ТЕОРИЯ КОРАБЛЯ И СТРОИТЕЛЬНАЯ МЕХАНИКА

DOI: 10.24937/2542-2324-2018-4-386-11-19 УДК 624.046:624.074.4

Г.И. Ефремова, В.М. Рябов

ФГУП «Крыловский государственный научный центр», Санкт-Петербург, Россия

УСТОЙЧИВОСТЬ КОНИЧЕСКИХ ОБОЛОЧЕК

Объект и цель научной работы. Статья посвящена проблеме проверки устойчивости конических оболочек, по своим параметрам относящихся к классу прочных корпусных конструкций подводной техники.

Материалы и методы. Решение задачи строится на базе приближенной формулы, полученной обобщением решения Х.М. Муштари для постоянного значения отношения толщины конической оболочки (*t*) к ее радиусу (*r*) и, соответственно, зависящего от *r* параметров подкрепляющих оболочку шпангоутов. Рассматриваются оболочки без изломов образующей. Ряд составляющих базовой формулы установлен на основе численных расчетов.

Основные результаты. Выполнена оценка граничных условий конических оболочек, определяемых специальным параметром G. Рассмотрены 4 варианта граничных условий (оба края свободно оперты, оба края жестко заделаны; большой диаметр жестко заделан, меньший – свободно оперт; большой диаметр свободно оперт, меньший – жестко заделан). На основании сопоставлений численных и теоретических решений продемонстрирована высокая степень совпадения значений параметра G для приведенных вариантов граничных условий в широком диапазоне изменения параметра r_1/r_2 (где r_1 и r_2 – наибольший и наименьший радиусы конических оболочек).

При рассмотрении оболочек без шпангоутов предложена формула, позволяющая определить значение постоянной толщины равноустойчивой оболочки, соответствующее конкретному значению теоретического критического давления для конической оболочки с постоянным значением отношения толщины конической оболочки к ее радиусу.

Для определения наименьшего теоретического давления при постоянном отношении толщины конуса к радиусу предложена упрощенная формула, хорошо работающая для оболочек «средней длины».

Выполненный анализ устойчивости конических оболочек со шпангоутами показывает, что базовая формула удовлетворительно определяет теоретическое критическое давление оболочки средней длины с внутренними шпангоутами и завышает его при наличии наружных ребер жесткости.

Заключение. Разработан расчетно-аналитический метод оценки устойчивости несущих конических конструкций подводной техники, который может быть использован специалистами отраслевых НИИ и бюро-проектантов.

Ключевые слова: устойчивость, конические оболочки, радиус, толщина.

Авторы заявляют об отсутствии возможных конфликтов интересов.

NAVAL ARCHITECTURE

DOI: 10.24937/2542-2324-2018-4-386-11-19 UDC 624.046:624.074.4

Efremova G., Ryabov V. Krylov State Research Center, St. Petersburg, Russia

STABILITY OF CONICAL SHELLS

Object and purpose of research. This paper discusses stability verification of conical shells belonging to the class of pressure hull structures for underwater technology.

Materials and methods. Solution to the problem is based on an approximate formula derived through generalization of Mushtari solution for constant thickness-radius ratio t/r of conical shell and, accordingly for r-dependent parameters of shell stiffeners. This paper only investigates the shells with straight generatrix. A number of terms in the basic formula was found numerically.

Main results. This paper gives an assessment of boundary conditions for conical shells, determined by a special parameter, *G*. Four variants of boundary conditions are discussed: both ends simply supported; both ends fixed; greater diameter

For citations: Efremova G., Ryabov V. Stability of conical shells. Transactions of the Krylov State Research Centre. 2018; 386(4): 11–19 (in Russian).

Для цитирования: Ефремова Г.И., Рябов В.М. Устойчивость конических оболочек. Труды Крыловского государственного научного центра. 2018; 386(4): 11–19.

fixed, smaller simply supported; greater diameter simply supported, smaller fixed. Comparison of numerical and theoretical solution demonstrates quite a good correlation of G parameter for above-mentioned variants of boundary conditions in a wide range of r_1/r_2 ratios, where r_1 and r_2 are greatest and smallest radii of conical shells respectively.

For shells without stiffeners, the paper suggests a calculation formula yielding the value of constant thickness for an equally stable shell, corresponding to given theoretical critical pressure for a conical shell with constant t/r ratio.

To calculate the least theoretical pressure at constant t/r, this paper suggests a simplified formula that works well for "medium-length" shells.

Stability analysis of stiffened conical shells has demonstrated that the basic formula yields satisfactory results for critical theoretical pressures of medium-length shells with internal stiffeners, whereas for those with external ones these results are somewhat too high.

Conclusion. Calculation & analysis method suggested in this paper for stability assessment of conical bearing structures of underwater technology could be useful for the experts of dedicated research institutes and design offices.

Keywords: stability, conical shells, radius, thickness.

Authors declare lack of the possible conflicts of interests.

Введение

Introduction

Устойчивость конических оболочек рассмотрена в большом числе публикаций [1–8 и др]. Этому вопросу посвящена специальная монография И.Н. Преображенского и В.З. Грищака «Устойчивость и колебания конических оболочек» [6]. Тем не менее, полного решения задачи до сих пор нет – имеются лишь отдельные приближения, полученные при тех или иных упрощающих допущениях. К их числу принадлежит и эта работа, основанная, прежде всего, на работах Х.М. Муштари [4 и др.] и собственных исследованиях, в том числе на сопоставлении устойчивости оболочек постоянной и линейно переменной толщины.

