,

(I1 + I2)ω̇4 = 0,

2I2ω̇5 + (I1 − I2)(ω4ω6 − ω1ω3) = −x3N

(
α, β1, β2,

Ω

v

)
s(α)v2,

2I2ω̇6 + (I2 − I1)(ω4ω5 + ω2ω3) = x2N

(
α, β1, β2,

Ω

v

)
s(α)v2,

(6)

since the moment of the medium interaction force is determined by the following
auxiliary matrix: (

0 x2N x3N x4N

−s(α)v2
D 0 0 0

)
,

where {−s(α)v2
D, 0, 0, 0} is the decomposition of the force S of medium interaction

in the coordinate system Dx1x2x3x4.
Since the dimension of the Lie algebra so(4) is equal to 6, the system of equations
(6) is a group of dynamical equations on so(4), and, simply speaking, the motion
equations.
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We see, that in the right-hand side of Eq. (6), �rst of all, it includes the angles
α, β1, β2, therefore, this system of equations is not closed. In order to obtain a
complete system of equations of motion of the pendulum, it is necessary to attach
several sets of kinematic equations to the dynamic equations on the Lie algebra
so(4).

3.1 Cyclic �rst integrals

We immediately note that the system (6), by the existing dynamic symmetry

I2 = I3 = I4, (7)

possesses three cyclic �rst integrals

ω1 ≡ ω0
1 = const, ω2 ≡ ω0

2 = const, ω4 ≡ ω0
4 = const. (8)

In this case, further, we consider the dynamics of our system at zero levels:

ω0
1 = ω0

2 = ω0
4 = 0. (9)

Under conditions (7)�(9) the system (6) has the form of unclosed system of three
equations:

2I2ω̇3 = x4N

(
α, β1, β2,

Ω

v

)
s(α)v2, 2I2ω̇5 = −x3N

(
α, β1, β2,

Ω

v

)
s(α)v2,

2I2ω̇6 = x2N

(
α, β1, β2,

Ω

v

)
s(α)v2.

(10)

4 First set of kinematic equations

In order to obtain a complete system of equations of motion, it needs the set of
kinematic equations which relate the velocities of the point D (i.e., the center of the
disk D3) and the over-running medium �ow:

vD = vD · iv(α, β1, β2) = Ω̃l + (−v∞)iv(−ξ, η1, η2), l = {l, 0, 0, 0}, (11)

iv(α, β1, β2) =


cosα

sinα cos β1

sinα sin β1 cos β2

sinα sin β1 sin β2

 . (12)

The equation (11) expresses the theorem of addition of velocities in projections on
the related coordinate system Dx1x2x3x4.
Indeed, the left-hand side of Eq. (11) is the velocity of the point D of the pendu-
lum with respect to the �ow in the projections on the related with the pendulum
coordinate system Dx1x2x3x4. Herewith, the vector iv(α, β1, β2) is the unit vector
along the axis of the vector vD. The vector iv(α, β1, β2) has the spherical coordinates
(1, α, β1, β2) which determines the decomposition (12).
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The right-hand side of the Eq. (11) is the sum of the velocities of the point D when
you rotate the pendulum (the �rst term), and the motion of the �ow (the second
term). In this case, in the �rst term, we have the coordinates of the vector âåêòîðà
OD = {l, 0, 0, 0} in the coordinate system Dx1x2x3x4.
We explain the second term of the right-hand side of Eq. (11) in more detail. We
have in it the coordinates of the vector (−v∞) = {−v∞, 0, 0, 0} in the immovable
space. In order to describe it in the projections on the related coordinate system
Dx1x2x3x4, we need to make a (reverse) rotation of the pendulum at the angle
(−ξ) that is algebraically equivalent to multiplying the value (−v∞) on the vector
iv(−ξ, η1, η2).
Thus, the �rst set of kinematic equations (11) has the following form in our case:

vD cosα = −v∞ cos ξ, vD sinα cos β1 = lω6 + v∞ sin ξ cos η1,

vD sinα sin β1 cos β2 = −lω5 + v∞ sin ξ sin η1 cos η2,

vD sinα sin β1 sin β2 = lω3 + v∞ sin ξ sin η1 sin η2.

(13)

5 Second set of kinematic equations

We also need a set of kinematic equations which relate the angular velocity tensor
Ω̃ and coordinates ξ̇, η̇1, η̇2, ξ, η1, η2 of the phase space (2) of pendulum studied, i.e.,
the tangent bundle T∗S3{ξ̇, η̇1, η̇2; ξ, η1, η2}.
We draw the reasoning style allowing arbitrary dimension. The desired equations
are obtained from the following two sets of relations. Since the motion of the body
takes place in a Euclidean space En, n = 4 formally, at the beginning, we express
the tuple consisting of a phase variables ω3, ω5, ω6, through new variable z1, z2, z3

(from the tuple z). For this, we draw the following turn by the angle η1, η2: ω3

ω5

ω6

 = T1,2(η2) ◦ T2,3(η1)

 z1

z2

z3

 , (14)

T2,3(η1) =

 1 0 0
0 cos η1 − sin η1

0 sin η1 cos η1

 , T1,2(η2) =

 cos η2 − sin η2 0
sin η2 cos η2 0

0 0 1

 .

In other words, the relations z1

z2

z3

 = T2,3(−η1) ◦ T1,2(−η2)

 ω3

ω5

ω6


hold, i.e.,

z1 = ω3 cos η1 + ω5 sin η2,

z2 = −ω3 cos η1 sin η2 + ω5 cos η1 cos η2 + ω6 sin η1,

z3 = ω3 sin η1 sin η2 − ω5 sin η1 cos η2 + ω6 cos η1.

Then we substitute the following relationship instead of the variable z:

z3 = ξ̇, z2 = −η̇1
sin ξ

cos ξ
, z1 = η̇2

sin ξ

cos ξ
sin η1. (15)
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Thus, two sets of Eqs. (14) and (15) give the second set of kinematic equations:

ω3 = ξ̇ sin η1 sin η2 + η̇1
sin ξ

cos ξ
cos η1 sin η2 + η̇2

sin ξ

cos ξ
sin η1 cos η2,

ω5 = −ξ̇ sin η1 cos η2 − η̇1
sin ξ

cos ξ
cos η1 cos η2 + η̇2

sin ξ

cos ξ
sin η1 sin η2,

ω6 = ξ̇ cos η1 − η̇1
sin ξ

cos ξ
sin η1.

(16)

We see that three sets of the relations (10), (13), and (16) form the closed system
of equations.
These three sets of equations include the following functions:

x2N

(
α, β1, β2,

Ω

vD

)
, x3N

(
α, β1, β2,

Ω

vD

)
, x4N

(
α, β1, β2,

Ω

vD

)
, s(α).

In this case, the function s is considered to be dependent only on α, and the functions
x2N , x3N , x4N may depend on, along with the angles α, β1, β2, generally speaking,
the reduced angular velocity tensor lΩ̃/vD.

6 Case where the moment of nonconservative forces

depends on the angular velocity

6.1 Dependence on the angular velocity

This section is devoted to dynamics of the four-dimensional rigid body in the four-
dimensional space. Since this subsection is devoted to the study of the case of
the motion where the moment of forces depends on the angular velocity tensor, we
introduce this dependence in the general case; this will allow us to generalize this
dependence to multi-dimensional bodies.
Let x = (x1N , x2N , x3N , x4N) be the coordinates of the point N of application of a
nonconservative force (interaction with a medium) on the three-dimensional disk D3,
and Q = (Q1, Q2, Q3, Q4) be the components independent of the angular velocity.
We introduce only the linear dependence of the functions (x1N , x2N , x3N , x4N) on
the angular velocity tensor Ω since the introduction of this dependence itself is not
a priori obvious (see [1, 3, 5]).
Thus, we accept the following dependence: x = Q + R, where R = (R1, R2, R3, R4)
is a vector-valued function containing the angular velocity tensor Ω. Here, the
dependence of the function R on the angular velocity is gyroscopic:

R =


R1

R2

R3

R4

 = − 1

vD


0 −ω6 ω5 −ω3

ω6 0 −ω4 ω2

−ω5 ω4 0 −ω1

ω3 −ω2 ω1 0




h1

h2

h3

h4

 ,

where (h1, h2, h3, h4) are certain positive parameters (comp. with [2, 4]).
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Now, for our problem, since x1N = xN ≡ 0, we have

x2N = Q2 − h1
ω6

vD
, x3N = Q3 + h1

ω5

vD
, x4N = Q4 − h1

ω3

v
.

Thus, the function rN is selected in the following form (the disk D3 is de�ned by
the equation x1N ≡ 0):

rN =


0
x2N

x3N

x4N

 = R(α)iN −
1

vD
Ω̃h, (17)

iN = iv

(π
2
, β1, β2

)
, h =


h1

h2

h3

h4

 , Ω̃ =


0 −ω6 ω5 −ω3

ω6 0 −ω4 ω2

−ω5 ω4 0 −ω1

ω3 −ω2 ω1 0


(see (3), (12)).
Thus, the following relations

x2N = R(α) cos β1 − h1ω6/vD, x3N = R(α) sin β1 cos β2 + h1ω5/vD,

x4N = R(α) sin β1 sin β2 − h1ω3/vD,

hold, which show that an additional dependence of the damping (or accelerating
in some domains of the phase space) moment of the nonconservative forces is also
present in the system considered (i.e., the moment depends on the angular velocity
tensor).
And so, for the construction of the force �eld, we use the pair of dynamical functions
R(α), s(α); the information about them is of a qualitative nature. Similarly to the
choice of the Chaplygin analytical functions (see [1, 2]), we take the dynamical
functions s and R as follows:

R(α) = A sinα, s(α) = B cosα, A,B > 0. (18)

6.2 Reduced systems

Theorem 6.1. The simultaneous equations (6), (13), (16) under conditions (7)�
(9), (17), (18) can be reduced to the dynamical system on the tangent bundle (2) of
the three-dimensional sphere (1).

Indeed, if we introduce the dimensionless parameters and the di�erentiation by the
formulas

b∗ = ln0, n
2
0 =

AB

2I2

, H1∗ =
h1B

2I2n0

, < · >= n0v∞ <′>, (19)
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then the obtained equations have the following form (b∗ > 0, H1∗ > 0):

ξ′′ + (b∗ −H1∗)ξ
′ cos ξ + sin ξ cos ξ − [η′1

2
+ η′2

2
sin2 η1]

sin ξ

cos ξ
= 0,

η′1
′
+ (b∗ −H1∗)η

′
1 cos ξ + ξ′η′1

1 + cos2 ξ

cos ξ sin ξ
− η′2

2
sin η1 cos η1 = 0,

η′2
′
+ (b∗ −H1∗)η

′
2 cos ξ + ξ′η′2

1 + cos2 ξ

cos ξ sin ξ
+ 2η′1η

′
2

cos η1

cos η1

= 0.

(20)

After the transition from the variables z (about the variables z see (15)) to the
intermediate dimensionless variables w

zk = n0v∞(1 + b∗H1∗)Zk, k = 1, 2, z3 = n0v∞(1 + b∗H1∗)Z3 − n0v∞b∗ sin ξ,

system (20) is equivalent to the system

ξ′ = (1 + b∗H1∗)Z3 − b∗ sin ξ, (21)

Z ′3 = − sin ξ cos ξ + (1 + b∗H1∗)(Z
2
1 + Z2

2)
cos ξ

sin ξ
+H1∗Z3 cos ξ, (22)

Z ′2 = −(1 + b∗H1∗)Z2Z3
cos ξ

sin ξ
− (1 + b∗H1∗)Z

2
1

cos ξ

sin ξ

cos η1

sin η1

+H1∗Z2 cos ξ, (23)

Z ′1 = −(1 + b∗H1∗)Z1Z3
cos ξ

sin ξ
+ (1 + b∗H1∗)Z1Z2

cos ξ

sin ξ

cos η1

sin η1

+H1∗Z1 cos ξ, (24)

η′1 = −(1 + b∗H1∗)Z2
cos ξ

sin ξ
, (25)

η′2 = (1 + b∗H1∗)Z1
cos ξ

sin ξ sin η1

, (26)

on the tangent bundle T∗S3{(Z3, Z2, Z1; ξ, η1, η2) ∈ R6 : 0 ≤ ξ, η1 ≤ π, η2 mod 2π}
of the three-dimensional sphere S3{(ξ, η1, η2) ∈ R3 : 0 ≤ ξ, η1 ≤ π, η2 mod 2π}.
We see that the independent �fth-order subsystem (21)�(25) (due to cyclicity of the
variable η2) can be substituted into the sixth-order system (21)�(26) and can be
considered separately on its own �ve-dimensional manifold.

6.3 Complete list of the �rst integrals

We turn now to the integration of the desired sixth-order system (21)�(26) (without
any simpli�cations, i.e., in the presence of all coe�cients).
Similarly, for the complete integration of sixth-order system (21)�(26), in general,
we need �ve independent �rst integrals. However, after the change of variables

w3 = −Z3, w2 =
√
Z2

2 + Z2
1 , w1 =

Z2

Z1

, (27)
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the system (21)�(26) splits as follows:

ξ′ = −(1 + b∗H1∗)w3 − b∗ sin ξ,

w′3 = sin ξ cos ξ − (1 + b∗H1∗)w
2
2

cos ξ

sin ξ
+H1∗w3 cos ξ,

w′2 = (1 + b∗H1∗)w2w3
cos ξ

sin ξ
+H1∗w2 cos ξ,

 (28)

w′1 = d1(w3, w2, w1; ξ, η1, η2)
1 + w2

1

w1

cos η1

sin η1

,

η′1 = d1(w3, w2, w1; ξ, η1, η2),

 (29)

η′2 = d2(w3, w2, w1; ξ, η1, η2), (30)

d1(w3, w2, w1; ξ, η1, η2) =

= −(1 + b∗H1∗)Z2(w3, w2, w1)
cos ξ

sin ξ
= ∓ w1w2√

1 + w2
1

cos ξ

sin ξ
,

d2(w3, w2, w1; ξ, η1, η2) =

= (1 + b∗H1∗)Z1(w3, w2, w1)
cos ξ

sin ξ sin η1

= ± w2√
1 + w2

1

cos ξ

sin ξ sin η1

,

in this case Zk = Zk(w3, w2, w1), k = 1, 2, 3, are the functions by virtue of change
(27).
We see that the independent third-order subsystem (28) (which can be considered
separately on its own three-dimensional manifold), the independent second-order
subsystem (29) (after the change of independent variable) can be substituted into
the sixth-order system (28)�(30), and also Eq. (30) on η2 is separated (due to
cyclicity of the variable η2).
Thus, for the complete integration of the system (28)�(30), it su�ces to specify two
independent �rst integrals of system (28), one �rst integral of system (29), and an
additional �rst integral that �attaches� Eq. (30) (i.e., only four ).
First, we compare the third-order system (28) with the nonautonomous second-order
system

dw3

dξ
=

sin ξ cos ξ − (1 + b∗H1∗)w
2
2 cos ξ/sin ξ +H1∗w3 cos ξ

−(1 + b∗H1∗)w3 − b∗ sin ξ
,

dw2

dξ
=

(1 + b∗H1∗)w2w3 cos ξ/sin ξ +H1∗w2 cos ξ

−(1 + b∗H1∗)w3 − b∗ sin ξ
.

(31)

Using the substitution τ = sin ξ, we rewrite system (31) in the algebraic form:

dw3

dτ
=
τ − (1 + b∗H1∗)w

2
2/τ +H1∗w3

−(1 + b∗H1∗)w3 − b∗τ
,

dw2

dτ
=

(1 + b∗H1∗)w2w3/τ +H1∗w2

−(1 + b∗H1∗)w3 − b∗τ
.

(32)
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Further, if we introduce the uniform variables by the formulas w3 = u2τ, w2 = u1τ,
we reduce system (32) to the following form:

τ
du2

dτ
=

(1 + b∗H1∗)(u
2
2 − u2

1) + (b∗ +H1∗)u2 + 1

−(1 + b∗H1∗)u2 − b∗
,

τ
du1

dτ
=

2(1 + b∗H1∗)u1u2 + (b∗ +H1∗)u1

−(1 + b∗H1∗)u2 − b∗
.

(33)

We compare the second-order system (33) with the nonautonomous �rst-order equa-
tion

du2

du1

=
1− (1 + b∗H1∗)(u

2
1 − u2

2) + (b∗ +H1∗)u2

2(1 + b∗H1∗)u1u2 + (b∗ +H1∗)u1

, (34)

which can be easily reduced to the exact di�erential equation

d

(
(1 + b∗H1∗)(u

2
2 + u2

1) + (b∗ +H1∗)u2 + 1

u1

)
= 0.

Therefore, Eq. (34) has the following �rst integral:

(1 + b∗H1∗)(u
2
2 + u2

1) + (b∗ +H1∗)u2 + 1

u1

= C1 = const, (35)

which in the old variables has the form

Θ1(w3, w2; ξ) =

=
(1 + b∗H1∗)(w

2
3 + w2

2) + (b∗ +H1∗)w3 sin ξ + sin2 ξ

w2 sin ξ
= C1 = const. (36)

Then the additional �rst integral has the following structure:

Θ2(w3, w2; ξ) = G

(
sin ξ,

w3

sin ξ
,
w2

sin ξ

)
= C2 = const. (37)

Thus, we have found two �rst integrals (36), (37) of the independent third-order
system (28). For its complete integrability, it su�ces to �nd one �rst integral for
the system (29), and an additional �rst integral that �attaches� Eq. (30).
Indeed, the desired �rst integrals have the following forms:

Θ3(w1; η1) =

√
1 + w2

1

sin η1

= C3 = const, (38)

Θ4(w1; η1, η2) = η2 ± arctg
cos η1√

C2
3 sin2 η1 − 1

= C4 = const, (39)

in this case, in the left-hand side of Eq. (39), we must substitute instead of C3 the
�rst integral (38).

Theorem 6.2. The sixth-order system (28)�(30) possesses the su�cient number
(four) of the independent �rst integrals (36), (37), (38), (39).

Theorem 6.3. Three sets of relations (6), (13), (16) under conditions (7)�(9), (17),
(18) possess four the �rst integrals (the complete set), which are the transcendental
function (in the sense of complex analysis) and are expressed as a �nite combination
of elementary functions.
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6.4 Topological analogies

We can present two groups of analogies, which describes the motion of a free body in
the presence of a tracking force [1, 10, 11]. Thus, we have the following topological
and mechanical analogies in the sense explained above.
(1) A motion of a �xed physical pendulum on a (generalized) spherical hinge in a
�owing medium (nonconservative force �elds under assumption of additional depen-
dence of the moment of the forces on the angular velocity).
(2) A spatial free motion of a four-dimensional rigid body in a nonconservative
force �eld under a tracing force (in the presence of a nonintegrable constraint under
assumption of additional dependence of the moment of the forces on the angular
velocity).
(3) A composite motion of a four-dimensional rigid body rotating about its center
of mass, which moves rectilinearly and uniformly, in a nonconservative force �eld
under assumption of additional dependence of the moment of the forces on the
angular velocity.
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Abstract

It is well known that �lling carbon black to rubbers signi�cantly improves
their strength and deformation properties. One possible explanation for this
phenomenon is that the nano�ller creates a huge amount of uniformly dis-
tributed micro-breaks to facilitate transfer of the rubber matrix from complex
stress state into the system of many uniaxially loaded �bers (strands). There-
fore, rupture e�orts for them to be much higher than the corresponding values
for the same elastomer in an undirected condition.

Appropriate structural model of an elastomeric composite was developed to
verify this hypothesis. It is based on a new criterion of deformation strength,
taking into account the possibility of an anisotropic hardening of the elastomer
under the stretching.

The results of computer simulation showed that in case of a new strength
criterion using matrix breaks occurred not in the gap between the inclusions,
but on some removal from it. Thus, the formation of a weakened zone in the
form of a "hollow ring" occurred around the gap between the particles, that
is quite be interpreted as a possible appearance of the elastic strand between
the particles.

1 The object of study

Rubbers are one of the most important and common industrial polymers. These
materials belong to the class of dispersed-�lled elastomeric composites, the speci�c
feature of which lies in the fact that their basis is a continuous low-modulus, highly
elastic rubber phase (matrix) with solid granular �ller particles (dispersed phase)
embedded.
A lot of practical experience has been accumulated in the creation of rubbers for
various purposes by now. However, the progress in this area of material science is
still hampered by insu�cient knowledge of structural mechanisms for formation of
mechanical behavior of �lled elastomers. Some mechanical properties of rubbers still
remain the subject of discussions among materials scientists.
One such issue is the e�ect of rubber hardening when carbon black dispersed par-
ticles are embedded into it [1, 2, 3, 4]. It is known since the beginning of the XX
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century, that �lling rubber by carbon black (20-30 % by volume) greatly improves
its operational properties: enhances the sti�ness, rupture force increases 5�15 times,
the limiting deformation in 2�4 times, and the smaller size of the �ller particles, the
stronger is reinforced material [5].

To explain these changes in terms of classical mechanics to date have not succeeded.
This problem is one of the most important in modern mechanics of elastomers,
because true understanding of hardening mechanisms will reduce the time and costs
for experimental development of composite materials with predetermined properties
and move to the calculation methods of design[6].

Most researchers agree that when the �lled elastomer is deformed, structural changes
occur in it, for the description of which additional hypotheses and assumptions are
required. This work is devoted to the veri�cation of one of these hypotheses. Its
essence lies in the fact that nanoparticles have a huge surface of interphase contacts,
which turns a signi�cant portion of matrix into a bounded, that is, more durable
state. At the same time the granular nano�ller composite creates a huge amount of
uniformly distributed micro-breaks to facilitate transfer of the rubber matrix from
complex stress state into the system of many uniaxially loaded �bers �nanostrands.
Therefore, rupture e�orts for them to be much higher than the corresponding values
for the same elastomer in an undirected condition.

The presence of such formations is con�rmed experimentally [7]. Studies of the
nano-structure of the �lled natural rubbers in the extended (up to the prebreaking)
state using atomic-force microscopy methods, which were being carried out in ICMM
UB RAS [8, 9], experimentally also con�rmed this fact. Fig. 1 shows nanoscans of
pre-stretched rubber containing carbon black particles. It is easy to see both the
strands and the aggregates of soot particles they connect.

Figure 1: Stretched high-strength bonds between aggregates of carbon black particles
obtained by atomic force microscopy
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2 Methods

The structural model of the dispersed �lled elastomeric composite was developed for
description and analysis of the e�ect of nanostrands appearance under deformation.
It is based on new deformation criterion of strength (1), considering the possibility
of anisotropic strengthening of elastomer (due to the reorientation of the molecular
chains in the direction of the load application).

f(λ1, λ2, λ3) =
λe

β
3∑
i=1

exp(−αλ2
i )− 1

< A, (1)

λe =
√

(λ1 − λ2)2 + (λ2 − λ3)2 + (λ1 − λ3)2,

V =
3∑
i=1

λini ⊗ ni,

where λe the invariant of left tensor of tension V (analog of the intensity of de-
formations), ni - the orthonormalized three of its eigenvectors (in the current
con�guration),λi corresponding main extension ratios, α and β are constants cho-
sen from experiments (biaxial loading of the elastomer);A - tensile strength of the
destruction. The main feature of the criterion that a tensile or compression biaxial
its value will be higher than when a uniaxial deformation (this is at the same strain
intensity). That is, when the uniaxial loading material collapses later than in the
case of two or triaxial deformation.λ1 = λ, λ2 = 1/λx, λ3 = 1/λ1λ2

Fig. 2 represents the dependences of deformation criterion f for various for various
relations between λ1, λ2, λ3, illustrating this property (assuming that the medium
is incompressible). It was accepted that x is varied from -1 to 1/2. Constants α, β
are taken by the equal 0.5. It is evident on the graph that the curve l (x = 0.5),
corresponding to uniaxial stretching, lies below all.

