Санкт-Петербургский политехнический университет Петра Великого Институт физики, нанотехнологий и телекоммуникаций

На правах рукописи

Елистратова Марина Анатольевна

Оптические и электрические свойства структур на основе тетрафенилпорфиринов

Направление подготовки 03.06.01 Физика и астрономия

Направленность 03.06.01_07 Физика полупроводников

НАУЧНЫЙ ДОКЛАД

об основных результатах научно-квалификационной работы (диссертации)

Автор работы: Елистратова Марина Анатольевна Научный руководитель: к. ф.-м. н., доцент, Захарова Ирина Борисовна

Санкт Петербург – 2019

Научно-квалификационная работа выполнена на кафедре Института физики, нанотехнологий и телекоммуникаций федерального государственного автономного образовательного учреждения высшего образования «Санкт-Петербургский политехнический университет Петра Великого»

Зав. каф. физики полупроводников и наноэлектроники:	–Фирсов Дмитрий Анатольевич, доктор физико-математических наук, профессор
Научный руководитель:	–Захарова Ирина Борисовна, кандидат физико-математических наук, доцент
Рецензент:	–Ермолаева Галина Михайловна, кандидат физико-математических наук, начальник лаборатории кине- тической спектроскопии и новых оп- тических технологий АО «ГОИ им. С.И. Вавилова»

С научным докладом можно ознакомиться в библиотеке ФГАОУ ВО «Санкт-Петербургский политехнический университет Петра Великого» и на сайте Электронной библиотеки СПбПУ по адресу: http://elib.spbstu.ru

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы

Быстро развивающейся областью полупроводниковой наноэлектроники в настоящее время является разработка органических функциональных материалов для создания различных оптоэлектронных приборов, в том числе светоизлучающих структур (OLED) и солнечных элементов [1], которые могли бы стать альтернативой кремниевым. Преимуществом органических материалов над кремнием является возможность создавать гибкие, легкие, прозрачные [2], но при этом эффективные и недорогие приборы. Среди прочих известных органических материалов для этих целей нашли широкое применение металлопорфирины и их молекулярные комплексы, обладающие способностью к самоорганизации. Самоорганизация является новым перспективным подходом к созданию наноструктур путем упорядочивания молекул за счет внутренних факторов, без внешнего специфического воздействия. Принципиальное отличие от традиционных методов состоит в том, что желаемая структура создается с нуля с минимально возможным размером сопоставимым с размерами молекул (десятки ангстрем). В стандартных методах полупроводниковой технологии напротив, желаемая структура изготавливается из большего объема материала и требует проведения многих технологических этапов (травление, литография и др.), что значительно увеличивает размеры и стоимость готового изделия. Применение самоорганизации порфиринов позволяет получать материалы для органических светоизлучающих приборов [3], сенсоров, фотоэлементов [4] представляющих прикладной интерес в фотонике и оптоэлектронике. В последние годы появились работы, изучающие влияние самоорганизации (агрегирования) порфиринов как в пересыщенных растворах, так и в монослоях - в твердотельной фазе, полученной методом вакуумной конденсации [5] на спектральные характеристики фотолюминесценции [6]. В настоящее время остаются практически не изученными причины появления самоорганизации, а также влияние подложки и условий конденсации на структуру пленок и их оптические свойства, что и является задачей настоящей работы.

В последние годы оптические и структурные свойства порфиринов изучались в основном в растворах, в то же время существует множество отработанных техно-

логических методов для создания твердотельных пленок на основе порфирина. Среди таких методов можно выделить метод термического напыления в вакууме и метод полива из раствора. Однако оптические свойства твердотельные порфиринов и их связь со структурой пленок остались вне поля зрения исследователей.

Особый интерес представляют молекулярные комплексы порфиринов с фуллереном С₆₀. При взаимодействии порфирин и фуллерен могут образовывать молекулярные комплексы уже в растворе, что делает производство композитных пленок проще и дешевле.

Цель и задачи исследования

Целью работы являлось получение новых данных о свойствах наноструктур и тонких пленок на основе материалов из группы тетрафенилпорфиринов, а также композитов с фуллереном C_{60} ; обоснование связи между структурой порфириновых пленок и их оптическими свойствами, а также возможности управления этими свойствами посредством изменения технологических параметров роста; объяснение различия в способности к самоорганизации различных металлопорфиринов при помощи квантово-химических расчетов.

Для реализации указанных целей были поставлены следующие задачи:

1. Изготовить серию образцов тонких пленок тетрафенилпорфиринов MeTPP (Me = H₂, Co, Cu, Zn, комплекс Fe-Cl) методом полива из раствора в толуоле и термическим вакуумным напылением с добавлением фуллерена C_{60} и без.

2. Исследовать состав, структуру и морфологию поверхностей, полученных тонких пленок методами растровой электронной, атомно-силовой и оптической микроскопии, рентгеновской дифракции.

