Министерство образования и науки Российской Федерации

САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО

Ю.А.Андрианов

Операторы в евклидовых и унитарных пространствах

Лекция для студентов направлений "Прикладная математика и информатика", "Механика и математическое моделирование"

Учебное пособие

Санкт-Петербург

Андрианов Ю.А. Операторы в евклидовых и унитарных пространствах. Лекция для студентов направлений "Прикладная математика и информатика", "Механика и математическое моделирование": учеб. пособие/ Ю.А. Андрианов— СПб., 2023. 18 с.

Учебное пособие соответствует ФГОС ВО по дисциплине «Линейная алгебра и аналитическая геометрия» по направлениям подготовки 01.03.02 «Прикладная математика и информатика», 01.03.03 «Механика и математическое моделирование», 02.03.01 «Математика и компьютерные науки». Текст лекции предназначен для студентов первого курса Физико-механического института. Рассматривается тема, представляющая достаточные трудности для студентов.

§1. Введение

<u>Определение.</u> Оператор $\varphi: V \to V$ называется оператором простой структуры, если в этом пространстве есть базис, матрица оператора в котором диагональная.

Сформулируем и докажем несколько теорем.

<u>Теорема 1.</u> Матрица оператора φ подобна диагональной матрице тогда и только тогда, когда в пространстве есть базис из собственных векторов оператора φ .

Доказательство.

<u>Необходимость.</u> Пусть $\varphi: V \to V-$ оператор, A- матрица этого оператора в базисе v_1, \cdots, v_n . Пусть существует матрица C, такая, что

$$C^{-1}AC = D = diag(\lambda_1, \dots, \lambda_n),$$

то есть матрица A подобна диагональной D.

Рассмотрим новый базис u_1, \cdots, u_n пространства V, связанный со старым базисом матрицей перехода C, тогда

$$[u_1,\cdots,u_n]=[v_1,\cdots,v_n]C.$$

Покажем, что базис u_1,\cdots,u_n состоит из собственных векторов оператора φ . Действительно, матрица φ в базисе u_1,\cdots,u_n имеет вид $\,{\cal C}^{-1}A{\cal C}=D.$ Это значит, что

$$\varphi(u_{1}) = \lambda_{1}u_{1} + 0 \cdot u_{2} + \dots + 0 \cdot u_{n} = \lambda_{1}u_{1}
\varphi(u_{2}) = 0 \cdot u_{1} + \lambda_{2}u_{2} + \dots + 0 \cdot u_{n} = \lambda_{2}u_{2}
\vdots
\varphi(u_{n}) = 0 \cdot u_{1} + 0 \cdot u_{2} + \dots + \lambda_{n}u_{n} = \lambda_{n}u_{n}$$

Таким образом, u_1 , ..., u_n – собственные векторы оператора φ .

<u>Достаточность.</u> Обратно, если в пространстве существует базис из собственных векторов оператора φ , то равенства (1) показывают, что матрица оператора φ в этом базисе – диагональная. Теорема доказана.

<u>Теорема 2.</u> Пусть V— векторное пространство над полем комплексных чисел, φ — оператор в этом пространстве, A — матрица этого оператора в некотором базисе. Если характеристический многочлен матрицы оператора имеет только простые корни (то есть корни кратности один), то оператор φ — простой структуры.

<u>Доказательство.</u> Пусть f(t) — характеристический многочлен оператора φ . Основное поле — это поле $\mathbb C$ комплексных чисел. Значит, f(t) раскладывается в этом поле на линейные множители и все эти множители различные, так как по условию кратность каждого корня — единица.

$$f(t) = (t - \lambda_1)(t - \lambda_2) \cdots (t - \lambda_n).$$

 $\lambda_1, \lambda_2, \dots, \lambda_n$ — различные собственные числа оператора φ . Пусть v_1, \dots, v_n — собственные векторы оператора φ , соответствующие этим собственным числам. Тогда по теореме1 векторы v_1, \dots, v_n — линейно независимы.

Значит, они образуют базис V (так как их число равно $\dim V = n$). Теорема доказана.

<u>Теорема 3.</u> Пусть V — векторное пространство над полем комплексных чисел, φ — оператор в этом пространстве. Для того, чтобы φ был оператором простой структуры необходимо и достаточно, чтобы каждому собственному числу оператора соответствовало столько линейно независимых собственных векторов, какова кратность этого числа как корня характеристического многочлена.