Figure 2: Dependence of the strength criterion f on the main extension ratios on di�erent
axes: (1) x= 0.5; (2) 0.25; (3) 0.1; (4) 0; (5) -0.1; (6) -0.5; (7) -0.75; (8) -1.
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3 Results discussion

The main load during the deformation of elastomeric composites with a rigid gran-
ular �ller occurs in the matrix interlayers between the inclusions (gaps). The rest
of the elastomer is loaded much weaker. Accordingly, structural damage occurs, as
a rule, near the gaps between the particles [10] these are the most dangerous zones.
The appearance of strands in the composite structure occurs precisely there. There-
fore, in modeling the development of internal damage in a composite, its structure
was represented as a cell of incompressible nonlinear elastic matrix and two rigid
spherical inclusions of radius R located at a distance δ from each other along the
vertical. The mechanical properties of the matrix were described by neo-Hookean
potential (2)

w = C(trV 2 − 3), (2)

where C is the elastic constant, which according to its physical sense is equal 1/6
from initial Young's modulus E (for the incompressible medium). E was taken equal
to 10 MPa in the calculations. The values of model constants were taken as follows:
α=0.5; β=0.5; A=1. The choice was made for reasons of clarity of demonstration
of process of the strand formation.
The initial gap between the inclusions was 40% of their radius. Inclusions were
moving apart step-by-step apart vertically. The problem was solved by the �nite
element method. At each step, the stress-strain state in the cell was calculated
and the fracture zones of the material were determined using deformation strength
criterion. At the following loading steps, these areas were replaced by pores (i.e.,
the corresponding elements were excluded from the �nite element mesh).
In Fig. 3 shows distribution maps of deformation strength parameter f at cell elon-
gation (ratio of current and initial distances between centers of spheres) 160%, 200%
and 250%. Fig. 4 depicts maps of deformation intensity λe at the same elongations.

a b c

Figure 3: Distribution maps f , elongation: a - 160%; b - 200%; c - 250%
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a b c

Figure 4: Distribution maps λe, elongation: a - 160%; b - 200%; c - 250%

The pores in the matrix began to appear at the elongation of 160%; at 250% of the
the nanostrand was fully formed; complete destruction of the cell (strand breakage)
occurred at approximately 500%.
The results of computer simulation showed that in case of a new strength criterion
using matrix breaks occurred not in the gap between the inclusions, but on some
removal from it. Thus, the formation of a weakened zone in the form of a "hollow
ring" occurred around the gap between the particles, that is quite be interpreted as
a possible appearance of the elastic strand between the particles.
As a result, we can say that the formation of strands in an elastomeric composite is
possible in the event that an anisotropic change of matrix strength properties will
occur during deformation. And this is quite possible due to the reorientation of
polymer molecular chains.
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Abstract

Cracks normally propagate in the opening mode associated with a state
of local symmetry at a crack tip. However, the micro- or macrostructure of a
material or structure sometimes forces cracks to propagate in a shearing mode.
Irrespective of the actual material studied, fracture in shear is frequently asso-
ciated with the formation of a large number smaller sigmoidal-shaped cracks
in the propagation direction of the major crack. Propagation of the major
shear crack is accomplished by coalescing the sigmoidal-shaped cracks. Ex-
periments show that the formation of sigmoidal cracks due to shear loading
leads to a normal separation of the joined substrates. Theoretical studies show
that constraining the local opening of the sigmoidal cracks increases the frac-
ture resistance for the propagation of the major crack. In the present study,
experiments with a ductile adhesive loaded in shear and where the normal sep-
aration is constrained are presented. The experiments are evaluated using the
path independent J-integral. The associated cohesive law shows that consid-
erable normal compressive stress develops in the adhesive during macroscopic
shear loading. It is also concluded that by ignoring the normal separation in
the evaluation of the experiments, the strength of the adhesive is underesti-
mated. Thus, the procedure developed in earlier studies is conservative from
a strength analysis perspective. The present technique might be possible to
extend to other materials to reveal their properties in shear fracture

1 Introduction

Cracks are observed to propagate in shear under special circumstances, cf. e.g. [1].
Two di�erent crack propagation mechanisms are observed on a smaller length scale:
For some ductile materials, �brils form and governs the fracture process through
the stretching of the �brils. In other materials, the shear crack is observed to be
governed by a process of nucleation, growth and coalesce of smaller cracks, cf. e.g.
[2]. These minor cracks appear to propagate in a state of local symmetry, i.e. with
crack faces opening in the direction of the maximum tensile principal stress. In pure
shear, in 45◦ relative to the direction of propagation of the major shear crack. If
any of the minor cracks is not inhibited to grow in this direction, it will take over
the role as the major crack and crack kinking occurs. However, if sti�er layers of
material inhibit the propagation, the minor cracks form sigmoidal shapes in a shear
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Shear layer

Stiff layer

Shearing motion

Stiff layer

Compressive stress

Figure 1: Shear crack propagation by nucleation, growth and coalesce of shear
hackles. A shear crack propagates from left to right in this sketch of the fracture
process. The shear hackles open up at the left due to their expansion.

layer, cf. Fig. 1. These are known as Riedels in soils, clay and rock, [3], shear
hackles in composite materials, [4] and adhesive layers, [5].
During the fracture process, the shear hackles open-up and thus induce an expansion
of the layer in which the shear crack propagates. The expansion increases during
the fracture process and reaches a maximum at the tip of the growing shear crack.
Far from the shear crack-tip, the fracture process is not initiated and the layer is not
expanded. Thus, the expansion varies from a maximum at the shear crack-tip to a
minimum far from the tip. This indicates that the constraints of the surrounding
material in�uence the amount of expansion. With a soft surrounding, the expansion
is expected to be large and with a sti� surrounding, the expansion is small. Due
to the expansion of the surrounding material, a compressive stress is expected to
act on the layer with shear hackles. Energetically, this means that part of the work
performed to shear the layer is consumed to expand the surrounding material. From
this, it can be expected that the work needed to fracture the layer in shear should
increase as the sti�ness of the surrounding material increases since more energy is
needed to expand the layer. The shear layer also has to perform work against any
source of compressive stress that acts over the layer. Thus, a compressive stress
acting to close the shear hackles is expected to increase the work needed to fracture
the layer, i.e. the apparent fracture energy. Thus, some care has to be exercised in
measuring the fracture energy in shear JIIc or JIIIc, cf. [9].
In many materials showing this fracture process, the geometrical sizes and load
levels are extreme. In polymeric adhesive layers, the mechanism can be studied
experimentally under reasonable conditions. Appropriately designed and loaded
specimens can force a major crack in the adhesive to propagate in a shearing mode
at a reasonable load level and in a stable manner, cf. [6]. The �ndings from studies
of shear fracture in adhesive layers is expected to be useful as an initial outset for
studies of shear fracture in other materials.
A theoretical study shows the in�uence of constraining the expansion an elastic-
brittle layer, cf. [7]. The study is based on linear elastic fracture mechanics and the
principle of local symmetry. It shows that the work needed to fracture a brittle layer
in shear is about 35% larger if the constraint is completely inhibited. Experimental
studies indicate this e�ect for engineering adhesives. For tough adhesives, a more
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constrained experimental set-up gives about 30% increased fracture energy, [8], and
by actively constraining the expansion, the fracture energy increases by about 50%,
[9].
By the expansion, there is no direct contact between the crack faces in the wake
of a shear crack-tip. This means that Coulomb friction is not expected to play a
major role in the fracture process. However, some distance from the crack tip, the
crack faces may come into contact due to compressive loads and this may play an
important role in a structural fracture process. Estimates of the e�ect are given in
[10] and [11].
In the present paper a summary is given of some recent studies of shear fracture
of structural adhesive layers. The next section introduces the method based on the
path independent J-integral to be used to connect the shear fracture process to the
external loads on test specimens. A cohesive zone model is used to quantify the
shear properties of the shearing layer. It should be noted that no assumption on
the shape of the cohesive law is assumed, it is only assumed that the same cohesive
law governs the behaviour of the entire layer. The shape is a direct result from the
experiments. The third section gives design guidelines for experimental methods to
measure cohesive laws; especially for shear. Some experimental results are given in
section 4 and the paper ends with a discussion and some conclusions.

2 Theory

The theoretical foundation is based on the path-independent J-integral given by

J =

∫
S

(Udy + Tiui,xdS) , (1)

in a planar state in the x − y-plane where no variation of the �elds is allowed in
the z-direction. The counter clockwise integration path is denoted S; T and u are
the traction vector acting on the interior of S, and the displacement vector, respec-
tively; U is the strain energy density, cf. [12] and [13]. Index notation is used with
Einstein's summation convention and a comma indicating partial di�erentiation. If
the material is homogeneous in the x-direction, i.e. if U is not explicitly dependent
of x, the integral is path independent. This can be shown by evaluating the integral
for a closed path S not surrounding any object that would change the potential
energy if the object is moved in the x-direction. With the help of the divergence
theorem, J = 0 results. Moreover, the integral gives the con�gurational force on
any object residing inside S, [14]. From these results two conjectures can be drawn:
1) the integration path S can be chosen arbitrarily and Eq. (1) gives the same
con�gurational force as long as S contains the same energy-changing objects and 2)
the sum of J for all energy-changing objects in an elastic �eld is zero. Thus, the
con�gurational forces are in equilibrium in the same way as ordinary forces are in
equilibrium, cf. e.g. [15]. These results are useful in the design of test specimens to
measure cohesive laws.
Equation (1) is based on the existence of a strain energy density U . This appears
as a serious limitation of the applicability of the integral. However, as long as no
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unloading takes place, a pseudopotential can take the place of U . That is, the stress
can formally be derived by di�erentiating U with respect to the strain. By this, the
applicability of the J-integral is extended to inelasticity when no unloading takes
place.
A cohesive zone located in a plane y = constant1 is governed by a cohesive law,

σ =
∂J̄

∂w
(2)

τ =
∂J̄

∂v
(3)

where J̄ is a potential for the cohesive normal stress σ in the y-direction, positive
when opening the cohesive zone, and the cohesive shear stress τ in the x−direction.
The conjugated separations are w in the y-direction, denoting the opening and v
in the x-direction, denoting the shear. A direct application of Eq. (1) shows that
J̄ = J . This result is derived in [13] for pure opening and it is readily extended to
a mixed loading giving Eqs. (2) and (3). An alternative derivation is given in [16].

3 Design of specimen

The energy changing objects identi�ed in test-specimens are boundaries and loading
points. Taking the x-axis horizontally, and choosing S to closely encircle a traction
free boundary, Eq. (1) shows that a free horizontal boundary does not contribute to
J . Similarly, a stress free vertical boundary does not contribute to J . Practically,
this can often be achieved by allowing for some overhang at loading points and
supports.
Any horizontal boundary between di�erent materials, i.e. a jump in U in the y-
direction, does not contribute to J . This is shown by considering that the �rst term
in the integrand of Eq. (1) does not contribute if S is chosen to follow the interface
closely on each side. The second term does not contribute either. This follows from
the continuity properties of T and u, cf. [17].
A vertical force P acting on an otherwise free horizontal boundary contributes with
JP to J . This is shown by applying Eq. (1) to the boundary.

JP =
Pθ

b
(4)

Here θ is the rotation of the loading point and b is the out-of-plane width of the
specimen, cf. [16].
These results are applied to the modi�ed end notched �exure (ENF) specimen,
cf. Fig. 2. The specimen consists of two steel bars, i.e. the substrates, and an
adhesive layer terminated the distance a from the left support. In an ordinary
ENF-specimen, the loading F,∆ is applied at the centre between the supports. By

1It can be helpful to consider Fig. 1 with a horizontal x-axis directed to the right and a vertical
y-axis directed upwards.
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Figure 2: Deformed modi�ed end notched �exure specimen.

gradually increasing the prescribed de�ection ∆, the fracture process is initiated at
the left end of the layer and eventually a shear crack is formed. The process is stable
if the length a is long enough. For a brittle layer, the condition is a/L > 0.35 and a
somewhat shorter a can be chosen if the layer is tough, cf. [6]. Here, the specimen is
modi�ed by a pair of forces P applied close to the left end of the layer, the distance
c in Fig. 2. These forces limit the expansion of the shearing layer. In an experiment,
P is applied �rst and kept constant thereafter ∆ is gradually increased.

4 Experiments and results

Experiments with the rubber based commercial structural adhesive DowBetamate-
5096 are presented in [16]. A brief summary is given here. Cohesive laws are unique
for a speci�c layer thickness. In this study the thickness t = 0.3 mm. Two di�erent
crack lengths are used a = 300 and 350 mm, respectively. The substrates are made
of tool steel with a distance L =1 m between the supports. Non of the experiments
su�ers inelastic deformation of the substrates or instability of crack propagation
although the shorter a violates the stability condition for brittle adhesives in [6].
The experiments are performed quasistatically at a loading rate ∆̇ = 2 mm/min in
a servo hydraulic testing machine (Instron 8802). It is expected that the loading
rate in�uences the evaluated data, cf. e.g. [18]. During the experiments, the
expansion w0 and the shear v0 at the crack tip are measured using LVDTs. Repeated
experiments are performed at �ve di�erent values of the constraining force P = 0,
1.25, 2.50, 3.75, and 5.00 kN.
Figure 3 shows J vs. v and w0 vs. v0, respectively with P = 5 kN. Although two
di�erent specimen geometries are used, i.e. a = 300 and 350 mm, there is no sign of
this di�erence in the evaluated data. This supports that the evaluation procedure
gives data for the layer and not for the specimen, as expected. The red curves are
least square adaptions to the experimental data.
The J-curves show a parabolic shape for small v indicating a linear elastic response
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Figure 3: a) Evaluated J vs. v and b) measured w0 vs. v0 for P = 5 kN. Black
curves: experimental data; red curves: adapted curve. Data from [16]. Note that
the J − v-relation is assumed to be the same for the entire layer, i.e. the index 0 is
dropped on v in the left graph.

for small deformation. This part ends at v ≈ 0.035 mm irrespective of the level
of constraining force P . The shape of the next section of the J-curves corresponds
approximately to a cohesive law with linear hardening plasticity. This phase ends
when the expansion w0 becomes considerable. With a larger P this occurs later in
the loading history. After this, J continues to increase but with a negative second
derivative corresponding to a softening cohesive law, cf. Eq. (3). At w ≈ 0.25
mm, the J-curve levels out corresponding to zero shear stress and a shear crack has
formed.

The w0 vs. v0 curves in Fig. 3b shows that the expansion is considerable at fracture
even at P = 5 kN which is the maximum constraining force in the experimental se-
ries, cf. [16]. To derive a cohesive law for pure shear, i.e. for w = 0, an extrapolation
method is needed. The following procedure is developed in [16]. For 20 consecutive
values of v, values of J and w are derived from the adapted J vs. v curves and the
w0 vs. v0 curves exempli�ed in Fig. 3. Lines are adapted to the J and w data for
each value of v. Each line is extrapolated to w = 0 giving a value of J . This gives 20
values of J vs. v for pure shear, i.e. w = 0. Figure 4a shows the result. It shows a
maximum at JIIc = 3.2 kN/m, i.e. the fracture energy is considerably larger in pure
shear than the value 2.1 kN/m evaluated from the experimental series with P = 0,
cf. [16].

The black curve is a least square adaption. Di�erentiation of this according to Eq.
(3) gives the cohesive law τ(v) in Fig. 4b. The cohesive shear strength is τ̂ = 22
MPa. This is also larger than the value derived from the experiments with P = 0 if
they are evaluated by ignoring the expansion. This erroneous evolution yields the
shear strength 16 MPa. Thus, ignoring the expansion of the layer in the evaluation
yields smaller values of the fracture energy and cohesive strength.

The extrapolation procedure also provides an evaluation of the cohesive normal
stress for pure shear deformation. The slope of each of the 20 lines adapted to
the J vs. w data, is the corresponding normal stress according to Eq. (2). The
result is shown as circles in Fig. 4b. A considerable compressive stress develops in
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Figure 4: a) Derived J vs. v for pure shear, i.e. w = 0. Circles: extrapolated data;
black curve: least square adaption. b) Cohesive law for pure shear. Purple curve:
Shear stress vs. shear; Blue curve: Normal stress vs. shear. Data from [16].

conjunction with the formation of the shear hackles, i.e. σ ≈ -85 MPa at v = 0.1
mm. When the shear hackles grow, the layer becomes less sti� in compression, and
the compressive stress decreases. However, some compressive stress remain when
the shear crack has formed at v ≈ 0.25 mm. This can be a result of debris of the
layer left in the wake of a propagating crack and supporting normal stress.
The positive normal stress derived at small values of v can be an artefact of the
extrapolation procedure. As shown in Fig. 3b, w0 develops very slowly with v0

at the start of an experiment. This results in large relative deviations between
the data and the adapted curves for small values of v, i.e. for v . 0.05 mm. As
discussed above, it is expected that the layer responds elastically for |v|. 0.035
mm. As the elastic response must be derived from a strain potential to satisfy basic
thermodynamics, and since τ = 0 is the only possibility for v = 0 and w > 0, σ =
0 is the only possibility for w = 0 and v > 0 due to the symmetry of the elastic
sti�ness matrix resulting from the existence of a potential. Thus, the positive σ
for v . 0.035 mm in Fig. 4b is most likely an artefact of errors developed in the
extrapolation procedure for small v, cf. [16].

5 Discussion and conclusions

Normally, materials do not fracture in shear. Without a layered structure con�ning
crack propagation to shear, as in the cases of composite materials and adhesive joints,
or due to a considerable compressive stress, as is the case in tectonic plates, crack
kinking occurs. Cracks prefer mode I, cf. e.g. [1]. In many cases of shear fracture,
shear hackles develop during the fracture process. These force the crack tip to open
up, i.e. crack opening occurs even if the external loads and the geometry suggest
a state of pure shear. This un-symmetry is given by the material behaviour. Since
crack opening occurs, friction cannot develop in the close vicinity of the crack-tip.
Friction can however develop some distance from the crack tip if large compressive
loads act.
The experimental method developed in [9] and the evaluation procedure developed
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in [16] yield data for a cohesive zone model of a thin layer fracturing in shear by
the development of shear hackles. A modi�ed ENF-specimen is used and evaluated
based on the path- independent properties of the J-integral. After extrapolation of
the experimental data to a state of pure shear deformation, the cohesive laws for
shear stress vs. shear and normal stress vs. shear are derived. The results show
larger fracture energy and strength than evaluated by ignoring the expansion. This
indicates that earlier results ignoring this expansion are conservative in a design sit-
uation; they underestimate the cohesive strength and fracture energy of the adhesive
layer.
The e�ect of constraining the expansion is larger than expected from a theoretical
analysis, cf. [7] and [16]. This is attributed to the considerable toughness of the
adhesive that invalidates a direct analysis based on linear elastic fracture mechanics.
Thus, it is indicated that toughness increases the e�ect of constraining the expansion.
From a designers point of view, it is interesting to note that di�erent engineering
methods to improve joints and composites by e.g. adding mechanical fasteners such
as rivets in adhesive joints or stitching the layers together in composite materials
have an unexpected e�ect to improve the shear strength by constraining the expan-
sion.
The mechanism presented here might shed some light on the size-e�ect of the de-
lamination strength noted in e.g. [19].
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Abstract

If a dielectric liquid become charged in the external electric �eld, it starts
moving and an electrohydrodynamic (EHD) �ow emerges. There are several
charge formation mechanisms that are active in the strong electric �elds. Un-
like the surface one (the charge injection), the volumetric mechanism (the
�eld-enhanced dissociation) is poorly studied. The latter can take place both
near metallic electrodes and solid insulation and leads to EHD �ows with
di�erent structures. Thus, the present study examines a number of EHD sys-
tems and characterizes these cases by means of computer simulation. The
computations are based on the complete set of electrohydrodynamic equations
employing commercial software package COMSOL Multiphysics. The results
show speci�cs of the charge formation and �ow structures.

1 Introduction

Electrohydrodynamic (EHD) �ows in isothermal incompressible dielectric liquids
emerge under the action of the Coulomb force that takes place whenever the net
electric charge exists in the presence of the electric �eld. The �ows are typically
studied in systems with inhomogeneous electric �eld with pointed electrodes and can
correspond to several mechanisms of charge formation, namely, charge injection (the
surface mechanism) and �eld-enhanced dissociation (the volume one, the relative
increase in dissociation rate under the action of strong electric �eld).
Structures of the EHD �ows of the injection type have been studied quite well both
with the use of computer simulation and experiments in various systems [1, 2, 3, 4].
On the contrary, the �ows caused by the �eld-enhanced dissociation [5] have been
investigated only in a few works and mostly by means of computer simulation [6] or
in comparatively weak electric �elds [7]. However, as the work [8] has demonstrated
good agreement between experimental and calculated velocity �elds of the �ows of
the type, the simulation technique is veri�ed and can be used for further studies.
Considering the electrode systems with pointed electrodes, for example, needle plane
or blade-plane con�gurations, the maximum of the electric �eld strength and, conse-
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quently, that of the injection current or the increase in dissociation rate are located
at the tip apex. The �ows in the both cases have similar kinematic structures [6]:
they develop from the pointed electrode towards the plane. The main di�erence
between the two charge formation mechanisms (that the injection is the surface one
and the dissociation is volumetric) does not allow for experimental identifying the
dominant mechanism.
To study EHD �ows caused by �eld-enhanced dissociation under secured absence of
injection, the works [8, 9] considered original EHD system that creates the region of
the strong electric �eld far from the electrode metal surfaces: the �eld is strengthened
inside a cylindrical hole made in a dielectric �at barrier that is situated between two
plane electrodes. In this case, the �ow emerges near solid insulation and its structure
di�ers from those observed in systems with pointed electrode. The diversity of
�ow localizations and structures is of interest, therefore, the present work studies
and analyzes them in case of the sole action of the volumetric charge formation
mechanism.
First, the paper considers a blade-plane system (Fig. 1a) in which the injection-type
�ows are often investigated and analyzed. Next, a system with a blade-shape barrier
is examined and EHD �ow is shown to emerge here (Fig. 1b). Both systems form
a region of strong electric �eld at the tip but di�er in the material of the blade.
The latter sets conditions for the EHD �ow with completely di�erent structure.
Further, two systems with axial symmetry are considered: the system with the hole
in the barrier as discussed above (Fig. 1c) and a system with a hollow tube electrode
slightly protruding from the insulating top (Fig. 1d). The latter system partially
reproduces the electric �eld distribution in the bottom half of the former one but
uses the metal electrode instead of solid insulation.

Figure 1: Schematic (not to scale) illustrations of the EHD system con�gurations:
the blade-plane system (a), the dielectric blade system (b), the system with the hole
in the barrier (c), and the slightly protruding hollow tube-plane system (d).

The geometries of the �rst and the third system correspond to those used in other
studies, namely, in [10] and [8]. The second system is similar to the third one but the
barrier has the shape of the blade from the �rst system. The last one has dimensions
of the bottom half of the third one. Distances from the blade tip, the barriers and
the tube electrode are nearly 10 mm. The blades are 10 µm sharp, the diameters of
the hole and the tube are approximately 1 mm; curvature radii of the hole edges and
the tube end are 0.07 mm and 0.1 mm correspondingly. The present study focuses
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mainly on the �ow structures and qualitative e�ects; however, certain quantitative
results are of interest too but can di�er since the sizes are di�erent.
Analysis of all these cases, on the one hand, allows us to emphasize the variety of
possible structures of EHD �ows caused by �eld-enhanced dissociation and, on the
other hand, to reveal their general regularities.

2 Simulation technique

The present work includes computer simulation of an EHD �ow with the correspond-
ing technique described in [6]. The computations were carried out using software
package COMSOL Multiphysics based on the �nite element method. The complete
set of equations (as in [6]) was solved for the case of the two species of univalent
ions with equal mobility and di�usion coe�cient values. The dissociation intensity,
the part of the source function for transport equations, is W0F (p) where W0 is that
in the absence of electric �eld and F is the relative increase in the dissociation rate
[5]:

F (p) = I1(4p)
2p

, p = e2

2kBT

√
E

4πεε0e

Here I1 is the modi�ed Bessel function of the �rst kind, e is the elementary electric
charge, kB is the Boltzmann constant, T is the temperature, E is the electric �eld
strength, ε is the relative electric permittivity, ε0 is the electric constant.
All the considered con�gurations can be simulated using 2D models with axial or
plane symmetry. The following assumptions and approximations are used thought
all the models: all the system are closed, consist of electrodes (the shaded regions
in Fig. 1) and dielectric surfaces (the remaining ones). Boundary conditions on the
surfaces of the electrodes are the voltage (0 or 30 kV), zero velocity, zero �ux for the
ions of the same polarity (no injection current) and the free passage of the ions of
opposite polarity (complete neutralization). Dielectric surfaces use condition EN =
0, zero velocity, and no �ux of ions conditions.
Since there is no injection on the electrodes, the only mechanism of charge formation
is the dissociation enhanced by the �eld. The working liquid properties correspond
to those of the mixture of transformer oil and cyclohexanol (see [11]) with the low-
voltage conductivity of 0.92 · 10−8 S/m.