3. Исследовать спектры фотолюминесценции и поглощения для различных структур тонких пленок и композитов

4. Провести квантово-химические расчеты оптимизированной геометрии, электронной структуры молекулярных комплексов и агрегированных форм на основе различных тетрафенилпорфиринов, а также комплексов с фуллереном C₆₀.

4

Научная новизна

Впервые показано влияние структуры (кристалличности) пленок тетрафенилпорфиринов на их оптические свойства. Выявлено смещение спектра в длинноволновую область при агрегации молекул порфирина и усилении степени кристалличности полученных структур. Показана зависимость формы спектра от структуры (кристалличности) пленки. Впервые было дано объяснение причинам появления самоорганизации при кристаллизации порфириновых структур с помощью квантовохимических расчетов электронной структуры агрегатов. Впервые обнаружена дополнительная длинноволновая полоса фотолюминесценции композитной пленки ZnTPP-C₆₀, являющаяся доказательством формирования молекулярных комплексов ZnTPP-C₆₀ в результате конденсации из газодинамического потока пара при термическом напылении пленки.

Теоретическая значимость

Развиты теоретические представления о фундаментальных особенностях и самоорганизации тетрафенилпорфиринов их комплексов; рассчитаны энергетические параметры упорядоченных порфириновых структур на основе проведенных квантово-химических расчётов.

Практическая значимость

Результаты работы позволили сформулировать принципы управления ростом порфириновых наноструктур. Управляемая самоорганизация тетрафенилпорфиринов позволяет создавать наноструктуры с желаемыми параметрами – размером, оптическими и фотоэлектрическими свойствами, что делает эти материалы привлекательными для использования в создании органических оптоэлектронных приборов. Нанокомпозиты на основе тетрафенилпорфиринов и фуллерена C₆₀ являются основой разрабатываемых солнечных элементов

Благодарность

Автор благодарит профессора О.Е. Квятковского за помощь в проведении квантово-химических расчетов; Г.В. Ли и Н.М. Романова за содействие в получении результатов микроскопии поверхностей полученных образцов и Р.М. Дубровина за за помощь в измерении спектров поглощения.

Апробация работы

Основные результаты работы были представлены на всероссийских и международных конференциях: Advanced Carbon NanoStructures", Россия, Санкт-Петербург (2015, 2017); Всероссийской молодежная конференция по физике полупроводников и наноструктур, полупроводниковой опто- и наноэлектронике, Россия, Санкт-Петербург (2015); Недели науки СПбПУ: научно-практическая конференция с межд. участием (2015); Международной зимней школы по физике полупроводников, Россия, Санкт-Петербург (Зеленогорск) (2016); International Workshop on Nanocarbon Photonics and Optoelectronics, Финляндия, Иматра (2016); Всероссийской конференция по наноматериалам с элементами научной школы для молодежи, Россия, Москва (2016); Научно-практической конференции «Наука настоящего и будущего», Россия, Санкт-Петербург (2019); Всероссийском научной форуме «Наука будущего – наука молодых», Россия, Сочи (2019).

Публикации

По теме диссертации опубликовано 7 печатных работ, все изданы в научных журналах из списка ВАК и входят в базу данных Scopus.

Представление научного доклада: основные положения

1. Уменьшение полной энергии при агрегации порфириновых молекул приводит к самоорганизации в различные структуры для разных типов порфиринов. Показана возможность управления ростом самоорганизованных структур на основе тетрафенилпорфирина.

2. Форма и положение спектра фотолюминесценции порфиринов зависит от структуры пленки: при агрегации и увеличении степени кристалличности пленки наблюдается красное смещение спектра по сравнению с раствором.

3. Тушение фотолюминесценции тетрафенилпорфиринов при добавлении фуллерена С₆₀ обусловлено фотоиндуцированным переносом заряда с порфирина на фуллерен и последующей безызлучательной рекомбинацией.

4. Появление новой, длинноволновой полосы в спектрах композитных образцов связано с образование молекулярных комплексов.

СОДЕРЖАНИЕ РАБОТЫ

Объекты и методы исследования

В качестве материалов для исследования были выбраны 5,10,15,20тетрафенилпорфирин (H₂TPP) и его комплексы с металлами MeTPP, где Me = Co, Cu, Zn, координированные комплекс Fe-Cl. В качестве акцептора в композитах на основе порфиринов использовался фуллерен C₆₀. Образцы для исследований были изготовлены методом термического напыления в вакууме, а также методом полива из раствора в толуоле на различные подложки (промышленный кремний, пористый кремний, слюда, стекло, KBr, графит, золото).

