XXIX Неделя науки СПбГТУ. Материалы межвузовской научной конференции. Ч.ІІІ: С.136, 2001. © Санкт-Петербургский государственный технический университет, 2001.

УДК 621.762

С.А.Люликов (5 курс, каф. ПОМКиПМ), С.А.Котов, к.т.н., доц.

ИССЛЕДОВАНИЕ ПРОЦЕССА ФОРМОВАНИЯ ПОРОШКОВ ОКСИДА ЦИНКА

Непроволочные резисторы (сопротивления) являются наиболее распространенными элементами радиоэлектронных устройств, выполняющих, хотя и пассивную, но важную функцию - поглощение электрической энергии в целях ее регулирования и распределения в нужных дозах между многочисленными узлами, цепями и элементами схем.

Эту функцию резисторы выполняют благодаря сосредоточенному в них большему или меньшему активному сопротивлению, создаваемому специальными "резисторными" материалами, позволяющих сочетать большие величины сопротивлений с малыми размерами резисторов и их безреактивностью.

Одними из таких материалов являются материалы на основе оксида цинка.

Технология изготовления варисторов, хотя и обладает специфическими особенностями, является типично порошковой технологией, что обеспечивает невысокую стоимость приборов.

Целью работы являлось исследование процесса формования порошка окиси цинка и влияния высоты образца на этот процесс.

В работе проводилось исследование процессов прессования и спекания образцов из окисида цинка. При этом производилась оценка влияния технологических параметров при формовке и спекании на пористость и плотность получаемых заготовок.

Из результатов работы следует, что при давлениях 59 и 100 МПа существует заметная разница плотностей низких и высоких неспеченных образцов, а при давлении 136 МПа эта разница несущественна. Это объясняется тем, что при прессовании образцов с давлением 136 МПа мы использовали смазку - стеарат цинка, а остальные образцы мы прессовали без смазки.

Проанализировав полученные компрессионные кривые можно сделать следующие выводы:

- 1) На плотность образцов после прессования влияет сила трения порошка о стенку матрицы, а на силу трения влияет полощадь контакта порошка с матрицей (высота образца) и коэффициент трения.
- 2) При спекании плотности низких образцов выравниваются, т.е. высота образца не влияет на его плотность после спекания.
- 3) Плотность спеченных образцов слабо зависит от давления прессования в исследуемом интервале давлений.

Из зависимости пористости образцов от давления можно сделать вывод, что пористость образца при спекании уменьшается на порядок, и спеченный образец близок к компактному материалу - пористость составляет 4...5%.

Усадка образцов при спекании по высоте незначительно превышает усадку по диаметру. С ростом давления прессования усадка уменьшается.