3 Results and Discussion

3.1 Metallic blade

To start with, consider blade-plane electrode system that is frequently used to study
EHD �ows of injection type. Now, the case of �eld-enhanced dissociation is exam-
ined. The curvature radius of the blade tip is as small as 10 µm and thus produces
strong electric �eld. As it can be seen from the simulation results (Fig. 2), the elec-
tric �eld strength exceeds 4·10−7 V/m and the relative increase in the dissociation
rate is higher than 10 at a distance of 0.1 mm from the blade (the maximum is
greater than 2000).
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Figure 2: Distribution of quantities near the tip of the metallic blade: (a)ï¿½the
electric �eld strenght (left) and the relative increase in the dissociation rate (right)
near the tip of the blade, and the electric �eld lines; (b)ï¿½the distribution of the
space charge density (left) and that of EHD �ow velocity (right) near the tip of the
blade and the streamlines.

The EHD �ow in Fig. 2 is directed from the blade towards the plane and has typical
structure that qualitatively coincides with that of the already studied injection EHD
�ows [10].The reason for this is the following: In the region of non-uniform and strong
electric �eld, the counter ions move to the surface of the electrode whereas the ions
of the same polarity escape into the bulk. This causes a layer of homocharge to form
outside the heterocharge layer (that of the de�cit of the ions of the same polarity
where the dissociation and recombination rates are unbalanced). Therefore, the
Coulomb force pulls the liquid downward just as in the case of injection and forms
the observed �ow. The space charge density exceeds 10 C/m3 within approximately
10 µm thin charged jet and becomes much smaller but nonzero in the neighbor
regions. The velocity pro�le is much wider (Fig. 2b) due to the e�ect viscosity; and
the speed exceeds 1 m/s.

3.2 Dielectric blade

To isolate the �eld-enhanced dissociation from the injection, the works [8, 9] use the
dielectric barrier of special design and shows the EHD �ow to exist near the barrier.
The key feature of the system is the location of the region of the strong electric �eld
far from electrode surfaces, which makes the injection charge formation in the region
impossible. The way how the solid insulation changes the electric �eld distribution is
the accumulation of the electric charge on its surface, which results in screening the
normal component of the electric �eld. Therefore, the present simulation technique
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uses condition EN = 0 (the component has been screened) on dielectric surfaces.

Consider a blade of the same shape as in previous section but made from solid
dielectric. It has the greatest impact on the electric �eld if it is placed horizontally
in the middle of the gap. The electric �eld lines go around its surface, and a region
of the strong electric �eld (up to 2 · 10−7 V/m) and enhanced dissociation emerges
near the tip (Fig. 3a). The distributions of |E| and F are very similar to those
observed in the case of the metal blade but the direction of the �eld is completely
di�erent: electric �eld lines are perpendicular to the metal surface and are parallel
to that of solid insulation. The positive and negative ions move along the electric
�eld lines away from the region of enhanced dissociation and, in the contrast to
the case of metal electrode, form the positive net charge above the dielectric blade
(Fig. 3b) and the negative net charge bellow it (not shown in Fig. 3). The Coulomb
force acts along the �eld lines and causes the liquid to �ow from the tip along the
surface of the blade towards its body. Compared with the previous case, the �ow
has the opposite direction.

Figure 3: Distribution of quantities near the tip of the dielectric blade: (a)ï¿½the
electric �eld strength (top) and the relative increase in the dissociation rate (bottom)
and the electric �eld lines; (b)ï¿½the density of the space charge (top) and the
velocity magnitude (bottom) and the streamlines.

Similar space charge distributions and �ow structures can be generally expected
near the sharp edges of solid insulation when the local increase of the electric �eld
strength is produced by the accumulated charge. The latter can happen if the
initial (when the dielectric surfaces are uncharged) electric �eld lines pass through
the insulation. This means it should be placed between the electrodes.
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3.3 Barrier with the hole

Next, consider and analyze the �ow structure in the more complicated system used
in [8]. The system consists of two �at parallel electrodes and a dielectric plate
(barrier) having a small circular hole. The barrier is placed between the plates and
splits the chamber �lled with a dielectric liquid into two equal parts, with the hole
remaining the only link to connect them. The charge accumulates on the barrier
surface, screens the normal component of the electric �eld, and moves the electric
�eld lines to the hole (the only available way). As a result, a region of the strong
electric �eld emerges inside the hole (Fig. 4) that enhances the dissociation rate
and provides EHD �ow formation. The work [8] con�rmed experimentally that the
EHD �ow (Fig. 4) does form in this system and has the following structure: the
liquid spreads out radially along the barrier and then comes to the hole from the
bulk along the cell axis. Let us examine what is happening taking into account the
features noted for the system with the dielectric blade.

Figure 4: Computed distribution near the hole: the electric �eld strength and lines
(upper left quarter), the relative increase in the dissociation rate with and �eld
lines (upper right quarter), the space charge density and the streamlines (lower left
quarter), the velocity magnitude and the streamlines (lower right quarter).

As can be seen from Fig. 4 (where a small area near the hole is shown), the electric
�eld strength is increased in the entire hole, but the maximum values are observed
at its edges. The dissociation intensity is distributed in a similar way. Drawing an
analogy with the dielectric blade, it is worth noting that the edge of the barrier (the
scale of the order of 1 mm) in Fig. 4 plays the role of the end of the blade in Fig. 3.
However, it is not sharpened like a blade but blunted (taking into account axial
symmetry, the barrier edge forms the hole). In turn, the edges of the hole at the top
and bottom surfaces of the barrier (the scale of the order of 0.1 mm) are pointed,
and physical processes in close proximity to them are also similar to those at the tip
of the dielectric blade. This means there are two "edges" of di�erent scales in the
systemï¿½the edge of the barrier as a whole and the sharp corners at the edges of
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the hole.
The electrical charge moves apart at the both scales. On the scale of the whole hole,
a region of positive charge appears above it (not shown in Fig. 4) and that of the
negative charge � bellow (Fig. 4). On the scale of the edges of the hole, the two
oppositely charged regions appear on di�erent sides of the sharp corner. A small area
of positive charge can be seen in Fig.4 at the bottom corner that contributes to the
formation of a vortex inside the hole. The complementary region of negative charge
enhances the e�ect of charge separation on the scale of the hole and contributes to
the onset of the �ow outside the hole.
It should be noted that both the maximum �eld strength and relative increase in
the dissociation rate are smaller than those in the system with the dielectric blade,
however, the �ow is more intense.

3.4 Slightly protruding hollow tube electrode

Finally, consider a system close to the dielectric barrier with the hole when a slightly
(0.1 mm) protruding hollow tube electrode is inserted into the hole. In this case,
the electric �eld distribution is con�gured mostly by the metal electrode rather than
by accumulated charge on the barier.

Figure 5: Distribution of quantities near the tube end: (a)ï¿½the electric �eld
strength (left) and the dissociation intensity enhancement (right) near the end of
the tube and the electric �eld lines; (b)ï¿½space charge density (left) and velocity
magnitude (right) near the end of the tube and the streamlines; (b) also shows an
enlarged fragment of the space charge distribution near the in the immediate vicinity
to the electrode.
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The edges of the tube play the role of sharp dielectric corners in the previous system;
the maximum electric �eld strength and the increase in the dissociation rate are close
to those observed in the system with the metal blade. The electric �eld lines start
on the electrode surface at a right angle; they go downward from the very end of the
tube (where the �eld is strongest) and radially along the barrier from its sidewall
(where the �eld is slightly weaker). It would be di�cult to predict the direction of
the EHD �ow if one studied electric �eld distribution only. Figure 5 shows the �ow
to be directed along the surface of the barrier right as in the case of the previous
system.
As can be seen from the enlarged part of near-electrode region in Fig. 5, there
appear a bipolar structure, heterocharge and homocharge layers, and the highest
space charge density is produced at the bottom of the electrode. The Coulomb force
acts downward here whereas the liquid actually moves to the left in Fig. 5 (away
from the axis). Charged bellow the electrode, the liquid shifts and then accelerates
radially along the dielectric surface. The EHD �ow has the structure as in the
system with the hole in the barrier but the speci�cs of the charge formation and
�ow intensity (more than 1 m/s) is as in the system with the metal blade.
If the hollow tube is extended from the barrier at a considerable distance, one should
expect the system as a whole to be similar to that of needle-plane and the liquid to
move toward the counter electrode through the bulk. The simulation results show
that the dielectric barrier plays the key role in the present system con�guration and
changes the �ow direction. The possible mechanisms how the barrier in�uences the
�ow include the following. First, if the liquid starts moving at some angle to the
surface of the barrier under the action of the resultant Coulomb force, the hydrody-
namic e�ects (as the Coanda e�ect) can redirect the �ow along the surface. Second,
if the liquid starts moving along the barrier away from the electrode, it transports
the charge in the same direction, which enhances the tangential component of the
net Coulomb force (a kind of positive feedback takes place). This shows that both
electrostatic and hydrodynamic e�ects contribute to the formation of the EHD �ow
along the barrier.

4 Conclusions

The paper has studied numerically EHD �ows caused by the �eld-enhanced dissoci-
ation in slightly conducting liquids. A number of EHD system con�gurations have
been examined and allow concluding the following:
EHD �ows of the dissociation type can emerge near both pointed electrodes and
dielectric barriers. The latter additionally requires the accumulated charge to form
a localized region of the strengthened electric �eld. Practically, almost every con�g-
uration of dielectric barriers that partially splits the interelectrode gap could lead
to the formation of EHD �ows of the dissociation type. The �ow is always directed
away from the region of the enhanced dissociation and follows the electric �eld lines.
In the case of ï¿½classicalï¿½ metal electrodes protruding considerably from any
insulation walls, EHD �ows are directed toward the counter electrode through the
bulk and their structures is qualitatively similar to those of injection EHD �ows. If
the dielectric barrier edges cause the �ows, the same high-voltage processes result in
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di�erent space charge distribution and �ow structure: the Coulomb force acts upon
the oppositely charged regions at the both sides of the edge and accelerates the
liquid along the insulation surface away from this edge. If a pointed metal electrode
is situated near an insulation surface, a number of electrostatic and hydrodynamic
e�ects can cause the EHD �ow to develop along the surface; the direction of the
�ow can be at a right angle to the direction towards the counter electrode.
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Abstract

The paper presents the results of computer simulation of the formation and
development of EHD �ow in a symmetric electrode-wire system in a closed long
channel on the basis of the complete set of EHD equations with four types of
ions taken into account. This implements the model of an electrochemical-type
EHD converter and allows one to investigate the e�ect of an external load on its
operation. The simulation results are the main characteristics of the through
EHD �ow of the injection type. The emerging �ow was analyzed at di�erent
initial ratios of the injection currents, the forced and passive viscous parts of
the �ow in the closed channel were identi�ed. The extinction of injected ions
in the channel is analyzed at di�erent initial ratios of the injection currents at
the electrodes.

1 Introduction

An EHD converter is a device that can be used to convert the energy of the elec-
tric current into the mechanical energy of a working �uid �ow. The structure of
an electrohydrodynamic �ow of injection type is de�ned by the electrophysical and
electrochemical properties of the working �uid, as well as the electrode-liquid con-
tact parameters. The electrochemical asymmetry of the electrode-liquid contact is
required in the symmetrical electrode system to pump �uid through the system,
which can be accomplished by means of electrodes of di�erent materials, or various
coatings of electrodes, or a liquid with electron-acceptor impurities. In these cases,
four types of ions are present in the liquid: those appearing on the electrodes as a
result of injection, and the ones dissociated in the volume. These ions, which ensure
the intrinsic conductivity of the liquid, can have di�erent properties.
Earlier studies analyzed the structure of the EHD �ow in a symmetrical electrode
system and identi�ed the e�ect of the injection intensity on each of the electrodes
on the kinematic and dynamic structures of the EHD �ow in an open channel [1,
2]. The numerical calculation of computer models of the process of formation and
development of an EHD �ow, which were implemented within the framework of
a two-ionic formulation, has shown that a charge plug can form in the electrode

439



Proceedings of XLV International Summer School � Conference APM 2017

region under certain conditions. This inhibits the through pumping of the liquid,
but can be eliminated by selecting the impurity composition of the liquid so that
the injection proceeded on the surfaces of both electrodes [3]. Previously, the EHD
�ow was calculated numerically in the model of an open short channel, and the
e�ect of the level of low-voltage �uid conductivity [4] and dielectric walls on the
�ow structure was examined [5].
In a symmetrical electrode system with injection occurring on both electrodes, four
types of ions are generated in the liquid: positive and negative ions, which emerge
due to either the injection on the electrodes or the dissociation in the volume. In
this connection, presented here are the results of computer simulation of the process
of formation and development of EHD �ow in a symmetric electrode-wire system in
a closed long channel on basis of the complete set of EHD equations with four types
of ions taken into account. The paper implements the model of an electrochemical-
type EHD converter, which allows investigating the e�ect of an external load on its
operation. The simulation yielded the main characteristics of the through-hole EHD
�ow of the injection type.
A feature of the model with a closed channel is the possibility of analyzing the
processes of mutual recombination of injected and dissociated ions. In addition,
the model allows taking into account the e�ects of the uncompensated charge on
the cyclic development of EHD �ows, as well as the di�erences in the properties of
injected and dissociated ions.

2 Simulation technique

The set of EHD equations contains the Navier-Stokes equation (1), the continuity
equation (2), the electrostatic equations (3) and (4), the Nernst-Planck equation for
the four ion varieties (5). The considered complete set of EHD equations includes
four Nernst-Planck equations - two for injected ions, two for dissociated ions:

γ
d~v

dt
+ γ (~v,∇)~v = −∇p+ η∆~v − ρ∇ϕ (1)

div (~v) = 0 (2)

div
(
~E
)

=
ρ

εε0

(3)

~E = −∇ϕ (4)

dni
dt

+ div
(
ni(zibi) ~E −Di∇ni + ni~v

)
= gi, i = 1, 2, 3, 4 (5)

ρ =

4zieni∑
k=1

(6)

Here ~E is the electric �eld strength, ρ is the space charge density, ϕ is the electric
potential, n1 is the concentration of positive injected ions, n2 is the concentration of
negative injected ions, n3 is the concentration of positive dissociated ions, n4 is the
concentration of negative dissociated ions, gi is the source function, ε is the relative
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electric permittivity, bi is the ion mobility, Di is the di�usion coe�cient, zi is the ion
valency; ε0 is the electric constant, e is the elementary electric charge, t is the time;
i subscript indicates the ion species, γ is the mass density, ~v is the �uid velocity,
p is the pressure, η is the dynamic viscosity. In general, the properties of particles
may di�er, but the paper assumes them the same. In addition, it should be noted
that the ions were univalent, that is, |zi|= 1.
In the problem, we consider the injection and dissociation mechanisms of charge
formation with allowance for recombination. The injected ions recombine with one
another and with dissociated ions of the opposite sign. Dissociated ions are produced
in the volume and recombine with one another and with injected ions. The right-
hand side of equations (5) is supplemented with a term describing the death of
particles in the volume, and that of (5) for i = 3, 4 - a term describing the volumetric
source of ion generation W :

ρ = αrn1(n2 + n4) (7)

ρ = αrn2(n1 + n3) (8)

ρ = W − αrn3(n2 + n4) (9)

ρ = W − αrn4(n1 + n3) (10)

Here W is the dissociation intensity, αr is the recombination coe�cient. The coef-
�cient of recombination of i and k species is determined by the following formula
αrik = e(bi+bk)

εε0
.

In a liquid with intrinsic conductivity in the absence of an external electric �eld,
the formation of ions occurs due to the thermal motion of the molecules. The
equilibrium concentration of ions, which form due to dissociation, is determined
by the condition that the rates of dissociation and recombination are equal. The
equilibrium concentration is determined through the low-voltage conductivity and
is given in this problem as initial equilibrium value n0 = σ0

2eb
.

The source function for positive and negative particles in this problem will be the
same. The dissociation coe�cient in the absence of an external electric �eld is
determined through the equilibrium concentration and is written as W0 =

σ2
0

2ebεε0
.

The Wine e�ect in the problem is not considered, that is, we assume the dissociation
intensity to be constant and equal to the dissociation coe�cient in the absence of
an external �eld W = W0. Thus, the source functions in equations (5) for i = 3, 4
can be written as follows:

ρ = W0 − αrn3(n2 + n4) (11)

ρ = W0 − αrn4(n1 + n3) (12)

The di�usion coe�cient was determined by the Einstein relationship Di = kBT0

ebi
,

where kB is the Boltzmann's constant, T0 is the system temperature. The liquid
properties are: bi = 10−8 m2

V ·s , Di = 2.59 cdot10−10 m2

s
, |zi|= 1, γ = 950 kg

m3 ,
η = 4.75 · 10−3 Pa · s, σ0 = 3 · 10−11 S

m
.

A symmetrical wire-wire electrode system in a closed channel was considered (Fig. 1).
By virtue of the symmetry of the model about the horizontal axis passing through the
electrodes, only half of the model was calculated. The two-dimensional problem was
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considered since the wire lengths are much larger than the interelectrode distance.
The geometric dimensions were as follows: W = 6 cm, H = 0.75 cm, L = 1 cm,
d = 0.1 cm, r = 0.025 cm is the radius of electrodes.

Zakirianova 1: Geometry and boundary conditions.

The channel closure was e�ected with the help of an original boundary condition,
which makes it possible to transfer the values of the unknown functions from the
right-hand boundary of the channel to the left-hand one. The choice of boundaries
is determined by the direction of the through �ow.
Electric potentials ±U0 = ±10 kV were speci�ed for the Poisson equation at elec-
trode boundaries EF and MN. The condition of the normal component of the electric
�eld strength being zero is set as ~N · ~D = 0on dielectric wall BC. In this case, it is
assumed that the charge on the walls shields the �eld, and the normal component
of the �eld is zero. The condition for transferring charge �ux ρ~v from boundary CD
to boundary BA is used as a condition for the closure of the channel.
Flux of ions of the corresponding sign, ~ji = fi( ~E), and the extinction of ions of the
opposite sign, which was set by equation: ~ji· ~N = −(ni(zibi) ~E−Di∇ni+ni~v)· ~N , were
set for the Nernst-Planck equations for the injected ions at electrode boundaries EF
and MN. The extinction of the negative injected and dissociated ions was determined
at boundary EF, that of the positive injected and dissociated ions was determined
at boundary MN. At channel boundary AB, the �uxes of di�erent sorts of ions were
set equal to the corresponding �uxes at boundary CD, which were determined by
equation −~ji · ~N = (ni(zibi) ~E − Di∇ni + ni~v) · ~N . The isolation condition was
speci�ed by equation −~ji · ~N = 0at upper boundary BC and lower boundaries AE,
FM, and ND. The free passage of ions was set on right-hand boundary CD. The
injection current at the electrodes is given in the form of a quadratic polynomial in
the local electric �eld strength according to formula

~ji =
(
A · | ~E|+B · | ~E|2

)
· ~N (13)

where A and B depend on the material of the electrodes and impurity additives to
the liquid. The injection current on the left-hand electrode was considered in the
problem to be greater than on the right-hand one. This determined the direction of
the through �ow from left to right. The injection functions were chosen in such a
way that the initial injection current densities on the left-hand electrode were two
or three times higher than on the right-hand electrode.
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The adhesion condition ~v = 0 was speci�ed for the Navier-Stokes equation at the
upper and lower boundaries and on electrodes EF and MN. An incoming �uid �ow,
whose velocity was equal to that of the �ow at boundary CD (~v = ~vright), was set
at boundary AB. At boundary CD, there is the out�ow with the pressure equal to
that pressure at boundary AB, without viscous resistance, following the equation[
µ
(
∇~v + (∇~v)T

)]
· ~N = 0.

The non-stationary problem was solved. The initial conditions are voltage switching,
�xed liquid with conductivity equal to the equilibrium value.

3 Results and discussion

At the initial moment, there is no �uid �ow, a voltage of 10 kV is applied to the
electrodes. After that, the counter �ows from both electrodes form in the interelec-
trode gap, with the �ow velocity from the left-hand electrode higher than from the
right-hand one. When jets from di�erent electrodes meet, a more intense jet from
the left-hand electrode blows a counter jet into the region behind the electrode. So,
the through �ow forms in the interelectrode gap and in the rest of the channel; the
�ow rate of the liquid through the channel cross section is sustained. Fig. 2 shows
that the process of balancing the �ow in a closed channel lasts about 10 seconds,
and then the �ow rate remains constant. The time is longer than that of crossing
of the interelectrode gap by the charged jet. The time dependence of the injection
currents on the electrodes also displays regions of attaining the steady state: the
current from the left-hand active electrode decreases, and that from the right-hand
passive electrode increases. These processes are associated with the formation of
charged structures in the bulk, which a�ect the surface �eld strength, and therefore,
the injection currents. When homocharges form at the electrodes, the injection cur-
rent of positive ions decreases, and that of negative ions increases. As the smaller,
positively-charged jet propagates to the counter electrode, the injection currents in-
crease slightly. After the �ux of positively charged ions closes the interelectrode gap,
the injection currents decrease. If the injection currents are balanced, the moving
charges of the positive and negative ions will be equal and the jet at the outlet of
the channel will be neutral. In our case, the injection current of positive ions is
approximately one and a half times larger than that of negative ions.
Fig. 3 represents the successive stages of the formation of the EHD �ow in a closed
channel. The positive space charge is seen to propagate from the right-hand elec-
trode, dominant in the interelectrode gap, into the region behind the electrode.
After the stream of the positive charge reaches the right-hand boundary, the smaller
charged jet passes to the left side of the cell and the �ow attains a steady state.
The so-called through EHD �ow of injection type forms in the steady state. It is
characterized by a thin charged jet, which �ows from the active electrode, crosses
the interelectrode gap, and becomes a wafer-shaped bipolar charged structure in
the region behind the electrode. This prevents the formation of charge plugs and
provides some acceleration of the liquid into the region behind the electrode. In
general, the �ow in the channel can be divided into two parts: the forced �ow in the
region of the interelectrode gap, where the current lines crowd to the central plane

443



Proceedings of XLV International Summer School � Conference APM 2017

Zakirianova 2: Time dependences of �uid �ow rate in di�erent parts of the channel
(on the left) and injection currents with a ratio of injection currents of 2:1 (on the
right).

and the pro�le is of Gaussian shape, and the passive viscous �ow elsewhere. Intense
liquid acceleration occurs in the forced region(see Fig. 3 and Fig. 4).
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Zakirianova 3: Isolines of the �ow velocity distribution and the liquid �ow line, the
distribution of the space charge at successive instants of time (ratio of injection
currents 2: 1). On the velocity distribution plots: 1 - 0.01 m/s, 2 - 0.05 m/s, 3 - 0.1
m/s, 4 - 0.15 m/s, 5 - 0.19 m/s. On the diagrams of the distribution of the density
of the space charge: 1 - -0.002 mC/m3, 2 - -0.2 mC/m3, 3-1 mC/m3, 4-2 mC/m3,
5-3 mC/m3.

Fig. 4 shows longitudinal velocity distributions along the central plane of the chan-
nel and velocity pro�les at di�erent �ow levels at the last instant of time. The
streamlines are parallel to the walls of the channel in the region of passive viscous
�ow, the �ow velocity decreases slightly along the channel and the velocity pro�le
has a typical parabolic shape. Between these areas, there is the transition area,
within which the �ow passes from the forced state to the passive one. This region
is characterized by a discharge of liquid into the region behind the electrode. Judg-
ing from the longitudinal velocity distributions, the length of the transition region
corresponds approximately to the size of the interelectrode gap.
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Zakirianova 4: Linear longitudinal (on the left) and transverse (on the right) velocity
distributions at the last instant of time (ratio of injection currents 2:1).

Let us analyze the mechanisms of liquid discharge. Fig. 5 shows the longitudinal
distributions of the concentration of injected ions at the initial ratio of the injection
currents on the left-hand and right-hand electrodes of 2:1 and 3:1, respectively. The
positive injected ions of type 1 are seen to be produced on the active electrode and
to propagate across the interelectrode gap. There is an intense decrease in the con-
centration of positive ions within the interelectrode gap due to recombination with
negative type 3 conduction ions. Negative ions of type 2 are produced on the pas-
sive electrode, therefore the recombination processes go faster. The recombination
processes can be seen to occur throughout the entire channel. However, the injected
ions do not have enough time to completely recombine in the gap behind the neg-
ative electrode and the injected ions are transferred from the right-hand boundary
to the left-hand one. However, the concentration decreases by a factor of e at a
distance of 1 cm from the right-hand electrode. With the initial ratio of currents of
3:1, the concentration of injected ions that are transferred to the left boundary of
the channel is somewhat smaller than the initial ratio of injection currents of 2:1.
Also, the concentrations of injected ions of di�erent signs that reach the boundary
of the channel are equal at initial ratio of injection currents of 3:1.