Для исследования морфологии поверхности и состава образцов использовался растровый-электронный микроскоп Jeol JSM-6390 и оптический микроскоп Nikon LV150. Спектры поглощения были измерены на спектрофотометре Shimadzu UV 3600 Plus. Непрерывные спектры фотолюминесценции (ФЛ) были получены с помощью автоматизированной установки на базе монохроматора Horiba Jobin Yvon FHR 640 с дифракционной решеткой 1200 шт/мм и детектора Symphony II 1024*256 Cryogenic Open-Electrode CCD. Возбуждение ФЛ производилось с помощью непрерывного полупроводникового лазера, мощностью 50 мВт с длиной волны 408 нм. Решение электронной задачи и оптимизация геометрии выполнялись в рамках теории функционала плотности (DFT) с гибридным функционалом B3LYP [7-9], с использованием спин-неограниченного метода MO LCAO SCF из пакета квантово-химических программ GAUSSIAN 03. Для всех атомов использовались базисные наборы гауссовых функций 6-311G (2df,2pd) с поляризующими d и f функциями.

Результаты и их обсуждение

1. Самоорганизация тетрафенилпорфиринов

Тетрафенилпорфирины это плоские планарные молекулы, у которых 4 фенильные группы располагаются в положении 5, 10, 15 и 20 тетрапирольного макроцикла. Атомы азота образуют квадрат внутри молекулы, внутри которого могут располагаться два атома водорода или атом металла с валентностью +2. Оптимизированные, по данным расчётов, молекулы H₂TPP и ZnTPP представлены на рисунке 1.

Рисунок 1. Опт имальные геомет рии молекул H₂TPP (a) ZnTPP (б) и по данным квант ово-химических расчет ов. Показаны направления х и у, диагональ х; у располагает ся в направлении фенильных колец.

Было показано, что порфирины CoTPP, CuTPP, H_2TPP обладают способностью к самоорганизации [10-11], которая проявляется в разрастании (нанонитей, непланарных кристаллических структур нановискеров или наностержней) при кристаллизации независимо от метода получения образцов. На рисунке 2 показаны примеры полученных образцов тетрафенилпорфиринатов, изготовленных разными методами на кремнии. Видно, что некоторые порфирины кристаллизуются в виде нанонитей (CuTPP, CoTPP, H₂TPP), а другие в планарные структуры или пленки, независимо от метода получения (FeClTPP, ZnTPP).

Было отмечено, что некоторые образцы не проявляют тенденции к самоорганизации в линейные структуры, при изготовлении различными методами и независимо от подложки. В то же время применение различных технологических параметров для получения пленок H₂TPP и CuTPP, позволяет получать различные виды линейных кристаллов. На рисунке 3 показаны полученные кристаллические структуры из H₂TPP в зависимости от типа подложки и метода нанесения: частично аморфные структуры (рис. 3 а, в), различные нанонити, растущие, как в плоскости подложки (рис. 3б), так и под углом к ней (рис. 3г). Также росту линейных структур способствует более низкая скорость кристаллизации – нанесение или полив на холодную подложку, без дополнительно нагрева.

Рисунок 2. Изображения поверхностей образцов тетрафенилпорфиринов полученных методом термического напыления (слева) и методом полива из раствора в толуоле (справа) на подложки кремния.

Рисунок 3. Образцы H₂TPP: а-полученный методом вакуумного напыления на золото (планарная поликристаллическая структура), б - полученный методом вакуумного напыления на графит (нанонити, лежащие в плоскости подложки), вполученный методом полива на кремнии (аморфная структура), г- полученный методом полива на пористом кремнии (нанонити, растущие под углом к подложке). Экспериментально продемонстрированно, что такие структуры обладают различными оптическими свойствами в зависимости от степени кристалличности полученных структур. На рисунке 4 представлены спектры ФЛ H₂TPP полученного на различных подложках методом полива, в сравнении с ФЛ исходного раствора с концентрацией 0,2 ммоль/л. В растворе с такой концентрацией реализуется случай слабого взаимодействия между молекулами порфирина и в терминах «кристалличности» его можно рассматривать, как аморфный случай.

В спектрах порфиринов наблюдается «красное» смещение, связанное с изменениями в электронной структуре при взаимодействии молекул между собой, т.е. при кристаллизации, что не противоречит данным работы [12]. Можно сделать вывод, что чем выше степень кристалличности структуры, тем сильнее ее спектр будет смещен в длинноволновую область, что подтверждено экспериментом (рис. 4). «Красное» смещение наблюдается также и в спектрах поглощения (рис. 5)

Рисунок 4. Спектры ФЛ образцов, полу- Рисунок 5. Спектры поглощения: ченных из раствора. 1 - раствор H₂TPP 1 - раствор H₂TPP, 2- пленка, полученная в толуоле, 2 - образец, полученный на методом вакуумного напыления промышленном кремнии, 3 - на мезопо- на слюде.

ристом кремнии, 4 - на слюде.