Геометрия кругового конуса (рис. 1) описывается следующими параметрами:

- длина L;
- наибольшие (*r*₁) и наименьшие (*r*₂) радиусы;
- угол конусности γ (tg $\gamma = (r_1 r_2)/L$);
- радиус конуса в зависимости от отстояния от наибольшего радиуса

$$r(x) = r_1 - x t g \gamma; \tag{1}$$

• отстояние наибольшего радиуса r_1 от вершины $L_1 = r_1 \operatorname{ctg} \gamma$;

Рис. 1. Геометрия кругового конуса **Fig. 1.** Geometry of a circular cone

- отстояние наименьшего радиуса r_2 от вершины $L_0 = L_1 L$, $L = (r_1 r_2)/tg\gamma$;
- радиусы кривизны $R_1 = \infty$, $R_2 = r/\cos \gamma$;
- параметры $A = 1/\cos \gamma$, $B = r = r_1 x \operatorname{tg} \gamma$;
- зависимости толщины *t* от *x*;
- параметры шпангоутов (рис. 26).

Учет особенностей геометрии конических оболочек подводных аппаратов (рис. 2) предполагает, что:

- при описании конической оболочки отсчет вдоль нее ведется по оси конуса, так, что шпации *l* соответствует площадь сечения шпации *lt*/cos γ;
- шпангоуты ставятся нормально к оси корпуса и, соответственно, под углом γ к поверхности оболочки, так, что отстояния центров тяжести пояска и стенки (рис. 2*б*) от срединной поверхности обшивки будут

$$\left(\frac{t_n+t}{2}+h\right)\cos\gamma, \left(\frac{t+h}{2}\right)\cos\gamma;$$
 (2)

• средние напряжения в обшивке

$$\sigma_2 = pr / t \cos \gamma \,. \tag{3}$$

В табл. 1 дано сопоставление параметров цилиндра и конуса по рис. 2.

Рассматриваются оболочки без изломов образующей. Уравнения равновесия круговой конической оболочки при любых t(x) являются уравнениями с переменными коэффициентами.

Таким образом, в общем случае строгой формулы для $p'_{\rm kp}$ получить нельзя. Можно получить лишь приближенные формулы, составляющие которых определяются на основе численных расчетов.

В качестве такой исходной и подлежащей уточнению формулы примем решение, получаемое

обобщением (не строгим!) решения Х.М. Муштари для постоянного значения t/r (и, соответственно, зависящее от *r* параметров шпангоутов).

Х.М. Муштари, полагая $n^2 >> 1$, $n^2 >> \sin^2 \gamma$ для оболочки средней длины и малой конусности, t/r = const, получил уравнение с постоянными ко-эффициентами и

$$p'_{\kappa p} = \frac{E}{n^2 + \alpha^2 / 2} \begin{bmatrix} \frac{t^3}{12(1 - \nu^2)r^3} (n^2 + \alpha^2)^2 + \\ + \frac{t}{r} \frac{(\alpha^4 + 2, 5\alpha^2 + 9/16)}{(n^2 + \alpha^2)^2} \end{bmatrix}; \quad (4)$$
$$\alpha = \pi \sin \gamma / \ln(r_1 / r_2). \quad (5)$$

Слагаемые 2,5α² + 9/16 определяются отличием граничных условий от свободного опирания.

Решение (4) для конструктивно-ортотропной оболочки с $J_n/r^3 \ell = \text{const}, t/r = \text{const}$ может быть приближенно обобщено в виде

$$p'_{\kappa p} = \frac{E}{n^2 - \cos^2 \gamma + \frac{\alpha_{np}^2}{2}(1 - \delta)} \times \left\{ \frac{J_n \cos^3 \gamma}{r^3 l} (n^2 - \cos^2 \gamma)^2 + \frac{t}{r^3 l} (n^2 - \cos^3 \gamma)^2 + \frac{t}{r \left[n^2 + \alpha_{np}^2 (1 - \delta)\right]^2} + \frac{t^3 \cos \gamma}{12(1 - \nu^2)r^3} [n^2 + \alpha_{np}^2 (1 - \delta) - \cos^2 \gamma]^2 \right\},$$
(6)

где $\alpha_{np} = \alpha_1 \sqrt[4]{G}; \quad \alpha_1 = \frac{\pi \sin \gamma}{\ln (r_1 / r_2)}.$

В формуле полагается, что n^2 существенно больше α^2 . Как показали расчеты, формула хорошо «работает» при $n/\alpha_1 \ge 2,5...3$ и удовлетворительно при $n/\alpha_1 \approx 2$:

$$\delta = \frac{5}{4} \frac{\beta^2}{\pi^2 \sqrt{G}} - \frac{\beta^4}{2\pi^4 G} \approx \frac{\beta^2}{8\sqrt{G}} - \frac{\beta^4}{200G};^*$$
(7)

 $\beta = \ln \left(r_1 / r_2 \right),$

где r_1 , r_2 – радиусы оснований, причем при $r_1 < r_2$ следует брать $\gamma < 0$, так, что всегда $\sin \gamma / \ln (r_1/r_2) > 0$ (далее полагаем $r_1 \ge r_2$); при $\gamma \to 0$, $r_1 \to r_2 = r = \text{const}$

Рис. 2. Геометрия конических оболочек подводных аппаратов: а) коническая часть подводного аппарата, подкрепленная шпангоутами; б) параметры шпангоута

Fig. 2. Geometry of conical shells for underwater technology: *a*) stiffened conical part of an underwater vehicle; *b*) stiffener parameters