Zakirianova 5: Longitudinal distributions of the concentration of injected positive
and negative ions at di�erent initial injection levels (2:1 on the left and 3:1 on the
right.

Fig. 6 presents the time dependences of the injection currents on the active and
passive electrodes at di�erent initial ratios of the injection currents. The injection
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currents in the process of balancing the �ow are seen to tend to 1.9:1 at the initial
ratio of injection currents of 3:1, and to 1.6:1 at 2:1. At the same time, the average
space charge (Fig. 6) circulating through the channel at the initial ratio of 2:1 is
half that at the initial ratio of 3:1. Therefore, it is preferable to select the nearest
injection currents, with the average �ow rate practically unchanged over the channel.

Zakirianova 6: Time dependences of injection currents at the initial ratio of injection
currents of 2:1 and 3:1 and the average charge density.

Conclusions

The computer simulation of EHD-�ows of injection type from the electrodes of wire-
wire type in a closed channel, which is substantially longer than the interelectrode
gap, is carried out. A liquid, where four types of ions are present, is considered.
The advantage of the model is the possibility of the direct analysis of recombination
processes and the study of e�ect of load and uncompensated space charge on the
development of through EHD �ows in a closed channel. The structure of the EHD
�ow is analyzed inside and outside the interelectrode gap.
The model allows one to precisely select the optimum injection function on the
electrodes for implementation of the through �ow. The results are compared for the
initial ratio of injection currents of 2:1 and 3:1; in the �rst case, the average density
of the space charge circulating through the channel decreased almost twofold and the
�ow rate did not change. Therefore, for the practical application of such a system, it
is preferable to choose the nearest initial injection currents that ensure the through
�ow regime.
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Abstract

The analysis of structural dynamic systems usually involves a large number
of �nite elements and time steps. In order to save computational resources,
model order reduction (MOR) approaches have been developed. The Proper
Orthogonal Decomposition (POD) is one MOR technique, which de�nes from
a training stage, so called snapshot computation, a reduced basis in which
the dynamic equations may be solved easily and quickly. In this contribution,
the e�ciency of POD in terms of computational cost and accuracy is investi-
gated depending on the load considered during the training stage for dynamic
applications.

1 Introduction

In civil or mechanical engineering, dynamic systems are often studied using the
�nite element method (FEM). This leads to the discrete system of equations
Mẍ(t) + Dẋ(t) + Kx(t) = f(t), where x is the set of degrees of freedom (dofs)
de�ning the system, i.e. x contains the displacement in each direction for all the
nodes and for any time t. f(t) is the time depending loading and M , D, K are the
mass matrix, viscous damping matrix and sti�ness matrix respectively. They are
here considered as constant and symmetric. Despite powerful computational capa-
bilities, some analyses and design problems still cannot be solved within a reasonable
computing time using standard methods when the number of dofs N becomes very
large. It is then advisable to construct reduced models which approximate the be-
haviour of the original model by much less dofs while maintaining an acceptable
accuracy [12, 10].
Di�erent model order reduction (MOR) approaches have been proposed in the lit-
erature [3]. They are based on Galerkin projection onto a subspace of the Sobolev
FEM space. This space may depend on the time step t for non-linear problems [12].
The reduced system for the displacement approximation x̃ reads

ΦTMΦ¨̃x(t) + ΦTDΦ ˙̃x(t) + ΦTKΦx̃(t) = ΦTf(t), (1)
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where Φ is a transformation matrix de�ning the reduced space and the number of
dofs is signi�cantly smaller.
Modal basis contains the natural eigenforms of the structure [9, 4]. As this basis is
orthogonal with respect to the scalar product of M andK, the dynamic system turns
to be diagonal, which reduces drastically the computational cost [12]. The load-
dependent Ritz method avoids to compute the eigenvalue problem, which may be
costly [7]. Condensation methods, such as Guyan method or dynamic condensation,
are explored in [11]. From the comparison between alternative MOR techniques
for quasi-static cases [5], or for the frequence response analysis of proportional and
non-proportional damped systems [13], Proper Orhogonal Decomposition (POD)
appears as an interesting alternative.
POD de�nes a basis from the result {xT (t)} of a �rst simulation referred to as the
training stage, as summarized in �gure 1.

Training stage:

Full computation of a reference problem: N dofs

SVD (or KLE or PCA) of the reference solution

Choice of the number of l modes involved in ROB
depending on the distribution of the singular values

Definition of the reduced basis: l POD modes

Reduced Computation:

Computation using Galerkin approach
of the probem of interest projected into ROB

Figure 1: Schematic representation of the POD steps (ROB: Reduced Order Basis)

Using for example singular value decomposition (SVD), a space-time decomposition
of the snapshot matrix XT (p, t) representing the results {xT (t)} provides a set of
left singular vectors L and right singular vectors R [5] as X = (x1, x2, ..xn) = LλRT .
λ is pseudo diagonal, L and R are orthogonal. By normalizing the singular vectors,
this decomposition is unique. L and R describe the space and time dependences of
the solution respectively. As the space part of the problem is generally the most
computationally costly, POD is based on the space matrix considering l vectors of
the matrix L. The decomposition could also be provided by principal component
analysis (PCA) or by Karhunen-Lo�eve expansion (KLE) [8].
Once the number l of space modes has been chosen depending on the required
accuracy [6], the reduced problem is computed on the basis of POD modes. POD
coe�cients which represent the time dependence are computed, while the space
dependence of the deformation of the structure is described by the POD modes.
Updating POD basis during the computation has been proposed by several authors
e.g. [1]. Some drawbacks of POD is that the full model still needs to be computed
during the training stage, and that the accuracy of the computation largely depends
on the training stage characteristics such as its loading or boundary conditions.
An open question is which training problem has to be considered to establish the
POD basis for the problem of interest. This question includes time interval to be
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considered for the training stage, the loading with respect to time as well as the
position of the applied load. Some authors propose for dynamics to consider the
�rst time steps of the problem of interest to establish the ROB, without a detailed
investigation, a time length corresponding to the fundamental period of vibration
is heuristically suggested in [5]. But it has been outlined that this time has not
been optimised. In this contribution, the in�uence of the time interval and the
loading case of the training problem on the POD approximations is investigated.
Computational savings o�ered by POD strategies are also explored to evaluate the
potential interest of this approach for dynamic applications.

2 Investigation of POD for dynamic computations

To explore POD capabilities depending on di�erent training stage strategies, a can-
tilever model with length 25m, height 1.45m, and width 3m is used as structural
example. A linear elastic material behaviour with Young's modulus of 210GPa,
Poisson's ratio of 0.3, and mass density of 7850 kg

m3 is considered.

2.1 Load cases and numerical discretization

The model is studied under di�erent load cases causing bending (B) and/or normal
tension and compression (C), as illustrated in �gure 2. For the bending load case, the
force is applied at the free end once and in subsequently computations at di�erent
positions (load cases B1 and B2). Di�erent loads with respect to time are taken into
account, e.g. a Heaviside step, a Dirac impulse, or a harmonic loading, see �gure 3.
For the analysis, the dynamic response of the centre point at the free end section is
considered as quantity of interest.

0.0
1.4

 0.0  5.0 10.0 15.0 0.020.0 3.025.0
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B
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Figure 2: FE model with positions of applied
loads
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Figure 3: Applied loads with
respect to time

The model is discretized using three-dimensional eight-node �nite elements with
linear shape functions resulting in 4284 dofs. Time integration is performed using
an explicit central di�erence scheme to avoid numerical damping due to implicit
solvers and to obtain an accurate estimation of the dynamical response. The time
interval of 10 s is divided into 100 000 time steps, leading to a time step interval of
10−4 s to guarantee a stable solution of the explicit solver.
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2.2 Training stage: Snapshot time window and number of

reduced dofs

At �rst, the in�uence of the POD training interval on the accuracy of the POD com-
putation considering the same kind of loading is investigated. The results obtained
are depicted in �gure 4 for a harmonic loading with excitation angular frequency of
325Hz. A training interval of 0.01 s is too small to gather enough information on
the system behaviour for POD construction, see �gure 4 (a). The amplitude of the
POD approximated response is too small and the response frequency is too high in-
dependently of the number of dofs considered in the reduced model. Therefore, the
training interval is successively increased. For a smooth, continuous loading, like the
harmonic loading, already a training interval of 0.025 s provides good results, if the
system is reduced to 10 or 50 dofs, compare �gure 4 (b). Using less dofs results into
inaccurate approximations. Augmenting the time interval, less dofs are required to
obtain a good approximation with the reduced model as illustrated in �gure 4 (c).
For a non-smooth loading, like the Dirac impulse loading, the time interval of the
training stage needs to be increased to at least 0.05 s. It is possible to use only
one dof in the reduced system, if the training interval has been large enough.
The required training interval is relatively small, here 0.05 s represents less than
10% of the period of the �rst eigenfrequency.
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(a) ∆tTraining = 0.01 s
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(b) ∆tTraining = 0.025 s
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(c) ∆tTraining = 0.05 s

Figure 4: POD dynamic responses under harmonic loading with excitation angu-
lar frequency of 325Hz using di�erent training intervals ∆tTraining. The reference
solution is computed using a modal subspace reduced model of 100 dofs.

To evaluate the approximations obtained when the applied load of the snapshot
compuation and the target computation di�er with respect to time, a mean relative
error is de�ned as

erel =
1

nsteps

nsteps∑
ti=1

|uref (ti)− ured(ti)|
|uref (ti)|

,

comparing uref the reference solution computed with modal subspace reduced model
of 100 dofs to ured the solution of the POD reduced model for the centre node at
the free end over the whole number of time steps (nsteps).
If the aim is to compute the system under a Dirac impulse load case, POD modes
from snapshots of a Heaviside step or harmonic loading lead to non-su�cient ap-
proximations, see �gures 5 (a) and (b). On the other hand, POD modes computed
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from snapshots of a Dirac impulse loading can be applied successfully for target
computations under Heaviside step and harmonic load cases if the training interval
is chosen large enough, see �gure 5 (c).
The accuracy of POD approximation using snapshot computations from Heaviside
step or harmonic loading, compare �gures 5 (a) and (b), converge to a limit with
respect to the training time interval, while using the Dirac impulse as load case,
the approximation can still be improved by using a larger training time interval as
depicted in �gure 5 (c). This is due to the range of frequencies excited by the di�erent
load cases. The Heaviside step and harmonic loading only excite a speci�c range of
frequencies whereas the Dirac impulse loading excites theoretically all frequencies.
Therefore, more information about the dynamic behaviour of the model is captured
in the Dirac snapshots which can then be extracted by SVD.
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Figure 5: Comparison of the applicability of snapshot computations from di�erent
load cases for reduced models with 25 dofs

2.3 Comparison of POD bases

To have a better understanding of the method's behaviour, the POD subspace ap-
pearing from SVD of the snapshot computations are compared. In �gure 6 the �rst
50 POD modes obtained from a computation with a Dirac loading within a time
interval of 0.1 s are compared to POD modes obtained for the same loading but a
smaller time interval by computing the scalar product of each vector pair. A light
white point symbolises a scalar product of zero, i.e. these vectors are orthogonal,
whereas a dark black point marks a scalar product close to one, i.e. these vectors
are collinear. The POD modes from a training stage of 0.01 s and 0.1 s di�er, only
about 5 similar modes are observed. While enlarging the training time interval, the
POD modes converge to a �nal set of modes. Even for a non-harmonic loading,
enlargement of the time interval will not change the determined set of POD modes.

POD modes represent the space dependence of the training stage. Therefore, consid-
ering a pure bending load case as training stage, �rst POD modes are similar to the
�rst pure bending eigenmodes, see �gure 7. Similarly, for a longitudinal compres-
sion deformation as training problem, the �rst POD modes correspond to the �rst
eigenmodes describing this kind of deformation. For POD computation considering
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Figure 6: Comparison of POD modes from di�erent training intervals under Dirac
loading

B and C load coupled, the eigenmodes corresponding to a bending and compression
deformation are extracted by the POD computation.
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Figure 7: Comparison POD modes from a training interval of 0.1 s with eigenmodes

When modifying the position where the bending load is applied the extracted
POD modes di�er. 12 modes computed from 10 000 snapshots are similar for load
case B and B1 and only 9 modes are similar for load case B and B2. Similar are the
�rst POD modes which correspond to the pure bending eigenmodes.
Hence, the application point of the load has a large in�uence on the de�nition of
the POD basis, and subsequently on the accuracy of the POD computation.

2.4 POD computational e�ort

Finally, the required computational e�ort is compared. For the reduction process a
singular value problem needs to be computed and the original system is transformed
by a Galerkin projection onto a subspace. The computation times for the reduc-
tion are presented in �gure 8. The more snapshot computations are used and the
more dofs the reduced system consists of, the larger the computational times. The
computations of snapshots are not considered here.
In �gure 9, the computational times for solving the full system and the reduced
systems are compared for a time interval of 10 s, corresponding to a computation of
100 000 time steps. The computational e�ort of the reduced systems here includes
the snapshot computations, the reduction process as well as the solution of the
reduced system. The number of dofs of the reduced model contributes only slightly
to the computational times compared to the snapshot computations.
The savings with respect to the number of snapshot computations are presented in
�gure 10. For a large number of time steps, POD is clearly more e�cient than solving
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the full system directly. The advantage of the reduced model depends directly on the
required number of time steps for the training time interval and the number of time
steps of the target computation. This factor equals to the computational savings.
The computational e�ort of the singular value decomposition and the projection onto
the subspace are insigni�cant. However, for this linear example modal decomposition
performs better than POD.
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times to reduce the sys-
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tional times of reduced
models with 100 dofs

3 Conclusion

Here, POD performance has been investigated for linear dynamics, in particular the
required characteristics of the training stage have been explored. Concerning the
training stage time, it has been seen that a relatively short time, corresponding to
less that 10% of the period of the �rst eigenmode, is enough to guarantee a good
accuracy of the POD approximations. POD computational savings is drastically
signi�cant, and becomes larger when the POD computations tackle a long time
interval. POD approach seems limited to some load positions which are close to the
one of the training stage. Modal decomposition is more �exible regarding di�erent
load positions and more e�cient in the matter of computational e�ort in this linear
case, but will be reaching its performance limit when including non-linearities. New
strategies to overcome that shall be explored in the future.
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Abstract

Injection wells are widely used in the oil�elds to maintain reservoir pressure
and increase ultimate recovery of hydrocarbons. During injection, water ad-
sorbs solids admixtures from wellbore walls and �ne particles from the pores,
which results in the �ow of suspension in the near-wellbore zone. Suspended
particles are trapped in pores, which results in a permeability damage and, as
a result, in a decrease in the injectivity of the well. In order to maintain the
injection �ow rate (injectivity), one needs to either increase the pumping pres-
sure or to introduce additional water cleaning equipment on the surface. Both
results in an increase in the cost of �eld development. To optimize the process
of water injection, it is proposed to use a combined approach based on mod-
eling of suspension �ltration in porous media with account for permeability
damage and recovery.

1 Introduction

For suspension �ltration in a porous medium, there is a number of models developed
earlier and published in open literature. One of the most frequently used models is
a so-called the deep-bed �ltration model [1]. The suspension �ow is described using
three-continua approach (carrier �uid, suspended particles and trapped particles).
The key concept of deep-bed �ltration model is a parallel-pathway model of a porous
medium. In pathways of the �rst type with a small pore radius, only plugging of
suspended particles occurs, and in the pathways of the second type, particles can
only deposit. Continuum of trapped particles is separated into two classes, namely
plugged and deposited particles. The rates of these two processes are expressed by
di�erent formulae. The rate of plugging is proportional to the product of suspended
particle concentration, the particle velocity and a linear function of the concentra-
tion of the trapped particles. The rate of plugging contains two tuning parameters,
usually referred to as the trapping coe�cient and the trapping parameter. The rate
of deposition is proportional only to concentration of suspended particles. There-
fore, the deep-bed �ltration model contains three tuning parameters for describing
particle trapping and four tuning parameters in closure relation for permeability.
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The rate of particle trapping and the closure relation for permeability may have
di�erent functional forms. An overview of these dependencies obtained theoretically
and experimentally are presented in [2]. The number of tuning parameters in these
correlations fall in the range from one to �ve. The most frequently used correlation
between the permeability and the concentration of trapped non-colloidal particles
has the power law form (e.g., see [3]). For colloidal particles, the formula for trapping
coe�cient is obtained in [4] by a pore-scale micromodel of particle transport using
Happel's cell approach. The formula is valid only for particles not larger than several
micrometers.
In [5] criteria for the particle capture due to direct interception, straining in con-
strictions and wedging in crevices were proposed. The trapping coe�cient is claimed
to be proportional to the initial porosity, particle and pore diameters, but the co-
e�cient of proportionality is not estimated. In [1] and [5] the reversal e�ect to the
particle trapping, namely the particle mobilization or entrainment, was studied. The
key �nding of these studies is that there exists a critical velocity of mobilization,
below which the mobilization of particles does not occur. Above this velocity, the
rate of mobilization is proportional to the concentration of trapped particles and
the �ow velocity. The coe�cient of proportionality is a tuning parameter, which is
called the mobilization coe�cient.
Existing models for suspension �ltration with non-colloidal particles contain two
tuning parameters for describing the mobilization rate and minimum two tuning
parameters involved into the expression for the trapping rate.
The key goal of the present study is to decrease a number of tuning parameters
by taking into account di�erent physical e�ects, peculiar to the particle transport
(such as trapping and mobilization). In order to do so, we present a development of
the multi-�uid model of suspension �ltration in a porous medium [6]. Fluid �uxes
through large pores of the porous medium and narrow pores of the packed bed of
deposited particles are explicitly taken into account, by introducing two permeabil-
ities (for the matrix of the porous medium and for the packed bed of the trapped
particles). These are the key novel features, which distinguish the proposed model
from the classical deep bed �ltration approach [1, 3]. The model predictions are
compared with laboratory data sets on the contamination of core samples. The
most recent progress in the model development is mainly in taking into account par-
ticle mobilization, compressibility of the �uid and two-phase �ltration (oil/water).
Applications of the model are primarily in the oil and gas industry: drilling mud
invasion and cleanup in the near-wellbore zone, �nes migration in porous medium,
suspension �ltration in propped hydraulic fractures as well as permeability damage
and recovery in the near-wellbore zone of injection wells, which are used to maintain
the reservoir pressure.

2 Formulation of the problem

The present study is aimed at the development of a novel model for suspension
�ltration in porous media with account for the particle transport. The novelty of
the model stems from the fact that porous media formed by the trapped particles
have a �nite porosity and permeability, so that the clean �uid can �ltrate through
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these pore channels [6]. The following two porosities are introduced: φc is the
porosity of the medium formed by a porous matrix and the total volume of trapped
particles, while φt takes into account (additionally to φc) small channels between
trapped particles (see Fig. 1a):

φc = φ0 −
σ

Cmax
, φt = φ0 − σ. (1)

Here, φ0 is the initial porosity and Cmax is the maximum concentration of random
close packing.

Figure 1: The sketch of suspension �ltration in a porous medium (a) and the e�uent
concentration of suspended particles (·106) against the number of pore volumes
injected. Black curve - experiment, blue curve - numerical simulation with �tted
tuning parameters, red curve - numerical simulation with the same values of tuning
parameters and the mobilization velocity (b).

The particle-laden �ltration is described using the three-continua approach with
di�erent continua being a carrier �uid, suspended particles and trapped particles.
Mass balance equations for a two-phase particle-laden suspension are as follows:

∂

∂t
[ρfγsγ(φt − Cφc)] +

∂

∂x
(ρfγu

f
γ) = 0, γ = 1, 2 (2)

∂

∂t
(φc sγC) +

∂

∂x
upγ = −qγ, γ = 1, 2 (3)

∂σ

∂t
= q1 + q2 (4)

Here, ρfγ is the �uid density, sγ is the phase saturation, C and σ are the concen-
trations of suspended and trapped particles, respectively; ufγ and upγ are �ltration
velocities of the carrier �uid and the particles, qγ is the rate of particle trapping and
mobilization.
The �ltration velocities of particles upγ and carrier �uid ufγ are expressed in terms
of the suspension �ltration velocity in large porous channels uγ and in small porous
channels us with taking into account the volume fraction of suspended particles C.
The carrier �uid �ows both through large (with the permeability k) and small (with
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the permeability ks) pore channels. Particles move only in large pore channels.
Darcy laws are given below:

uγ = −kkγ
µγ

∂p

∂x
; us = −kskγ

µγ,0

∂p

∂x
(5)

upγ = Cuγ; ufγ = (1− C)uγ + us (6)

Here, kγ is the relative permeability, µγ is the suspension viscosity, µγ,0 is the �uid
viscosity, p is the �uid pressure.
The permeability of small pore channels formed in the pack of trapped �nes ks,0 is
de�ned after [7]:

ks,0 = (1− Cmax)
r2
h

kkc
=

(1− Cmax)3d2
p

180C2
max

(7)

Here, kkc is the Kozeny constant, which is usually found to be close to 5, and rh is
the hydraulic radius, de�ned as the ratio of the free volume to the wetted area. If a
medium can be considered as a system of channels, rh, rh = (1− φ)dp/6φ, ks,0 can
be calculated from (7).
Permeabilities of large and small pore channels are de�ned after [3, 8] with taking
into account formulae for porosities (1). The suspension viscosity is de�ned as the
function of the concentration of suspended particles C [9].

k = k0

(
1− σ

φ0Cmax

)3

, ks = ks0

( σ

φ0Cmax

)3

, µγ = µγ,0

(
1− C

Cmax

)−1.89

(8)

In the present study, we suppose that both the plugging and the deposition are
described by the source term qt,γ which is called the trapping rate [5]. The rate of
mobilization qm,γ is described after [1]. Then the formulae for qt,γ and qm,γ are given
below:

qt,γ = Cuγλ, qm,γ = ασ(uγ − ucrit,γ)Θ(uγ − ucrit,γ) (9)

Here, λ and α are the trapping and mobilization coe�cients, which should be tuned
against the experimental data, ucrit,γ is the critical velocity of mobilization, which
can be de�ned theoretically.
Consider the problem of the entrainment of a spherical particle from the plane
surface into a laminar �ow. Forces acting on the particle include the buoyancy force
Fb, the adhesion Fa, the friction Ff and the drag Fd. The adhesion force is de�ned
after the following formula obtained experimentally [10]:

Fa = c1d, c1 = O(10−5) (10)

Here, d is the particle diameter. The relation (10) is in agreement with the theoret-
ical formula for the adhesion force acting on a non-colloidal particle in the vicinity
of a plane surface in a �uid.
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The drag force acting on a particle in the vicinity of the round tube wall is de�ned
after [11, 12]:

Fd = 1.7 · 6πµd2U

R
(11)

Here, U is the �ow �ltration velocity, R is the tube radius.
We assume that the friction force is proportional to the net vertical force acting on
the particle, so that following relation holds:

Ff = k(Fa + Fb) = k(c1d+
π

6
∆ρgd3) (12)

Below we assume that k = 1. A particle mobilization occurs when the force balance
is reached:

Fd = Ff ; 1.7 · 6πµd2ucrit
R

= c1d+
π

6
∆ρgd3 (13)

ucrit =
R

6 · 1.7µ

(c1

π

1

d
+

∆ρg

6
d
)

(14)

As a result, we decreased a number of the tuning parameters in the expression for
mobilization from two to one (the mobilization coe�cient α) and used a minimum
number of the tuning parameter in the formula for the trapping rate (only the
trapping coe�cient λ).