Образцы высокой степени кристалличности можно получить на ориентирующих подложках, в данной работе - подложке с искусственным микрорельефом (мезопористый кремний) и свежий скол слюды. Помимо бо́льшего «красного» смещения (на 25 нм), на них наблюдается ярко выраженное относительное изменение интенсивности ФЛ в двух пиках различной природы. Степень кристалличности порфириновых пленок на различных подложках исследована методом рентгеновской дифрактометрии.

Как известно, спектр ФЛ H_2 TPP состоит из двух максимумов, которые соответствуют, двум оптическим переходам в энергетической структуре порфирина - электронному переходу (пик ФЛ – 650-670нм) и электронно-колебательному (вибронному) (пик ФЛ – 710-730 нм) [12]. При переходе к твердой фазе усиливается взаимодействие между молекулами, что приводит к усилению интенсивности электронноколебательного переходов (длинноволнового пика). Усиление вибронной полосы может быть обусловлено понижением исходной симметрии молекул при образовании ковалентно-связанных молекулярных комплексов в кристалле [13].

Такие подложки, как стекло и промышленный кремний не способствуют росту кристаллических структур, в тоже время ориентирующие подложки позволяют выращивать трехмерные кристаллы без аморфной фазы большого размера, порядка 100 мкм (рис. 2 и 3) при прочих равных условиях. Плотная упаковка таких кристаллов и соответственно сильное взаимодействие приводит к тому, что длинноволновой пик становится основным (рис 4, кривая 4).

2. Порфирин на пористом кремнии

Для управления структурой конденсата было предложено использовать методы графоэпитаксии, т.е. применение подложек с микрорельефом. Показано, что это позволяет получать микро- и нанокристаллы тетрафенилпорфиринов высокой кристалличности. В данной работе использовался пористый кремний (рог -Si) разной степени пористости с разным размером рельефа поверхности. Мезопористый кремний (диаметр пор порядка 50 нм) позволяет получать кристаллиты, вытянутые в некотором направлении (нанонити). Нанопористый кремний, с меньшим диаметром пор (до 5 нм), оказывает на рост кристаллов порфирина меньшее влияние, и кристаллиты имеют одинаковый размер в трех направлениях. Порошок пористого кремния позволяет получать планарные кристаллиты с минимумом аморфной фазы при кристаллизации порфиринов из раствора. Как известно пористый кремний сам проявляет фотолюминесценцию в видимой области спектра. Для исследования вза-

имодействия порфирина с пористым кремнием были подготовлены образцы пористого кремния по стандартной методике электрохимического травления, имеющие фотолюминесценцию в видимом диапазоне. Спектры ФЛ были измерены до и после нанесения порфирина из раствора; также были измерены спектры порфирина нанесенного на кремний, не подвергшийся травлению. Результаты представлены на рисунке 5. Как было показано ранее форма спектра ФЛ, а именно относительные интенсивности электронного и электронно-колебательного пиков зависят от кристалличности структур. На рис.6 показаны два варианта с различными относительными интенсивностями: более аморфный образец (рис.6а) и более кристаллический (рис.6б). В обоих случаях наблюдается снижение интенсивности ФЛ por-Si и незначительное усиление интенсивности длинноволнового пика порфирина. Наблюдаемые явления можно объяснить тем, что максимум спектра ФЛ por-Si, лежит в области поглощения порфирина (см. рис. 5). Поглощение дополнительного излучения приводит к увеличению вероятности переходов с испусканием фотона. Снижение общей интенсивности порфирина объясняется уменьшение количества люминесцирующего вещества на подложке por-Si из-за меньшей адгезии при нанесении порфирина из раствора.

Рисунок 5. Спектры фотолюминесценции образцов тонких пленок H₂TPP на пористом кремнии. Показан случай аморфной тетрафенилпорфирина (а) и кристаллической (б) пленок.

3. Квантово-химические расчёты

объяснения Для причин появления самоорганизации V одних тетрафенилпорфиринов и отсутствия ее у других были проведены квантовохимические расчёты. Были рассчитаны оптимальная геометрия молекул, их димеров и тримеров, энергии уровней НОМО и LUMO для компонент и молекулярных комплексов, энергия связи комплекса и другие параметры. Для теоретического исследования явления самоорганизации были выбраны два порфирина: тетрафенилпорфирин H₂TPP, и тетрафенилпорфирин цинка ZnTPP, отличающиеся тем, что в центре порфиринового макроцикла вместо двух атомов водорода располагается Zn²⁺. В эксперименте самоорганизация этих материалов показывает противоположное поведение. Н₂ТРР в случае обоих методов получения пленок кристаллизуется в виде нанонитей, а ZnTPP в виде планарных структур. За основу модели построения кристаллов были взяты нековалентно связанные комплексы димеров и тримеров H₂TPP и ZnTPP (соединений двух и трех молекул порфирина соответственно). Рассмотрены различные возможные конфигурации димеров и тримеров, для которых определены: оптимальная геометрия, полная энергия и энергия формирования структуры (E_{form}), определяемая как разность полных энергий составляющих комплекс молекул в свободном состоянии и энергии комплекса оптимизированной конфигурации.