<u>Доказательство.</u> Пусть f(t) – характеристический многочлен оператора и $f(t) = (t-\lambda_1)^{k_1} \cdots (t-\lambda_s)^{k_s}$ – его разложение на множители в поле комплексных чисел, где $\lambda_1 \neq \cdots \neq \lambda_s$ – попарно различные собственные числа оператора. Для каждого собственного числа оператора найдём базис пространства собственных векторов, соответствующих этому собственному числу, получим:

для
$$\lambda_1$$
 найден базис L_1 : v_{11}, \dots, v_{1m_1} , $m_1 \leq k_1$ \vdots \vdots для λ_s найден базис L_s : v_{s1}, \dots, v_{sm_s} , $m_s \leq k_s$

Выпишем все эти собственные векторы.

(2)
$$v_{11}, \dots, v_{1m_1}; v_{21}, \dots, v_{2m_2}; \dots; v_{s1}, \dots, v_{sm_s}$$

Проверим, что они линейно независимы в совокупности. Для этого составим их линейную комбинацию и посмотрим, при каких коэффициентах она может равняться нулевому вектору.

(3)
$$\alpha_{11}v_{11}+\cdots+\alpha_{1m_1}v_{1m_1}+\cdots+\alpha_{s1}v_{s1}+\cdots+\alpha_{sm_s}v_{sm_s}=0.$$
 Обозначим $y_1=\alpha_{11}v_1+\cdots+\alpha_{1m_1}v_{1m_1},\ldots,y_s=\alpha_{s1}v_{s1}+\cdots+\alpha_{sm_s}v_{sm_s}.$

Тогда имеем

(4)
$$y_1 + \cdots + y_s = 0$$
.

Если $y_1=y_2=\cdots=y_s=0$, то все коэффициенты линейной комбинации (3) равны нулю. Если хоть один из $y_i,\ i=1,...,s$ не равен нулю, то y_i – собственный вектор, соответствующий собственному числу λ_i , и равенство (4) даёт противоречие с известной теоремой, согласно которой собственные векторы, соответствующие разным собственным числам, линейно независимы.

Вывод. В пространстве V существуют

$$m_1 + m_2 + \dots + m_s \le k_1 + k_2 + \dots + k_s = n$$

линейно независимых собственных векторов и это максимально возможное их число.

Переходим к непосредственной проверке утверждений теоремы.

Необходимость. Пусть φ — оператор простой структуры. По T1 в пространстве V существует базис из собственных векторов оператора φ . Это значит, что векторы (2) образуют базис V. Следовательно, $m_1+m_2+\cdots+m_s=k_1+\cdots+k_s=n$. Отсюда $m_i=k_i$ $\forall i=1,2,\ldots,s$, так как $m_i\leq k_i$.

<u>Достаточность.</u> Если $m_i=k_i$, то векторы системы (2) дают базис пространства V, состоящий из собственных векторов оператора φ . Следовательно, φ – оператор простой структуры.

Теорема доказана.

§2. Операторы в унитарном пространстве.

1. Теория вещественных квадратичных форм доставляет нам другой пример достаточного условия того, чтобы оператор был простой структуры. Действительно, пусть A — вещественная симметричная матрица ($A^T = A$). Тогда A можно рассматривать как матрицу квадратичной формы $f(X) = X^T A X$. Известно, что существует ортогональное преобразование X = C Y, приводящее f(X) к каноническому виду $f(X) = X^T A X = Y^T C^T A C Y = Y^T D Y$, где D — диагональная матрица. При этом $D = C^T A C = C^{-1} A C$, так как $C^T = C^{-1}$ из условия ортогональности матрицы C. Таким образом, любая вещественная симметричная матрица подобна диагональной и, следовательно, задаёт оператор простой структуры. В этом параграфе мы займёмся обобщением этого утверждения.

2. Операторы в унитарном пространстве.

<u>Определение.</u> Пусть V — унитарное пространство, $\varphi: V \to V$. Оператором, сопряжённым к оператору φ , называется оператор $\varphi^*: V \to V$, такой, что

$$(1) \ (\varphi(x), y) = (x, \varphi^*(y)) \qquad \forall x, y \in V.$$

<u>Теорема1.</u> Для всякого оператора $\varphi: V \to V$ существует единственный оператор, сопряжённый к нему.