Таблица 1. Сопоставление параметров цилиндра и конуса

Table 1. Comparison of cylinder and cone

	Цилиндр	Конус
Давление	р	$p/\cos\gamma$
Радиус	r	r/cosγ
Толщина	t	t
Площадь сечения шпации	<i>lt</i>	<i>ℓt</i> /cosγ
Площадь сечения шпангоута	F	F
Параметр β	$\ell t/F$	<i>ℓt/F</i> cosγ
Эксцентриситет шпангоута	Z0	$z_0 \cos \gamma$
Собственный момент инерции шпангоута	J_0	$J_0 \cos^2 \gamma$
Полный момент инерции шпангоута с присоединенным пояском (без собственного момента инерции последнего)	$J_{ m II}$	$J_{\rm II}\cos^2\!\gamma$

(цилиндр) $\alpha_1 = \lim(\pi \sin \gamma / \ln (r_1/r_2)) \rightarrow \pi r/L; L - дли$ на цилиндра; G - коэффициент, зависящий от граничных условий и геометрии оболочки и подлежащий определению.

При $n^2 >> \alpha^2_{\text{пр}}, n^2 >> 1$

$$p'_{\rm kp} = E \begin{bmatrix} \frac{t}{r} \frac{\alpha_{\rm np}^4 \cos^3 \gamma}{n^6} + \frac{t^3 n^2 \cos \gamma}{12(1-\nu^2)r^3} + \\ + \frac{J_n \cos^3 \gamma n^2}{r^3 \ell} \end{bmatrix}.$$
 (8)

13

^{*} Формула корректна при G порядка единицы и не допускает предельного перехода G → 0.

Рис. 3. Правило знаков для усилий и перемещений **Fig. 3.** Rule of signs for forces and displacements

Из
$$\partial_p / \partial_n^2 = 0$$
 при этом следует

$$n^2 \approx \sqrt[4]{\left(3\frac{t}{r}\alpha_{np}^4\cos^3\gamma\right) / \left(\frac{t^3\cos\gamma}{12(1-\nu^2)r^3} + \frac{J_n\cos^3\gamma}{r^3\ell}\right)}.$$
(9)

В дальнейшем полагаем $\delta \approx 0$. Формула (4) с $\delta = 0$ является основой исследования.

Оценка влияния граничных условий

Assessment of boundary condition effect

Для приближенного определения G примем

$$\frac{J_{\pi}\cos^2\gamma}{r^3l} >> \frac{t^3}{12(1-v^2)r^3},$$
(10)

что практически всегда имеет место для подкрепленных оболочек корпусов морской техники^{**}, а также

$$n^2 - \cos^2 \gamma >> \frac{\alpha_{np}^2}{2}; \ n^2 >> \alpha_{np}^2,$$
 (11)

что уже накладывает определенные ограничения на формы потери устойчивости и делает определение *G* приближенным. Разрешающее уравнение устойчивости при этом

$$e^{-\frac{\pi g \gamma}{2}} \begin{bmatrix} E \frac{t}{r} (\cos^3 \gamma) \left(\frac{\partial^4}{\partial z^4} - \frac{5}{2} (tg^2 \gamma) \frac{\partial^2}{\partial z^2} + \right) + \\ + \frac{9}{16} tg^4 \gamma \\ + \frac{E J_{\pi}}{r^3 l \cos \gamma} \left(\frac{\partial^2}{\partial \theta^2} + \cos^2 \gamma \right)^2 \frac{\partial^4}{\partial \theta^4} + \\ + \frac{p}{\cos^4 \gamma} \left(\frac{\partial^2}{\partial \theta^2} + \cos^2 \gamma \right) \frac{\partial^4}{\partial \theta^4} \end{bmatrix} \Phi = 0; \quad (12)$$

$$z = \frac{\ln(r/r_2)}{tg\gamma},$$
(13)

где θ – угол, отсчитываемый по окружности сечения; r – текущее значение радиуса нормального сечения оболочки (при $r_1 < r_2$ нужно брать $\gamma < 0$); Φ – разрешающая функция, через которую выражаются перемещения u, v, w и усилия T_1 , S в срединной поверхности (рис. 3).

Из уравнения (12) определяется разрешающая функция

$$\Phi = \begin{bmatrix} C_1 \operatorname{sh} qz + C_2 \operatorname{ch} qz + \\ +C_3 \operatorname{sin} sz + C_4 \cos sz \end{bmatrix} \cos n\theta,$$
(14)

$$\Gamma \operatorname{gre} q = \sqrt{\sqrt{H} + \frac{5}{4} \operatorname{tg}^2 \gamma}; \quad \delta = \sqrt{\sqrt{H} - \frac{5}{4} \operatorname{tg}^2 \gamma};$$
$$H = \frac{pr}{Eh} \cdot \frac{1}{\cos^7 \gamma} n^4 \left(n^2 - \cos^2 \gamma \right) +$$
$$+ \operatorname{tg}^4 \gamma - \frac{J_{\mu}}{lhr^2 \cos^4 \gamma} n^4 \left(n^2 - \cos^2 \gamma \right)^2.$$