Введены следующие обозначения: на рис. 1 показаны направления осей х и у относительно тетрапирольного макроцикла. При образовании димеров и тримеров возможны смещения молекул друг относительно друга в различных направлениях (рис. 7, квадратом схематически обозначен тетрапиррольный макроцикл). Расстояние между плоскостями молекул в структурах димера и тримера H₂TPP и ZnTPP для основного состояния составляет 4,7Å.

В таблице 1 приведены основные результаты расчетов. Основным состоянием димера (ZnTPP)₂ с наименьшей полной энергией является такое, при котором одна молекула смещается по диагонали относительно другой, в направлении х;у, т.е. в сторону фенильных групп. Выигрыш в энергии при образовании такого димера со-

13

ставляет 343 мэВ (172 мэВ на 1 молекулу), что намного больше, чем для других рассмотренных конфигураций.

Рисунок 7. Возможные конфигурации димеров. Показан вид сверху (слева) и сбоку (справа).

Таблица 1. Оптимизированная геометрия и электронные свойства димеров (ZnTPP)₂ по данным квантово-химических расчетов.

Типы и симметрии димеров	<i>E</i> _{tot} , a.e,	E_{tot} - E_{GS} ,	2E(ZnTPP)-	HOMO-
		мэВ	E _{tot} [(ZnTPP) ₂], мэВ	LUMO, эB
Смещение в направлении	-7385.078054	0	343	2.847
ху, в сторону фенильных				
групп, $C_{2h}(^{1}A_{g})$.				
Смещение в направлении х,	-7385.071315	183	159	2.788
между фенильных групп,				
C_{2h} (¹ A_{g}).				

*Примечание : a.e. = 27,212 эВ- атомная единица энергии

Результаты расчетов для димеров $(H_2TPP)_2$ (таблица 2) подобны $(ZnTPP)_2$, однако выигрыш в энергии при образовании димера меньше, чем - 171 мэВ. Разница в энергиях формирования основного состояния димера и ближайшей по энергии конфигурации значительно меньше, чем для ZnTPP и составляет 16 мэВ. При образовании димера величина энергетического зазора HOMO-LUMO несколько уменьшается, по сравнению с одиночной молекулой (см. таблицу 2).

Таблица 2. Оптимизированная геометрия и электронные свойства димеров (H₂TPP)₂

Типы и симметрии димеров	E _{tot} , a.e.	E _{tot} -E _{GS} ,	2E(H ₂ TPP)-	HOMO-
		мэВ	E _{tot} [(H ₂ TPP) ₂], мэВ	LUMO, эB
Смещение в направлении	-3828.65954	0	171	2.738
ху, в сторону фенильных				
групп, $C_{2h}(^{1}A_{g})$.				
Смещение в направлении х,	-3828.65892	16	155	2.714
между фенильных групп,				
$C_{2\mathrm{h}}(^1A_g).$				

по данным квантово-химических расчетов.

*Примечание : a.e. = 27,212 эВ- атомная единица энергии

При увеличении числа звеньев при построении тримера увеличивается число возможных вариантов построения. Учитывая наличие различных направлений смещения, конфигурации тримеров были разделены на три группы: «прямая лестница» - такая конфигурация, при которой, каждая следующая молекула смещается в том же направлении, что и предыдущая; «обратная лестница» - каждая следующая молекула смещается в направлении обратном предыдущей; «зигзаг» - молекулы смещаются по спирали после выбранного направления.

По данным квантово-химических расчетов (см. таблицу 3), основным состоянием с минимальной полной энергией и оптимальной геометрией тетрафенил порфирина цинка является «зигзаг» (см. рис. 8а и 9а), а именно вторая молекула смещается в направлении х;у, третья по отношению ко второй - в направлении -х;у и оказывается повернутой на 90° по отношению к первой.

Выигрыш в энергии при образовании тримера больше, чем для димера – 574 мэВ (191 мэВ на одну молекулу). Увеличение выигрыша в энергии при увеличении числа звеньев приводит к дальннейшей самоорганизации по сценарию «зигзаг». При увеличении числа звеньев, такой конфигурации, наиболее вероятен рост планарных кристаллических образований (кристаллических и поликристаллических пленок).

В таблицах 3 и 4 приведены разницы между энергиями формирования различных конфигураций тримеров (ZnTPP)₃ и(H₂TPP)₃ соответственно. В отличие от (ZnTPP)₃, у тримера (H₂TPP)₃ основным состоянием является «прямая лестница» (рис. 8б и 9б). В то же время разница между основным состоянием и первым неосновным («зигзаг») всего 14 мэВ; а между основным и вторым неосновным 24 мэВ.