<u>Доказательство.</u> Пусть e_1, \dots, e_n — ортонормированный базис пространства V (такой базис всегда есть, так как произвольный базис можно подвергнуть ортогонализации и полученные векторы нормировать). Построим оператор, сопряжённый к данному, следующим образом. Пусть A — матрица оператора φ в базисе e_1, \dots, e_n . Нам надо найти φ^* , зная φ . Мы найдём этот оператор, если найдём его матрицу в данном ОНБ. Пусть B — искомая матрица. Равенство (1) в матричной записи имеет вид

$$(AX)^T\overline{Y} = X^T\overline{(BY)}$$
, то есть $X^TA^T\overline{Y} = X^T\overline{B\cdot Y} \quad \forall X,Y\in V$,

так как наш базис ортонормированный и, следовательно, матрица Грама в нём — это единичная матрица E. Отсюда следует, что $A^T = \overline{B}$,

то есть
$$B=\overline{A}^T$$
. Если рассмотреть матрицу $A^*=egin{pmatrix}\overline{a_{11}} & \cdots & \overline{a_{n1}} \\ \cdots & \cdots & \cdots \\ \overline{a_{1n}} & \cdots & \overline{a_{nn}} \end{pmatrix}$,

транспонированную и комплексно сопряжённую к матрице A, и обозначить оператор, имеющий в базисе e_1, \dots, e_n матрицу A^* своей матрицей, то получим оператор, сопряжённый к данному ϕ . Существование доказано.

Докажем единственность. Пусть $(\varphi(x),y)=(x,\varphi^*(y))$, и, кроме того, $(\varphi(x),y)=(x,\psi(y))$. Проверим, что $\varphi^*=\psi$.

<u>Лемма.</u> Пусть $x \in V$ и (x,y) = 0 $\forall y \in V$. Тогда x = 0. <u>Доказательство леммы.</u> Если (x,y) = 0 $\forall y \in V$, то, в частности, при y = 0 получим (x,x) = 0. Следовательно, x = 0. Пусть теперь $(x,\varphi^*(y)) = (x,\psi(y))$ $\forall x$, следовательно, $(x,\varphi^*(y)-\psi(y)) = 0$. Тогда по лемме $\varphi^*(y) - \psi(y) = 0$ $\forall y$. Это значит, что $\varphi^*(y) = \psi(y)$ $\forall y$, то есть $\varphi^* = \psi$. Теорема доказана. Следствие. Из доказательства теоремы следует, что для нахождения оператора φ^* надо сначала найти матрицу A оператора φ в каком — нибудь ОНБ. Затем построить матрицу A^* , транспонированную и комплексно сопряжённую к матрице A. Тогда матрица A^* будет матрицей оператора φ^* во взятом ОНБ.

<u>Определение.</u> Пусть V — унитарное пространство, φ : $V \to V$ называется нормальным оператором, если $\varphi \cdot \varphi^* = \varphi^* \cdot \varphi$ (здесь имеется в виду умножение $' \cdot '$ в кольце операторов, то есть последовательное их применение).

Примеры.

- 1) φ самосопряжённый оператор, то есть $\varphi = \varphi^*$. Если $\varphi = \varphi^*$, то $\varphi \cdot \varphi^* = \varphi \cdot \varphi = \varphi^* \cdot \varphi$, следовательно, φ нормальный оператор. Пусть e_1, \ldots, e_n ортонормированный базис V и A матрица φ в этом базисе. Тогда по следствию из теоремы матрица \overline{A}^T комплексно сопряжённая и транспонированная к A будет матрицей φ^* в этом базисе, $\varphi = \varphi^* \Leftrightarrow A = \overline{A}^T$. Матрица, которая равна своей комплексно сопряжённой и транспонированной, называется эрмитовой. Таким образом, матрица самосопряжённого оператора является эрмитовой.
- 2) $\varphi \underline{\mathsf{унитарный}}$ оператор, то есть $\varphi^* \cdot \varphi = \varepsilon$, где ε единичный или тождественный оператор, $\varepsilon(x) = x \ \forall x \in V$. Унитарный оператор является нормальным. Пусть A матрица унитарного оператора φ . Тогда $A\left(\overline{A}\right)^T = E$. Матрица с таким свойством называется унитарной. Если A вещественная матрица, то $A = \overline{A}$ и A унитарна, то $AA^T = E$, значит A ортогональная.

<u>Теорема 2.</u> Для всякого нормального оператора, действующего в унитарном пространстве, существует ортонормированный базис, так что матрица этого оператора и матрица оператора, сопряжённого к нему, в этом базисе диагональные. При этом на диагонали стоят собственные числа и соответственные диагональные элементы этих матриц комплексно сопряжены.

Эту теорему приводим без доказательства.