Перемещения и усилия находятся по формулам

$$u = e^{-\frac{ztgy}{2}} \left(-\frac{\partial^{3}}{\partial \theta^{2} \partial z} + \frac{3}{2} (tg\gamma) \frac{\partial^{2}}{\partial \theta^{2}} \right) \Phi;$$

$$v = e^{-\frac{ztg\gamma}{2}} \frac{1}{\cos \gamma} \frac{\partial^{3} \Phi}{\partial \theta^{3}};$$

$$w = e^{-\frac{ztg\gamma}{2}} \frac{1}{\cos^{2} \gamma} \frac{\partial^{4} \Phi}{\partial \theta^{4}};$$

$$T_{1} = E \frac{t}{r} e^{-\frac{ztg\gamma}{2}} (\cos \gamma) \left[-\frac{\partial^{4}}{\partial z^{2} \partial \theta^{2}} + \frac{\partial^{3}}{\partial z \partial \theta^{2}} - \frac{\partial^{3}}{\partial z \partial \theta^{2}} - \frac{\partial^{3}}{\partial z^{2} \partial \theta^{2}} \right] \Phi; \quad (15)$$

$$S = E \frac{t}{r} e^{-\frac{ztg\gamma}{2}} (\cos^{2} \gamma) \times \left[-\frac{\partial^{4}}{\partial z^{3} \partial \theta} - \frac{\partial}{2} (tg\gamma) \frac{\partial^{3}}{\partial z^{2} \partial \theta} - \frac{\partial}{\partial z^{2} \partial \theta} - \frac{\partial^{4}}{\partial z^{3} \partial \theta} - \frac{\partial}{2} (tg\gamma) \frac{\partial^{2}}{\partial z^{2} \partial \theta} - \frac{\partial}{\partial \theta} \right] \Phi.$$

$$\times \left[-\frac{\partial^{4}}{\partial z^{3} \partial \theta} - \frac{\partial}{2} (tg\gamma) \frac{\partial^{2}}{\partial z^{2} \partial \theta} + \frac{\partial}{3} (tg^{3}\gamma) \frac{\partial}{\partial \theta} \right] \Phi.$$

На границах $r = r_1$, z = 0 и $r = r_2$, $z = z_1$. Для $z = z_1$ введем новые переменные

$$\eta = qz_1, \quad \vartheta = sz_1. \tag{16}$$

^{**} При этом с небольшой ошибкой в безопасную сторону в (4) можно принять $\delta = 0$ тем более что при этом снимается проблема, связанная с определением δ при малых *G*.

Из изложенного следует

$$p'_{\rm kp} = \frac{EJ_{\rm n}\cos^{3}\gamma}{r^{3}l} (n_{2} - \cos^{2}\gamma) + E\frac{h}{r} \frac{\alpha_{1}^{4}G\cos^{3}\gamma}{n^{4}(n_{2} - \cos^{2}\gamma)},$$
(17)

выражение (17) является упрощенным аналогом (4),

$$G = \left(\frac{\vartheta}{\pi}\right)^{4} \left[1 + \left(\frac{\beta}{\vartheta}\right)^{2} + \frac{9}{16} \left(\frac{\beta}{\vartheta}\right)^{4}\right];$$

$$\eta = \pi \sqrt{\sqrt{\left(\frac{\beta}{\pi}\right)^{4} + G}} + \frac{5}{4} \left(\frac{\beta}{\pi}\right)^{2}};$$

$$\vartheta = \pi \sqrt{\sqrt{\left(\frac{\beta}{\pi}\right)^{4} + G}} - \frac{5}{4} \left(\frac{\beta}{\pi}\right)^{2}}.$$
 (18)

Выражая граничные условия через усилия и перемещения и приравнивая определитель получающейся системы к нулю, получим трансцендентное уравнение для нахождения G через η , ϑ .

Рассмотрим в качестве примеров два случая.

1. Оба конца оболочки свободно оперты, т.е. $v = T_1 = 0$:

$$\left(1 - \frac{5}{4} \frac{\beta^2}{\eta^2} - \frac{5}{16} \frac{\beta^4}{\eta^4}\right) \frac{\eta}{\vartheta} \operatorname{sh}\eta \sin\vartheta + 2\frac{\beta^2}{\eta^2} (\operatorname{ch}\eta \cos\vartheta - 1) = 0.$$
(19)

2. Оба конца жестко заделаны, т. е. u = v = 0:

$$ch\eta\cos\vartheta - 1 - \frac{5}{4}\frac{\beta^2}{\eta^2}\frac{\eta}{\vartheta}sh\eta\sin\vartheta = 0.$$
 (20)

Решая уравнения (19), (20), а также уравнения для других граничных условий, можно получить значение *G* как функции β . Полученный ряд значений *G* для $0 \le \beta \le 1,4$ (т.е. $1 \le (r_1/r_2) \le 4,05$ угол γ при этом явно в решение не входит) был аппроксимирован аналитическими формулами высокой точности для четырех вариантов граничных условий.

1. Оба края оболочки свободно оперты:

$$G \approx 1 - \left(\beta/6\right)^2. \tag{21}$$

Сопоставление численного решения и расчета по формуле (21) дано в табл. 2.

Таблица 2. Сопоставление численного решения и расчета по формуле (21)

Table 2. Comparison of the numerical solutionand the calculation as per Formula (21)

r_2/r_1	β	<i>G</i> (числен- ное)	G по формуле (21)	Погреш- ность, %
1,000	0	1	1	0
1,221	0,2	0,999	0,999	0
1,492	0,4	0,997	0,996	-0,1
1,822	0,6	0,990	0,990	0
2,226	0,8	0,983	0,982	-0,1
2,718	1,0	0,973	0,972	-0,1
3,320	1,2	0,961	0,960	-0,1
4,055	1,4	0,946	0,946	0

2. Больший диаметр жестко заделан, меньший – свободно оперт:

$$G \approx 2,441 + 0,63\beta + 0,21\beta^2.$$
⁽²²⁾

Погрешность по этой формуле не превосходит -0,2 и +0,06 % при изменении *G* от 2,441 при $\beta = 0$ до 3,734 при $\beta = 1,4$.

