XXIX Неделя науки СПбГТУ. Материалы межвузовской научной конференции. Ч.ІІ: С.36, 2001. © Санкт-Петербургский государственный технический университет, 2001.

УДК 629.111

Д.А.Балахонов (5 курс, каф. КГМ), А.Г.Семёнов, к.т.н., доц.

НЕКОТОРЫЕ ПРЕДЛОЖЕНИЯ ПО ТЕХНИЧЕСКИМ СРЕДСТВАМ ДИАГНОСТИРОВАНИЯ ПРОМЫШЛЕННЫХ ОБЪЕКТОВ

При выполнении работ по оценке технического состояния элементов конструкций, энергетического и другого оборудования объектов в предаварийном, аварийном или ином состояниях, представляющих угрозу жизни и здоровью персонала, на который возложены эти работы, желательно в составе этих технических средств иметь телеуправляемые (предпочтительно радиоуправляемые) роботы с высокими показателями профильной проходимости и маневренности.

Примерами машин такого назначения могут служить "гусеничное транспортное средство для защиты при катастрофах, в частности, на атомных станциях" по европейской заявке на изобретение № 0248322 публ. 1987 г. и гусеничная "самоходная установка для контроля и наблюдения, используемая на атомных электростанциях" по японской заявке на изобретение № 63-270 публ. 1988 г.

Серьёзнейшей проблемой реализации подобных проектов остаётся обеспечение возможности самостоятельного передвижения роботов по лестницам.

В последние годы существенный задел в решении этой задачи создали специалисты кафедры КГМ СПбГТУ (группа учёных, инженеров и студентов под руководством доц. А.Д. Элизова), причём в "здоровой конкурентной борьбе" с фирмами США и Японии (компания "Джонсон и Джонсон", "Хонда" и др.).

Выработанные концептуальные решения по универсальным самоходным электрифицированным колёсным шасси 4х4 и 3х3 позволяют рекомендовать их в качестве базовых шасси для рассматриваемых целей.

В такой "адаптации" акцент должен быть сделан на малогабаритность, надёжность электромеханики и электроники систем управления и наблюдения в условиях дистанционного вождения в отсутствии прямой видимости и воздействия различных излучений как со стороны диагностического оборудования, так и со стороны бортовой диагностической аппаратуры.

На шасси должна быть установлена регулируемая по высоте, углу места и азимуту платформа для размещения диагностической аппаратуры и другого бортового оборудования (при наличии бортового манипулятора допускается упрощённый вариант платформы).

При разработке платформы рекомендуется учесть опыт выпускников кафедры КГМ (в рамках совместных договорных работ ОАО "ВНИИТРАНСМАШ" - СПбГТУ) по созданию электромеханических трёхосных стабилизированных платформ для открытого и околоземного космоса (проект "Аргус" и др.).