3 Numerical implementation and validation

The numerical solution is carried out using a �nite-di�erence approach and a uniform
staggered grid. In case of incompressible �uids, the equation in terms of the pressure
is obtained by summing up the Eqs. (2)-(4) and expressing the velocities according
to Darcy laws (5)-(6). The hyperbolic transport equation for the suspended particles
(sum of Eqs.(3)) is approximated using the �rst-order up-wind scheme. The equation
for the concentration of the trapped particles (4) is solved using the �rst-order Euler
method.
For validation of the expressions for the critical velocity (14) and the rate of mo-
bilization (second Eq. (9)) we carried out numerical simulations and compared the
results against the experimental data [1]. Authors carried out the experiments with
the �ow of a clean �uid through the dirty pack of glass beads and presented the
e�uent particle concentration as a function of pore volumes injected. We obtained
a good agreement between the expression (14) and the experimental value for the
mobilization velocity reported in [1] (0.448cm/s and 0.58cm/s, respectively). Then
we tuned the mobilization coe�cient by minimization of the discrepancy between
the simulations and the experiment. It was obtained that the best agreement is
achieved by taking into account both the mobilization and the trapping e�ects. The
results of the modeling with λ = 10m−1 and α = 8.3 ·10−3m−1 are shown in Fig. 1b.
For validation of the formula for the trapping rate (�rst Eq. (9)), the comparison
of the numerical simulations with the contamination experiments [13] is conducted.
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The experimental data pro�les of the trapped particle compares concentration ob-
tained after �ltration of the suspension in the di�erent porous samples. The trapping
coe�cient λ was tuned for each experiments in the framework of the classical and
proposed models. It was obtained that the new model provides a better description
of the trapped particle concentration in zones of the large particle accumulation
close to a maximum value σ = Cmaxφ0 (Fig. 2).

Figure 2: The concentration of trapped particles corresponding to the experiments
with Bentheimer (a) and Castlegate (b) samples. Curve 1 - the experiment, 2 -
simulations using new model, 3 - classical model.

4 Results and discussion

For the modelling of contamination and clean up of a porous medium in the vicinity
of injection wells, we carried out numerical simulations. The input parameters cor-
responding to �eld conditions. The typical range of the �eld parameters is presented
in Table 1.

Table 1: The �eld parameters of �uids and injection wells.

The results of simulation of contamination and clean up of a near-wellbore zone
are shown in Fig. 3a. At the �rst stage, the �ow of suspension is from left to
right (injection) and particles can only be trapped. At the second stage the �ow
is reversed from right to left (production) and the particle-free �uid mobilizes the
trapped particles. In Fig. 3b we present a simulation of the similar sequence, but
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with the velocity decreased from 1 to 0.1 m/s and the trapping coe�cient increased
from 1 to 10 m−1. Note the similarity in pro�les of the trapped particle concentration
and permeability for these two cases, while the penetration distances are di�erent
(5 and 0.5 m). It is found that in the both simulations the permeability is almost
completely restored, while the period of clean up is signi�cantly smaller than that
of injection.

Figure 3: The trapped particle concentration (solid lines) and permeability (dashed
lines) as a function of coordinate (with 0 being the injection well). Stage 1 - con-
tamination with λ = 1m−1, t = 60s, stage 2 - clean up with α = 0.1m−1, t = 30s
(a); stage 1 - contamination with λ = 10m−1, t = 60s, stage 2 - clean up with
α = 1m−1, t = 20s (b).

We also simulated the �ltration process taking into account both particle trapping
and mobilization at all �ow stages (Fig. 4). Note that the time of injection and
production are the same, but permeability is not restored to its initial value.

Figure 4: The trapped particle concentration (solid lines) and permeability (dashed
lines) as a function of coordinate. Stage 1 - λ = 100m−1, α = 10m−1, t = 10s, stage
2 - λ = 100m−1, α = 10m−1, t = 10s.
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5 Conclusions

The model of multiphase �ltration of suspension in porous media is developed. The
key novel element of the model is taking into account the �ow of particle-free �uid
in pore channels formed by trapped particles. The number of tuning parameters
of the model is reduced from �ve (typical of the classical deep-bed �ltration model
reported in the open literature) to two. The expression for the critical mobilization
velocity is established by considering the balance of forces acting on a single particle
touching a plane wall.
The model is validated against a number of lab tests on contamination and cleanup of
rock cores. It was demonstrated that the novel model provides a better description of
the zones with large accumulation of trapped particles as compared to that obtained
using the classical model with the same number of tuning parameters. An expression
for the critical velocity of mobilization yields a good agreement with experimental
data. Numerical simulations of cyclic injection and cleanup regimes in a porous
media in the vicinity of an injection well are carried out. A comparison of the cases
with taking into account only trapping, only mobilization, or both e�ects was carried
out.
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Abstract

The article presents the results of applied research in the �eld of processing
of bulk materials. Namely, screening with the use of new principles of operation
of the sorting devices. The result of the work of the authors in this direction
is the creation of new technical solutions, which implement the principle of
complex excitation of the material on the screen. The principal feature of
this solution is that the material acts as the main dynamical phase excitation
and additional phase excitation of di�erent forms of orientation. As a result of
intensi�cation of both stages of screening, increases the production capacity of
the screen. Also as a result of more e�cient use of the surface of the sieve can
be reduced by metal and power consumption. These conclusions are con�rmed
by experimental data.

The need for many industries in the machines for bulk materials sorting (screens) of
various structures is very high. The con�rmation is the fact that just outside of the
CIS, manufacturing of screens employs more than 300 enterprises and companies,
90of which - large, including 32 �rms located in the USA, 16 - in the UK, 11 - in
the Federal Republic of Germany; 6 - in Japan [1, 3].
Literature and patent analyses of recent years show that the interest in screens
improvement, the establishment of new structures and new screening ways are in-
creased noticeably. The main development screens trends are intended to achieve
the following objectives: improving the e�ciency of the screening; improving of
performance, reliability and durability of the operation; extension of the scope and
technological capabilities.
One of the new, and perhaps the most perspective development directions of screen-
ing equipment, at present day, in our opinion, are the screens "with complex excita-
tion of the material." Sometimes the term "dynamic excitation" is used [2]. At the
same time this trend can not only create new sorting machines, but also upgrade
the existing ones.
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The term "screening with complex excitation" called the process when the particles
of the bulk material a�ects several exciting factors such as vibration and rotational
motion, or vibration, impact force, etc. One example of complex impact on the
screened material is spiral vibrating screen design [3]. This screen is an aggregate
that combines the principles of drum and vibrating screens.
An example of screening with complex e�ect on the material can be generally con-
sidered any material excitation methods, when the particles are forced to complex
composite movement, while in "no sieve rumble" separation does not occur in the
monolayer, but in the "thick layer" of material.
No sieve screen (or vibration segregation quali�er) â��â��is a new and perspective
solution in the area of â��â��screening [4]. This development o�ered by team com-
posed of: Blekhman I.I., Weisberg L.A., Yakimova K.S. and others. This classi�er
allows solving technological problems of �ne classi�cation, beyond the capabilities
of conventional screens. In contrast to screens, this classi�er do not have problems
with sieve wear and clogging of their holes; vibration intensity (energy consumption)
- less. In contrast to vibro-�atness separation, the separation does not take place in
a monolayer, and in the "thick layer" of material, that provides high performance
and possibility of small materials classi�cation.
New excitation principles of bulk material are used in screens using Â«KroosherÂ»
technology, the screen has the properties of multifrequency resonance oscillation
system. Moreover, among the claimed bene�ts are large capacity, high screening
e�ciency, guaranteed e�ect of self-cleaning screens, etc. This type of screen can also
be attributed to the screen with complex excitation.
The undoubted example of using the principle of complex material excitation is
the development of vibro-blow screens, which are also continuously improved. So,
recently, it is proposed to initiate screening surface by "double" blows. Despite
the constructive simplicity of the screen, the implementation of vibro-blow mode is
available only in certain combinations of structural and dynamic parameters. There
are more examples of screening technologies using complex excitation (including the
steeply inclined screens, etc.). At the same time these examples are enough to draw
a conclusion about the prospects of the use of the principle of complex excitation in
the development of new designs of vibrating screen.
Considering the urgency of the research areas in the D.Serikbaev East Kazakhstan
State Technical University (EKSTU) research in this area is conducted for several
years. The result of this work is series of new solutions for the use of relatively simple
designs for devices that implement the principle of complex material excitation on
the screenâ��s sieve (hereinafter SS - screening surface). The proposed solutions
can be used in any type of �at vibrating screens.
All the below results were obtained in the framework of the state budget R &
D "Technology of crushing and screening using new methods for bulk materials
processing" (customer - MES).
As is known, the essence of the screening process is that the material is sieved on
the screenâ��s sieve in two steps occurring simultaneously and continuously. In the
�rst step the �ne grains pass through the thickness of the material to the SS, and
the second - through the sieve holes. The e�ectiveness of the screening process can
be enhanced due to the intensi�cation of one or both stages of the process. But the
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intensi�cation of the �rst stage of screening is the most promising way to improve
the screens performance.
For this purpose, initially, we proposed new screen design, feed elements (FEs) are
�xedly mounted above the screen surface, made in the form of rods, mounted on
separate frame (Innovation patent of RK â��25647, V07V 1/40, publ. 16.04.2012,
Bull. number 4). This design allows intensifying the process of mixing the material
on the SS, which speeds up the passage of the lower particles class to the sieve. One
disadvantage of this solution is decrease of material �ow rate (i.e. lost productivity)
due to the fact that FEs are the "resistance" of the �ow and inhibit it. Material
mixing on the sieve is increased, but not enough. The di�erence in the particles
velocities of bulk material with respect to each other activates the process of passing
particles of bottom fraction to the sieve surface over the entire layer of bulk material,
but the upper fraction begins to accumulate near each rod, which in turn reduces the
overall e�ciency of the screening process, and as a consequence it reduces screening
productivity.
To eliminate this drawback, design with dynamic FEs was proposed, which is com-
municated an oscillatory motion by its own vibration actuator, or by screen box
oscillations (the design protected by innovative patents of the RK - [5, 6]). That
is, the fundamental feature of this solution is that the material is a�ected by ba-
sic dynamic phase of excitation generated by the main drive vibration screen, and
additional phase of excitation (generated by FEs) of di�erent forms of orientation.
Intensi�cation of screening stages is provided by: �rstly, active motion of FE rela-
tively bulk material particles, resulting in an inhomogeneous behavior of individual
material monolayers (active mixing); secondly, more e�cient sieve loading that al-
lows creating the conditions to maximize pushing and mixing forces. At the same
time, the increasing spread of the kinetic parameters of particles material behavior
should have a positive impact on both screening stages.
As a result of the two screening stages intensi�cation, the productivity increases.
Also as a result of more e�cient surface use is possibility of metal consumption
reduction, and as a result, screen power consumption. The main advantage of the
proposed screening method is that it can be used for the modernization of all types
of �at screens.
To check the proposed solutions, a number of theoretical and experimental stud-
ies were carried out. There is developed the mathematical probability model of
screening process using a new method of bulk material excitation. The laboratory
experimental setup (physical model) was manufactured (�g. 1). A number of re-
searches on computer visualization of the proposed models were done. The obtained
data show that the use of renewable energy leads to intensity increasing of lower
grade passage of bulk material to the sieve on 6.6 ... 13.3% (�g. 2).
Moreover the required screening performance is increased by 10 ... 17%. Electricity
costs are increased by only 5 ... 7%. Currently, the research is continuing in this
direction, in order to conduct the experiment on the development of a new industrial
device design for screening process intensi�cation. Thus, it can be concluded that
authors proposed a new way to improve the e�ciency of the screening process (by
appropriate design of new units), which has a signi�cant e�ect on the screening
process kinetics and the concentration state of �ne particles in the granular layer;
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Figure 1: The concept of vibroscreen with additional feed elements (FEs): a) Con-
cept of horizontal vibroscreen: 1 â�� motor, 2 â�� vibration generator, 3 â��
bin, 4 â�� undersize product, 5 - bulk material, 6 â�� sieve, 7 â�� container for
undersize product, 8 - container for oversize product, 9 â�� feed elements (FEs),
10 - generator; b) The experimental installation of the new vibroscreen)
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Figure 2: Comparison of theoretical results with experimental studies of the chain
state of screened fraction in the 6th vibroscreen cell: a) Without feed elements
(FEs); b) With static feed elements (sFEs); c) With dynamic feed elements (dFEs).
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it increases the overall screening e�ciency due to acceleration of the �rst phase of
screening, i.e. time acceleration of particulate material passage to the sieve.
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Abstract

Presently, solid insulation is an essential part of various high-voltage sys-
tems including the case of electrohydrodynamic ones. The latter use the
Coulomb force to put dielectric liquids in motion and thus their characteristics
strongly depend on the electric �eld distribution. When the solid insulation
has much smaller electrical conductivity than that of the liquid, its surfaces
accumulate electric charge in a thin layer in the liquid near the interface, which
changes the electric �eld con�guration and is di�cult to account for in com-
puter simulation. Therefore many works use simpli�ed boundary conditions on
the insulation surfaces like the absence of the normal component of the electric
�eld. However, the key problem is that the charge takes time to accumulate
and remains mobile in the tangential �eld, thus the simpli�ed condition should
be validated. The present study considers an EHD system, employing an in-
sulating barrier, characterizes the layer of the accumulated charge and checks
the applicability of the simpli�ed boundary condition by means of computer
simulation. The results show when the simpli�ed condition can be invalid
resulting in di�erent total current and electric �eld distribution.

1 Introduction

Electrohydrodynamic (EHD) systems use the strong electric �eld to charge dielectric
liquids and to put them in motion via the Coulomb force [1]. The characteristics
of the systems fundamentally depend on both charge formation mechanisms and
the electric �eld distribution, and the latter is even more essential than the former
because it controls the intensity of the charge formation.
The electric �eld con�gured by metal electrodes is easily accounted for with the
use of up-to-date computer simulation techniques. However, recent studies use solid
insulation in EHD systems for various purposes (for example, to generate wall jets
[2] or to change the electric �eld distribution [3,4]) with increasing frequency. In-
troduced in the region near or between the electrodes, solid insulation accumulates
electric charge on its surface (the electrical conductivity of the solid insulation is
assumed to be much smaller than that of the liquid) and thus a�ects the electric
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�eld in an EHD system. The charge remains in a very thin layer of liquid in imme-
diate proximity to the surface and screens the normal component of the electric �eld
in the liquid outside the layer. The key problem is that the charge takes time to
accumulate and remains mobile in the tangential �eld, which complicates simulation
of the EHD systems like that.
The accumulated charge in the tangential electric �eld can cause both the onset of
electroconvection and the migration charge transport. These processes are mostly
considered on a micro scale, with the liquid motion referred to as induced-charge
electroosmotic �ow [5,6]. In the case of low-conducting (dielectric) liquids and macro
scales the e�ect of the accumulated charge transport is yet to be investigated.
The phenomena concerning the electrical double layer (EDL) are similar to those
discussed and are extensively being investigated (in [7-8], for instance). In the case
of accumulated charge, the total charge density per surface unit can be much greater
than that in the case of EDL, therefore, disregarding the e�ects of the accumulated
charge transport could be erroneous.
The aim of the present study is to examine the applicability of the simpli�ed bound-
ary condition used in computer simulation on the insulating walls when the electric
�eld distribution is mainly determined by the accumulated charge [3]. The sim-
plest boundary condition states that the normal component of the electric �eld is
absent (EN = 0). This assumes the charge to be totally accumulated, immobile,
and located in in�nitely thin layer. The works [3,4] rely on it to study the electric
current passage and the EHD �ow caused by the �eld-enhanced dissociation in a
low-conducting liquid with raised conductivity. The present paper uses geometry
from the work [3] and compares the results of utilizing the simpli�ed and more
complete models (the latter disregards �eld-enhanced dissociation, liquid �ow, and
assumes the solid insulators to be perfect).
In fact, several studies (e. g. [9, 10]) have already used more complete models of
charge accumulation on the surfaces of the solid insulation (side boundaries) but
they focused neither on the layer structure nor on the e�ect of the accumulated
charge onto the total current or the electric �eld distribution.
That is why, just after the description of the mathematical model, the present paper
studies an 1D system

”
HV electrode � slightly conducting liquid � solid perfect

insulator � grounded electrode“ to characterize the layer of the accumulated charge
and to check the impact of model parameters (the low-voltage conductivity of the
liquid, the mobility of ions, and the voltage). Then, the more complicated 2D
geometry of the EHD system from [3] is considered.

2 Mathematical model

The present work deals with the current passage through the system that consists of
both liquid and solid insulation. Since the electric �eld distributions and the charge
accumulation at the liquid-surface interfaces are of main interest, the mathematical
model disregards liquid motion to avoid excessive complicacy. Due to the same
reason, a pure conduction model�without the �eld-enhanced dissociation and the
injection�is considered with the two species of ions that are univalent and have
equal properties.
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Thus, the conduction is described by the following set of equations:

div (E) = ρ/εε0 (1)

∂ni/∂t+ div
(
~ji

)
= W0 − αrn1n2 (2)

where E is the electric �eld, ρ is the electric charge density, ε is the dielectric permit-
tivity, ε0 is the vacuum permittivity, ni is the concentration of positive (negative)
ions, t is the time, ~ji is the �ux density of positive (negative) ions, W0 is the intensity
of dissociation, αr is the recombination coe�cient.

The electric �eld, the space charge density, the ion �ux, the intensity of dissociation
and the recombination coe�cient are de�ned as follows:

~E = −∇ϕ (3)

ρ = e (n1 − n2) (4)

~ji = sign (Zi)nib ~E −D∇ni (5)

W0 = σ2/(2ebεε0) (6)

αr = 2eb/(εε0) (7)

Where ϕ is the electric potential, e is the elementary electric charge, Zi is the ion
charge number, b is the ion mobility, D is the di�usion coe�cient, σ is the liquid
conductivity.

According to the Einstein relation, the di�usion coe�cient is proportional to the ion
mobility:

D = bkbT/e (8)

where kb is the Boltzmann constant, T is the temperature.
The present study employs computer simulation to solve (1-2) with regard to (3-
8). The computations were carried out using software package COMSOL Multi-
physics® based on the �nite element method.

3 One-dimensional approach

Charge accumulation time
Consider the system consisting of two in�nite layers � that of liquid dielectric (the
barrier) and that of perfect solid insulation. If the voltage applied, the electric
charge will accumulate in the liquid at the surface of the barrier until the electric
�eld in the liquid becomes zero. Obviously, the symmetry of this system allows us
to solve the problem in one-dimensional approach. The geometry and the boundary
conditions of the model are shown in Fig. 1. L is the thickness of the liquid layer,
H is the thickness of the solid layer.
The dielectric permittivities of the liquid, εH , and that of the solid, εL, equal 2
and are of no interest for the present study. V0 is the voltage applied to one of
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Figure 1: The scheme of the problem.

the electrodes, another one is grounded. σ0 is the conductivity of the liquid. The
voltage, the conductivity and the mobility of ions are the parameters that are varied.
This problem can be solved without Nernst-Planck equation (2) in terms of electro-
statics (1). The condition of the end of the charge accumulation on the surface of
solid insulator:

ρs = εε0EH = εε0
V0
H
, (9)

where ρs is the surface charge density on the solid insulator.
Considering the equation (9) and the Ohm's law, we get the expression of ρs versus
time:

ρs =
V0εHε0
H

(
1− e−αt

)
(10)

Where the characteristic time τ of charge accumulation is

τ =
1
α

=
ε0 (LεH +HεL)

σH
=
ε0εHL

σH
+
ε0εL
σ

= τRC + τrelaxation (11)

The equation (11) shows that the characteristic time τ is the sum of the two terms.
The �rst term is the RC-time, the characteristic time of the barrier capacitance
charging through the resistance of the liquid layer. The second term is the char-
acteristic time of charge relaxation in the liquid dielectric. If the liquid layer is
much thicker or much thinner than the barrier, the �rst or the second term can be
neglected. Otherwise, they both are of importance.
When the accumulated charge is located within a thin layer (<< H) close to the
barrier surface, the characteristic time of the charge accumulation will remain nearly
the same. Therefore, for further calculations involving the Nernst-Planck equation
(2), it is reasonable to use tenfold characteristic time as the time when charge
accumulation reaches stationary value.
Parametric study
To allow for further investigations of more complicated 2D models, the impact of
the system parameters should be estimated in the 1D approach now. Fig. 2 shows
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the electric �eld distributions in the liquid, and the distributions of the accumulated
space charge are very similar. The electric �eld is as strong as in the barrier in the
close proximity to its surface (the left end), and drops down almost to zero within
1 µm. The point where the electric �eld is twice weaker shows the characteristic
layer thickness that also has the interpretation of a distance where the half of the
total net charge is located closer to the barrier surface.

Figure 2: Di�erent conductivity.

Figure 3: Di�erent mobility of ions.

Figure 4: Di�erent voltage.

Figure 5: The results of parametric study.

As it can be seen in Fig. 2a, the value of the liquid conductivity has almost no
impact on the layer size and in�uences the electric �eld distribution only at the
distances on the order of 1µm. However, according to (11), it takes much more time
for the charge to be accumulated. The Fig. 2b shows the absence of any e�ect of the
ion mobility at all. This is the outcome of the Einstein relation (8). Nevertheless, if
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the tangential electric �eld exists, the impact of the ion mobility can be signi�cant.
The absolute value of the electric �eld to be screened has the strongest in�uence
and can cause the layer to change the thickness in a wide range of values (Fig. 2c);
the stronger the �eld, the thinner the layer.

4 Realistic geometry

Computer model

The next step of the present study is to consider more complicated system from [3]
where the charge transport along the interface is possible. The not-to-scale geom-
etry of the system is shown in the Fig. 3. The system consists of two �at parallel
electrodes and a dielectric plate (barrier) having a small circular hole. The barrier is
placed between the plates and splits the chamber �lled with a dielectric liquid into
two equal parts, with the hole remaining the only link to connect them. The charge
accumulates on the barrier surface, screens the normal component of the electric
�eld, and moves the electric �eld lines to the hole (the only available way). As a
result, a region of the strong electric �eld emerges inside the hole, which was used
to study the �eld-enhanced dissociation phenomenon both experimentally and nu-
merically. The computer model in [3] used liquids with the low-voltage conductivity
ranging from nearly 10-9 S/m to 10-8 S/m and the simpli�ed boundary condition
EN = 0 that needs validation.

Figure 6: The schematic not-to-scale illustration of the EHD system used in [3].

The system has axial symmetry, thus a 2D axisymmetric model can be implemented.
Moreover, there is a horizontal plane of symmetry, so it is reasonable to build ge-
ometry only with a quarter of system shown in Fig. 3.
The geometry and the boundary conditions of the computer model are shown at the
Fig. 4. The �nite-element model for this geometry accounts for steep gradients of
the ion concentrations near the surfaces of the solid insulation.
Results
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Figure 7: The geometry and the boundary conditions of the computer model.

The most convenient quantities to compare the simpli�ed model and the more com-
plete one are the total current and the electric �eld distribution. To obtain the
results in the case of the simpli�ed boundary condition EN = 0, equation (1) was
solved and the total current was calculated using the Ohm's law. In the case of the
more complete model, the current is the integral of the current density computed
basing on both the ion distributions and that of the electric �eld.

Figure 5 shows the relative increase of the total current compared to the simplistic
model. It is clearly seen that the currents are equal at 10 -8 S/m, di�er slightly at
10-9 S/m and dramatically at lower values of the liquid conductivity. At 10 -12 S/m
the current in the more complete model becomes more than a hundred times higher
than in the simpli�ed one. Consider the distributions of the electric �eld normalized
to the electric �eld value in the barrier in case of the absence of the hole (Fig.
6). Figure 6a shows the distribution for the case of the simplistic model where the
normal component of the electric �eld is set to zero on the barrier surface. This
model is incapable of computation the electric �eld strength distribution inside the
barrier so it is zero here. In the rest of the model (in the liquid) all electric �eld
lines pass through the hole and there is a region of the strong electric �eld inside.
Comparing Fig. 6a and 6b, one can note that the electric �eld distributions agree
well and just a few electric �eld lines pass through the barrier instead of the hole.
The Fig. 5 shows that this e�ect is negligible. However, in the case presented in
Fig 6c, the di�erence is apparent: most of the electric �eld lines pass through the
barrier, which means that the normal component of the electric �eld close to the

479



Proceedings of XLV International Summer School � Conference APM 2017

Figure 8: The comparison of models by current.

barrier is not completely screened. Moreover, the electric �eld strength distribution
in the hole di�ers greatly from the cases presented in Fig 6a and 6b.
These results can be explained by the following: there appears a tangential compo-
nent of the electric �eld at the solid-liquid interface, which cause the accumulated
charge to migrate along the surface. If the time of the charge accumulation (11) is
short, the e�ect of the charge transport is negligible (the case of Fig. 6b). Other-
wise, the charge

”
slips“ along the barrier to the hole, providing the higher currents

and reducing the screening of the normal component of the electric �eld in the liquid
near the interface (the case of Fig. 6c).
Basing on the results, the limit of the applicability of the boundary condition lies
in the interval between 10-9 S/m and 10-8 S/m. However, the limit can shift to-
wards the low-conductivity region in Fig. 5 due to a number of factors. Firstly, if
the �eld-enhanced dissociation is accounted for, it increases the e�ective value of
the conductivity in the region of the strong �eld. Secondly, the ion mobility that
determines the intensity of the charge transport along the barrier may decrease if
the ion is very close to the surface.
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Figure 9: The distribution of the normalized electric �eld, the case of the full screen-
ing of electric �eld by solid insulator.