<u>Теорема 3.</u> Для того, чтобы нормальный оператор φ был самосопряжённым, необходимо и достаточно, чтобы все его собственные числа были вещественными.

Доказательство.

<u>Необходимость.</u> Пусть φ — самосопряжённый, то есть $\varphi = \varphi^*$. По предыдущей теореме существует ортонормированный базис пространства, в котором матрицы обоих операторов диагональные и при этом

$$A_{\varphi} = diag[\lambda_1, ..., \lambda_n], A_{\varphi^*} = diag[\overline{\lambda_1}, ..., \overline{\lambda_n}].$$

Равенство $\varphi=\varphi^*$ влечёт $A_{\varphi}=A_{\varphi^*}$, следовательно, $\lambda_i=\overline{\lambda_i}$, то есть λ_i – вещественное.

<u>Достаточность.</u> Пусть все собственные числа оператора φ вещественные. По предыдущей теореме 2 в пространстве существует базис из собственных векторов операторов φ и φ^* .

В этом базисе оператор φ имеет матрицу $A_{\varphi}=diag[\lambda_1,...,\lambda_n]$, а оператор φ^* имеет матрицу $A_{\varphi^*}=diag[\overline{\lambda}_1,...,\overline{\lambda}_n]$.

По условию, $\lambda_i = \overline{\lambda}_i, \ i = 1, ..., n.$

Следовательно, $A_{arphi^*}=A_{arphi}$, то есть $\,arphi=arphi^*.\,$

Теорема доказана.

<u>Теорема 4.</u> Для того, чтобы нормальный оператор был унитарным, необходимо и достаточно, чтобы все его собственные числа по модулю равнялись единице (имеется в виду модуль комплексного числа). Доказательство.

Необходимость. Допустим, что нормальный оператор φ является унитарным, то есть $\varphi \cdot \varphi^* = \varepsilon$. По теореме 2 существует ортонормированный базис, состоящий из собственных векторов φ и φ^* , при этом

$$A_{\varphi} = \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \cdots & \cdots & \cdots \\ 0 & \cdots & \lambda_n \end{pmatrix}, A_{\varphi^*} = \begin{pmatrix} \overline{\lambda}_1 & \cdots & 0 \\ \cdots & \cdots & \cdots \\ 0 & \cdots & \overline{\lambda}_n \end{pmatrix}.$$

Из условия $\phi\phi^*=arepsilon$ следует, что $A_{\phi}A_{\phi^*}=E$, то есть

$$A_{\varphi}A_{\varphi^*} = \begin{pmatrix} \lambda_1\overline{\lambda}_1 & \cdots & 0 \\ \cdots & \cdots & \cdots \\ 0 & \cdots & \lambda_n\overline{\lambda}_n \end{pmatrix} = \begin{pmatrix} 1 & \cdots & 0 \\ \cdots & \cdots & \cdots \\ 0 & \cdots & 1 \end{pmatrix}.$$

Поэтому $1 = \lambda_i \overline{\lambda}_i = |\lambda_i|^2$, i = 1, ..., n.

Следовательно, $|\lambda_i| = 1, \ i = 1, ..., n.$

<u>Достаточность.</u> Пусть $|\lambda_i|=1, i=1,...,n$ и φ – нормальный оператор. Проверим, что φ – унитарный, то есть $\varphi \varphi^*=\varepsilon$.

По теореме 2 строим ортонормированный базис, в котором $A_{\omega} =$

$$\begin{pmatrix} \lambda_1 & \cdots & 0 \\ \cdots & \cdots & \cdots \\ 0 & \cdots & \lambda_n \end{pmatrix}, A_{\varphi^*} = \begin{pmatrix} \overline{\lambda}_1 & \cdots & 0 \\ \cdots & \cdots & \cdots \\ 0 & \cdots & \overline{\lambda}_n \end{pmatrix}.$$

Следовательно, $A_{\varphi}A_{\varphi^*}=E$, то есть $\varphi\varphi^*=\varepsilon$. Теорема доказана.

Полярное разложение оператора.

Определение. Самосопряжённый оператор φ называется положительно определённым, если $(\varphi(x), x) > 0 \ \forall x \neq 0$.

<u>Замечание.</u> Это определение имеет смысл, так как $(\varphi(x), x)$ – вещественное число для самосопряжённого оператора φ . Действительно, имеем

$$(\varphi(x),x) = (x,\varphi^*(x)) = (x,\varphi(x)) = \overline{(\varphi(x),x)}$$
 в унитарном пространстве.