Основное состояние типа «прямая лестница» для H_2TPP способствует образованию линейных структур. Если при этом энергия взаимодействия с подложкой невелика, то тип кристаллизации будет зависеть от энергии формирования комплекса; если нет, то результат будет определяться свойствами подложки. Незначительно меняя условия роста и применяя ориентирующие подложки, технологически возможно формировать различные варианты пленок. Основное состояние тримера ZnTPP типа «зигзаг» делает наиболее вероятным именно разрастание планарных структур и менее вероятным другие типы самоорганизации при использовании стандартных методов получения пленок.

Рисунок 8. Схемы оптимальных геометрий триммеров а – структура «зигзаг» для (ZnTPP)₃, б – «прямая лестница» для (H₂TPP)₃

Рисунок.9. Оптимальные геометрии тримеров по данным квантово-химических расчётов а – структура «зигзаг» для (ZnTPP)₃, б – «прямая лестница» для (H₂TPP)₃

Таблица 3. Оптимизированная геометрия и электронные свойства тримеров

Типы и симметрии тримеров	E _{tot} , a.e.	E _{tot} –E _{GS} , мэВ	3E(ZnTPP)- E _{tot} [(ZnTPP) ₃], мэВ Выигрыш в энергии при образовании тримера.
Структура «Зигзаг» со смещением в направлении ху или -ху, $C_{2,}$ (^{1}A).	-1077.61930.	0	574
Прямая лестница со смещением в направлении ху, C_{2h} (${}^{1}A_{g}$).	-11077.61720	57	517
Обратная лестница со смещением в направлении ху, C_{2v} , (${}^{1}A_{1}$).	-1077.615125	114	460

(ZnTPP)₃ по данным квантово-химических расчетов.

Примечание : a.e. = 27,212 эВ– атомная единица энергии

Таблица 4. Оптимизированная геометрия и электронные свойства тримеров (H₂TPP)₃ по данным квантово-химических расчетов.

Типы и симметрии тримеров	$E_{\rm tot}$, a.e.	E _{tot} –E _{GS} , мэВ	3E(H ₂ TPP)- E _{tot} [(H ₂ TPP) ₃]), мэВ Выигрыш в энергии при образовании тримера
Прямая лестница со смещением в направлении ху, C_i (1A_g).	-5742.99225	0	338
Структура «Зигзаг» со смещением в направлении ху или -ху, $C_{2,}$ (^{1}A).	-5742.99172	14	323
Обратная лестница со смещением в направлении $xy, C_s, ({}^1A_1)$.	-5742.99128	26	312

*Примечание : a.e. = 27,212 эВ- атомная единица энергии

4. Гетеропереходы с использованием самоорганизации

В полупроводниковой технологии интерес представляют донорно-акцепторые структуры, как основа полупроводниковых приборов. Технологические особенности и наличие самоорганизации позволяет выращивать кристаллиты фуллерена на поверхности нанонитей порфирина, создавая так называемые объемные гетероперехо-

ды (ГП). Объемный ГП отличается от обычного тем, что граница раздела двух фаз не планарная, а имеет перепады высот, при этом в несколько раз увеличивается общая поверхность ГП. Можно предположить, что в объемном ГП разделение электронно-дырочной пары, возникшей при поглощении квантов света будет происходить с большей эффективностью. На рисунке 10 показаны изображения поверхностей композитных образцов CuTPP-C₆₀, полученные с помощью растрового электронного микроскопа. CuTPP при напылении образует нанонити длиной до 1мкм под углом 60° к поверхности подложки, а фуллерен образует кристаллиты на его поверхности создавая гетеропереход.

Рисунок 10. Снимки РЭМ композитной пленки СиТРР-С₆₀: слева вид сверху, справа – скол образца.

Аналогичные результаты были получены и для композитных образцов H_2 TPP-C_{60.} Как известно видимой фотолюминесценцией при комнатной температуре обладают не все порфирины [14], поэтому оптические свойства были исследованы для H_2 TPP и ZnTPP. На рисунках 11 и 12 показаны спектры фотолюминесценции растворов и твердых пленок, композитных образцов ZnTPP-C₆₀ с различным содержанием фуллерена C₆₀. Наблюдается тушение люминесценции порфирина пропорционально количеству C₆₀. Тушение обусловлено фотоиндуцированным переходом заряда с порфирина на фуллерен и последующей безызлучательной рекомбинацией. Качественное изображение энергетической структуры композитных образцов показано на рисунке 13. В спектрах также можно наблюдать незначительные изменения в поведении максимумов спектров, связанные с изменениями в энергетической структуре порфирина, которые вносит фуллерен.