Figure 10: The distribution of the normalized electric �eld, σ = 10-8 S/m.

Figure 11: The distribution of the normalized electric �eld, σ = 10-12 S/m.

Figure 12: The results of parametric study.

5 Conclusions

The problem of the electric �eld screening by the accumulated charge on the interface
between the dielectric liquid and solid perfect insulator was studied by means of the
computer simulation. The results of the calculations allow concluding the following.

Considering liquid dielectrics and strong electric �elds (on the order of 10 7V/m), the
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thickness of the charged layer depends on the electric �eld strength, the conductivity
a�ects only the time of the charge accumulation, and the ion mobility has no e�ect
at all in the case of the 1D approach.
However, when there is the charge transport along the surface (2D model) the steady-
state electric �eld distribution depends on the conductivity. The result shows that
the simpli�ed model of the considered EHD system employing the boundary con-
dition EN = 0 can be used if the liquid conductivity is equal to or higher than
10-8 S/m. Otherwise, the electric �eld distribution and the total current do not
correspond to the more complete model.
Accounting for the �eld-enhanced dissociation should extend the applicability limits
of the simpli�ed model. Also, the impact of the ion mobility is yet to be investigated.
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Abstract

The Lateral stability problem of modern combat aircraft in high angle of
attack is an important issue ralated to �ying safety. This investigation foucus
on the sideslip behaviors of a slender delta wing during self-excited wing rock.
The nonlinear double degree of freedoms aerodynamics model is established
for governing the coupling movement in combined free-roll and free-sideslip
motion. Then, a numerical investigation is conducted on the dynamic charac-
teristics of an 80¡ã delta wing in combined free-roll and free-sideslip by solving
�ow governing equations and Euler rigid-body dynamics equations simultane-
ously. Implicit, upwind, �ux-di�erence splitting, �nite volume scheme and the
second-order-accurate �nite di�erence scheme are employed to discrete and
solve these governing equations. The governing equations of �uid and move-
ments are solved alternately with a coupling method, either loosely coupling or
tightly coupling, both coupling methods are discussed. Well-regulated sideslip
oscillation is observed as expected. The sideslip behaviors are mostly a�ected
by the roll oscillatory properties, i.e., the frequencies and phases. The loosely
coupling method achieved considerably e�ciency and accuracy. The behav-
iors of double DOFs motion are more complicate than that of single DOF wing
rock.

1 Introduction

One of the most common dynamic phenomena experienced by slender wing air-
craft �ying at high angles of attack is the one known as wing rock. Wing rock
is a complicated motion that typically a�ects several degrees of freedom (DOF)
simultaneously[1]. As the name implies, the primary motion is an oscillation in roll,
however, the roll characteristics are signi�cant in�uenced by other coupling motion
DOFs. During data analysis, ref[2] and [3] found that some aircrafts proved stable
in wind tunnel are unstable in �ying test, they think that the dissimilarity of DOFs
should account for the phenomenon. Double DOFs motion in combined free-roll
and free-sideslip is a common form of coupling wing rock, as Figure 1 depicted.
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This is something like Dutch roll, but they are essentially di�erent. Dutch roll is
a concept come from disturbance �ow and can be described by linear aerodynamic
model, however, couping wing rock in combined free-roll and free-sideslip is essen-
tially nonlinear aerodynamic problem under high angle of attack. The concept of
vortical lift force has made delta wing the most popular con�guration incorporated
in modern combat aircraft. With the help of advance control systems, moreover, it
becomes more and more feasible for combat aircraft to maneuver in high angle of
attack. As the delta wing is the main function plate of lift force and actual con�g-
uration of modern combat aircraft, the delta wings oscillating in roll at low speed
and high attack angle regime have received a substantial volume of experimental [4]-
[6] and computational [7]-[10] research work. However, asymmetrical leading edge
vortexes and its �ercely interactions dominant the �ow�eld, nonlinear aeroforce and
moment vary complicately. Owing to the di�culties lying in experiment designing
and measuring, these work mainly focus on single DOF wing rock. To the author¡¯s
knowledge, compared with the researches of single DOF wing rock, the numerical
investigation about delta wing in this kind of double DOF motion is seldom ad-
dressed in published literature. In this paper, we study the double DOFs motion
characteristics of the 80¡ã swept sharp-edged delta wing in combined free-roll and
free-sideslip numerically, compare roll characteristics with that of single DOF wing
rock, discuss the coupling regime between free-roll and free-sideslip and the �ow
mechanism sustaining double DOFs wing rock.

2 Model and Methods

2.1 Delta wing model and mesh

An 80◦ swept-back, sharp-edged delta wing model is incorporated in this investi-
gation. In Figure 2, an O-H topology is employed to mesh the delta wing. The
computational domain extends 2.5 chord lengths forward from the wing apex and 5
chord lengths backward from the wing tailing edge. The radius of the computational
domain is 4 chord lengths. The minimum grid size in the normal direction to the
wing surface is 1.0× 10−4 chord length on the whole solid surface.

2.2 Flow governing equations

The unsteady, three-dimensional, compressible, full Navier-Stokes equations in
strongly conservative form have been used. The equations have been written in
a �xed inertial frame of reference and transformed to the computational domain us-
ing a generalized time-dependent transformation(ξ, η, ζ, t). The dimensionless form
is given as:

∂Q

∂t
+
∑

k

∂Ek

∂k
=
∑

k

∂Evk

∂k
k = ¸, , ı (1)

Q = J−1 (æ,æu,æv ,æw ,æe)T (2)
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Where Q is conservation variables, t means time, E and Ev are the inviscid and
viscid �uxes in the ξ, η, and ζdirections, respectively. The detail de�nitions of the
inviscid and viscid �uxes are in ref [11].

2.3 Rigid body dynamics equations

The relevant DOFs in this study are roll and sideslip. Both of roll and sideslip
equations are second order autonomous ordinary di�erential equations in time. The
rolling equation is written in the body-axes frame of reference to keep the roll-axis
moment of inertia constant throughout the entire motion. While the sideslip motion
equation is written in the inertial frame of reference. They are given as follow:

{
Ixx

··
’ = Cl

m
··
zo = Cz

(3)

The rolling angle Œ is de�ned positive when the left-hand side (pilot view) of
the wing moving down-wards, the variable z0 represent the z-component of mass
center in the inertial frame of reference and its positive direction coincide with the
coordinate.Cl and Cz are coe�cients of roll moment and transverse force respectively.
The parameters Ixx and m represent dimensionless roll moment of inertial and mass
of the delta wing respectively, written as:

Ixx =
2 Ĩxx

æ̃∞S̃ c̃3
, m =

2 m̃

æ̃∞S̃ c̃
(4)

The superscript '∼' represents variables with dimension. None of the structural
damping is considered in this paper.

2.4 Solution algorithm

The implicit, �nite volume scheme is used to solve the unsteady, three dimensional,
compressible, full Navier-Stokes equations. The Nonoscillation, contains No free
parameters and Dissipative (NND) �ux-di�erence splitting scheme[12] is employed
to discretize the inviscid �uxes, while the second-order accurate central di�erence
scheme is applied to the discretization of the viscous �uxes which are linearized in
time, eliminated in the implicit operator and retained in the explicit terms. The
Spalart-Allmaras (SA) model is employed to evaluate the turbulence in�uences of
leeward vortical �ow.
The Lower-Upper Symmetric Gauss-Seidel (LU-SGS) scheme is employed to enhance
the e�ciency of time integration, besides a dual-time-step method [13] which is a
Newton-like sub-iteration process is employed to reduce the e�ect of the inherent
time lag in applying the boundary conditions and reduce the factorization error for
unsteady-state calculations.
A second-order-accurate �nite di�erence scheme [14] is applied to discretize the
rigid-body dynamics equations (3), including roll equation and sideslip equation.
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Figure 1: Schematic of aerocraft in combined free roll and free sideslip motion

Figure 2: The 80◦ swept delta wing model and space computational grid distribution
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Figure 3: the comparison between roll only and combined roll and sideslip wing rock

3 Results and Disscussions

The nonzero lateral force of rocking delta wing indicates deterioration of lateral
stability, accordingly, a sideslip motion is expected to observed as a result. The
lateral motion of delta wing during wing rock is evaluated simultaneously.

3.1 Dynamic behaviors of multi-DOFs oscillation

With the nonlinear aerodynamic model established in section 2, the double DOFs
motion simulation of the 80¡ã delta wing in combined free-roll and free-sideslip
is conducted. For manifesting the characteristics of combined free-roll and free-
sideslip motion, the roll history curve and phase curve of the double DOFs motion
are compared with that of single DOF wing rock. As Figure 3(a) depicted, double
DOFs motion built limit cycle oscillation and its roll amplitudes signi�cantly greater
than that of single DOF wing rock, indicates that sideslip motion has an in�uence
on the amplitudes characteristics of wing rock. Figure 3(b) draws the phase curves,
both single DOF wing rock and double DOFs wing rock in combined roll and sideslip
exhibit limit cycle amplitudes in roll, but the later motion built a larger area with
limit cycle phase curve, uncover the fact that sideslip has substantially in�uence on
roll amplitudes.
Focus on the frequency characteristics of the roll oscillation history curve, it can
be found that the period time are slightly expanded with the in�uence of sideslip
motion, it indicates that double DOFs wing rock in combined free-roll and free-
sideslip has larger limit cycle amplitudes and lower frequencies than that of single
DOF wing rock. Form startup at the balance angle to limit cycle amplitude achieved
a time span is needed. It is interesting that the time spans of the two motions with
di�erent DOFs are almost equivalent in spite of di�erent amplitudes and frequencies,
as the symbol ¡°A¡± in Figure 3(a) depicted.
In order to study the rock mechanism of the double DOFs motion in combined
free-roll and free-sideslip, nine typical positions in the positive rolling procession
(ωx > 0) are extracted to demonstrate the interaction between the leeward vorti-
cal structures and delta wing. As Figure 4 depicted (pilot view), it describes the
unsymmetrical evolution of leeward vortexes in the sectional plane (x/c=0.57), wo
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Figure 4: The evolution of sectional (x/c=0.67) streamwise vorticity in positive
rolling procession

represent dimensionless sideslip velocity. In the picture, streamwise vorticity are
drawn by ISO lines, color represents its magnitude and dash line represnts minus
value.

The evolution procession can be mainly divided into three stages. First stage, Figure
4(a) (d), delta wing preserves minus roll angle, left leading edge moves upward and
right leading edge moves downward (pilot view), it indicates that the washing e�ect
leads e�ective attack angle increase at right side and an decrease at left side, as a
result, the right leading edge vortexes dominate the leeward �ow �eld of delta wing.
As the delta wing rolling right, leading edge vortexes strength increase unsymmetri-
cally on both side across the body symmetry, left side increase rapidly and right side
increase slowly. The asymmetrical increase reduced the unsymmetry distribution of
pressure, consequently, asymmetrical moment decrease, although roll angular veloc-
ity keep increase, the accelerate become more and more smaller. Figure 4(e) is the
second stage, the delta wing located about 0◦ roll angle. As the vortexes movement
lag behind the delta wing roll, vortexes preserve unsymmetrical distribution at a
symmetrical location. It is critical that turns the delta wing roll unstable at large
attack angles. The third stage, Figure 4(f) (i), delta wing preserves positive roll
angle, leeward vortexes experience a reverse procession of �rst stage, leading edge
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Figure 5: The lateral behaviors of delta wing in double DOFs motion

vortexes strength decrease asymmetrically as the delta wing rolling right on both
side across the body symmetry plane, dominant vortexes structure shift from right
side to left side. Down washing e�ect essentially eliminate attack angle decrease
with roll angle increase, which makes the left leading edge vortexes almost preserve
its strength during the third stage. On the other hand, at the right side, up washing
e�ect collaborate with right roll e�ectively diminished the right leading edge vor-
texes strength, what¡¯s more, the right leading edge vortexes move away from the
leeward surface of delta wing. All of these cause an opposite moment and preserve
a increase trend, which makes right roll of delta wing slow down till stop.
For evaluting the behaviors of couple method, the results of loose couple method
and tight couple method are compared. In fact, the time history curve almost
coincide, no signi�cant discrepancy is observed, including ampliudes and frequencies.
Considering the e�ciency, the loose couple method is employed to conduct the
following massive simulation

3.2 Lateral oscillation

The lateral motion is focused. A typical oscillation is observed. Along with the
oscillation in rolling, the sideslip motion is excited. After several periods, approxi-
mately invariant amplitudes are built with a �xed frequency, as Figure 5(a) depicted.
Compared with the wing span, the amplitude of sidesliping displacement is about
0.1 chord length which is not signi�cant. Dissimilarly, the lateral motion is not os-
cillating around a �xed balance position. The average position of sideslip shift right
slightly. Consequently, the phase curve could not form a limit cycle, as Figure 5(b)
depicted.

3.3 Coupling regime

Considering the signi�cant in�uence of sideslip on roll oscillation, the coupling
regime of the double DOFs motion in combined free-roll and free-sideslip is discussed
also.Figure 6 draws the time history curves of roll angular velocity and sideslip ve-
locity, the conclusion can be drew that sideslip velocity and roll angular velocity of
double DOFs wing rock are almost in same frequencies and opposite phase, which
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indicates that the couple regime of double DOFs motion is right sideslip during left
rolling and left sideslip during right rolling. In Figure 4, we �nd that when roll
motion achieve its amplitudes, sideslip velocity almost equal to zero. In the �rst
stage, leeward leading edge vortexes induced suction region on the right side of delta
wing and generated right side-force that makes delta wing sideslip right. In third
stage, the suction region shift from right side to left side, the right sideslip velocity
decelerates till zero along with the right roll stop. A similar procession can be in-
ferred in the negative procession (!x < 0) of roll oscillatory. So the complete story
of coupling procession during a period time is drew in Figure 7 and the coupling
regime can be conclude as right sideslip during left rolling and left sideslip during
right rolling.

Figure 6: the time history curves of sideslip velocity and roll angular velocity

Figure 7: Schematic of the coupling regime of free-roll and free-sideslip

In single DOF wing rock, with de�nitely incidence angle, sideslip angle and attack
angle fully depend on roll angle. With the in�uence of sideslip, extra hysteresis
phenomena induced. As Figure 8(a) depicted, sideslip angle loops hysteretically
with roll angle that is di�erent from single DOF wing rock. The sideslip angle
de�nitely increases during positive roll procession and decreases during negative roll
procession, the increment versus roll angle achieve limit cycle oscillation eventually,
as Figure 8(b). The situation of attack angle is similar to sideslip angle, hysteresis
e�ect is induced by sideslip motion, nevertheless it has a more complicate hysteresis
curve which looks like a beautify butter�y as Figure 9 depicted.

4 Summary

Dynamic characteristics of an 80◦ delta wing in double DOFs wing rock are inves-
tigated numerically and the lateral behavior is focused. Results show that sideslip
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Figure 8: In�uence of the coupling e�ects in combined roll and sideslip motion on
sideslip angle

Figure 9: increment of attck angle VS roll angle

motion has an in�uence on the rolling amplitudes; Asymmetric oscillation of vor-
tices is the �ow mechanism sustaining wing rock of slender delta wing in combined
free-roll and free-sideslip; Right sideslip during left rolling and left sideslip during
right rolling are the coupling regime of slender delta wing in combined free-roll and
free-sideslip motion; with the in�uence of sideslip, attack angle and sideslip an-
gle lag behind the roll angle is observed, the asymmetrical characteristics of �ow
structures and hysteresis e�ects are enforced during coupling wing rock; the loose
couple method can achieve the same accuracy as that of tight couple method and
can achieve high e�ciency.
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Abstract

Plastic deformation is accompanied by structural rearrangement of the
material. Prediction and diagnosis of such adjustment is an important task,
since for structural materials, the plastic deformation precedes the destruction.

One of the important features of plastic deformation is the redistribution
of natural hydrogen that is inside metals. This process is associated with
a number of mechanical phenomena, ranging from the di�usion of hydrogen
into the zone of tensile stresses and ending with a change in the size of the
structural elements of the metal and the appearance of new structural defects.

Studies show that there is a good correlation between the concentration
of di�usively mobile hydrogen and the value of plastic deformation, in many
cases they are linearly related.

The report describes a new e�ect, discovered by the authors in the process
of investigating specimens broken with di�erent degrees of plastic deformation.
A careful study of the distribution of hydrogen concentrations shows that all
changes that are associated with plastic deformation occur in the surface layer
of about 1 mm in thickness. Thus, this result gives evidence submitted on the
surface nature of the damage accumulation during plastic deformation. On
the one hand, this is the basis for developing methods of technical diagnostics
of damage by the state of a thin layer. On the other hand, the obtained
data makes it possible to develop methods for reducing the damage in plastic
deformation by treating the metal surface.

1 Introduction

The strong in�uence of hydrogen on the strength and other mechanical character-
istics of metals was found approximately 150 years ago. In the cracks of cast iron
castings, hydrogen gas has been found, and since then any new technology for the
production of metals and many other materials has faced to the problem of the de-
structive e�ect of hydrogen at an increasingly low level of its concentrations in the
solid material.
At the beginning of the 20th century, in connection with the mass production of
rolled steel, we had to �ght with �ocken - discontinuities in the rolled steel.
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Causing this disease mass relative hydrogen concentration in the steels of the order
of 4 ppm. Then metallurgists faced the brittleness of aluminum alloys already at the
concentration level of about 0.4 ppm. "Hydrogen problems" arose in the production
of titanium, zirconium, heat-resistant nickel alloys.
Simulation is one of the main ways to �nd out the cause of hydrogen embrittlement.
Hydrogen has a strong e�ect on the strength of metals, and so many works are
devoted to modeling this e�ect.
Several basic approaches can be distinguished: taking into account the in�uence of
hydrogen on the nucleation and movement of dislocations, taking into account the
in�uence of hydrogen on the development of cracks, taking into account the internal
pressure of hydrogen in the metal and "physical approaches" based on taking into
account the potential energy of hydrogen interaction with the material matrix.
The motion and formation of dislocations and their in�uence on local plasticity near
the top of cracks lead to local plasticity because of the very high concentration of
dislocations. The mechanism of local hydrogen plasticity (HELP) was �rst described
in the work of a scienti�c group from the University of Illinois [1]. Later, in [3] and
[4, 5], on the basis of physical considerations on the potentials of hydrogen interaction
with dislocations, the de�ning equations of the material were proposed that simulate
local changes in material properties at the mouth of the microcrack.
At the same time, calculations performed by the authors of the model in [3] show
that signi�cant changes in mechanical properties in HELP occur at local relative
mass concentrations of hydrogen of the order of 10000 ppm, which is an unattain-
ably high concentration for most metals. Steel even at much lower concentrations
independently crack up to complete failure without any external load.
The calculation of local plasticity in the theoretical examination of a crack with a
spherical vertex shows that the local concentrations of hydrogen are only 100 times
higher than the average [6]. Given that the averages are usually about ppm, the local
concentrations do not exceed 100 ppm. Thus, the veri�cation calculation does not
con�rm that under the in�uence of external mechanical loads, local accumulation of
hydrogen is possible, which is necessary for triggering physical mechanisms of local
plasticity.
There is still a whole series of uncertainties about which the authors of the model
write, in particular, there is a nonlinear dependence of the internal potential on the
magnitude of the stresses and hydrogen concentration, and since huge local concen-
trations that are many times larger than those observed in practice are considered,
all the nonlinearities play a big role.
It was noted in [7] that the HELP model requires huge computational resources for
solving any applied problem, therefore, the only way out is to use the continuum
model of dislocation development. Such a replacement is often inadequate and the
authors propose to use the growth criterion of the submicrocrack, that is, reduce all
the hydrogen problems to modeling the development of a crack and to reduce crack
resistance.
The peeling model (HEDE) [8] is a similar HELP. The di�erence lies in the fact that
HEDE takes into account the decrease in the energy of formation of free fracture
surfaces with increasing local hydrogen concentration.
Standard modeling of the development of hydrogen-induced cracks, taking into ac-
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count the reduction in fracture toughness, is also a common approach. At the same
time, the model does not relate to real physical mechanisms of hydrogen in�uence.
In addition, it turns out that the consideration of the same model in problems of
di�erent dimensions yields strongly di�ering results [9, 10].
To model hydrogen fragility, molecular dynamics is also used [11, 12], but because
of the smallness of the modeled ensembles, it allows us to describe only micromecha-
nisms at the apex of a microcrack or dislocation. The same disadvantage is possessed
by the quantum mechanical approach [13, 14] because of the large heterogeneity of
real metals, it can be used only to describe the behavior of cracks in ideal crystals
or to model the behavior of individual microcracks and dislocations.
A new approach to modeling materials containing hydrogen was proposed in [15].
Experimental studies have shown that under the in�uence of external loads hydro-
gen changes its binding energy [16]. Therefore, a separate description of hydrogen
transport inside the material in isolation from its stress-strain state is too crude.
In [15] proposed a model of a continuous medium, which takes into account the
mutual in�uence of hydrogen on the mechanical properties of the medium and the
stress-strain state of the medium on the binding energy and hydrogen transfer.
In all models, a uniform concentration of hydrogen is considered throughout the
entire volume of the material, with the exception of defects.
It remains an open question whether arti�cial saturation with hydrogen can be used
in carrying out experimental studies. With the help of this method, practically all
the experimental results were obtained. But modern manifestations of hydrogen
embrittlement are of a complex nature and are observed under conditions when
there is no hydrogen or its ions in the medium surrounding the material. Moreover,
in welded joints it is observed in the purest form, and in other cases (for example,
when turbine blades are destroyed) they speak of "hydrogen-induced destruction".
Experimental data show that, due to the limited capacity of hydrogen traps, it is
di�cult to expect that its distribution along internal traps does not depend on the
way it enters the solid.
Thus, clarifying the e�ects associated with the redistribution of hydrogen under the
action of loads is an important task for both mechanics and technical diagnostics.

2 Experimental research

Model experiments were carried out on samples of aluminum alloy AMC. The choice
of metal was made in such a way that the di�usion of hydrogen had practically no
e�ect on its distribution. It is known that at room temperature there is practically
no hydrogen di�usion in aluminum alloys. The di�usion coe�cients are very small
and the initial concentrations of hydrogen persist for years.
We have specially chosen a conventional plate 15 mm thick, obtained by rolling from
a casting. The surface of the plate was not previously processed. Samples were
prepared from the plate for mechanical testing. The drawing, which is presented in
Fig.1.
Samples were subjected to low cycle fatigue tests on a tensile machine. The loading
cycle was not symmetrical from 0 to 1.05σ0.2. As a rule, the samples were kept for
3-10 thousand cycles before failure.
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Figure 1: Samples of the AMC alloy for mechanical testing

After the destruction, the volume distribution of hydrogen in the samples was stud-
ied. Onlynatural hydrogen was studied. We did not any hydrogen charging or
saturation. The sources of hydrogen were: the atmosphere of the laboratory and in-
ternal natural hydrogen, which was redistributed under the in�uence of mechanical
loads.
Samples were cut from the broken samples in order to analyze the hydrogen content,
had the form of parallelepipeds with a height of 8-15 mm and a section of 6x6 mm 2.
The cutting scheme is shown in Fig.2.

Figure 2: Scheme cutting specimens for measuring the concentration of hydrogen

Samples were cut in two ways:
1. With a portion of the �at rolling surface;
2. With the removal of 1 mm from the outer surface
Cutting was done with a manual saw to prevent overheating of the samples. The cut
samples were investigated by hot vacuum extraction using the industrial hydrogen
analyzer AV-1.
The procedure for measuring, sample preparation and the principle of operation of
the analyzer is described in detail in [Pol1, Pol2, Pol3].
The results of measurements, hydrogen concentration depending on the removal of
samples from the line of rupture are shown in Fig.3 and Fig.4. In Fig.3. The results
for samples with part of the rolled surface are given. In Fig.4. The results for
samples with the removed surface of rolled products are given.
A comparison of the graphs shows that there is a purely surface e�ect of the uneven
distribution of hydrogen as a result of cyclic loading and plastic deformations [16]

3 Discussion of results

Skin e�ect of the distribution of hydrogen under the in�uence of external mechanical
loads, which we found, is not described in the literature
As a rule, special saturation with hydrogen in solutions of electrolytes is used for
research. There are four main ways of saturation:
1. In gaseous hydrogen [20]
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Figure 3: Distribution of hydrogen for samples with a surface layer of rolled metal

Figure 4: Distribution of hydrogen for samples with a removed surface of rolled
products.