<u>Лемма 1.</u> Самосопряжённый оператор φ является положительно определённым тогда и только тогда, когда все его собственные числа положительны.

<u>Доказательство.</u> Пусть $u_1, ..., u_n$ – ОНБ из собственных векторов оператора φ , $\lambda_1, ..., \lambda_n$ – соответствующие собственные числа. Тогда

$$(\varphi(x), x) = (\varphi(x_1u_1 + \dots + x_nu_n), x_1u_1 + \dots + x_nu_n) = = (x_1\lambda_1u_1 + \dots + x_n\lambda_nu_n, x_1u_1 + \dots + x_nu_n) = = \lambda_1|x_1|^2 + \dots + \lambda_n|x_n|^2 > 0$$

тогда и только тогда, когда $\lambda_i>0 \; \forall i=1,\ldots,n.$ Лемма доказана.

Лемма 2. Из положительно определённого оператора ϕ можно «извлечь квадратный корень», являющийся самосопряжённым положительно определённым оператором. Это значит, что существует положительно определённый самосопряжённый оператор ψ такой, что $\phi=\psi^2$.

<u>Доказательство.</u> Пусть $\lambda_1,\ldots,\lambda_n$ — собственные числа оператора φ и u_1,\ldots,u_n — ОНБ из собственных векторов оператора φ . Тогда $\lambda_i>0$ по лемме 1 и существует $\sqrt{\lambda_i}$, $i=1,\ldots,n$.

Пусть ψ – оператор, имеющий u_1,\dots,u_n своими собственными векторами и $\sqrt{\lambda_i}$ – соответствующие им собственные числа. Тогда ψ – самосопряжённый и положительно определённый (так как $\sqrt{\lambda_i}>0$). Кроме того, $\psi^2=\varphi$, так как в базисе из собственных векторов u_1,\dots,u_n квадрат матрицы оператора ψ равен матрице оператора φ . Следовательно, $\psi^2=\varphi$.

Лемма доказана.

<u>Теорема 5.</u> (полярное разложение оператора). Любой невырожденный оператор равен произведению унитарного на положительно определённый.

<u>Доказательство.</u> Пусть φ – невырожденный оператор (то есть $ker\varphi = \{0\}$). Тогда $\varphi^*\varphi$ – самосопряжённый положительно определённый оператор. Проверим это.

- а) $(\varphi^*\varphi)^*=\varphi^*(\varphi^*)^*=\varphi^*\varphi$, следовательно, $\varphi^*\varphi$ –самосопряжённый.
- b) $(\varphi^*\varphi(x), x) = (\varphi(x), \varphi(x)) > 0 \quad \forall x \neq 0.$ Следовательно, $\varphi^*\varphi$ – положительно определённый.

Поэтому по лемме 2 существует ψ — квадратный корень из $\varphi^*\varphi$, то есть $\varphi^*\varphi=\psi^2\Longrightarrow\psi^{-1}\varphi^*\varphi\psi^{-1}=\psi^{-1}\psi^2\psi^{-1}=\varepsilon$, $(\varphi\psi^{-1})^*\varphi\psi^{-1}=\varepsilon$. Следовательно, оператор $\eta=\varphi\psi^{-1}$ — унитарный, тогда $\varphi=\eta\psi$ — это и есть полярное разложение оператора φ .

Замечание. В размерности 1 ему соответствует $z=re^{i\varphi}$.

§3. <u>Операторы в евклидовом пространстве.</u>

 $\underline{\text{Теорема 6.}}$ Пусть φ — оператор в евклидовом пространстве V над R, $\dim V = n > 2$. Тогда в V существует инвариантное подпространство размерности 1 или 2.

<u>Доказательство.</u> Характеристический многочлен оператора ϕ — это многочлен степени n с вещественными коэффициентами. Если у него есть хоть один вещественный корень λ , то в V найдётся собственный вектор,

соответствующий собственному числу λ . Подпространство, натянутое на этот собственный вектор, будет искомым инвариантным подпространством.

Допустим теперь, что все корни характеристического многочлена — комплексные числа. Пусть A — матрица оператора φ в некотором базисе $e_1, \ldots, e_n, \ \lambda$ — собственное число матрицы $A, \ \lambda = \alpha + i\beta \in \mathbb{C}$.

Найдём собственный столбец Z_0 матрицы A, то есть решим систему $AZ=\lambda Z$.