3. Больший диаметр свободно оперт, меньший жестко заделан:

$$G \approx 2,441 - 0,65\beta + 0,092\beta^2.$$
⁽²³⁾

Погрешность по этой формуле не превосходит -0,23 и +0,08 % при изменении *G* от 2,441 при $\beta = 0$ до 1,713 при $\beta = 1,4$.

4. Оба края жестко заделаны:

$$G \approx 5,143 + 0,325\beta^2$$
. (24)

Погрешность не превосходит +0,1 и -0,07 % при изменении G от 5,143 при $\beta = 0$ до 5,784 при $\beta = 1,4$.

При невыполнении неравенств $n^2 >> \alpha^2_1$ подстановка *G* из формул (21)–(24) в (4) будет давать некоторую погрешность.

Оболочки без шпангоутов. Постоянная и переменная толщина

Unstiffened shells. Constant and variable thickness

Очевидно, что для конкретной оболочки параметру t/r = const соответствует равноустойчивая оболочка

Таблица 3. Значения $t_{\text{пост}}/r_1$, $t_{\text{перем}}/r_1$, $t_{\text{пост}}/t_{\text{перем}}$ для ряда значений $p'_{\text{кр}}$, $r_2/r_1 = 0,8$, $L/r_1 = 1,08$ (L = 540 мм)

Table 3. t_{const} / r_1 , t_{var} / r_1 , t_{const} / t_{var} for a number of p'_{cr} values, $r_2 / r_1 = 0.8$, $L / r_1 = 1.08$ (L = 540 mm)

$p'_{\kappa p}$	$t_{\text{пост}}/r_1$	$t_{\text{перем}}/r_1$	$t_{\text{пост}}/t_{\text{перем}}$
10	0,019	0,022	0,864
30	0,031	0,0355	0,873
50	0,0385	0,0445	0,865
100	0,0525	0,06	0,875
150	0,062	0,0705	0,879
200	0,069	0,079	0,873
250	0,0755	0,0865	0,873
300	0,0815	0,0945	0,862
			$\frac{t_{\text{пост}}}{t_{\text{перем}}} = 0,871_{-0,009}^{+0,008}$

Рис. 4. Зависимость $t_{\text{пост}}/t_{\text{перем}}$ от $t_{\text{перем}}/r_1$ для $r_2/r_1 = 0.8$, $L/r_1 = 1.08$

Fig. 4. t_{const} / t_{var} versus t_{var} / r_1 for $r_2 / r_1 = 0.8$, $L/r_1 = 1.08$

Рис. 5. Зависимость $p'_{\text{кр}}$ от отношения t/r_1 ; $r_1 = 500$ мм, $r_2 = 400$ мм, L = 540 мм, $r_2/r_1 = 0.8$, $L/r_1 = 1.08$ Fig. 5. $p'_{\text{кр}}$ versus t/r_1

с t = const. Исследовались оболочки в следующих диапазонах: $0,12 \le r_2/r_1 \le 0,8, 0,54 \le L/r_1 \le 2,16.$

Приведем результаты сопоставления $t_{\text{пост}}/t_{\text{перем}}$ для ряда сочетаний r_2 и L при $r_1 = 500$ мм (табл. 3 – рис. 4–5; табл. 4 – рис. 6–7).

В табл. 5 эти результаты обобщены и сопоставлены с аппроксимацией

$$\frac{t_{\text{пост}}}{t_{\text{перем}}} \approx \frac{1}{2} (1 + r_2 / r_1);$$

$$t_{\text{пост}} \approx \frac{1}{2} t_{\text{перем}} (1 + r_2 / r_1);$$
 (25)

$$t_{\text{перем}} \approx 2t_{\text{пост}} / (1 + r_2 / r_1).$$
 (26)

Таблица 4. Значения $t_{\text{пост}}/r_1$, $t_{\text{перем}}/r_1$, $t_{\text{пост}}/t_{\text{перем}}$, для ряда значений $p'_{\text{кр}}, r_2/r_1 = 0, 12, L/r_1 = 2, 16$ (L = 1080 мм)

Table 4. t_{const}/r_1 , t_{var}/r_1 , t_{const}/t_{var} , for a number of p'_{cr} values, r_2/r_1 = 0.12, L/r_1 = 2.16 (L = 1080 mm)

$p'_{\kappa p}$	$t_{\text{пост}}/r_1$	$t_{\text{перем}}/r_1$	$t_{\text{пост}}/t_{\text{перем}}$
10	0,02	0,044	0,45455
20	0,0265	0,059	0,44915
30	0,031	0,07	0,44286
40	0,035	0,078	0,44872
50	0,0385	0,085	0,45294
60	0,0415	0,091	0,45604
70	0,0445	0,0965	0,46114
			$\frac{t_{\text{пост}}}{t_{\text{перем}}} = 0,452_{-0,003}^{+0,004}$

 $t_{\Pi OCT}/t_{\Pi EPEM}$

Рис. 6. Зависимость $t_{\text{пост}}/t_{\text{перем}}$ от $t_{\text{перем}}/r_1$ для $r_2/r_1 = 0,12, L/r_1 = 2,16$

Fig. 6. $t_{\text{const}} / t_{\text{var}}$ versus t_{var} / r_1 for $r_2 / r_1 = 0.12$, $L/r_1 = 2.16$

16

Формула (25) при $r_2/r_1 \ge 0,24$ дает почти точно значения по верхнему пределу (без ошибки в опасную сторону) при определении $t_{\text{пост}}$ по $t_{\text{перем}}$.