Рисунок 11. Спектры фотолюминес- Рисунок 12. Спектры фотолюминесценции композитных образцов ZnTPP- C_{60} с различным содержанием фуллере- C_{60} с различным содержанием фуллерена C_{60} полученных методом термиче- на C_{60} полученных методом полива из ского напыления.

ценции композитных образцов ZnTPPраствора в толуоле.

Рисунок. 13. Качественное изображение энергетических уровней структур МеТРР-С₆₀. Двойными стрелками показаны безызлучательные переходы, волнистыми переход с испусканием фотона.

Большей интенсивностью ФЛ фуллерена обладают низкотемпературные спектры. Они позволяют получить информацию о наличии молекулярных комплексов ZnTPP-C₆₀.

Рисунок 14. Спектры фотолюминесценции Рисунок 15. Оптимальная геометрия пленок чистого ZnTPP и композита ZnTPP- комплекса ZnTPP-C₆₀ по данным C₆₀, измеренных при 77К. квантово-химических расчетов.

На рисунке 14 показаны спектры чистого и композитного образцов измеренных при 77К. При низких температурах не происходит изменения положения основных пиков порфирина, при этом отмечается увеличение интенсивности длинноволновой части спектра в области 685 нм, по отношению к коротковолновому с диной волны 620 нм. Относительно слабое излучение фуллерена, которое должно находиться в области 730-820 нм, совпадает с более сильной флуоресценцией порфирина и не может быть выделено из спектра. Наиболее важным результатом является появление пика на длине волны 885 нм, полученного впервые, что свидетельствует о формировании молекулярных комплексов ZnTPP- C_{60} ., поскольку по данным квантовохимических расчетов, для молекулярного комплекса C_{60} -ZnTPP, энергии первого сингелетного состояния составляет 1.2 эВ. Относительно небольшая интенсивность этого пика может быть связано с тем, что порфирин имеет низкую температуру сублимации (около 300 °C), а фуллерен высокую (550°C), что приводит образованию гетерограницы двух веществ. Образование молекулярных комплексов возможно только на гетерогранице двух материалов, следовательно, их количество не велико.

Изображение оптимизированной геометрии молекулярного комплекса представлено на рисунке 15.

5. Электрические свойства тонких пленок тетрафенилпорфиринов

Для исследования вольтамперных характеристик тонких пленок тетрафенилпорфиринов наибольший интерес представляют наиболее гладкие пленки, не имеющие выраженной шероховатости поверхности (см. рис. 2 и 3а), поскольку они позволяют обеспечить наилучший электрический контакт.

Вольтамперные характеристики и частотные зависимости импеданса образцов были измерены с помощью измерителя иммитанса E7-20. Контактом к пленке служил микрозонд из In-Ga эвтектики радиусом порядка 100 мкм и подложка кремния в качестве заднего контакта. Были исследованы образцы пленок ZnTPP, CuTPP, FeCITPP. Выявлен нелинейный характер BAX, объясненный в модели TOПЗ с ловушками, определены параметры ловушек. В BAX наблюдается эффект переключения (BAX имеет гистерезис при прямом и обратном ходе напряжения), механизм появления которого объясняется перезарядкой ловушек.

Заключение

Впервые произведено комплексное исследование свойств материалов на основе тетрафенилпорфиринов металлов и фуллерена C_{60} . Были получены чистые и композитные образцы с самоорганизацией в линейные наноструктуры, а также объемные гетеропереходы на основе этих веществ. С помощью квантово-химических расчётов дано объяснение появления самоорганизации в линейные кристаллические структуры. Показано влияние самоорганизации и степени кристалличности на спектры фотолюминесценции и поглощения. Изучены электрические характеристики пленок на кремнии на постоянном и переменном токе, показан нелинейных характер ВАХ.

На основе расчётов дано технологическое обоснование самоорганизации и предложены способы управления, позволяющие получать образцы различной формы и кристалличности и возможностью управления оптическими свойствами.

Показана возможность применения подложек пористого кремния, как подложки с микрорельефом различного размера. При использовании пористого кремния с видимой ФЛ наблюдается поглощение ФЛ пористого кремния с последующим переизлучением в длинноволновый максимум спектра порфирина.

Список использованной литературы

1. Xie Y. et al. Porphyrin cosensitization for a photovoltaic efficiency of 11.5%: a record for non-ruthenium solar cells based on iodine electrolyte //Journal of the American Chemical Society. – 2015. – T. 137. – N_{\odot} . 44. – C. 14055-14058.

2. Lindström H., Fili G. A transparent dye-sensitized solar cell and a method for manufacturing the solar cell : заяв. пат. 15117306 США. – 2016.

3. George L. et al. Photo-antimicrobial efficacy of zinc complexes of porphyrin and phthalocyanine activated by inexpensive consumer LED lamp //Journal of inorganic biochemistry. – 2018. – T. 183. – C. 94-100.