Элементы столбца Z_0 — это комплексные числа $Z=\begin{pmatrix} x_1+iy_1 \\ \vdots \\ x_n+iy_n \end{pmatrix}$. Подставим

этот столбец Z_0 в систему $AZ=\lambda Z.$ Выпишем подробно полученные

тождества:
$$\begin{cases} a_{11}(x_1+iy_1)+\dots+a_{1n}(x_n+iy_n)=(\alpha+i\beta)(x_1+iy_1)\\ \dots\\ a_{n1}(x_1+iy_1)+\dots+a_{nn}(x_n+iy_n)=(\alpha+i\beta)(x_n+iy_n) \end{cases}$$

Разделим здесь вещественные и мнимые части. Тогда получим

(1)
$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = \alpha x_1 - \beta y_1 \\ \dots \\ a_{n1}x_1 + \dots + a_{nn}x_n = \alpha x_n - \beta y_n \end{cases}$$

(2)
$$\begin{cases} a_{11}y_1 + \dots + a_{1n}y_n = \beta x_1 + \alpha y_1 \\ \dots \\ a_{n1}y_1 + \dots + a_{nn}y_n = \beta x_n + \alpha y_n \end{cases}$$

Рассмотрим два вектора $u,v\in V$, заданные равенствами

$$u = x_1 e_1 + \dots + x_n e_n$$
, $v = y_1 e_1 + \dots + y_n e_n$.

Тогда система (1) показывает, что $\varphi(u)=\alpha u-\beta v$, а система (2) показывает, что $\varphi(v)=\beta u+\alpha v$. Рассмотрим $L=\mathcal{L}(u,v)$ – линейную оболочку векторов u,v. Тогда L – инвариантное подпространство в V и $\dim L\leq 2$.

Теорема доказана.

<u>Определение.</u> Оператором, сопряжённым к оператору $\varphi: V \to V$, действующему в евклидовом пространстве V, называется оператор

$$\varphi^*$$
: $V \to V$ такой, что $(\varphi(x), y) = (x, \varphi^*(y)) \ \ \forall x, y \in V$.

Оператор ϕ^* существует и единственен

(доказательство аналогично доказательству теоремы 1).

Определение. Оператор $\varphi: V \to V$ называется нормальным, если $\varphi^* \varphi = \varphi \varphi^*$ (здесь V — евклидово).

<u>Теорема 7.</u> Пусть V — евклидово, $\varphi:V\to V$ — нормальный оператор. Матрица нормального оператора φ в произвольном базисе подобна матрице

$$B = \begin{pmatrix} \lambda_1 & \cdots & 0 & & & \\ \cdots & \ddots & \cdots & & 0 & \\ 0 & \cdots & \lambda_s & & & \\ & & & \Lambda_{s+1} & \cdots & 0 \\ 0 & & \cdots & \ddots & 0 \\ & & 0 & \cdots & \Lambda_{s+t} \end{pmatrix}.$$

Здесь B — блочно-диагональная матрица, в которой первые s диагональных элементов — это вещественные собственные числа оператора ϕ (если они есть!). Дальше по диагонали стоят квадратные 2×2 блоки

$$\Lambda_{j} = \begin{pmatrix} \alpha_{s+j} & \beta_{s+j} \\ -\beta_{s+j} & \alpha_{s+j} \end{pmatrix}$$
, $j=1,2,...,t$, где $\lambda_{s+j} = \alpha_{s+j} + i\beta_{s+j}$ – комплексные собственные числа матрицы оператора φ (но не оператора φ), $\beta_{s+j} \neq 0$. Напомним, что тогда $\overline{\lambda_{s+j}} = \alpha_{s+j} - i\beta_{s+j}$ – тоже собственные числа матрицы оператора φ ($j=1,2,...,t$); $\lambda_{1},...,\lambda_{s},\,\lambda_{s+1},\,\overline{\lambda_{s+1}},...$, $\overline{\lambda_{s+t}}$ – все корни характеристического многочлена матрицы оператора φ .

Приводим эту теорему без доказательства.

<u>Теорема 8</u> (Эйлер). Любое вращение трёхмерного пространства, сохраняющее ориентацию, есть вращение вокруг некоторой оси.

<u>Доказательство.</u> При вращении орты i, j, k переходят в новые орты e_1, e_2, e_3 , при этом тройка векторов e_1, e_2, e_3 — правая. Значит, матрица оператора вращения в базисе i, j, k — это ортогональная матрица с определителем «+1». Известно (теорема 4), что собственные числа такой матрицы равны по модулю единице. Возможны следующие варианты:

- а) Все три собственные числа вещественные и равны единице по модулю ($\lambda_1=1,\;\lambda_2=\lambda_3=-1\;$ или $\lambda_1=\lambda_2=\lambda_3=1\;$)
- b) Одно собственное число вещественное (и равно единице), а два других комплексно сопряжённые числа, равные единице по модулю $(\lambda_1 = 1, \ \lambda_{2,3} = cos\alpha \pm isin\alpha)$.