Использование (25) для оболочек постоянной толщины:

- по заданному (требуемому) р'_{кр} для r₂/r₁ > 0,24 согласно (6) находится t_{перем};
- формула (25) позволяет определить соответствующее этому p'_{кр} значение t_{пост} почти точно или с небольшим завышением (то есть с ошибкой в безопасную сторону).

Определение наименьшего теоретического критического давления при постоянном отношении толщины к радиусу

Calculation of the least critical pressure at constant t/r

Предварительно по аналогии с цилиндром определим вспомогательный параметр u и его связь с α_1 . Сопоставление с цилиндром дано в табл. 6.

С учетом табл. 6 основное уравнение (4) приводится к виду

$$p'_{\rm kp} = \frac{E\cos^{4}\gamma}{n^{2} - \cos^{2}\gamma + \alpha_{np}^{2}/2} \cdot \left(\frac{t}{r_{0}}\right)^{2} \times \left\{\frac{r_{0}}{t} \frac{\alpha_{np}^{4}}{(n^{2} + \alpha_{np}^{2})^{2}} + \frac{t}{r_{0}} \frac{1}{12(1 - v^{2})} (n^{2} - \cos^{2}\gamma + \alpha_{np}^{2})^{2}\right\}.$$
(27)

Отличия (27) от формулы Мизеса сводятся к заменам 1 на $\cos^2 \gamma$ при $(n^2 - 1)$; *r* на r_0 ;

$$\alpha_{\rm np} = \alpha_1 \sqrt[4]{G} , \ \alpha_1 = \frac{\pi \sin \gamma}{\ell n (r_1 / r_0)} .$$

Появился общий множитель $\cos^4 \gamma$.

Повторяя вывод для цилиндра [3] с минимизацией по *n* при $n^2 \approx n^2 \cos^2 \gamma$, получим при $0.75 \le u \le \infty$

min
$$p'_{\rm kp} \approx 0.589 \left(1 + \frac{0.4}{u} + \frac{0.2}{u^2} \right) \cdot E\left(\frac{t}{r_0}\right)^2 \frac{\cos^4 \gamma}{u};$$
 (28)

$$\left(\frac{n}{\alpha_1}\right)^2 \approx 1,185u \cdot \left(1 + \frac{1+u}{8u^2}\right) - 1.$$
⁽²⁹⁾

С ростом r_1/r_2 погрешность в (28) с ошибкой в безопасную сторону возрастает.

Формулы (28), (29) и определяют приближение min $p'_{\rm kp}$ и *n*.

Рис. 7. Зависимость p'_{sp} от отношения $t/r_1; r_1 = 500$ мм, $r_2 = 60$ мм, L = 1080 мм, $r_2/r_1 = 0,12$, $L/r_1 = 2,16$ Fig. 7. p'_{cr} versus $t/r_1; r_1 = 500$ mm, $r_2 = 60$ mm, L = 1080 mm, $r_2/r_1 = 0.12$, $L/r_1 = 2.16$

Таблица 5. Сопоставление результатов расчета $t_{\text{пост}}/t_{\text{перем}}$ с аппроксимацией (25)

Table 5. t_{const} / t_{var} ratio: calculation results versus approximation (25)

r_2/r_1	tпост / tперем фактически	<i>t</i> пост / <i>t</i> перем по (25)
1	1	1
0,8	0,830,91	0,9
0,64	0,770,83	0,82
0,60	0,760,79	0,80
0,48	0,700,75	0,74
0,40	0,650,70	0,70
0,24	0,540,59	0,62
0,12	0,440,46	0,56

Таблица 6. Сопоставление параметра *и* его связи с α_1 для цилиндра и конуса

Table 6. Parameter u and its connection with $\alpha_{\scriptscriptstyle 1}$ for cylinder and cone

Цилиндр	Конус
$\alpha_1 = \pi r / \ell$;	$\alpha_1 = \pi \sin \gamma / \ell n (r_1/r_2)$
$u = 0,643 \sqrt[4]{\frac{1 - v^2}{0,91}} \frac{\ell}{\sqrt{rt}} ,$	примем $u = \frac{2\ell n(r_1 / r_2)}{\pi \sin \gamma} \sqrt{\frac{r}{t}} =$
при 0≤ν≤0,4	$2 \overline{r}$
$\sqrt[4]{\frac{1-\nu^2}{0,91}} = 1 \pm 0,02$, так,	$= \frac{1}{\alpha_1} \sqrt{\frac{t}{t}}, r_0 = r \cos \gamma,$ так, что при $r/t = \text{const};$
что с зависимостью от v	$r_0/r = \text{const.}$
можно	
не считаться.	
$\alpha_1 \sqrt{\frac{t}{r}} = \pi \frac{\sqrt{rt}}{\ell} \approx 2 \ / \ u$, так	
что $u \approx \frac{2}{\alpha_1} \sqrt{\frac{r}{t}}$.	
При этом	
$2/\pi = 0.636 = 0.99 \cdot 0.643$	

Таблица 7. Минимальная критическая нагрузка $p'_{\text{кр}}$, МПа, для конусов с линейнопеременной толщиной обшивки и с линейнопеременной высотой шпангоутов с сечением $F = 1,5 \times 8 \text{ мм}^2$ (при $t_1 = 1,5 \text{ мм}$) и $F = 2 \times 10 \text{ мm}^2$ (при $t_1 = 2,0 \text{ мm}$), шпацией l = 30 мm, диаметром $2r_1 = 400 \text{ мm}$, длиной L = 270 mm**Table 7.** Minimal critical load p'_{cr} , MPa, for cones with linearly-variable plating thickness and linearly-variable height of stiffeners with section $F = 1.5 \times 8 \text{ mm}^2$ (at $t_1 = 1.5 \text{ mm}$) and $F = 2 \times 10 \text{ mm}^2$ (at $t_1 = 2.0 \text{ mm}$), spacing l = 30 mm, diameter $2r_1 = 400 \text{ mm}$, length L = 270 mm