4. Chen L. et al. Supramolecular porphyrin photosensitizers: Controllable disguise and photoinduced activation of antibacterial behavior //ACS applied materials & interfaces. – $2017. - T. 9. - N_{\odot}. 16. - C. 13950-13957.$

Trinh C. et al. Chemical annealing of zinc tetraphenylporphyrin films: Effects on film morphology and organic photovoltaic performance //Chemistry of Materials. – 2012.
T. 24. – №. 13. – C. 2583-2591.

6. Zhang X. L. et al. Identifying the assembly configuration and fluorescence spectra of nanoscale zinc-tetraphenylporphyrin aggregates with scanning tunneling microscopy //Scientific reports. – 2016. – T. 6. – C. 22756.

7. Becke A. D. Density-functional thermochemistry. III. The role of exact exchange //The Journal of chemical physics. – 1993. – T. 98. – №. 7. – C. 5648-5652.

Becke A. D. Density-functional exchange-energy approximation with correct asymptotic behavior //Physical review A. – 1988. – T. 38. – №. 6. – C. 3098.

Lee C., Yang W., Parr R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density //Physical review B. – 1988. – T. 37. – №.
2. – C. 785.

10. М. А. Елистратова, И. Б. Захарова, О. Е. Квятковский. «Особенности самоорганизации тетрафенилпорфиринов по данным квантово-химических расчётов». Макрогетероциклы. 2019. В печати.

11. Елистратова М. А., Захарова И. Б., Ли Г. В., Дубровин Р. М., Сресели О. М. «Влияние условий кристаллизации на спектральные характеристики тонких пленок тетрафенилпорфирина». Физика и техника полупроводников. 2019. – Т. 53. – №. 1. С.55-58.

12. Гуринович Г. П., Севченко А. Н., Соловьев К. Н. Спектроскопия порфиринов //Успехи физических наук. – 1963. – Т. 79. – №. 2. – С. 173-234.

13. Гуринович Г. Л., Зенькевич З. И., Сагун Е. И., Шумел А. М., Спектральнолюминесцентные свойства и энергетика ковалентно-связанных димеров некоторых порфиринов // Оптика и спектроскопия. – 1984. – Т. 56. – №. 6. – С. 1037.

14. Harriman A. Luminescence of porphyrins and metalloporphyrins. Part 1.—Zinc (II), nickel (II) and manganese (II) porphyrins //Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases. – 1980. – T. 76. – C. 1978-1985.

Список работ, опубликованных по теме научно-квалификационной работы (диссертации)

Публикации в изданиях, рецензируемых ВАК

1. М. А. Елистратова, И. Б. Захарова, Н. М. Романов, В. Ю. Паневин, О. Е. Квятковский. Спектральная зависимость фотолюминесценции тонких пленок молекулярных комплексов ZnTPP C60 и CuTPP-C60 // Физика и техника полупроводников. – 2016. – Т. 50. – №. 9. – С. 1213-1219.

2. **M. A. Elistratova**, I. B. Zakharova, N. M. Romanov, O. E. Kvyatkovskii, I. Zakharchuk, E. Lahderanta, T. L. Makarova «Electronic structure, optical and magnetic properties of tetraphenylporphyrins-fullerene molecular complexes» //Journal of Physics: Conference Series. – IOP Publishing, 2016. – T. 690. – N_{\odot} . 1. – C. 012012.

3. Н. М. Романов, И. Б. Захарова, **М. А. Елистратова**, Е. Lahderanta «Деградация фотолюминесценции тонких пленок ZnTPP и ZnTPP-C60 под действием гамма облучения» Физика и техника полупроводников. – 2018. – Т. 52. – №. 8. – С. 931-938. 4. И. Б. Захарова, **М. А. Елистратова**, Н. М. Романов, О. Е. Квятковский «Особенности электронной структуры агрегированных форм ZnTPP по данным оптических измерений и квантово-химических расчетов» // Физика и техника полупроводников. – 2018. – Т. 52. – №. 13. С.1601-1607.

5. Н. М. Романов, И. Б. Захарова, **М. А. Елистратова**, Е. Lahderanta «Состав, структура тонких пленок ZnTPP и ZnTPP/C60 и влияние ренгеновского облучения на их фотолюминесценцию» // Научно-технические ведомости СПбПУ. – 2018. – T.11 – №. 2. С. 26-41.

6. **М. А. Елистратова**, И. Б. Захарова, Г. В. Ли, Р. М. Дубровин, О. М.Сресели «Влияние условий кристаллизации на спектральные характеристики тонких пленок тетрафенилпорфирина» // Физика и техника полупроводников. 2019. – Т. 53. – №. 1. С.55-58.

7. М. А. Елистратова, И. Б. Захарова, О. Е. Квятковский. «Особенности самоорганизации тетрафенилпорфиринов по данным квантово-химических расчётов». Макрогетероциклы. 2019