2. In acid solution due to corrosion or stress corrosion [20] 3. Cathodic hydrogen
charging [20]
4. In electrolyte associated with near-neutral pH SCC, simulating sea or ground
water or the environment of transported natural gas [21]. For example, [21] - test
Standard set of test conditions for a consistent evaluation of the pipeline and pressure
vessel steels and compares test results from di�erent laboratories pertaining to the
results of the treatment of H2S.
At such a saturation, the hydrogen concentration is tens of times higher than the
natural one, therefore in all ref.( [22, 23], etc.) the skin e�ect of hydrogen distribution
under the in�uence of external mechanical loads did not manifest itself.
The unevenness of the concentrations that we detected in the case when the surface
layer of rolled metal was not removed is due to the well-known e�ect of Portevin-Le
Chatelier. This e�ect leads to inhomogeneity in the appearance of plastic deforma-
tions and this is often found in aluminum alloys.
New in this experiment is the skin nature of the changes that occur with this e�ect.
Concentrations of natural hydrogen in metals are related to their structure. The
limiting saturation with hydrogen is characteristic for aluminum alloys. That is, the
natural concentration of hydrogen, with a given alloy structure, is extremely satu-
rated. This is due to the fact that the solubility of hydrogen during crystallization
of aluminum alloys falls approximately 4 times and hydrogen expelled from the melt
is concentrated in various structural defects.
A signi�cant increase in the average hydrogen concentration observed by us (see
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Fig. 3,4) can be associated only with the appearance of a large number of defects
(microcracks, pores, bundles).
It follows from our results that these defects are localized in a thin layer of thickness
less than 1 mm as a result of a signi�cant (35%) plastic deformation. The rest of
the volume of material does not experience similar devastation.
Thus, the skin e�ect of the distribution of hydrogen concentration is related to the
skin e�ect of plastic deformation. We managed to �nd work that describes the skin
e�ect of plastic deformation [24].
On the one hand, this is an important result for the mechanics. It explains the
large in�uence of surface tension forces on plastic deformation [25], on the other
hand, it is still not discussed and is not modeled either in the theory of mechanics
of solid or in the numerous hydrogen embritlements models that was described in
the introduction.
Accounting for the skin e�ect in modeling and strength calculations can signi�cantly
increase the accuracy of calculations and the adequacy of mechanical models.

4 Conclusions

As a result of the carried out experimental studies, the skin e�ect of the distribution
of natural hydrogen concentrations for plastic deformation under the action of cyclic
loading was �rst discovered.
The observed e�ect agrees well with the skin e�ect of residual stresses during plastic
deformation, which was discovered 100 years ago but did not receive a theoretical
description.
Modeling the skin e�ect will make it possible to obtain more adequate results when
calculating the strength of metal structures and machine components.

Acknowledgements

The �nancial support of the Russian Foundation for Basic Research, grants 15-08-
03112 Ð� and 17-08-00783 Ð�, is acknowledged.

References

[1] Birnbaum H.K., Sofronis P. Hydrogen-enhanced localized plasticity â�� a
mechanism for hydrogen-related fracture , Mat. Sci. and Eng.: A. 176(1-2)
1994. â�� p. 191-202.

[2] Sofronis P., Liang Y., Aravas N. Hydrogen induced shear localization of the
plastic �ow in metals and alloys , European J. of Mech. A. Solids. 20(6) 2001.
â�� pp. 857-872.

[3] Sofronis P., Liang Y., Aravas N. Hydrogen induced shear localization of the
plastic �ow in metals and alloys , European J. of Mech. A. Solids. 20(6) 2001.
â�� pp. 857-872.

500



REFERENCES

[4] Delafosse D., Magnin T. Interfaces in stress corrosion cracking: a case study in
duplex stainless steels , Solid State Phenomena. 59-60 1998. â�� p. 221-250.

[5] Delafosse D., Magnin T. Hydrogen induced plasticity in stress corrosion crack-
ing of engineering systems , Eng. Fract. Mech. 68(6) 2001. â�� pp. 693-729.

[6] Taha A., Sofronis P. A micromechanics approach to the study of hydrogen
transport and embrittlement. Eng. Fract. Mech. 68(6) 2001. â�� p. 803â��837.

[7] Ignatenko A.V., Pokhodnya I.K., Paltsevich A.P., Sinyuk V.S. Dislocation
model of hydrogen-enhanced localizing of plasticity in metals with BCC lat-
tice , The Paton Weld J. (3) 2012. â�� pp. 15-19.

[8] Varias A.G., Massih A.R. Simulation of hydrogen embrittlement in zirconium
alloys under stress and temperature gradients , J. of Nuclear Mat. 279(2-3)
2000. â�� p. 273-285.

[9] Alvaro A., Olden V., Akselsen O.M. 3D cohesive modelling of hydrogen embrit-
tlement in the heat a�ected zone of an X70 pipeline steel , Int. J. of Hydrogen
Energy. 38(18) 2013. â�� p. 7539-7549.

[10] Alvaro A., Olden V., Akselsen O.M. 3D cohesive modelling of hydrogen em-
brittlement in the heat a�ected zone of an X70 pipeline steel. Part II , Int. J.
of Hydrogen Energy. 39(7) 2014. â�� p. 3528-3541.

[11] Wen M., Xu X.-J., Omura Y., et al. Modeling of hydrogen embrittlement in
single crystal Ni , Computational Materials Science. 30(3-4) 2004. â�� pp.
202-211.

[12] Song J., Curtin W.A. A nanoscale mechanism of hydrogen embrittlement in
metals , Acta Materialia. 59(4) 2011. â�� pp. 1557-1569.

[13] Serebrinsky S., Carter E.A., Ortiz M. A quantum-mechanically informed contin-
uum model of hydrogen embrittlement , Journal of the Mechanics and Physics
of Solids. 52(10) 2004. â�� pp. 2403-2430.

[14] Daw Murray S., Baskes M.I. Semiempirical quantum mechanical calculation
of hydrogen embrittlement in metals , Phys. Rev. Lett. 50 (17) 1983. â�� p.
1285-1288.

[15] Indeitsev D., Semenov Ð�. About a model of structural-phase transformations
under hydrogen in�uence , Acta Mechanica. 195. 2008. â�� p. 295-304.

[16] A.M. Polyanskiy, V.A. Polyanskiy, D.B. Popov-Diumin "Diagnostics of mechan-
ical condition of materials by method of high-temperature hydrogen vacuum-
extraction", Proceedings of the Sixth International Congress on Thermal
Stresses, vol. 2, Vienna, Austria, (2005) 589-592

[17] A.K. Belyaev, A.M. Polyanskiy, V.A. Polyanskiy, Ch. Sommitsch, Yu. A.
Yakovlev, Multichannel di�usion vs TDS model on example of energy spec-
tra of bound hydrogen in 34CrNiMo6 steel after a typical heat treatment, Int.
J. of Hydrogen Energy, 41(20), (2016), 8627-8634.

501



REFERENCES

[18] D.Yu. Andronov, D.G. Arseniev, A.M. Polyanskiy, V.A. Polyanskiy, Yu.A.
Yakovlev, Application of multichannel di�usion model to analysis of hydrogen
measurements in solid, Int.l J. of Hydrogen Energy, 42(1), (2017), 699-710.

[19] Polyanskiy, A.M., Polyanskiy, V.A., Yakovlev, Yu.A. Experimental determina-
tion of parameters of multichannel hydrogen di�usion in solid probe, Int. J. of
Hydrogen Energy 39(30), (2014), 17381â��17390.

[20] ISO 16573:2015 Steel - Measurement method for the evaluation of hydrogen
embrittlement resistance of high strength steels

[21] TM0284 N. S. Evaluation of pipeline and pressure vessel steels for resistance to
hydrogen-induced cracking , Houston, TX: NACE. â�� 2003.

[22] A.A. Saleh, D. Hejazi, A.A. Gazder, D.P. Dunne, E.V. Pereloma, Investigation
of the e�ect of electrolytic hydrogen charging of X70 steel: II. Microstructural
and crystallographic analyses of the formation of hydrogen induced cracks and
blisters, Int.l J. of Hydrogen Energy, 41(28), (2016), 12424-12435

[23] Y. Mine, K. Koga, K. Takashima, Z. Horita, Mechanical characterisation of mi-
crostructural evolution in 304 stainless steel subjected to high-pressure torsion
with and without hydrogen pre-charging, Materials Science and Engineering:
A, 661(20), (2016), 87-95

[24] Brick R. M., Phillips A., Smith A. J. Quenching Stresses and Precipitation
Reaction in Aluminum-Magnesium Alloys, Trans. AIME. 117, (1935), 102.

[25] N. R. Kudinova, V. A. Polyanskiy, A. M. Polyanskiy, Yu. A. Yakovlev, Contri-
bution of Surface Tension Energy during Plastic Deformation of Nanomaterials
, Doklady Physics, 61(10), (2016), 514â��516.

Yuriy A. Yakovlev, Institute for Problems in Mechanical Engineering RAS, V.O., Bolshoj

pr., 61, St. Petersburg, 199178, Russia

Dmitriy E. Mansyrev, Peter the Great Saint-Petersburg Polytechnic University, Polytech-

nicheskaya, 29, St. Petersburg, 195251, Russia

Sergey V. Polyanskiy, Institute for Problems in Mechanical Engineering RAS, V.O., Bol-

shoj pr., 61, St. Petersburg, 199178, Russia

502



Theoretical and Numerical Analysis of the �ow separation criterion for hypersonic
nonequilibrium �ow over

Theoretical and Numerical Analysis of the �ow

separation criterion for hypersonic nonequilibrium

�ow over

Ming Zeng, Xiaoyu Zhao, Mingming Ge, Xiaoliang Yang, Wei Liu

ming_z@163.com

Abstract

Through combining the triple-deck theory in the analytical treatment of
shock wave boundary layer interactions and the numerical simulation of hy-
personic nonequilibrium �ow over compression corner, the in�uence factors on
�ow separation are analyzed, and a criterion parameter to predict whether the
separation occurs is proposed. The criterion parameter (S ) is the product of
the powers of the corner angle, the freestream Mach number and Reynolds
number, and the Chapman-Rubesin parameter. It is based on the existing
formula of the incipient separation angle for calorically perfect gas �ow, but
the reference temperature and the corresponding viscosity in the calculation of
Chapman-Rubesin parameter are determined by the reference enthalpy with
chemical equilibrium assumption, which introduces the high-temperature gas
e�ects. The powers in the criterion parameter (S ) and the critical value of
S for incipient separation are determined through large number of numerical
simulations of hypersonic nonequilibrium compression corner �ow for 3 corner
angles (15, 18 and 24 degree), where the 12 freestream Mach numbers range
from 8 to 35, the 36 gas densities are corresponding to the altitudes from 30
to 65km, the freestream Reynolds numbers range from 104 to5× 106.

Key Words: hypersonic, nonequilibrium �ow, compression corner �ow,
�ow separation, numerical simulation

1 Introduction

Shock wave¨Cboundary-layer interaction is an important �ow phenomenon that ex-
ists widely in the �ow over control surface or in the inlet of the hypersonic vehicle.
The �ow in these areas can be simpli�ed to a compression corner �ow. The occur-
rence of Shock wave¨Cboundary-layer interaction will produce local peak pressure
and peak heat �ux. Moreover, when the shock is strong enough, the separation of
the boundary layer occurs, which will make the wave structure of the �ow �eld com-
plicated, the increase the peak value of wall pressure and heat �ux further, change
the aerodynamic load of the hypersonic vehicle control surface, and increase the
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drag. The separation of the boundary layer in the inlet will seriously deteriorate the
�ow�eld quality, and cause the loss of the engine intake. Therefore, it is very impor-
tant to obtain the separation criterion of hypersonic compression corner �ow. Under
hypersonic conditions, dissociation and even ionization of the high temperature air
take place in the boundary layer. This causes the decrease of the temperature and
therefore the decrease of gas viscosity, which results in less loss of the gas kinetic
energy, and the increase of the gas ability to overcome the adverse pressure gradient.
This means that the chemical reaction of the high temperature gas may delay the
�ow separation as compared with the calorically perfect gas[1].
The study of �ow separation criterion has been done by many researchers through
theoretical analysis, experimental research, and numerical simulation. The initial
separation criterion proposed is the incipient separation angle. Under a given �ow
condition, the boundary layer will separate only when the angle of the compression
corner exceeds a certain critical value (called the incipient separation angle). The
incipient separation angle has many in�uencing factors, including the �ow type
of the boundary layer (laminar or turbulent), the freestream Mach number and
the Reynolds number, and the wall temperature [2]. In 1967, through correlation
analysis of the experimental data, Neeham [3] ∼ [5] gave the approximate formula
of the incipient separation angle for hypersonic laminar boundary layer

Ma∞θis = KØ1/2 (1)

where `is is expressed in radians, the coe�cient K is taken as 1.13, and the Ø is the
viscous interaction parameter

Ø = Ma3
∞

√
CREF

/√
ReL∞ (2)

CREF in the above equation is Chapman-Rubesin parameter

CREF =
¯REF

¯∞

T∞
TREF

(3)

where TREF is the reference temperature in the boundary layer and ¯REF is the
corresponding viscosity of the gas.
As a pioneering work in the theoretical analysis of the shock wave¨Cboundary-layer
interaction, Lighthill [7], Stewartson [8] and Neiland [9] proposed the triple-deck the-
ory and established the governing equation of the disturbance �ow �eld in the late
1970s. The local disturbance �eld is organized into a vertically layered structure: an
outer layer external to the boundary layer consisting of potential disturbance �ow
associated with the viscous displacement e�ect of the underlying deck£»a middle
layer of negligible shear-stress-perturbation rotational inviscid disturbance �ow oc-
cupying the outer 90 percent of the incoming boundary layer thickness; a thin inner
layer of viscous disturbance �ow within the linear portion of the velocity pro�le that
is interactively coupled with the local pressure �eld. Triple-deck theory provides a
basic theoretical explanation for the upstream in�uence and free interference phe-
nomenon. Inger (in 1994) [6] [10] solved the governing disturbance �ow equations
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yielded by this triple-deck theory and derived the incipient separation angle 00, in
which the coe�cient K is taken as 1.26.
With the arrival of the computer age, the CFD numerical simulation of the �ow �eld
based on Navier-Stokes equations becomes an extensively e�ective method. The
numerical study of the high temperature real gas e�ect on shock wave¨Cboundary-
layer interaction [13, 14, 15, 16, 17] is also being carried out. John [18] assessed the
suitability Eq. (1) through numerical simulations for �ows with di�erent freestream
to wall temperature ratio and at low and high enthalpy conditions. It is pointed
out in [19] that Eq. (1) can successfully �t a great deal of experimental data if
K=1.4∼1.5 is used in the formula.
Neeham's �tting coe�cient applies to the case of small Ma∞`, Inger's �tting co-
e�cient applies to the case of larger Ma∞`. John included the high temperature
gas e�ects in some of the numerical simulations, however, the detail conditions of
the freestream are not taken into account, such as the freestream velocity and gas
density. Considering that the velocity and density may in�uence the �ow thermo-
chemical state in the boundary layer and the shock intensity, which will further a�ect
the adverse pressure gradient and the corresponding �ow separation characteristics,
it can be concluded that Ma∞` is not an inclusive parameter to distinguish the �ow
condition for the determination of appropriate value of coe�cient K in Eq. (1).
In the present work, the incipient separation angle formula (1) is transformed into a
formula of separation criterion parameter: S = Mam∞Re

1/4
L∞C

−1/4
REF (T∞/Ts)n θlB . The

values of the power m, n and l and the critical value of S corresponding the incipient
separation are determined by the combination of theoretical analysis and numerical
simulation of nonequilibrium compression corner �ow. Theoretical analysis is mainly
about the in�uence of chemical reactions on the distribution of temperature and the
corresponding viscosity in the boundary layer, on the shock intensity, and on the
upstream propagation of the adverse pressure gradient. The nonequilibrium �ow
simulations are carried out for three compression corners (with angle of 15, 18, and
24 degree) in wide range of hypersonic �ight condition, 12 freestream Mach numbers
(8, 10, 13, 15, 18, 20, 23, 25, 28, 30, 33, 35) and 36 gas densities (corresponding to
the atmosphere at altitude from 30 to 65km) are taken as the case conditions.

2 Theoretical analysis

2.1 Separation Criterion Parameters Based on Triple-Deck

Theory

According to Eq. (1), �ow separation occurs when the compression corner angle `B

is greater than or equal to `B , namely

θB ≥ θis =
KØ1/2

Ma∞
(4)

In practice, the Mach number and Reynolds number may change during the �ight,
while the shape of the vehicle does not change generally, that is, `B keeps constant.
For convenience in the prediction of separation, we reform Eq. (4) into
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Ma∞θB

Ø1/2
≥ Ma∞θis

Ø1/2
= K (5)

From the above equation, we know that for a given corner angle `B , the �ow
separation occurs when

(
Ma∞`B

/
Ø1/2

)
≥ K . So a separation criteria parameter

can be de�ned as

S0 =
Ma∞θB

Ø1/2
(6)

In the above equation, S0 = Ma∞θB

χ1/2
is a hypersonic similarity parameter which

re�ects the intensity of the corner-generated shock and the corresponding adverse
pressure gradient, and the viscous interaction parameter Ø re�ects the pressure
increment caused by hypersonic viscous interaction, which can also re�ect the �ow
ability to resist the adverse pressure gradient,. So the separation criterion parameter
S0 is an index of the adverse pressure gradient relative to the �ow ability to withstand
it. Thus the greater the separation criterion parameter S0 , the more prone of the
�ow to separation.
For ease of use, the separation criterion parameter S0 can also be expressed directly
as a function of the freestream Mach number and Reynolds number

S0 = Ma−1/2
∞ Re

1/4
L∞C

−1/4
REF `B (7)

when , S0 > S0,is = K = Ma∞θis
/
χ1/2 the �ow separation occurs.

2.2 Introduction of the E�ects of High Mach Number and

High Temperature

The separation criterion parameter S0 in Eq. (7) is de�ned based on the results of
triple-deck theory for calorically perfect gas. Considering the change of temperature
distribution by chemical reactions and the limitation of the �rst-order approxima-
tion in the triple-deck theory under very high Mach number conditions, Eq. (7) is
modi�ed as follows.
The Chapman-Rubesin parameter is usually determined using the reference tem-
perature method under the assumption of calorically perfect gas. The reference
temperature is a function of the freestream Mach number and the wall tempera-
ture£º

TREF

T∞
∼= 0.50 + 0.039Ma2

∞ + 0.5
Tw

T∞
(8)

The corresponding viscosity is generally determined by Sutherland formula. Con-
sidering the chemical reactions in hypersonic �ow and the e�ects on temperature,
the reference enthalpy method is used instead of the reference temperature method.
The reference enthalpy in the plate boundary layer is
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hREF
∼= 0.50 (h∞ + hw) + 0.22×

√
Pr (H∞ − h∞) (9)

where H∞ is the total enthalpy of the freestream and hw is the static enthalpy at wall.
It can be seen that the in�uence of wall temperature is taken into account already.
To determine the reference pressure in the boundary layer, the viscous interaction
should be taken into account. In the strong interaction zone (when Ø > 3 )

pREF
∼= p∞ × (0.514Ø + 0.759) (10)

In the weak interacting zone£¨when Ø > 3 £©,

pREF
∼= p∞ ×

(
1 + 0.31χ+ 0.05χ2

)
(11)

With the reference enthalpy and the reference pressure, the reference temperature
TREF can be determined with chemical equilibrium assumption, and the correspond-
ing equilibrium chemical composition can be obtained. Then the viscosity of the
multicomponent gas mixture can be calculated from the species viscosity by means
of mixture rules [20]. Note that the viscous interaction parameter Ø is needed in
calculating the reference pressure with Eq. (10) and Eq. (11), however Ø is also
related to CREF [see Eq.(2)]. So the above process to determine the reference tem-
perature TREF and the parameter CREF requires the iteration. In general situation,
two to four iterations are enough to meet convergence.
It can be seen from Eq. (7) that the increase of Mach number, the decrease of
Reynolds number, and the increase of compression angle will promote the �ow sep-
aration. The reason why the the decrease of Reynolds number promotes separation
is that it leads to the thickening of the boundary layer and the increase of wall
friction. There are several aspects of the in�uence of Mach number increase. On the
one hand, the increase of Mach number means the increase in shock intensity and
the adverse pressure gradient. On the other hand, the Mach number increase means
the increase in �ow kinetic energy and the ability to withstand the adverse pressure
gradient. Moreover, as Mach number increases, the subsonic region in the boundary
layer is reduced, so the range for the propagation of adverse gradient decreases. In
combination, the Mach number increases will suppress the �ow separation.
The in�uence of Mach number is embodied by Ma

−1/2
∞ in Eq. (7), which is based

on the triple-deck theory with �rst-order approximation and the calorically perfect
gas assumption. This result is obtained in the case where the streamline expansion
e�ect under very high Mach number conditions is omitted and Ø is not much greater
than 1. It is pointed out in [6] that the upstream in�uence distance and the incipient
pressure will decrease if the streamline expansion e�ect is considered, which means
that the extent of suppressing �ow separation by the increase Mach number should
be stronger than what Eq. (7) re�ects. So the power of Ma∞ in Eq. (7) can be
modi�ed to embody the above e�ects.
The increase in `B will increase the shock intensity and the adverse pressure gradient,
therefore promote �ow separation. Considering that the extent of increase in adverse

507



Proceedings of XLV International Summer School � Conference APM 2017

pressure gradient due to the increase of `B may be stronger under very high Mach
number conditions, the power of `B can also be adjusted.
In addition, considering the wide range of hypersonic �ight altitude which means the
variation of freestream temperature, and the freestream temperature variation in hy-
personic or high enthalpy tunnel, it is necessary to analyze the e�ects of freestream
temperature on the �ow separation. The e�ect of the increase in freestream temper-
ature is twofold. On the one and, the temperature rise causes the Reynolds number
to decrease and thus promotes separation. On the other hand, the freesteam tem-
perature rise at unvarying Mach number also means the increase in the �ow kinetic
energy and an enhancement of the ability to withstand the adverse pressure gradi-
ent. The e�ect to promote separation by temperature rise through the decrease of
Reynolds number has been re�ected by Re

1/4
L∞ in Eq. (7) already. Here the e�ect

to suppress separation by temperature rise through the increase in kinetic energy
should be added. In the present work, the e�ects of freestream temperature on sep-
aration are introduced into the separation criteria parameter formula by means of
the ratio of freestream temperature to the air temperature at standard conditions.
Based on the above analysis, Eq. (7) is modi�ed, adjusting the power of Ma∞ and `B

in to m and l respectively, and introducing T∞/Ts , the ratio of the freestream tem-
perature to that at standard conditions, with the power of n. Namely, an improved
separation criterion parameter is de�ned as

S = Mam∞Re
1/4
L∞C

−1/4
REF (T∞/Ts)n `lB (12)

The values of m, n and l are determined by numerical simulations of nonequilibrium
compression corner �ow over wide range of Mach number, Reynolds number with
various freestream temperature and corner angles.