			<i>р</i> ′ _{кр} , МПа					
$2r_2$		~	<i>t</i> ₁ = 1,5 мм		$t_1 = 2,0 \text{ MM}$			
MM	α1	град	По програм- ме [9] (наружн. шпанг.)	По програм- ме [9] (внутр. шпанг.)	По формуле (6)	По програм- ме [9] (наружн. шпанг.)	По програм- ме [9] (внутр. шпанг.)	По формуле (6)
320	2,06	8,43	5,71 (<i>n</i> = 5)	6,50 (n = 5)	6,51 (<i>n</i> = 5)	12,35 (<i>n</i> = 4)	12,73 (<i>n</i> = 4)	13,10 (n = 4)
240	1,74	16,5	4,37 (n = 5)	4,98 (<i>n</i> = 4)	5,07 (n = 4)	8,86 (<i>n</i> = 4)	10,15 (<i>n</i> = 4)	10,39 (n = 4)
200	1,57	20,3	3,47 (n = 4)	4,15 (<i>n</i> = 4)	4,25 (n = 4)	7,35 (<i>n</i> = 4)	8,87 (<i>n</i> = 4)	9,12 (<i>n</i> = 4)
140	1,30	25,7	2,38 (<i>n</i> = 4)	3,07 (n = 4) $2,91^* (n = 10)$	3,26 (<i>n</i> = 4)	5,36 (<i>n</i> = 4)	7,05 (<i>n</i> = 4)	7,50 (<i>n</i> = 3)
			$\frac{t}{r} = 0,0075, \ \frac{J}{r^3 l} = 1,193 \times 10^{-6}$		$\frac{t}{r} =$	$0,01, \frac{J}{r^3 l} = 3,03 >$	< 10 ⁻⁶	

* местная потеря устойчивости

Таблица 8. Минимальная критическая нагрузка $p'_{\text{кр.}}$ МПа, для конусов с линейнопеременной толщиной обшивки и с линейнопеременной высотой шпангоутов с сечением $F = 1,5 \times 8 \text{ мм}^2$ (при $t_1 = 1,5 \text{ мм}$) и $F = 2 \times 10 \text{ мм}^2$ (при $t_1 = 2,0 \text{ мм}$), шпацией I = 30 мм, диаметром $2r_1 = 400 \text{ мм}$, длиной L = 540 мм**Table 8.** Minimum critical load $p'_{\text{cr.}}$ MPa, for cones with linearly-variable plating thickness and linearly-variable height of stiffeners with section $F = 1.5 \times 8 \text{ mm}^2$ (at $t_1 = 1.5 \text{ mm}$) and $F = 2 \times 10 \text{ mm}^2$ (at $t_1 = 2.0 \text{ mm}$), spacing I = 30 mm, diameter $2r_1 = 400 \text{ mm}$, length L = 540 mm

2 <i>r</i> 2, MM			<i>р</i> ′ _{кр} , МПа			
	(1)	γ,	$t_1 = 1$,5 мм	$t_1 = 2$,0 мм
	u	град.	По программе [9] (внутренние шпангоуты)	По формуле (6)	По программе [9] (внутренние шпангоуты)	[9] По формуле (6)
320	1,04	4,24	3,98 (<i>n</i> = 3)	3,86 (<i>n</i> = 3)	7,61 (<i>n</i> = 3)	7,36 (<i>n</i> = 3)
240	0,90	8,43	3,10 (<i>n</i> = 3)	3,02 (n = 3)	6,39 (n = 3)	6,22 (n = 3)
200	0,83	10,49	2,70 (<i>n</i> = 3)	2,66 (<i>n</i> = 3)	5,82 (n = 3)	5,73 (<i>n</i> = 3)
140	0,70	13,54	2,18 (<i>n</i> = 3)	2,22 (<i>n</i> = 3)	5,00 (<i>n</i> = 3)	5,10 (<i>n</i> = 3)

Таблица 9. Минимальная критическая нагрузка $p'_{\text{кр}}$, МПа, для конусов с линейнопеременной толщиной обшивки и с линейнопеременной высотой шпангоутов с сечением $F = 1,5 \times 8 \text{ мм}^2$ (при $t_1 = 1,5 \text{ мм}$) и $F = 2 \times 10 \text{ мm}^2$ (при $t_1 = 2,0 \text{ мm}$), шпацией l = 30 мm, диаметром $2r_1 = 400 \text{ мm}$, длиной L = 1080 мm

Table 9. Minimum critical load *p*'cr, MPa, for cones with linearly-variable plating thickness and linearly-variable height of stiffeners with section $F = 1.5 \times 8 \text{ mm}^2$ (at $t_1 = 1.5 \text{ mm}$) and $F = 2 \times 10 \text{ mm}^2$ (at $t_1 = 2.0 \text{ mm}$), spacing I = 30 mm, diameter $2r_1 = 400 \text{ mm}$, length L = 1080 mm