В любом случае получаем, что оператор вращения имеет собственное число, равное единице. Собственный вектор, соответствующий этому собственному

числу, является направляющим вектором оси вращения, а α — это угол, на который происходит вращение.

§4. Оператор проецирования.

Пусть $V=L_1 \oplus L_2$.Тогда $\ \forall \ v \in V \ v=l_1+l_2$, $\ l_1 \in L_1$, $l_2 \in L_2$ и данная запись единственна.

Элемент l_1 называется проекцией вектора v на L_1 параллельно L_2 . Отображение $\varphi\colon V\to V$, сопоставляющее каждому $v\in V$ его проекцию l_1 на L_1 , называется оператором проецирования пространства V на L_1 параллельно L_2 . Пишут: $\varphi(v)=l_1$.

Если $\varphi\colon V \to V$ — оператор проецирования на L_1 параллельно L_2 , то имеем с одной стороны $\varphi(v)=l_1$, а с другой стороны $\varphi(\varphi(v))=\varphi(l_1)=l_1$, так как $l_1=l_1+0$. Поэтому $\varphi(\varphi(v))=\varphi(v) \ \ \forall v\in V$. Это значит, что $\ \varphi\cdot\varphi=\varphi$. Оператор $\ \varphi$, удовлетворяющий равенству $\ \varphi\cdot\varphi=\varphi$, называется идемпотентным (от английского identity — тождественность, идентичность, potential — потенциал, степень).

Таким образом, оператор проецирования – идемпотентен.

Обратно, любой идемпотентный оператор, отличный от нулевого и тождественного, есть оператор проецирования.

Действительно, пусть

$$arphi^2=arphi\cdotarphi=arphi.$$
 Обозначим $imarphi=arphi(V)=L_1$, $(arepsilon-arphi)(V)=L_2$ (здесь $arepsilon$ – тождественный оператор, $arepsilon(v)=(v)$ $\ \forall v\in V$).

Для любого $v \in V$ верно равенство

$$v=\varphi(v)+(\varepsilon-\varphi)(v)=l_1+l_2$$
, где $l_1=\varphi(v), l_2=(\varepsilon-\varphi)(v).$

Поэтому $V=L_1+L_2$.

Проверим, что $L_1\cap L_2=\{0\}$. Пусть $v\in L_1\cap L_2$, тогда $v=\varphi(v')$ и $v=\varphi(v'')$. Следовательно, из первого имеем $\varphi(v)=\varphi^2(v')=\varphi(v')=v$, а из второго $\varphi(v)=(\varphi-\varphi^2)(v'')=0$. Значит, v=0.

Итак, $V=L_1 \oplus L_2$ и φ является оператором проецирования V на L_1 .

Оператор проецирования является оператором простой структуры.

Действительно, возьмём в качестве базиса V объединение базисов L_1 и L_2 .

В таком базисе матрица оператора проецирования диагональная,

$$D = diag[1,1,...,1,0,...,0].$$

Пусть теперь V — унитарное пространство, $V=L_1 \oplus L_2$, где $L_2=L_1^\perp$.

В этом случае оператор проецирования V на L_1 называется оператором ортогонального проецирования.

Оператор ортогонального проецирования самосопряжён, так как он имеет вещественную диагональную матрицу в ортонормированном базисе, полученным объединением ортонормированных базисов L_1 и L_2 .

<u>Теорема 9.</u> Любой самосопряжённый идемпотентный оператор φ есть оператор ортогонального проецирования.

Эту теорему мы приведём без доказательства.

Пример. Найти канонический вид B ортогональной матрицы A и

ортогональную матрицу
$$Q$$
 такую, что $B=B^{-1}AQ$, где $A=\begin{pmatrix} \frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \end{pmatrix}$.

<u>Решение.</u> Воспользуемся методом, применённом при доказательстве теоремы 7.

Ищем собственные числа матрицы A. Характеристический многочлен матрицы A имеет вид

$$f_A(t) = det(A - tE) = -t^3 + 2t^2 - 2t + 1.$$

Его корнями являются числа $\lambda_1=1, \ \lambda_2=\frac{1}{2}+\frac{\sqrt{3}}{2}i, \ \lambda_3=\frac{1}{2}-\frac{\sqrt{3}}{2}i.$

Собственным столбцом матрицы A, соответствующим собственному числу

$$\lambda=1$$
, является столбец $egin{pmatrix} x_3 \\ x_3 \\ x_3 \end{pmatrix}=x_3 egin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ при любом $x_3
eq 0$.