3 Numerical Analysis

3.1 Governing Equations and Numerical Methods

The governing equations for the �ow �eld are the two-dimensional Navier-Stokes
equations coupled with the vibrational and chemical kinetics, which are solved to
obtain the steady state solution of the �ow �eld. A �nite di�erence method is used
in the calculation. All inviscid terms are discretized with AUSMPW+ scheme [21].
The viscous terms are discretized with center di�erence scheme.The inviscid �uxes
are discretized implicitly while the viscous terms explicitly. The implicit parts of
the di�erential equations are disposed in two steps with the LU-SGS approach [22].
The details of the �ow �eld governing equations are described in [23].
The total length of the compression corner model is 0.6096m, of which the length of
the front plate is 0.3048m. The computational mesh (Figure 1) is 131×81 with 131
points along the surface and 81 points in the �ow�eld normal to the body, only half
of the grid points in both directions are shown for clarity. Re�ned grids are used near
the leading edge, the corner and the position of peak pressure. Exponential stretch
is used from the wall. The �rst normal grid height at the wall is 6.096×10−5m.
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Figure 1: Computational mesh

3.2 Case Conditions

The compression corner angle, freestream Mach number and temperature of the
calculation cases are listed in Table 1. For any one case condition (a set of given
corner angle, freestream Mach number and temperature) in Table one, �ow simu-
lation is carried out with various freestream density. The density values are those
of the atmosphere at altitude of 30km to 65km. Through changing the density step
by step (the corresponding change of the altitude is 1 km in one step), the density
value just corresponding the incipient separation is identi�ed, so is the separation
criterion parameter value [by Eq.(7)] at incipient separation, denoted as S0,is . With
the values of S0,is under each set of case condition, the change of with the freestream
Mach number and temperature and the corner angle is analyzed, and the values of
the powers in the improved formula of separation criterion parameter [Eq. (12)] are
determined.

3.3 Analysis of the Numerical Results

The calculation results of all cases show that the decrease of freestream Mach num-
ber and temperature, the increase of the freestream density and the corner angle,
will promote the �ow separation. Take 18deg compression corner at Mach number
of 15 and altitude of 45km as an example, the �ow�eld pressure distribution and
the streamline in the recirculation zone for three di�erent freestream temperauture
(100K, 300K, and 500K) are given in Figure 2. The separation zone for the case of
T∞ = 100K is obviously larger than the cases with higher T∞.

Table 1 Freestream Mach number and temperature of the calculation cases
Corner angle (deg) Mach number Freestream temperature(K)

15 8, 10, 13, 15, 18, 20, 23, 25 100, 200, 300, 500

18 10, 13, 15, 18, 20, 23, 25, 28 100, 200, 300, 500

24 20, 23, 25, 28, 30, 33, 35 100, 200, 300, 500

There are obvious di�erences in the values of separation criterion parameter [see Eq.
(7)] at incipient separation S0,is for the calculation cases. Take the 15deg compresses
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Figure 2: Pressure contour and separation zone streamline at di�erent freestream
temperature(18eg corner, Ma=15)

Figure 3: 15deg corner, Variation of separation criterion parameter with freestream
Mach number and temperature

corner �ow as an example, when the Mach number increases from 8 to 25, increases
from 1.13 to 1.74 for the case of T∞ = 100K, while from 1.01 to 1.94 for the case
of T∞ = 300K, and from 1.05 to 2.25 when T∞ = 500K. Figure 3(a) gives the
variation of the normalized incipient separation parameter (namely S0,is

/
S ∗0,is ) with

Mach number for the 15deg corner �ow at di�erent freestream temperature. S ∗0,is is
the value of incipient separation criterion parameter at Ma∞ = 10 and T∞ = 300K
, which is 1.457.
After the analysis of the change of S0,is with Mach number, the separation criterion
parameter is modi�ed to

S1 = Ma−0.8
∞ Re

1/4
L∞C

−1/4
REF (13)

Figure 3(b) shows the change of S1,is

/
S ∗1,is ) with freestream Mach number and

temperature. S ∗1,is (= 0.7308) is the value at Ma∞ =10 and T∞ = 300K. It can
be seen that the change range of S0,is with Ma∞ is much smaller than that of S0,is ,
especially for the case of T∞ = 300K and Ma∞ = 10∼25, the change of S0,is is
within 1.5%.
Both Figure 3(a) and Figure 3(b) show that S1,is increases with the freestream
temperature. So the separation criterion parameter is further modi�ed to

S2 = Ma−0.8
∞ Re

1/4
L∞C

−1/4
REF (T∞/Ts)−0.1 (14)

where = 288.15K, the temperature of atmosphere at standard conditions. Figure
3(c) shows the change of S2,is

/
S ∗2,is with freestream Mach number and temperature,

where S ∗2,is (= 0.7278) is the value at Ma∞ =10 and T∞ = 300K. It can be concluded
from Figure 3(c) that the freestream temperature e�ects on �ow separation are
re�ected by introducing (T∞/Ts) into Eq.(14).
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Figure 4: Figure 4 18eg corner, Variation of separation criterion parameter with
freestream Mach number and temperature

Figure 5: Figure 4 24deg corner, Variation of separation criterion parameter with
freestream Mach number and temperature

However, for the case of T∞ = 500K, the incipient separation criterion parameter
increases obviously when the Mach number is greater than 23 (corresponding to the
�ow velocity greater than 10 km /s). This can be seen in Figure 3 (a) to Figure 3(c),
with the three parameters, S0,is , S1,is , and S2,is . Such phenomenon may be related
to the start of some chemical reaction mechanism at very high speed.
Figure 4 and Figure 5 show the variation of S0,is

/
S ∗0,is and S2,is

/
S ∗2,is with freestream

Mach number and temperature for 18deg and 24deg compression corner respectively.
In Figure 4, S ∗0,is (= 1.4215), S ∗2,is (= 0.7125) are the values at Ma∞ =10 and
T∞ = 300K. In Figure 5, S ∗0,is (= 1.6299) and S ∗2,is (= 0.6635) are the values at
Ma∞ =10 and T∞ = 300K. The e�ects of the modi�cation of the separation criterion
parameter [ in Eq .(14) and (14)] are also shown in 18deg and 24deg compression
corner �ows. However, for the case of T∞ = 500K, the incipient separation criterion
parameter increases signi�cantly when the Mach number is greater than 23 for 18deg
compression corner or greater than 30 for 24deg compression corner �ow, which is
similar to the 15deg compression corner case.
The comparison between the values of incipient separation criterion parameter for
the three compression corner �ows show that the incipient separation criterion pa-
rameter decreases as the corner angle increases. This indicates the necessity to
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introduce the angle into the formula separation criterion parameter. Based on the
existing numerical data, the de�nition of separation criterion parameter is further
revised to

S = Ma−0.8
∞ Re

1/4
L∞C

−1/4
REF (T∞/Ts)−0.1 θ1.2

B (15)

Figure 6: Variation of separation criterion parameter with corner angle, freestream
Mach number, and temperature

Figure 6 shows the variation of the value of the incipient separation criterion param-
eter with the Mach number (10 to 28), corner angle (15deg, 18deg, and 24deg), and
the freestream temperature (100K, 200K and 300K). The variation range of Sis is
0.525∼0.565 , within 8%. For the case of T∞ = 500K, the change of Sis is basically
in the range, except for the very high Mach number (greater than 23 for 15deg and
18deg corner, and greater than 30 for 24deg corner).

4 Conclusion

(1) Based on the incipient separation angle formula yielded by the triple-deck theory
with calorically perfect gas assumption, a separation criterion parameter ( S0 ) is
proposed. S0 is an index of the adverse pressure gradient relative to the �ow ability
to withstand it. So the larger the parameter is, the more prone of the �ow to
separate.
(2) The high temperature real gas e�ects on �ow separation are introduced through
the use of reference enthalpy and chemical equilibrium assumption to determine the
reference temperature, and the modi�cation of separation criterion parameter for-
mula to S = Mam

∞Re
1/4
L∞C

−1/4
REF (T∞/Ts)n θl

B . The values of the power in the formula
and the incipient separation criterion parameter value are determined through a
large number of nonequilibrium compression corner �ow simulations. The present
results for the power values are m=-0.8, n=-0.1, and l=1.2. For most of the case, the
value range of the incipient separation criterion parameter is Sis = 0.540 ∼ 0.585.
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(3) Considering that only three di�erent corner angles are taken in the simulation
and analysis, more work is needed to determine the power value of the angle in
the separation criterion parameter. For the case with even larger corner angle, the
corresponding slope of the �ow de�ection angle (tan `B ) can be used instead of
`B . The determination of the power values of the freestream Mach number and
temperature also need further in-depth work.
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Abstract

Turbulent �ows of a viscous incompressible �uid in a layer between ro-
tating concentric spheres under the action of the modulation of the velocity
of one of the spheres have been studied experimentally and numerically. We
used an algorithm of numerical solution based on a conservative �nite di�er-
ence scheme of the discretization of the Navier�Stokes equations in space and
semi-implicit Runge�Kutta scheme of the third order integration accuracy in
time. Discretization in space was performed on grids nonuniform in radial and
meridional directions with concentration near the boundaries and equatorial
plane. The experimental setup consisted of two coaxial spheres. The space
between the spheres was �lled with silicone oil to which aluminum powder
was added for visualization of �ows. The rotation velocity was periodically
varied. Agreement was shown to be between the experimental and calculated
results, including the integral properties of turbulent �ows. The possibility
of the formation of turbulence with spectra qualitatively similar to spectra
obtained in measurements in the upper atmosphere is established: with the
slope close to −3 at low frequencies and close to −5/3 at high frequencies and
with the negative longitudinal velocity structure function of the third order.
It has been shown that such spectra are formed in the regions of a �ow that
are strongly synchronized under the action of the modulation of the rotational
velocity.

1 Introduction

Large-scale �ows in the atmosphere occur in the presence of fast rotation of the
Earth, and their properties are usually explained within the concept of â��two-
dimensionalâ�� turbulence [1, 2]. In two-dimensional turbulence, two inertial in-
tervals are usually identi�ed corresponding to energy transfer at low wave numbers
and enstrophy transfer at high wave numbers [3]. The inertial interval of energy
transfer from high to low wave numbers (inverse cascade) is described by the same
Kolmogorov relation as in three-dimensional turbulence [4] for the dependence of the
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energy spectrum E(k) on the wave number k : E(k) ∼ k−5/3. In the inertial interval
of enstrophy transfer from low to high wave numbers (direct cascade), this depen-
dence has the form E(k) ∼ k−3. The direction of the cascade is determined by the
sign of the third order longitudinal velocity structure function [5], which is de�ned
as DLLL = 〈[u(l)−u(l′)]−3〉, where u is the velocity at the spatially separated points
l and l′ and angular brackets mean averaging over the ensemble of realizations. The
negative and positive signs of DLLL correspond to the direct and inverse cascades, re-
spectively. Conclusions of the theory of two-dimensional turbulence were con�rmed
in numerous results reviewed in [6, 7]. At the same time, measurements of the hor-
izontal velocity of the wind in the Earthâ��s atmosphere revealed an anomalous
location of spectral regions that is inconsistent with the theory of two-dimensional
turbulence. In particular, spectra of turbulence with a slope of −3 begin at scales
larger than 700km and are limited by a strong peak at a scale of 104km. Spectra
with a slope −5/3 were detected at scales smaller than 500km [1]. Analysis of third
order structure functions in [2] showed that only one of these regions with the slope
of −3, corresponds to two-dimensional turbulence. This indicates the direct energy
transfer cascade in both spectral regions under consideration. Despite the existing
explanations [1, 8, 9], reasons for the inverse position of spectral regions, as well as
the possibility of reproducing this phenomenon under laboratory conditions, are as
yet unclear.

Both viscous dissipation [10] and vertical motions, which are components of Large-
scale circulation [6], prevent twoÂ¬dimensional turbulent �ows in the atmosphere.
Large-scale circulation also exists in turbulent �ows induced by the rotation of the
boundaries of the spherical layer, which is responsible for the motion of viscous in-
compressible �uid between them [11]. It is exactly why the model spherical Couette
�ow is studied in this work for the qualitative simulation of processes in the atmo-
sphere. By analogy with Baroud [12], we chose the case of the counter rotation of
spheres. Under stationary boundary conditions, oppositely directed vortices with
an interface between them are formed in the meridional plane of such a �ow (see
Figure 1, which is similar to Figure 1 in [13]). A similar circulation can be observed
in the case of the rotation of only the inner sphere in the presence of altitude-
inhomogeneous external heating [14] , typical of the atmosphere. In spherical layers
the formation of turbulence with a high correlation dimension occurs by the increase
in the rotation velocity of one of the boundaries [11, 15] as well as by their modu-
lation [16]. The spectrum of developed turbulence in the latter case depends on the
parameters of force action [17].

The dependence of the type of the azimuthal velocity spectra on the frequency
and amplitude of the modulation of the rotation velocity of one of the spheres is
determined in this work experimentally and numerically.
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2 Methods of calculation and experiment. Field of

study

An isothermal �ow of a viscous incompressible �uid is described by the Navierâ��S-
tokes and continuity equations:

∂U

∂t
= U × rotU − grad

(
p

ρ
+
U2

2

)
− νrotrotU, divU = 0 (1)

where U , p, ν, and ρ, are the velocity, pressure, viscosity, and density of the �uid.
These equations are numerically solved in a spherical coordinate system with the ra-
dial (r), polar (θ), and azimuthal (ϕ) directions, in which the impermeability and no-
slip boundary conditions have the form uϕ(r = rk) = Ωk(t)rk sin(θ), ur(r = rk) = 0,
uθ(r = rk) = 0, k = 1, 2, where uϕ, ur, and uθ are the azimuthal, radial, and polar
components of the velocity; and k = 1 and 2 correspond to the inner and outer
spheres, respectively. We used an algorithm of numerical solution [18] based on a
conservative �nite di�erence scheme of the discretization of the Navierâ��-Stokes
equations in space and semi-implicit Runge�Kutta scheme of the third order integra-
tion accuracy in time. Discretization in space was performed on grids nonuniform in
r and θ directions with concentration near the boundaries and equatorial plane and
the total number of nodes 5.76 · 105. This algorithm was used for calculations with
both stationary [11] and periodic [19] boundary conditions. Spectra of pulsations of
the square of the azimuthal velocity component uϕ (minus the average value deter-
mined for the entire sample) were calculated at points 1 − 7 shown in Figure 1 (θ
and ϕ are constant and only r is varied). To this end, uϕ time series with a length
of no less than 72000 points were written with a time step 4t = 0.015 − 0.025s.
DLLL was obtained using the dependence of uϕ on the azimuth angle ϕ during 16
rotation periods (0 ≤ ϕ ≤ 32π). All calculations were performed for the initial and
boundary conditions corresponding to the experimental conditions.
The experimental setup consisted of two coaxial spheres. The outer radius of the
inner sphere was r1 = 0.075m and the inner radius of the outer sphere was r2 =
0.150m. The space between the spheres was �lled with silicone oil. The rotation
velocity was periodically varied by the law Ωk(t) = Ωk0(1+Ak sin(2πfkt+ψk) with an
accuracy of no worse than 0.5% (where Ak and fk are the amplitude and frequency of
modulation; Ωk0 is average angular velocity of rotation; initial phase ψk is arbitrary).
The modulation frequencies f1 = 0.01 − 0.1Hz and f2 = 0.01 − 0.02Hz were no
higher than the average rotation frequencies of the spheres (Ω10/2π = 0.59Hz,
Ω20/2π = 0.32Hz). The measurements of uϕ were performed near the outer sphere
at a distance of 0.078m from the equator plane and at a distance of 0.105m from
the rotation axis (near point 7 in Figure 1). The experiments were performed at
Reynolds numbers Re1 = Ω10r

2
1/ν = 412.5 ± 0.5 and Re2 = Ω20r

2
2/ν = 900 ± 1.

At these Reynolds numbers in the absence of modulation, a periodic �ow with the
frequency f0 = 0.0376Hz is formed in the layer; this �ow referred to as initial
is a result of mutual synchronization of individual linear modes [13]. The initial
�ow has the form of traveling azimuthal waves with the wave number m = 3.
The modulation of the rotation velocity of one of the boundaries leads to the �ow
induced synchronization. With an increase in the amplitude of modulation at a
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Figure 1: Calculated stream functions
Ψ (in [m3/s])) in the meridional
plane of the axisymmetric steady
state �ow at Re2 = −900, Re1 = 414:
Ψmax = 6 · 10−6,Ψmin = −6 · 10−6,
and 4Ψ = 6 · 10−6. Dashed lines
are negative value contours. Points
1 − 7 are located at the relative
distance l = (r − r1)/(r2 − r1) =
0.135, 0.246, 0.359, 0.484, 0.611, 0.7, 0.803
from the inner sphere with a deviation
of 0.206π from the equatorial plane.

Figure 2: u2
ϕ spectra obtained in the 1

experiment and 2 calculation for point
7 in the case of the modulation of the
inner sphere velocity with f1 = 0.01Hz
and A = 0.163. The left and right ver-
tical arrows correspond to the average
frequencies of rotation of the outer and
inner spheres, respectively.

�xed frequency, the initial �ow is destroyed. Turbulence appears at the transition
from mutual synchronization to induced synchronization [16].

3 Results

With an increase in the amplitude in the case of the modulation of the rotation
velocity of the inner sphere, the spectra can be transformed to the form characteristic
of two-dimensional turbulence. For example, in the case of the modulation of Ω1(t) at
f1 ≤ f0 (Figure 2), the spectra obtained both from measurements and numerically
exhibit a pronounced segment with a constant slope of −5/3 at low frequencies
(0.06−0.27Hz) and a segment with a constant slope of −3 at high frequencies (0.27−
0.8Hz). At an increase in the amplitude of the modulation of Ω2(t), the spectra
are modi�ed to the form qualitatively corresponding to the spectra of atmospheric
turbulence [1] with a slope −3 at frequencies below 0.1Hz and −5/3 at higher
frequencies (0.1 − 0.31Hz) (Figure 3a). Under the condition fk ≤ f0, the form of
the spectrum depends on the position of the point at which the azimuthal velocity is
calculated. The most characteristic di�erences in the form of the spectra at points
1−7 (Figure 1) are observed in the case of Ω2(t) modulation. In particular, near the
outer sphere and at a certain distance from it (points 7−3), the observed spectra are
typical to atmospheric turbulence, whereas the spectrum observed near the inner
sphere (point 1) has a constant slope of −5/3 and is typical to three-dimensional

518



The Role of synchronization in Transition to Two-dimensional and
Three-Dimensional Turbulence

Figure 3: u2
ϕ spectra at points (a) 7 and

(b) 1 obtained in the (1) experiment
and (2) calculation in the case of the
modulation of the velocity of the outer
sphere with f2 = 0.02Hz and A = 0.2.

Figure 4: Approximation of the
thirdÂ¬order longitudinal ve-
locity structure function for (1)
f1 = 0.01Hz,A = 0.163 and (2, 3)
f2 = 0.02Hz,A = 0.2 at points 7 (1, 3)
and 1 (2).

turbulence (Figure 3b). We tried to determine the direction of the energy cascade in
the cases corresponding to the spectra, shown in Figures 2 and 3, from the sign of the
third order longitudinal velocity structure function DLLL. Sign of DLLL alternates
with a period of 2π/3, because large-scale coherent structures [11] characteristic of
the initial �ow are held in the turbulent �ow. Similar large-scale coherent structures
in the upper layers of the atmospheres of planets (e.g., Venus) were assumingly
interpreted as Rossby waves [20]. For this reason, to determine the sign of DLLL,
the results of the calculation were approximated by sixth order polynomials.

Figure 4 shows the dependence of DLLL on the frequency f given by the expression
[21] f = 〈uϕ〉/l, where 0 < l < 32π and 〈uϕ〉 is the average velocity at a distance
of rsinθ from the axis. We �rst consider �ows for which the observed spectra were
typical to two-dimensional (Figure 2) and three-dimensional (Figure 3b) turbulence.
In the former case (Figure 4, line 1), transition from positive DLLL values to negative
is observed at f = 0.2Hz. At the same frequency, transition from a slope of −3 to a
slope of −5/3 is observed in the experiment (Fig. 2, line 1). In the latter case (Fig.
4, line 2) DLLL < 0. Both of these cases con�rm the correctness of the estimate of
the sign of DLLL. In the case of atmospheric turbulence (Figure 4, line 3), DLLL < 0
in the frequency range corresponding to the segments of the spectrum with both
slopes of −3 and −5/3.

The level of turbulence of the entire �ow as a whole is determined by the behavior
of its kinetic energy, which is represented in the form of the sum of the azimuthal
(Eϕ) and meridional (Eψ) components taken as integrals over the entire volume of
the spherical layer: Eϕ =

∫
u2
ϕ and Eψ =

∫
(u2

r + u2
θ). Thus, the modulation of the

rotation velocity of one of the spheres results in the suppression of turbulence in the
azimuthal direction of motion. Synchronizations between Ωk(t) and Eϕ, Eψ (treated
as frequency and/or phase locking) are signi�cantly di�erent for inner and outer
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Figure 5: Fragments of the time dependence of various calculated quantities (in ar-
bitrary units) for (a) f1 = 0.01Hz,A = 0.163 and (b) f2 = 0.02Hz,A = 0.2: (1) Ωi,
(2) Eϕ, (3) Eψ, (4) uϕ at point 7, (5) uϕ at point 1, rms(df)/Ω1 = 0.256, 0.130, 0.274
for cases corresponding to Figs. 3a, 3b, and 4b, respectively.

sphere modulation. In the former case, Eψ varies almost in phase with the variation
of Ω1(t) (Figure 4a), whereas in the latter case, the smallest phase shift is observed
between Ω2(t) and Eϕ (Figure 5b). Since Eϕ values are two orders of magnitude
higher than Eψ, the above results indicate that synchronization of the �ow induced
by the modulation of Ω2(t) is stronger. As is seen, the level of synchronization
between Ω2(t) and uϕ is nonuniform in the thickness of the layer of the �uid (Figure
6b): a correlation between the velocity of the sphere and the velocity of the �ow
is observed at points far from the inner sphere (line 4) and is not observed near
the inner sphere (line 5). We calculated the instantaneous frequency di�erences df
between Ωk(t) and uϕ. According to [22], the instantaneous frequency and phase
are de�ned as χ(t) = ∂Ψ(t)/∂t and Ψ(t) = arctan(y(t)/x(t)), respectively. Here,
x(t) is the velocity signal and y(t) is the orthogonal complement to x(t), which is
calculated as the Hilbert transform of the series x(t). The minimal root mean square
frequency di�erence rms(df) between Ωk(t) and uϕ(the strongest synchronization)
is observed near the outer sphere at its modulation (Figure 5). Thus, the strongest
synchronization corresponds to spectra of turbulence with the form typical to the
upper layers of the atmosphere. The largest frequency di�erence is observed near
the inner sphere at the modulation of the outer sphere. This means that the weakest
synchronization corresponds to three-dimensional turbulence. The comparison of the
two cases considered above indicates that the e�ect of the modulation of the outer
sphere on the �ow is limited by the region of circulation induced by its rotation
(points 3 − 7 in Figure 1). All presented facts indicate that the appearance of the
spectrum of turbulence with slopes of −3 and −5/3 at low and high frequencies,
respectively, is possible only in the region with strongest synchronization between
the rotation velocity and the velocity of the �ow.
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The results obtained for the model �ow under consideration imply that the form of
spectra of turbulence in the upper layers of the atmosphere is explained by the in-
duced synchronization of the periodic part of atmospheric �ows (e.g., Rossby waves)
by an external periodic action with a longer period. Since the main source of the
energy for all atmospheric processes is solar heat, seasonal variations of this quantity
can be considered as such a periodic external action on the atmosphere.

4 Conclusions

The results of the performed experimental and numerical studies have shown that
a decrease in the modulation frequency is accompanied by an increase in di�erences
in the behaviors of the azimuthal and meridional components of the kinetic energy
of the �ow. The former component remains periodic, whereas the latter component
changes the periodic behavior to chaotic. The suppression of turbulence of the az-
imuthal kinetic energy of the �ow promotes the formation of quasi-two-dimensional
turbulence. Spectra characteristic of two-Â¬dimensional turbulence with a constant
slope of −5/3 and an inverse cascade (DLLL > 0) at low frequencies and with a slope
−3 and a direct cascade (DLLL < 0) at high frequencies have been observed in the
case of the modulation of the inner sphere velocity. At a modulation frequency
below the frequency of the initial periodic �ow, the form of the spectra is spatially
nonuniform. In the case of the modulation of the outer sphere velocity, spectra
with the qualitative form characteristic to turbulence in the upper layers of the at-
moÂ¬sphere with a constant slopes of −3 and −5/3 at low and high frequencies,
respectively, are observed in the region of circulation induced by the outer sphere.
For both segments of the inertial interval DLLL < 0. The form of the spectrum
near the inner sphere is characteristic of threeÂ¬-dimensional turbulence: the seg-
ment with a constant slope of −5/3 presents and DLLL < 0. It has been found
that the level of synchronization between the rotation velocity of the boundary and
the velocity of the �ow is di�erent in all �ows considered above. The lowest and
highest levels of synchronization are observed where spectra are similar to spectra
of three-Â¬dimensional and atmospheric turbulence, respectively.
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