				$p'_{\kappa p}, N$	/Па		
$2r_{2}$,		γ,	$t_1 = 1,$	5 мм	$t_1 = 2$,0 мм	
MM	α_1	град.	По программе [9]		По программе [9]		
			(внутренние	По формуле (6)	(внутренние	По формуле (6)	
			шпангоуты)		шпангоуты)		
320	0,52	2,12	2,12 (n = 3)	2,10 (n = 3)	4,58 (n=2)	4,37 (n = 2)	
240	0,45	4,24	1,95 (n = 2)	1,87 (n = 2)	3,52 (n=2)	3,35 (<i>n</i> = 2)	
200	0,42	5,29	1,60 (n = 2)	1,55 (n=2)	3,02 (n = 2)	2,93 (<i>n</i> = 2)	
140	0,36	6,86	1,17 (n=2)	1,17 (n = 2)	$2,41 \ (n=2)$	2,42 (n = 2)	

С учетом ограничения $n/\alpha_1 \ge 2,5...3$ получаем, что они пригодны лишь для оболочек средней длины. Из $n/\alpha_1 \ge 2,5...3$

$$\left(\frac{n}{\alpha_1}\right)^2 \ge 6\dots 9 \ . \tag{30}$$

Из (29) получаем 1,185 $u \cdot (1 + (1+u)/8u^2) \ge 7...10$, т.е. решение хорошо «работает» при

 $u \ge (6...8)$. (31)

Для оболочек малой конусности ($r_2 \approx r_1$) решение пригодно при любых u.

Оболочка со шпангоутами

Stiffened shell

Формула (6) удовлетворительно определяет теоретическое критическое давление оболочки средней длины с внутренними шпангоутами и завышает его при их наружном расположении. В подтверждение сказанного приведем данные расчетов конкретных оболочек (табл. 7, табл. 8, табл. 9). Численный метод расчета таких оболочек, в основе которого лежит метод прогонки с дискретной ортогонализацией, достаточно подробно изложен в [9].

Библиографический список

- Вольмир А.С. Устойчивость деформируемых систем. М.: Наука, 1967.
- Григолюк Э.И., Кабанов В.В. Устойчивость оболочек. М.: Физматгиз, 1978.
- Кравчук В.С. Исследование устойчивости ортотропных цилиндрических и конических оболочек // НТО СП. Доклады. 1965. Вып. 66. С. 63–67.
- Муштари Х.М., Галимов К.З. Нелинейная теория оболочек. Казань: Таткнигоиздат, 1957.
- Николаев В.А. Устойчивость ортотропных конических оболочек при действии внешнего давления. НТО СП. Доклады. 1966. Вып. 79. С. 125–129.
- Преображенский И.Н., Грищак В.З. Устойчивость и колебания конических оболочек. М.: Машиностроение, 1986.
- Рябов В.М. Устойчивость конических оболочек при различных граничных условиях и сопряжении двух конических оболочек // Труды ЦНИИ им. акад. А.Н. Крылова. 2006. Вып. 26 (310). С. 80–87.
- Рябов В.М. Устойчивость и несущая способность оболочек подводной техники. СПб.: Бостон-спектр, 2018.

 Мяченков В.И., Мальцев В.П. Методы и алгоритмы расчета пространственных конструкций на ЭВМ ЕС. М.: Машиностроение, 1984.

References

- 1. *Volmir A*. Stability of strained systems. Moscow: Nauka, 1967 (*in Russian*).
- 2. *Grigolyuk E., Kabanov V.* Stability of shells. Moscow: Fizmatgiz, 1978 (*in Russian*).
- Kravchuk V. Stability of orthotropic cylindrical and conical shells // NTO SP. Messages. 1965. Issue 66. P. 63–67 (*in Russian*).
- 4. *Mushtari Kh., Galimov K.* Non-linear theory of shells. Kazan: Tatknigoizdat, 1957 (*in Russian*).
- Nikolaev V. Stability of orthotropic conical shells under external pressure // NTO SP. Messages. 1966. Issue 79. P. 125–129 (*in Russian*).
- 6. Preobrazhensky I., Grishak V. Stability and vibrations of conical shells. Moscow: Mashinostroyeniye, 1986 (in Russian).
- Ryabov V. Stability of conical shells at different boundary conditions and connection of two conical shells // Transactions of KSRI. 2006. Issue 26(310). P. 80–87 (*in Russian*).
- 8. *Ryabov V.* Stability and bearing capacity of underwater technology shells. St. Petersburg, Boston-spektr, 2018 (*in Russian*).
- Myachenkov V., Maltsev V. Methods and algorithms for calculation of 3D structures on ES-family computers. Moscow: Mashinostroyeniye, 1984 (*in Russian*).

Сведения об авторах

Ефремова Галина Ивановна, научный сотрудник ФГУП «Крыловский государственный научный центр». Адрес: 196158, Россия, г. Санкт-Петербург, Московское шоссе, 44. Тел.: 8 (812) 415-46-77. Е-mail: krylov@krylov.spb.ru. *Рябов Виталий Михайлович*, д.т.н., главный научный сотрудник ФГУП «Крыловский государственный научный центр». Адрес: 196158, Россия, г. Санкт-Петербург, Московское шоссе, 44. Тел.: 8 (812) 415-46-77. Е-mail: krylov@krylov.spb.ru.

About the authors

Galina I. Efremova, Researcher, Krylov State Research Centre. Address: 44, Moskovskoye sh., St. Petersburg, Russia, post code 196158. Tel.: 8 (812) 415-46-77. E-mail: krylov@krylov.spb.ru.

Vitaly M. Ryabov, Dr. Sci. (Eng.), Chief Researcher, Krylov State Research Centre. Address: 44, Moskovskoye sh., St. Petersburg, Russia, post code 196158. Tel.: 8 (812) 415-46-77. E-mail: krylov@krylov.spb.ru.

Поступила / Received: 23.08.18 Принята в печать / Ассерted: 07.11.18 © Рябов В.М., Ефремова Г.И., 2018