Берём
$$x_3 = \frac{1}{\sqrt{3}}$$
. Получаем $e_1 = \begin{pmatrix} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{pmatrix}$.

Ищем собственные столбцы, соответствующие комплексному собственному числу $\lambda = \frac{1}{2} + \frac{\sqrt{3}}{2}i$.

$$\begin{pmatrix} \frac{1}{6} - \frac{\sqrt{3}}{2}i & -\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{6} - \frac{\sqrt{3}}{2}i & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} & \frac{1}{6} - \frac{\sqrt{3}}{2}i \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 & 1 \\ 4 & 1 - 3\sqrt{3}i & -2 \\ -2 & 4 & 1 - 3\sqrt{3}i \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 1 - \sqrt{3}i \\ 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & \frac{1}{2} + \frac{\sqrt{3}}{2}i \\ 0 & 1 & \frac{1}{2} - \frac{\sqrt{3}}{2}i \\ 0 & 0 & 0 \end{pmatrix};$$

$$X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} - \frac{\sqrt{3}}{2}i \\ -\frac{1}{2} + \frac{\sqrt{3}}{2}i \end{pmatrix} x_3.$$

Поясним первый переход: все строки матрицы A прибавляем к первой и делим её на $\frac{1}{2} - \frac{\sqrt{3}}{2}i$.

Берём
$$x_3=1$$
 и в столбце $X=\begin{pmatrix} -\frac{1}{2}-\frac{\sqrt{3}}{2}i\\ -\frac{1}{2}+\frac{\sqrt{3}}{2}i\\ 1 \end{pmatrix}$ выделяем действительную и

мнимую части.

Обозначим
$$u=\begin{pmatrix}-\frac{1}{2}\\-\frac{1}{2}\\1\end{pmatrix}$$
, $v=\begin{pmatrix}-\frac{\sqrt{3}}{2}\\\frac{\sqrt{3}}{2}\\0\end{pmatrix}$. Тогда $X=u+iv$, $u\perp v$.

Имеем $AX = \lambda X$;

$$A(u+iv) = \left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)(u+iv);$$

$$Au + iAv = \left(\frac{1}{2}u - \frac{\sqrt{3}}{2}v\right) + i\left(\frac{\sqrt{3}}{2}u + \frac{1}{2}v\right).$$

Приравнивая действительные и мнимые части, получим

$$Au = \frac{1}{2}u - \frac{\sqrt{3}}{2}v$$

$$Av = \frac{\sqrt{3}}{2}u + \frac{1}{2}v$$

Имеем $||u|| = ||v|| = \sqrt{\frac{3}{2}}$, $u \perp v$.

Обозначим $e_2 = \frac{u}{\|u\|}$, $e_3 = \frac{v}{\|v\|}$.

Поэтому
$$\begin{bmatrix} Ae_1=e_1\\ Ae_2=\frac{1}{2}e_2-\frac{\sqrt{3}}{2}e_3\\ Ae_3=\frac{\sqrt{3}}{2}e_2+\frac{1}{2}e_3 \end{bmatrix}.$$

<u>Вывод.</u> Видим, что оператор умножения на матрицу A в пространстве R^3 оставляет неподвижным вектор $e_1=\frac{1}{\sqrt{3}}\binom{1}{1}$, так как $Ae_1=e_1$.

Кроме того, этот оператор действует в плоскости, перпендикулярной к e_1 , как поворот на угол $\left(-\frac{\pi}{3}\right)$.

Таким образом, оператор умножения на матрицу A действует как оператор вращения трёхмерного пространства вокруг оси OL с направляющим вектором e_1 на угол $\left(-\frac{\pi}{3}\right)$.

Список литературы

- [1] В.А.Ильин, Э.Г.Позняк. Линейная алгебра. М.;Наука.1984.
- [2] Л.И.Головина. Линейная алгебра и некоторые ее приложения. М.;Наука.1979.
- [3] Д.К.Фадеев. Лекции по линейной алгебре. Лань.2007.

Оглавление

1. Введение	3
2. Операторы в унитарном пространстве	
]римеры	
Полярное разложение оператора	
3. Операторы в евклидовом пространстве	
4. Оператор проецирования	
Писок литературы	17